blob: d8d492cd7bf6a9ca4656e268fe43ad10058178f0 [file] [log] [blame]
Chris Lattnerdb80e212007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerdb80e212007-08-20 22:49:32 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner804850d2007-12-08 19:00:03 +000015#include "llvm/ADT/APFloat.h"
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +000016#include "llvm/ADT/StringRef.h"
Ted Kremenekdc71c802008-02-11 17:24:50 +000017#include "llvm/ADT/FoldingSet.h"
Edwin Török675d5622009-07-11 20:10:48 +000018#include "llvm/Support/ErrorHandling.h"
Dale Johannesen41b1f012007-08-24 05:08:11 +000019#include "llvm/Support/MathExtras.h"
Chris Lattner89b36582008-08-17 07:19:36 +000020#include <cstring>
Chris Lattnerdb80e212007-08-20 22:49:32 +000021
22using namespace llvm;
23
24#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
25
Neil Booth3ba85132007-10-03 22:26:02 +000026/* Assumed in hexadecimal significand parsing, and conversion to
27 hexadecimal strings. */
Chris Lattner12e44312008-08-17 04:58:58 +000028#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +000029COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
30
31namespace llvm {
32
33 /* Represents floating point arithmetic semantics. */
34 struct fltSemantics {
35 /* The largest E such that 2^E is representable; this matches the
36 definition of IEEE 754. */
37 exponent_t maxExponent;
38
39 /* The smallest E such that 2^E is a normalized number; this
40 matches the definition of IEEE 754. */
41 exponent_t minExponent;
42
43 /* Number of bits in the significand. This includes the integer
44 bit. */
Neil Booth5b197ba2007-10-12 15:33:27 +000045 unsigned int precision;
Neil Booth6721b8a2007-10-14 10:29:28 +000046
47 /* True if arithmetic is supported. */
48 unsigned int arithmeticOK;
Chris Lattnerdb80e212007-08-20 22:49:32 +000049 };
50
Neil Booth6721b8a2007-10-14 10:29:28 +000051 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
52 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
53 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
54 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
55 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
Dale Johannesen2aef5692007-10-11 18:07:22 +000056
57 // The PowerPC format consists of two doubles. It does not map cleanly
58 // onto the usual format above. For now only storage of constants of
59 // this type is supported, no arithmetic.
Neil Booth6721b8a2007-10-14 10:29:28 +000060 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
Neil Booth1171ddf2007-10-12 16:02:31 +000061
62 /* A tight upper bound on number of parts required to hold the value
63 pow(5, power) is
64
Neil Boothc4f88052007-10-15 15:00:55 +000065 power * 815 / (351 * integerPartWidth) + 1
Neil Booth1171ddf2007-10-12 16:02:31 +000066
67 However, whilst the result may require only this many parts,
68 because we are multiplying two values to get it, the
69 multiplication may require an extra part with the excess part
70 being zero (consider the trivial case of 1 * 1, tcFullMultiply
71 requires two parts to hold the single-part result). So we add an
72 extra one to guarantee enough space whilst multiplying. */
73 const unsigned int maxExponent = 16383;
74 const unsigned int maxPrecision = 113;
75 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
Neil Boothc4f88052007-10-15 15:00:55 +000076 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
77 / (351 * integerPartWidth));
Chris Lattnerdb80e212007-08-20 22:49:32 +000078}
79
Chris Lattner0b8cd2c2009-03-12 23:59:55 +000080/* A bunch of private, handy routines. */
Chris Lattnerdb80e212007-08-20 22:49:32 +000081
Chris Lattner0b8cd2c2009-03-12 23:59:55 +000082static inline unsigned int
83partCountForBits(unsigned int bits)
84{
85 return ((bits) + integerPartWidth - 1) / integerPartWidth;
86}
Chris Lattnerdb80e212007-08-20 22:49:32 +000087
Chris Lattner0b8cd2c2009-03-12 23:59:55 +000088/* Returns 0U-9U. Return values >= 10U are not digits. */
89static inline unsigned int
90decDigitValue(unsigned int c)
91{
92 return c - '0';
93}
Chris Lattnerdb80e212007-08-20 22:49:32 +000094
Chris Lattner0b8cd2c2009-03-12 23:59:55 +000095static unsigned int
96hexDigitValue(unsigned int c)
97{
98 unsigned int r;
Chris Lattnerdb80e212007-08-20 22:49:32 +000099
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000100 r = c - '0';
101 if(r <= 9)
102 return r;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000103
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000104 r = c - 'A';
105 if(r <= 5)
106 return r + 10;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000107
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000108 r = c - 'a';
109 if(r <= 5)
110 return r + 10;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000111
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000112 return -1U;
113}
Chris Lattnerdb80e212007-08-20 22:49:32 +0000114
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000115static inline void
116assertArithmeticOK(const llvm::fltSemantics &semantics) {
117 assert(semantics.arithmeticOK
118 && "Compile-time arithmetic does not support these semantics");
119}
Neil Booth6721b8a2007-10-14 10:29:28 +0000120
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000121/* Return the value of a decimal exponent of the form
122 [+-]ddddddd.
Neil Booth666ea912007-10-14 10:16:12 +0000123
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000124 If the exponent overflows, returns a large exponent with the
125 appropriate sign. */
126static int
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000127readExponent(StringRef::iterator begin, StringRef::iterator end)
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000128{
129 bool isNegative;
130 unsigned int absExponent;
131 const unsigned int overlargeExponent = 24000; /* FIXME. */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000132 StringRef::iterator p = begin;
133
134 assert(p != end && "Exponent has no digits");
Neil Booth666ea912007-10-14 10:16:12 +0000135
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000136 isNegative = (*p == '-');
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000137 if (*p == '-' || *p == '+') {
Chris Lattnerdb80e212007-08-20 22:49:32 +0000138 p++;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000139 assert(p != end && "Exponent has no digits");
140 }
Chris Lattnerdb80e212007-08-20 22:49:32 +0000141
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000142 absExponent = decDigitValue(*p++);
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000143 assert(absExponent < 10U && "Invalid character in exponent");
Chris Lattnerdb80e212007-08-20 22:49:32 +0000144
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000145 for (; p != end; ++p) {
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000146 unsigned int value;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000147
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000148 value = decDigitValue(*p);
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000149 assert(value < 10U && "Invalid character in exponent");
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000150
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000151 value += absExponent * 10;
152 if (absExponent >= overlargeExponent) {
153 absExponent = overlargeExponent;
154 break;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000155 }
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000156 absExponent = value;
157 }
Chris Lattnerdb80e212007-08-20 22:49:32 +0000158
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000159 assert(p == end && "Invalid exponent in exponent");
160
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000161 if (isNegative)
162 return -(int) absExponent;
163 else
164 return (int) absExponent;
165}
166
167/* This is ugly and needs cleaning up, but I don't immediately see
168 how whilst remaining safe. */
169static int
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000170totalExponent(StringRef::iterator p, StringRef::iterator end,
171 int exponentAdjustment)
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000172{
173 int unsignedExponent;
174 bool negative, overflow;
175 int exponent;
176
177 /* Move past the exponent letter and sign to the digits. */
178 p++;
179 negative = *p == '-';
180 if(*p == '-' || *p == '+')
181 p++;
182
183 unsignedExponent = 0;
184 overflow = false;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000185 for(; p != end; ++p) {
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000186 unsigned int value;
187
188 value = decDigitValue(*p);
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000189 assert(value < 10U && "Invalid character in exponent");
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000190
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000191 unsignedExponent = unsignedExponent * 10 + value;
192 if(unsignedExponent > 65535)
Chris Lattnerdb80e212007-08-20 22:49:32 +0000193 overflow = true;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000194 }
195
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000196 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
197 overflow = true;
198
199 if(!overflow) {
200 exponent = unsignedExponent;
201 if(negative)
202 exponent = -exponent;
203 exponent += exponentAdjustment;
204 if(exponent > 65535 || exponent < -65536)
205 overflow = true;
206 }
207
208 if(overflow)
209 exponent = negative ? -65536: 65535;
210
211 return exponent;
212}
213
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000214static StringRef::iterator
215skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
216 StringRef::iterator *dot)
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000217{
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000218 StringRef::iterator p = begin;
219 *dot = end;
220 while(*p == '0' && p != end)
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000221 p++;
222
223 if(*p == '.') {
224 *dot = p++;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000225
226 assert(end - begin != 1 && "String cannot be just a dot");
227
228 while(*p == '0' && p != end)
Chris Lattnerdb80e212007-08-20 22:49:32 +0000229 p++;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000230 }
231
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000232 return p;
233}
Neil Booth666ea912007-10-14 10:16:12 +0000234
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000235/* Given a normal decimal floating point number of the form
Neil Booth666ea912007-10-14 10:16:12 +0000236
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000237 dddd.dddd[eE][+-]ddd
Neil Boothc4f88052007-10-15 15:00:55 +0000238
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000239 where the decimal point and exponent are optional, fill out the
240 structure D. Exponent is appropriate if the significand is
241 treated as an integer, and normalizedExponent if the significand
242 is taken to have the decimal point after a single leading
243 non-zero digit.
Neil Booth666ea912007-10-14 10:16:12 +0000244
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000245 If the value is zero, V->firstSigDigit points to a non-digit, and
246 the return exponent is zero.
247*/
248struct decimalInfo {
249 const char *firstSigDigit;
250 const char *lastSigDigit;
251 int exponent;
252 int normalizedExponent;
253};
Neil Booth666ea912007-10-14 10:16:12 +0000254
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000255static void
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000256interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
257 decimalInfo *D)
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000258{
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000259 StringRef::iterator dot = end;
260 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
Neil Booth666ea912007-10-14 10:16:12 +0000261
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000262 D->firstSigDigit = p;
263 D->exponent = 0;
264 D->normalizedExponent = 0;
265
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000266 for (; p != end; ++p) {
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000267 if (*p == '.') {
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000268 assert(dot == end && "Multiple dots in float");
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000269 dot = p++;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000270 if (p == end)
271 break;
Neil Booth666ea912007-10-14 10:16:12 +0000272 }
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000273 if (decDigitValue(*p) >= 10U)
274 break;
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000275 }
Neil Booth666ea912007-10-14 10:16:12 +0000276
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000277 if (p != end) {
278 assert((*p == 'e' || *p == 'E') && "Invalid character in digit string");
279
280 /* p points to the first non-digit in the string */
281 if (*p == 'e' || *p == 'E') {
282 D->exponent = readExponent(p + 1, end);
283 }
Neil Booth666ea912007-10-14 10:16:12 +0000284
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000285 /* Implied decimal point? */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000286 if (dot == end)
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000287 dot = p;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000288 }
Neil Booth666ea912007-10-14 10:16:12 +0000289
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000290 /* If number is all zeroes accept any exponent. */
291 if (p != D->firstSigDigit) {
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000292 /* Drop insignificant trailing zeroes. */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000293 if (p != begin) {
Neil Booth666ea912007-10-14 10:16:12 +0000294 do
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000295 do
296 p--;
297 while (p != begin && *p == '0');
298 while (p != begin && *p == '.');
299 }
Neil Booth666ea912007-10-14 10:16:12 +0000300
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000301 /* Adjust the exponents for any decimal point. */
302 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
303 D->normalizedExponent = (D->exponent +
304 static_cast<exponent_t>((p - D->firstSigDigit)
305 - (dot > D->firstSigDigit && dot < p)));
Neil Booth666ea912007-10-14 10:16:12 +0000306 }
307
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000308 D->lastSigDigit = p;
309}
Chris Lattnerdb80e212007-08-20 22:49:32 +0000310
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000311/* Return the trailing fraction of a hexadecimal number.
312 DIGITVALUE is the first hex digit of the fraction, P points to
313 the next digit. */
314static lostFraction
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000315trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
316 unsigned int digitValue)
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000317{
318 unsigned int hexDigit;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000319
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000320 /* If the first trailing digit isn't 0 or 8 we can work out the
321 fraction immediately. */
322 if(digitValue > 8)
323 return lfMoreThanHalf;
324 else if(digitValue < 8 && digitValue > 0)
Chris Lattnerdb80e212007-08-20 22:49:32 +0000325 return lfLessThanHalf;
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000326
327 /* Otherwise we need to find the first non-zero digit. */
328 while(*p == '0')
329 p++;
330
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000331 assert(p != end && "Invalid trailing hexadecimal fraction!");
332
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000333 hexDigit = hexDigitValue(*p);
334
335 /* If we ran off the end it is exactly zero or one-half, otherwise
336 a little more. */
337 if(hexDigit == -1U)
338 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
339 else
340 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
341}
342
343/* Return the fraction lost were a bignum truncated losing the least
344 significant BITS bits. */
345static lostFraction
346lostFractionThroughTruncation(const integerPart *parts,
347 unsigned int partCount,
348 unsigned int bits)
349{
350 unsigned int lsb;
351
352 lsb = APInt::tcLSB(parts, partCount);
353
354 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
355 if(bits <= lsb)
356 return lfExactlyZero;
357 if(bits == lsb + 1)
358 return lfExactlyHalf;
359 if(bits <= partCount * integerPartWidth
360 && APInt::tcExtractBit(parts, bits - 1))
361 return lfMoreThanHalf;
362
363 return lfLessThanHalf;
364}
365
366/* Shift DST right BITS bits noting lost fraction. */
367static lostFraction
368shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
369{
370 lostFraction lost_fraction;
371
372 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
373
374 APInt::tcShiftRight(dst, parts, bits);
375
376 return lost_fraction;
377}
378
379/* Combine the effect of two lost fractions. */
380static lostFraction
381combineLostFractions(lostFraction moreSignificant,
382 lostFraction lessSignificant)
383{
384 if(lessSignificant != lfExactlyZero) {
385 if(moreSignificant == lfExactlyZero)
386 moreSignificant = lfLessThanHalf;
387 else if(moreSignificant == lfExactlyHalf)
388 moreSignificant = lfMoreThanHalf;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000389 }
390
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000391 return moreSignificant;
392}
Chris Lattnerdb80e212007-08-20 22:49:32 +0000393
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000394/* The error from the true value, in half-ulps, on multiplying two
395 floating point numbers, which differ from the value they
396 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
397 than the returned value.
Chris Lattnerdb80e212007-08-20 22:49:32 +0000398
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000399 See "How to Read Floating Point Numbers Accurately" by William D
400 Clinger. */
401static unsigned int
402HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
403{
404 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
Chris Lattnerdb80e212007-08-20 22:49:32 +0000405
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000406 if (HUerr1 + HUerr2 == 0)
407 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
408 else
409 return inexactMultiply + 2 * (HUerr1 + HUerr2);
410}
Neil Booth3ba85132007-10-03 22:26:02 +0000411
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000412/* The number of ulps from the boundary (zero, or half if ISNEAREST)
413 when the least significant BITS are truncated. BITS cannot be
414 zero. */
415static integerPart
416ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
417{
418 unsigned int count, partBits;
419 integerPart part, boundary;
Neil Booth8caf8252007-10-07 08:51:21 +0000420
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000421 assert (bits != 0);
Neil Booth3ba85132007-10-03 22:26:02 +0000422
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000423 bits--;
424 count = bits / integerPartWidth;
425 partBits = bits % integerPartWidth + 1;
Neil Booth1171ddf2007-10-12 16:02:31 +0000426
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000427 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
Neil Booth1171ddf2007-10-12 16:02:31 +0000428
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000429 if (isNearest)
430 boundary = (integerPart) 1 << (partBits - 1);
431 else
432 boundary = 0;
433
434 if (count == 0) {
435 if (part - boundary <= boundary - part)
436 return part - boundary;
Neil Booth1171ddf2007-10-12 16:02:31 +0000437 else
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000438 return boundary - part;
Neil Booth1171ddf2007-10-12 16:02:31 +0000439 }
440
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000441 if (part == boundary) {
442 while (--count)
443 if (parts[count])
444 return ~(integerPart) 0; /* A lot. */
Neil Booth1171ddf2007-10-12 16:02:31 +0000445
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000446 return parts[0];
447 } else if (part == boundary - 1) {
448 while (--count)
449 if (~parts[count])
450 return ~(integerPart) 0; /* A lot. */
Neil Booth1171ddf2007-10-12 16:02:31 +0000451
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000452 return -parts[0];
453 }
Neil Booth1171ddf2007-10-12 16:02:31 +0000454
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000455 return ~(integerPart) 0; /* A lot. */
456}
Neil Booth1171ddf2007-10-12 16:02:31 +0000457
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000458/* Place pow(5, power) in DST, and return the number of parts used.
459 DST must be at least one part larger than size of the answer. */
460static unsigned int
461powerOf5(integerPart *dst, unsigned int power)
462{
463 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
464 15625, 78125 };
Chris Lattner8f8b44f2009-03-13 00:24:01 +0000465 integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
466 pow5s[0] = 78125 * 5;
467
Chris Lattner0a8e0432009-03-13 00:03:51 +0000468 unsigned int partsCount[16] = { 1 };
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000469 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
470 unsigned int result;
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000471 assert(power <= maxExponent);
472
473 p1 = dst;
474 p2 = scratch;
475
476 *p1 = firstEightPowers[power & 7];
477 power >>= 3;
478
479 result = 1;
480 pow5 = pow5s;
481
482 for (unsigned int n = 0; power; power >>= 1, n++) {
483 unsigned int pc;
484
485 pc = partsCount[n];
486
487 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
488 if (pc == 0) {
489 pc = partsCount[n - 1];
490 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
491 pc *= 2;
492 if (pow5[pc - 1] == 0)
493 pc--;
494 partsCount[n] = pc;
Neil Booth1171ddf2007-10-12 16:02:31 +0000495 }
496
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000497 if (power & 1) {
498 integerPart *tmp;
Neil Booth1171ddf2007-10-12 16:02:31 +0000499
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000500 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
501 result += pc;
502 if (p2[result - 1] == 0)
503 result--;
Neil Booth1171ddf2007-10-12 16:02:31 +0000504
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000505 /* Now result is in p1 with partsCount parts and p2 is scratch
506 space. */
507 tmp = p1, p1 = p2, p2 = tmp;
Neil Booth1171ddf2007-10-12 16:02:31 +0000508 }
509
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000510 pow5 += pc;
Neil Booth1171ddf2007-10-12 16:02:31 +0000511 }
512
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000513 if (p1 != dst)
514 APInt::tcAssign(dst, p1, result);
Neil Booth1171ddf2007-10-12 16:02:31 +0000515
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000516 return result;
517}
Neil Booth1171ddf2007-10-12 16:02:31 +0000518
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000519/* Zero at the end to avoid modular arithmetic when adding one; used
520 when rounding up during hexadecimal output. */
521static const char hexDigitsLower[] = "0123456789abcdef0";
522static const char hexDigitsUpper[] = "0123456789ABCDEF0";
523static const char infinityL[] = "infinity";
524static const char infinityU[] = "INFINITY";
525static const char NaNL[] = "nan";
526static const char NaNU[] = "NAN";
Neil Booth1171ddf2007-10-12 16:02:31 +0000527
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000528/* Write out an integerPart in hexadecimal, starting with the most
529 significant nibble. Write out exactly COUNT hexdigits, return
530 COUNT. */
531static unsigned int
532partAsHex (char *dst, integerPart part, unsigned int count,
533 const char *hexDigitChars)
534{
535 unsigned int result = count;
Neil Booth1171ddf2007-10-12 16:02:31 +0000536
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000537 assert (count != 0 && count <= integerPartWidth / 4);
Neil Booth1171ddf2007-10-12 16:02:31 +0000538
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000539 part >>= (integerPartWidth - 4 * count);
540 while (count--) {
541 dst[count] = hexDigitChars[part & 0xf];
542 part >>= 4;
Neil Booth1171ddf2007-10-12 16:02:31 +0000543 }
544
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000545 return result;
546}
Neil Booth3ba85132007-10-03 22:26:02 +0000547
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000548/* Write out an unsigned decimal integer. */
549static char *
550writeUnsignedDecimal (char *dst, unsigned int n)
551{
552 char buff[40], *p;
Neil Booth3ba85132007-10-03 22:26:02 +0000553
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000554 p = buff;
555 do
556 *p++ = '0' + n % 10;
557 while (n /= 10);
Neil Booth3ba85132007-10-03 22:26:02 +0000558
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000559 do
560 *dst++ = *--p;
561 while (p != buff);
Neil Booth3ba85132007-10-03 22:26:02 +0000562
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000563 return dst;
564}
Neil Booth3ba85132007-10-03 22:26:02 +0000565
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000566/* Write out a signed decimal integer. */
567static char *
568writeSignedDecimal (char *dst, int value)
569{
570 if (value < 0) {
571 *dst++ = '-';
572 dst = writeUnsignedDecimal(dst, -(unsigned) value);
573 } else
574 dst = writeUnsignedDecimal(dst, value);
Neil Booth3ba85132007-10-03 22:26:02 +0000575
Chris Lattner0b8cd2c2009-03-12 23:59:55 +0000576 return dst;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000577}
578
579/* Constructors. */
580void
581APFloat::initialize(const fltSemantics *ourSemantics)
582{
583 unsigned int count;
584
585 semantics = ourSemantics;
586 count = partCount();
587 if(count > 1)
588 significand.parts = new integerPart[count];
589}
590
591void
592APFloat::freeSignificand()
593{
594 if(partCount() > 1)
595 delete [] significand.parts;
596}
597
598void
599APFloat::assign(const APFloat &rhs)
600{
601 assert(semantics == rhs.semantics);
602
603 sign = rhs.sign;
604 category = rhs.category;
605 exponent = rhs.exponent;
Dale Johannesen2aef5692007-10-11 18:07:22 +0000606 sign2 = rhs.sign2;
607 exponent2 = rhs.exponent2;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000608 if(category == fcNormal || category == fcNaN)
Chris Lattnerdb80e212007-08-20 22:49:32 +0000609 copySignificand(rhs);
610}
611
612void
613APFloat::copySignificand(const APFloat &rhs)
614{
Dale Johannesendf8a8312007-08-31 04:03:46 +0000615 assert(category == fcNormal || category == fcNaN);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000616 assert(rhs.partCount() >= partCount());
617
618 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth6479f712007-09-26 21:33:42 +0000619 partCount());
Chris Lattnerdb80e212007-08-20 22:49:32 +0000620}
621
Neil Booth6fb006e2007-10-14 10:39:51 +0000622/* Make this number a NaN, with an arbitrary but deterministic value
Dale Johannesenc6858812009-01-21 20:32:55 +0000623 for the significand. If double or longer, this is a signalling NaN,
Mike Stump6df540f2009-05-30 03:49:43 +0000624 which may not be ideal. If float, this is QNaN(0). */
Neil Booth6fb006e2007-10-14 10:39:51 +0000625void
Mike Stump6df540f2009-05-30 03:49:43 +0000626APFloat::makeNaN(unsigned type)
Neil Booth6fb006e2007-10-14 10:39:51 +0000627{
628 category = fcNaN;
Mike Stump6df540f2009-05-30 03:49:43 +0000629 // FIXME: Add double and long double support for QNaN(0).
630 if (semantics->precision == 24 && semantics->maxExponent == 127) {
631 type |= 0x7fc00000U;
632 type &= ~0x80000000U;
633 } else
634 type = ~0U;
635 APInt::tcSet(significandParts(), type, partCount());
Neil Booth6fb006e2007-10-14 10:39:51 +0000636}
637
Chris Lattnerdb80e212007-08-20 22:49:32 +0000638APFloat &
639APFloat::operator=(const APFloat &rhs)
640{
641 if(this != &rhs) {
642 if(semantics != rhs.semantics) {
643 freeSignificand();
644 initialize(rhs.semantics);
645 }
646 assign(rhs);
647 }
648
649 return *this;
650}
651
Dale Johannesen96ec39d2007-08-24 00:56:33 +0000652bool
Dale Johannesen0210fe82007-08-24 22:09:56 +0000653APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen96ec39d2007-08-24 00:56:33 +0000654 if (this == &rhs)
655 return true;
656 if (semantics != rhs.semantics ||
Dale Johannesendf8a8312007-08-31 04:03:46 +0000657 category != rhs.category ||
658 sign != rhs.sign)
Dale Johannesen96ec39d2007-08-24 00:56:33 +0000659 return false;
Dan Gohman61c6f912008-01-29 12:08:20 +0000660 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesen2aef5692007-10-11 18:07:22 +0000661 sign2 != rhs.sign2)
662 return false;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000663 if (category==fcZero || category==fcInfinity)
Dale Johannesen96ec39d2007-08-24 00:56:33 +0000664 return true;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000665 else if (category==fcNormal && exponent!=rhs.exponent)
666 return false;
Dan Gohman61c6f912008-01-29 12:08:20 +0000667 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesen2aef5692007-10-11 18:07:22 +0000668 exponent2!=rhs.exponent2)
669 return false;
Dale Johannesen96ec39d2007-08-24 00:56:33 +0000670 else {
Dale Johannesen96ec39d2007-08-24 00:56:33 +0000671 int i= partCount();
672 const integerPart* p=significandParts();
673 const integerPart* q=rhs.significandParts();
674 for (; i>0; i--, p++, q++) {
675 if (*p != *q)
676 return false;
677 }
678 return true;
679 }
680}
681
Chris Lattnerdb80e212007-08-20 22:49:32 +0000682APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
683{
Neil Booth6721b8a2007-10-14 10:29:28 +0000684 assertArithmeticOK(ourSemantics);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000685 initialize(&ourSemantics);
686 sign = 0;
687 zeroSignificand();
688 exponent = ourSemantics.precision - 1;
689 significandParts()[0] = value;
690 normalize(rmNearestTiesToEven, lfExactlyZero);
691}
692
693APFloat::APFloat(const fltSemantics &ourSemantics,
Mike Stump6df540f2009-05-30 03:49:43 +0000694 fltCategory ourCategory, bool negative, unsigned type)
Chris Lattnerdb80e212007-08-20 22:49:32 +0000695{
Neil Booth6721b8a2007-10-14 10:29:28 +0000696 assertArithmeticOK(ourSemantics);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000697 initialize(&ourSemantics);
698 category = ourCategory;
699 sign = negative;
Mike Stump6df540f2009-05-30 03:49:43 +0000700 if (category == fcNormal)
Chris Lattnerdb80e212007-08-20 22:49:32 +0000701 category = fcZero;
Neil Booth6fb006e2007-10-14 10:39:51 +0000702 else if (ourCategory == fcNaN)
Mike Stump6df540f2009-05-30 03:49:43 +0000703 makeNaN(type);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000704}
705
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +0000706APFloat::APFloat(const fltSemantics &ourSemantics, const StringRef& text)
Chris Lattnerdb80e212007-08-20 22:49:32 +0000707{
Neil Booth6721b8a2007-10-14 10:29:28 +0000708 assertArithmeticOK(ourSemantics);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000709 initialize(&ourSemantics);
710 convertFromString(text, rmNearestTiesToEven);
711}
712
713APFloat::APFloat(const APFloat &rhs)
714{
715 initialize(rhs.semantics);
716 assign(rhs);
717}
718
719APFloat::~APFloat()
720{
721 freeSignificand();
722}
723
Ted Kremenekdc71c802008-02-11 17:24:50 +0000724// Profile - This method 'profiles' an APFloat for use with FoldingSet.
725void APFloat::Profile(FoldingSetNodeID& ID) const {
Dale Johannesen49cc7ce2008-10-09 18:53:47 +0000726 ID.Add(bitcastToAPInt());
Ted Kremenekdc71c802008-02-11 17:24:50 +0000727}
728
Chris Lattnerdb80e212007-08-20 22:49:32 +0000729unsigned int
730APFloat::partCount() const
731{
Dale Johannesenc044a3e2007-09-20 23:47:58 +0000732 return partCountForBits(semantics->precision + 1);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000733}
734
735unsigned int
736APFloat::semanticsPrecision(const fltSemantics &semantics)
737{
738 return semantics.precision;
739}
740
741const integerPart *
742APFloat::significandParts() const
743{
744 return const_cast<APFloat *>(this)->significandParts();
745}
746
747integerPart *
748APFloat::significandParts()
749{
Dale Johannesendf8a8312007-08-31 04:03:46 +0000750 assert(category == fcNormal || category == fcNaN);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000751
752 if(partCount() > 1)
753 return significand.parts;
754 else
755 return &significand.part;
756}
757
Chris Lattnerdb80e212007-08-20 22:49:32 +0000758void
759APFloat::zeroSignificand()
760{
761 category = fcNormal;
762 APInt::tcSet(significandParts(), 0, partCount());
763}
764
765/* Increment an fcNormal floating point number's significand. */
766void
767APFloat::incrementSignificand()
768{
769 integerPart carry;
770
771 carry = APInt::tcIncrement(significandParts(), partCount());
772
773 /* Our callers should never cause us to overflow. */
774 assert(carry == 0);
775}
776
777/* Add the significand of the RHS. Returns the carry flag. */
778integerPart
779APFloat::addSignificand(const APFloat &rhs)
780{
781 integerPart *parts;
782
783 parts = significandParts();
784
785 assert(semantics == rhs.semantics);
786 assert(exponent == rhs.exponent);
787
788 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
789}
790
791/* Subtract the significand of the RHS with a borrow flag. Returns
792 the borrow flag. */
793integerPart
794APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
795{
796 integerPart *parts;
797
798 parts = significandParts();
799
800 assert(semantics == rhs.semantics);
801 assert(exponent == rhs.exponent);
802
803 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth6479f712007-09-26 21:33:42 +0000804 partCount());
Chris Lattnerdb80e212007-08-20 22:49:32 +0000805}
806
807/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
808 on to the full-precision result of the multiplication. Returns the
809 lost fraction. */
810lostFraction
811APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
812{
Neil Booth6479f712007-09-26 21:33:42 +0000813 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerdb80e212007-08-20 22:49:32 +0000814 unsigned int partsCount, newPartsCount, precision;
815 integerPart *lhsSignificand;
816 integerPart scratch[4];
817 integerPart *fullSignificand;
818 lostFraction lost_fraction;
Dale Johannesen6e547b42008-10-09 23:00:39 +0000819 bool ignored;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000820
821 assert(semantics == rhs.semantics);
822
823 precision = semantics->precision;
824 newPartsCount = partCountForBits(precision * 2);
825
826 if(newPartsCount > 4)
827 fullSignificand = new integerPart[newPartsCount];
828 else
829 fullSignificand = scratch;
830
831 lhsSignificand = significandParts();
832 partsCount = partCount();
833
834 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth004e9f42007-10-06 00:24:48 +0000835 rhs.significandParts(), partsCount, partsCount);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000836
837 lost_fraction = lfExactlyZero;
838 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
839 exponent += rhs.exponent;
840
841 if(addend) {
842 Significand savedSignificand = significand;
843 const fltSemantics *savedSemantics = semantics;
844 fltSemantics extendedSemantics;
845 opStatus status;
846 unsigned int extendedPrecision;
847
848 /* Normalize our MSB. */
849 extendedPrecision = precision + precision - 1;
850 if(omsb != extendedPrecision)
851 {
Neil Booth6479f712007-09-26 21:33:42 +0000852 APInt::tcShiftLeft(fullSignificand, newPartsCount,
853 extendedPrecision - omsb);
854 exponent -= extendedPrecision - omsb;
Chris Lattnerdb80e212007-08-20 22:49:32 +0000855 }
856
857 /* Create new semantics. */
858 extendedSemantics = *semantics;
859 extendedSemantics.precision = extendedPrecision;
860
861 if(newPartsCount == 1)
862 significand.part = fullSignificand[0];
863 else
864 significand.parts = fullSignificand;
865 semantics = &extendedSemantics;
866
867 APFloat extendedAddend(*addend);
Dale Johannesen6e547b42008-10-09 23:00:39 +0000868 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
Chris Lattnerdb80e212007-08-20 22:49:32 +0000869 assert(status == opOK);
870 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
871
872 /* Restore our state. */
873 if(newPartsCount == 1)
874 fullSignificand[0] = significand.part;
875 significand = savedSignificand;
876 semantics = savedSemantics;
877
878 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
879 }
880
881 exponent -= (precision - 1);
882
883 if(omsb > precision) {
884 unsigned int bits, significantParts;
885 lostFraction lf;
886
887 bits = omsb - precision;
888 significantParts = partCountForBits(omsb);
889 lf = shiftRight(fullSignificand, significantParts, bits);
890 lost_fraction = combineLostFractions(lf, lost_fraction);
891 exponent += bits;
892 }
893
894 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
895
896 if(newPartsCount > 4)
897 delete [] fullSignificand;
898
899 return lost_fraction;
900}
901
902/* Multiply the significands of LHS and RHS to DST. */
903lostFraction
904APFloat::divideSignificand(const APFloat &rhs)
905{
906 unsigned int bit, i, partsCount;
907 const integerPart *rhsSignificand;
908 integerPart *lhsSignificand, *dividend, *divisor;
909 integerPart scratch[4];
910 lostFraction lost_fraction;
911
912 assert(semantics == rhs.semantics);
913
914 lhsSignificand = significandParts();
915 rhsSignificand = rhs.significandParts();
916 partsCount = partCount();
917
918 if(partsCount > 2)
919 dividend = new integerPart[partsCount * 2];
920 else
921 dividend = scratch;
922
923 divisor = dividend + partsCount;
924
925 /* Copy the dividend and divisor as they will be modified in-place. */
926 for(i = 0; i < partsCount; i++) {
927 dividend[i] = lhsSignificand[i];
928 divisor[i] = rhsSignificand[i];
929 lhsSignificand[i] = 0;
930 }
931
932 exponent -= rhs.exponent;
933
934 unsigned int precision = semantics->precision;
935
936 /* Normalize the divisor. */
937 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
938 if(bit) {
939 exponent += bit;
940 APInt::tcShiftLeft(divisor, partsCount, bit);
941 }
942
943 /* Normalize the dividend. */
944 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
945 if(bit) {
946 exponent -= bit;
947 APInt::tcShiftLeft(dividend, partsCount, bit);
948 }
949
Neil Booth1171ddf2007-10-12 16:02:31 +0000950 /* Ensure the dividend >= divisor initially for the loop below.
951 Incidentally, this means that the division loop below is
952 guaranteed to set the integer bit to one. */
Chris Lattnerdb80e212007-08-20 22:49:32 +0000953 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
954 exponent--;
955 APInt::tcShiftLeft(dividend, partsCount, 1);
956 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
957 }
958
959 /* Long division. */
960 for(bit = precision; bit; bit -= 1) {
961 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
962 APInt::tcSubtract(dividend, divisor, 0, partsCount);
963 APInt::tcSetBit(lhsSignificand, bit - 1);
964 }
965
966 APInt::tcShiftLeft(dividend, partsCount, 1);
967 }
968
969 /* Figure out the lost fraction. */
970 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
971
972 if(cmp > 0)
973 lost_fraction = lfMoreThanHalf;
974 else if(cmp == 0)
975 lost_fraction = lfExactlyHalf;
976 else if(APInt::tcIsZero(dividend, partsCount))
977 lost_fraction = lfExactlyZero;
978 else
979 lost_fraction = lfLessThanHalf;
980
981 if(partsCount > 2)
982 delete [] dividend;
983
984 return lost_fraction;
985}
986
987unsigned int
988APFloat::significandMSB() const
989{
990 return APInt::tcMSB(significandParts(), partCount());
991}
992
993unsigned int
994APFloat::significandLSB() const
995{
996 return APInt::tcLSB(significandParts(), partCount());
997}
998
999/* Note that a zero result is NOT normalized to fcZero. */
1000lostFraction
1001APFloat::shiftSignificandRight(unsigned int bits)
1002{
1003 /* Our exponent should not overflow. */
1004 assert((exponent_t) (exponent + bits) >= exponent);
1005
1006 exponent += bits;
1007
1008 return shiftRight(significandParts(), partCount(), bits);
1009}
1010
1011/* Shift the significand left BITS bits, subtract BITS from its exponent. */
1012void
1013APFloat::shiftSignificandLeft(unsigned int bits)
1014{
1015 assert(bits < semantics->precision);
1016
1017 if(bits) {
1018 unsigned int partsCount = partCount();
1019
1020 APInt::tcShiftLeft(significandParts(), partsCount, bits);
1021 exponent -= bits;
1022
1023 assert(!APInt::tcIsZero(significandParts(), partsCount));
1024 }
1025}
1026
1027APFloat::cmpResult
1028APFloat::compareAbsoluteValue(const APFloat &rhs) const
1029{
1030 int compare;
1031
1032 assert(semantics == rhs.semantics);
1033 assert(category == fcNormal);
1034 assert(rhs.category == fcNormal);
1035
1036 compare = exponent - rhs.exponent;
1037
1038 /* If exponents are equal, do an unsigned bignum comparison of the
1039 significands. */
1040 if(compare == 0)
1041 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth6479f712007-09-26 21:33:42 +00001042 partCount());
Chris Lattnerdb80e212007-08-20 22:49:32 +00001043
1044 if(compare > 0)
1045 return cmpGreaterThan;
1046 else if(compare < 0)
1047 return cmpLessThan;
1048 else
1049 return cmpEqual;
1050}
1051
1052/* Handle overflow. Sign is preserved. We either become infinity or
1053 the largest finite number. */
1054APFloat::opStatus
1055APFloat::handleOverflow(roundingMode rounding_mode)
1056{
1057 /* Infinity? */
1058 if(rounding_mode == rmNearestTiesToEven
1059 || rounding_mode == rmNearestTiesToAway
1060 || (rounding_mode == rmTowardPositive && !sign)
1061 || (rounding_mode == rmTowardNegative && sign))
1062 {
1063 category = fcInfinity;
1064 return (opStatus) (opOverflow | opInexact);
1065 }
1066
1067 /* Otherwise we become the largest finite number. */
1068 category = fcNormal;
1069 exponent = semantics->maxExponent;
1070 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth6479f712007-09-26 21:33:42 +00001071 semantics->precision);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001072
1073 return opInexact;
1074}
1075
Neil Booth40c3da42007-10-03 15:16:41 +00001076/* Returns TRUE if, when truncating the current number, with BIT the
1077 new LSB, with the given lost fraction and rounding mode, the result
1078 would need to be rounded away from zero (i.e., by increasing the
1079 signficand). This routine must work for fcZero of both signs, and
1080 fcNormal numbers. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00001081bool
1082APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Booth40c3da42007-10-03 15:16:41 +00001083 lostFraction lost_fraction,
1084 unsigned int bit) const
Chris Lattnerdb80e212007-08-20 22:49:32 +00001085{
Dale Johannesendf8a8312007-08-31 04:03:46 +00001086 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00001087 assert(category == fcNormal || category == fcZero);
1088
Neil Booth40c3da42007-10-03 15:16:41 +00001089 /* Current callers never pass this so we don't handle it. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00001090 assert(lost_fraction != lfExactlyZero);
1091
Mike Stump7134bb52009-05-13 23:23:20 +00001092 switch (rounding_mode) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001093 default:
Edwin Törökbd448e32009-07-14 16:55:14 +00001094 llvm_unreachable(0);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001095
1096 case rmNearestTiesToAway:
1097 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1098
1099 case rmNearestTiesToEven:
1100 if(lost_fraction == lfMoreThanHalf)
1101 return true;
1102
1103 /* Our zeroes don't have a significand to test. */
1104 if(lost_fraction == lfExactlyHalf && category != fcZero)
Neil Booth40c3da42007-10-03 15:16:41 +00001105 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001106
1107 return false;
1108
1109 case rmTowardZero:
1110 return false;
1111
1112 case rmTowardPositive:
1113 return sign == false;
1114
1115 case rmTowardNegative:
1116 return sign == true;
1117 }
1118}
1119
1120APFloat::opStatus
1121APFloat::normalize(roundingMode rounding_mode,
Neil Booth6479f712007-09-26 21:33:42 +00001122 lostFraction lost_fraction)
Chris Lattnerdb80e212007-08-20 22:49:32 +00001123{
Neil Booth6479f712007-09-26 21:33:42 +00001124 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00001125 int exponentChange;
1126
1127 if(category != fcNormal)
1128 return opOK;
1129
1130 /* Before rounding normalize the exponent of fcNormal numbers. */
1131 omsb = significandMSB() + 1;
1132
1133 if(omsb) {
1134 /* OMSB is numbered from 1. We want to place it in the integer
1135 bit numbered PRECISON if possible, with a compensating change in
1136 the exponent. */
1137 exponentChange = omsb - semantics->precision;
1138
1139 /* If the resulting exponent is too high, overflow according to
1140 the rounding mode. */
1141 if(exponent + exponentChange > semantics->maxExponent)
1142 return handleOverflow(rounding_mode);
1143
1144 /* Subnormal numbers have exponent minExponent, and their MSB
1145 is forced based on that. */
1146 if(exponent + exponentChange < semantics->minExponent)
1147 exponentChange = semantics->minExponent - exponent;
1148
1149 /* Shifting left is easy as we don't lose precision. */
1150 if(exponentChange < 0) {
1151 assert(lost_fraction == lfExactlyZero);
1152
1153 shiftSignificandLeft(-exponentChange);
1154
1155 return opOK;
1156 }
1157
1158 if(exponentChange > 0) {
1159 lostFraction lf;
1160
1161 /* Shift right and capture any new lost fraction. */
1162 lf = shiftSignificandRight(exponentChange);
1163
1164 lost_fraction = combineLostFractions(lf, lost_fraction);
1165
1166 /* Keep OMSB up-to-date. */
1167 if(omsb > (unsigned) exponentChange)
Neil Booth1171ddf2007-10-12 16:02:31 +00001168 omsb -= exponentChange;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001169 else
Neil Booth6479f712007-09-26 21:33:42 +00001170 omsb = 0;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001171 }
1172 }
1173
1174 /* Now round the number according to rounding_mode given the lost
1175 fraction. */
1176
1177 /* As specified in IEEE 754, since we do not trap we do not report
1178 underflow for exact results. */
1179 if(lost_fraction == lfExactlyZero) {
1180 /* Canonicalize zeroes. */
1181 if(omsb == 0)
1182 category = fcZero;
1183
1184 return opOK;
1185 }
1186
1187 /* Increment the significand if we're rounding away from zero. */
Neil Booth40c3da42007-10-03 15:16:41 +00001188 if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001189 if(omsb == 0)
1190 exponent = semantics->minExponent;
1191
1192 incrementSignificand();
1193 omsb = significandMSB() + 1;
1194
1195 /* Did the significand increment overflow? */
1196 if(omsb == (unsigned) semantics->precision + 1) {
1197 /* Renormalize by incrementing the exponent and shifting our
Neil Booth6479f712007-09-26 21:33:42 +00001198 significand right one. However if we already have the
1199 maximum exponent we overflow to infinity. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00001200 if(exponent == semantics->maxExponent) {
Neil Booth6479f712007-09-26 21:33:42 +00001201 category = fcInfinity;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001202
Neil Booth6479f712007-09-26 21:33:42 +00001203 return (opStatus) (opOverflow | opInexact);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001204 }
1205
1206 shiftSignificandRight(1);
1207
1208 return opInexact;
1209 }
1210 }
1211
1212 /* The normal case - we were and are not denormal, and any
1213 significand increment above didn't overflow. */
1214 if(omsb == semantics->precision)
1215 return opInexact;
1216
1217 /* We have a non-zero denormal. */
1218 assert(omsb < semantics->precision);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001219
1220 /* Canonicalize zeroes. */
1221 if(omsb == 0)
1222 category = fcZero;
1223
1224 /* The fcZero case is a denormal that underflowed to zero. */
1225 return (opStatus) (opUnderflow | opInexact);
1226}
1227
1228APFloat::opStatus
1229APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1230{
Mike Stump7134bb52009-05-13 23:23:20 +00001231 switch (convolve(category, rhs.category)) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001232 default:
Edwin Törökbd448e32009-07-14 16:55:14 +00001233 llvm_unreachable(0);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001234
Dale Johannesendf8a8312007-08-31 04:03:46 +00001235 case convolve(fcNaN, fcZero):
1236 case convolve(fcNaN, fcNormal):
1237 case convolve(fcNaN, fcInfinity):
1238 case convolve(fcNaN, fcNaN):
Chris Lattnerdb80e212007-08-20 22:49:32 +00001239 case convolve(fcNormal, fcZero):
1240 case convolve(fcInfinity, fcNormal):
1241 case convolve(fcInfinity, fcZero):
1242 return opOK;
1243
Dale Johannesendf8a8312007-08-31 04:03:46 +00001244 case convolve(fcZero, fcNaN):
1245 case convolve(fcNormal, fcNaN):
1246 case convolve(fcInfinity, fcNaN):
1247 category = fcNaN;
1248 copySignificand(rhs);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001249 return opOK;
1250
1251 case convolve(fcNormal, fcInfinity):
1252 case convolve(fcZero, fcInfinity):
1253 category = fcInfinity;
1254 sign = rhs.sign ^ subtract;
1255 return opOK;
1256
1257 case convolve(fcZero, fcNormal):
1258 assign(rhs);
1259 sign = rhs.sign ^ subtract;
1260 return opOK;
1261
1262 case convolve(fcZero, fcZero):
1263 /* Sign depends on rounding mode; handled by caller. */
1264 return opOK;
1265
1266 case convolve(fcInfinity, fcInfinity):
1267 /* Differently signed infinities can only be validly
1268 subtracted. */
Cédric Venetee2a3eb2009-02-14 16:06:42 +00001269 if(((sign ^ rhs.sign)!=0) != subtract) {
Neil Booth6fb006e2007-10-14 10:39:51 +00001270 makeNaN();
Chris Lattnerdb80e212007-08-20 22:49:32 +00001271 return opInvalidOp;
1272 }
1273
1274 return opOK;
1275
1276 case convolve(fcNormal, fcNormal):
1277 return opDivByZero;
1278 }
1279}
1280
1281/* Add or subtract two normal numbers. */
1282lostFraction
1283APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1284{
1285 integerPart carry;
1286 lostFraction lost_fraction;
1287 int bits;
1288
1289 /* Determine if the operation on the absolute values is effectively
1290 an addition or subtraction. */
Hartmut Kaiser56d9b142007-10-25 23:15:31 +00001291 subtract ^= (sign ^ rhs.sign) ? true : false;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001292
1293 /* Are we bigger exponent-wise than the RHS? */
1294 bits = exponent - rhs.exponent;
1295
1296 /* Subtraction is more subtle than one might naively expect. */
1297 if(subtract) {
1298 APFloat temp_rhs(rhs);
1299 bool reverse;
1300
Chris Lattner1f323c22007-08-24 03:02:34 +00001301 if (bits == 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001302 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1303 lost_fraction = lfExactlyZero;
Chris Lattner1f323c22007-08-24 03:02:34 +00001304 } else if (bits > 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001305 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1306 shiftSignificandLeft(1);
1307 reverse = false;
Chris Lattner1f323c22007-08-24 03:02:34 +00001308 } else {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001309 lost_fraction = shiftSignificandRight(-bits - 1);
1310 temp_rhs.shiftSignificandLeft(1);
1311 reverse = true;
1312 }
1313
Chris Lattner1f323c22007-08-24 03:02:34 +00001314 if (reverse) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001315 carry = temp_rhs.subtractSignificand
Neil Booth6479f712007-09-26 21:33:42 +00001316 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001317 copySignificand(temp_rhs);
1318 sign = !sign;
1319 } else {
1320 carry = subtractSignificand
Neil Booth6479f712007-09-26 21:33:42 +00001321 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001322 }
1323
1324 /* Invert the lost fraction - it was on the RHS and
1325 subtracted. */
1326 if(lost_fraction == lfLessThanHalf)
1327 lost_fraction = lfMoreThanHalf;
1328 else if(lost_fraction == lfMoreThanHalf)
1329 lost_fraction = lfLessThanHalf;
1330
1331 /* The code above is intended to ensure that no borrow is
1332 necessary. */
1333 assert(!carry);
1334 } else {
1335 if(bits > 0) {
1336 APFloat temp_rhs(rhs);
1337
1338 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1339 carry = addSignificand(temp_rhs);
1340 } else {
1341 lost_fraction = shiftSignificandRight(-bits);
1342 carry = addSignificand(rhs);
1343 }
1344
1345 /* We have a guard bit; generating a carry cannot happen. */
1346 assert(!carry);
1347 }
1348
1349 return lost_fraction;
1350}
1351
1352APFloat::opStatus
1353APFloat::multiplySpecials(const APFloat &rhs)
1354{
Mike Stump7134bb52009-05-13 23:23:20 +00001355 switch (convolve(category, rhs.category)) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001356 default:
Edwin Törökbd448e32009-07-14 16:55:14 +00001357 llvm_unreachable(0);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001358
Dale Johannesendf8a8312007-08-31 04:03:46 +00001359 case convolve(fcNaN, fcZero):
1360 case convolve(fcNaN, fcNormal):
1361 case convolve(fcNaN, fcInfinity):
1362 case convolve(fcNaN, fcNaN):
1363 return opOK;
1364
1365 case convolve(fcZero, fcNaN):
1366 case convolve(fcNormal, fcNaN):
1367 case convolve(fcInfinity, fcNaN):
1368 category = fcNaN;
1369 copySignificand(rhs);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001370 return opOK;
1371
1372 case convolve(fcNormal, fcInfinity):
1373 case convolve(fcInfinity, fcNormal):
1374 case convolve(fcInfinity, fcInfinity):
1375 category = fcInfinity;
1376 return opOK;
1377
1378 case convolve(fcZero, fcNormal):
1379 case convolve(fcNormal, fcZero):
1380 case convolve(fcZero, fcZero):
1381 category = fcZero;
1382 return opOK;
1383
1384 case convolve(fcZero, fcInfinity):
1385 case convolve(fcInfinity, fcZero):
Neil Booth6fb006e2007-10-14 10:39:51 +00001386 makeNaN();
Chris Lattnerdb80e212007-08-20 22:49:32 +00001387 return opInvalidOp;
1388
1389 case convolve(fcNormal, fcNormal):
1390 return opOK;
1391 }
1392}
1393
1394APFloat::opStatus
1395APFloat::divideSpecials(const APFloat &rhs)
1396{
Mike Stump7134bb52009-05-13 23:23:20 +00001397 switch (convolve(category, rhs.category)) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001398 default:
Edwin Törökbd448e32009-07-14 16:55:14 +00001399 llvm_unreachable(0);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001400
Dale Johannesendf8a8312007-08-31 04:03:46 +00001401 case convolve(fcNaN, fcZero):
1402 case convolve(fcNaN, fcNormal):
1403 case convolve(fcNaN, fcInfinity):
1404 case convolve(fcNaN, fcNaN):
Chris Lattnerdb80e212007-08-20 22:49:32 +00001405 case convolve(fcInfinity, fcZero):
1406 case convolve(fcInfinity, fcNormal):
1407 case convolve(fcZero, fcInfinity):
1408 case convolve(fcZero, fcNormal):
1409 return opOK;
1410
Dale Johannesendf8a8312007-08-31 04:03:46 +00001411 case convolve(fcZero, fcNaN):
1412 case convolve(fcNormal, fcNaN):
1413 case convolve(fcInfinity, fcNaN):
1414 category = fcNaN;
1415 copySignificand(rhs);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001416 return opOK;
1417
1418 case convolve(fcNormal, fcInfinity):
1419 category = fcZero;
1420 return opOK;
1421
1422 case convolve(fcNormal, fcZero):
1423 category = fcInfinity;
1424 return opDivByZero;
1425
1426 case convolve(fcInfinity, fcInfinity):
1427 case convolve(fcZero, fcZero):
Neil Booth6fb006e2007-10-14 10:39:51 +00001428 makeNaN();
Chris Lattnerdb80e212007-08-20 22:49:32 +00001429 return opInvalidOp;
1430
1431 case convolve(fcNormal, fcNormal):
1432 return opOK;
1433 }
1434}
1435
Dale Johannesena51f7372009-01-21 00:35:19 +00001436APFloat::opStatus
1437APFloat::modSpecials(const APFloat &rhs)
1438{
Mike Stump7134bb52009-05-13 23:23:20 +00001439 switch (convolve(category, rhs.category)) {
Dale Johannesena51f7372009-01-21 00:35:19 +00001440 default:
Edwin Törökbd448e32009-07-14 16:55:14 +00001441 llvm_unreachable(0);
Dale Johannesena51f7372009-01-21 00:35:19 +00001442
1443 case convolve(fcNaN, fcZero):
1444 case convolve(fcNaN, fcNormal):
1445 case convolve(fcNaN, fcInfinity):
1446 case convolve(fcNaN, fcNaN):
1447 case convolve(fcZero, fcInfinity):
1448 case convolve(fcZero, fcNormal):
1449 case convolve(fcNormal, fcInfinity):
1450 return opOK;
1451
1452 case convolve(fcZero, fcNaN):
1453 case convolve(fcNormal, fcNaN):
1454 case convolve(fcInfinity, fcNaN):
1455 category = fcNaN;
1456 copySignificand(rhs);
1457 return opOK;
1458
1459 case convolve(fcNormal, fcZero):
1460 case convolve(fcInfinity, fcZero):
1461 case convolve(fcInfinity, fcNormal):
1462 case convolve(fcInfinity, fcInfinity):
1463 case convolve(fcZero, fcZero):
1464 makeNaN();
1465 return opInvalidOp;
1466
1467 case convolve(fcNormal, fcNormal):
1468 return opOK;
1469 }
1470}
1471
Chris Lattnerdb80e212007-08-20 22:49:32 +00001472/* Change sign. */
1473void
1474APFloat::changeSign()
1475{
1476 /* Look mummy, this one's easy. */
1477 sign = !sign;
1478}
1479
Dale Johannesen3ba8d7b2007-08-31 23:35:31 +00001480void
1481APFloat::clearSign()
1482{
1483 /* So is this one. */
1484 sign = 0;
1485}
1486
1487void
1488APFloat::copySign(const APFloat &rhs)
1489{
1490 /* And this one. */
1491 sign = rhs.sign;
1492}
1493
Chris Lattnerdb80e212007-08-20 22:49:32 +00001494/* Normalized addition or subtraction. */
1495APFloat::opStatus
1496APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth6479f712007-09-26 21:33:42 +00001497 bool subtract)
Chris Lattnerdb80e212007-08-20 22:49:32 +00001498{
1499 opStatus fs;
1500
Neil Booth6721b8a2007-10-14 10:29:28 +00001501 assertArithmeticOK(*semantics);
1502
Chris Lattnerdb80e212007-08-20 22:49:32 +00001503 fs = addOrSubtractSpecials(rhs, subtract);
1504
1505 /* This return code means it was not a simple case. */
1506 if(fs == opDivByZero) {
1507 lostFraction lost_fraction;
1508
1509 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1510 fs = normalize(rounding_mode, lost_fraction);
1511
1512 /* Can only be zero if we lost no fraction. */
1513 assert(category != fcZero || lost_fraction == lfExactlyZero);
1514 }
1515
1516 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1517 positive zero unless rounding to minus infinity, except that
1518 adding two like-signed zeroes gives that zero. */
1519 if(category == fcZero) {
1520 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1521 sign = (rounding_mode == rmTowardNegative);
1522 }
1523
1524 return fs;
1525}
1526
1527/* Normalized addition. */
1528APFloat::opStatus
1529APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1530{
1531 return addOrSubtract(rhs, rounding_mode, false);
1532}
1533
1534/* Normalized subtraction. */
1535APFloat::opStatus
1536APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1537{
1538 return addOrSubtract(rhs, rounding_mode, true);
1539}
1540
1541/* Normalized multiply. */
1542APFloat::opStatus
1543APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1544{
1545 opStatus fs;
1546
Neil Booth6721b8a2007-10-14 10:29:28 +00001547 assertArithmeticOK(*semantics);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001548 sign ^= rhs.sign;
1549 fs = multiplySpecials(rhs);
1550
1551 if(category == fcNormal) {
1552 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1553 fs = normalize(rounding_mode, lost_fraction);
1554 if(lost_fraction != lfExactlyZero)
1555 fs = (opStatus) (fs | opInexact);
1556 }
1557
1558 return fs;
1559}
1560
1561/* Normalized divide. */
1562APFloat::opStatus
1563APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1564{
1565 opStatus fs;
1566
Neil Booth6721b8a2007-10-14 10:29:28 +00001567 assertArithmeticOK(*semantics);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001568 sign ^= rhs.sign;
1569 fs = divideSpecials(rhs);
1570
1571 if(category == fcNormal) {
1572 lostFraction lost_fraction = divideSignificand(rhs);
1573 fs = normalize(rounding_mode, lost_fraction);
1574 if(lost_fraction != lfExactlyZero)
1575 fs = (opStatus) (fs | opInexact);
1576 }
1577
1578 return fs;
1579}
1580
Dale Johannesen33d95592009-01-20 18:35:05 +00001581/* Normalized remainder. This is not currently correct in all cases. */
1582APFloat::opStatus
1583APFloat::remainder(const APFloat &rhs)
1584{
1585 opStatus fs;
1586 APFloat V = *this;
1587 unsigned int origSign = sign;
1588
1589 assertArithmeticOK(*semantics);
1590 fs = V.divide(rhs, rmNearestTiesToEven);
1591 if (fs == opDivByZero)
1592 return fs;
1593
1594 int parts = partCount();
1595 integerPart *x = new integerPart[parts];
1596 bool ignored;
1597 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1598 rmNearestTiesToEven, &ignored);
1599 if (fs==opInvalidOp)
1600 return fs;
1601
1602 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1603 rmNearestTiesToEven);
1604 assert(fs==opOK); // should always work
1605
1606 fs = V.multiply(rhs, rmNearestTiesToEven);
1607 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1608
1609 fs = subtract(V, rmNearestTiesToEven);
1610 assert(fs==opOK || fs==opInexact); // likewise
1611
1612 if (isZero())
1613 sign = origSign; // IEEE754 requires this
1614 delete[] x;
1615 return fs;
1616}
1617
1618/* Normalized llvm frem (C fmod).
1619 This is not currently correct in all cases. */
Dale Johannesen3ba8d7b2007-08-31 23:35:31 +00001620APFloat::opStatus
1621APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1622{
1623 opStatus fs;
Neil Booth6721b8a2007-10-14 10:29:28 +00001624 assertArithmeticOK(*semantics);
Dale Johannesena51f7372009-01-21 00:35:19 +00001625 fs = modSpecials(rhs);
Dale Johannesen3ba8d7b2007-08-31 23:35:31 +00001626
Dale Johannesena51f7372009-01-21 00:35:19 +00001627 if (category == fcNormal && rhs.category == fcNormal) {
1628 APFloat V = *this;
1629 unsigned int origSign = sign;
Dale Johannesen3ba8d7b2007-08-31 23:35:31 +00001630
Dale Johannesena51f7372009-01-21 00:35:19 +00001631 fs = V.divide(rhs, rmNearestTiesToEven);
1632 if (fs == opDivByZero)
1633 return fs;
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00001634
Dale Johannesena51f7372009-01-21 00:35:19 +00001635 int parts = partCount();
1636 integerPart *x = new integerPart[parts];
1637 bool ignored;
1638 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1639 rmTowardZero, &ignored);
1640 if (fs==opInvalidOp)
1641 return fs;
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00001642
Dale Johannesena51f7372009-01-21 00:35:19 +00001643 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1644 rmNearestTiesToEven);
1645 assert(fs==opOK); // should always work
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00001646
Dale Johannesena51f7372009-01-21 00:35:19 +00001647 fs = V.multiply(rhs, rounding_mode);
1648 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1649
1650 fs = subtract(V, rounding_mode);
1651 assert(fs==opOK || fs==opInexact); // likewise
1652
1653 if (isZero())
1654 sign = origSign; // IEEE754 requires this
1655 delete[] x;
1656 }
Dale Johannesen3ba8d7b2007-08-31 23:35:31 +00001657 return fs;
1658}
1659
Chris Lattnerdb80e212007-08-20 22:49:32 +00001660/* Normalized fused-multiply-add. */
1661APFloat::opStatus
1662APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth6479f712007-09-26 21:33:42 +00001663 const APFloat &addend,
1664 roundingMode rounding_mode)
Chris Lattnerdb80e212007-08-20 22:49:32 +00001665{
1666 opStatus fs;
1667
Neil Booth6721b8a2007-10-14 10:29:28 +00001668 assertArithmeticOK(*semantics);
1669
Chris Lattnerdb80e212007-08-20 22:49:32 +00001670 /* Post-multiplication sign, before addition. */
1671 sign ^= multiplicand.sign;
1672
1673 /* If and only if all arguments are normal do we need to do an
1674 extended-precision calculation. */
1675 if(category == fcNormal
1676 && multiplicand.category == fcNormal
1677 && addend.category == fcNormal) {
1678 lostFraction lost_fraction;
1679
1680 lost_fraction = multiplySignificand(multiplicand, &addend);
1681 fs = normalize(rounding_mode, lost_fraction);
1682 if(lost_fraction != lfExactlyZero)
1683 fs = (opStatus) (fs | opInexact);
1684
1685 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1686 positive zero unless rounding to minus infinity, except that
1687 adding two like-signed zeroes gives that zero. */
1688 if(category == fcZero && sign != addend.sign)
1689 sign = (rounding_mode == rmTowardNegative);
1690 } else {
1691 fs = multiplySpecials(multiplicand);
1692
1693 /* FS can only be opOK or opInvalidOp. There is no more work
1694 to do in the latter case. The IEEE-754R standard says it is
1695 implementation-defined in this case whether, if ADDEND is a
Dale Johannesendf8a8312007-08-31 04:03:46 +00001696 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerdb80e212007-08-20 22:49:32 +00001697
1698 If we need to do the addition we can do so with normal
1699 precision. */
1700 if(fs == opOK)
1701 fs = addOrSubtract(addend, rounding_mode, false);
1702 }
1703
1704 return fs;
1705}
1706
1707/* Comparison requires normalized numbers. */
1708APFloat::cmpResult
1709APFloat::compare(const APFloat &rhs) const
1710{
1711 cmpResult result;
1712
Neil Booth6721b8a2007-10-14 10:29:28 +00001713 assertArithmeticOK(*semantics);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001714 assert(semantics == rhs.semantics);
1715
Mike Stump7134bb52009-05-13 23:23:20 +00001716 switch (convolve(category, rhs.category)) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001717 default:
Edwin Törökbd448e32009-07-14 16:55:14 +00001718 llvm_unreachable(0);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001719
Dale Johannesendf8a8312007-08-31 04:03:46 +00001720 case convolve(fcNaN, fcZero):
1721 case convolve(fcNaN, fcNormal):
1722 case convolve(fcNaN, fcInfinity):
1723 case convolve(fcNaN, fcNaN):
1724 case convolve(fcZero, fcNaN):
1725 case convolve(fcNormal, fcNaN):
1726 case convolve(fcInfinity, fcNaN):
Chris Lattnerdb80e212007-08-20 22:49:32 +00001727 return cmpUnordered;
1728
1729 case convolve(fcInfinity, fcNormal):
1730 case convolve(fcInfinity, fcZero):
1731 case convolve(fcNormal, fcZero):
1732 if(sign)
1733 return cmpLessThan;
1734 else
1735 return cmpGreaterThan;
1736
1737 case convolve(fcNormal, fcInfinity):
1738 case convolve(fcZero, fcInfinity):
1739 case convolve(fcZero, fcNormal):
1740 if(rhs.sign)
1741 return cmpGreaterThan;
1742 else
1743 return cmpLessThan;
1744
1745 case convolve(fcInfinity, fcInfinity):
1746 if(sign == rhs.sign)
1747 return cmpEqual;
1748 else if(sign)
1749 return cmpLessThan;
1750 else
1751 return cmpGreaterThan;
1752
1753 case convolve(fcZero, fcZero):
1754 return cmpEqual;
1755
1756 case convolve(fcNormal, fcNormal):
1757 break;
1758 }
1759
1760 /* Two normal numbers. Do they have the same sign? */
1761 if(sign != rhs.sign) {
1762 if(sign)
1763 result = cmpLessThan;
1764 else
1765 result = cmpGreaterThan;
1766 } else {
1767 /* Compare absolute values; invert result if negative. */
1768 result = compareAbsoluteValue(rhs);
1769
1770 if(sign) {
1771 if(result == cmpLessThan)
Neil Booth6479f712007-09-26 21:33:42 +00001772 result = cmpGreaterThan;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001773 else if(result == cmpGreaterThan)
Neil Booth6479f712007-09-26 21:33:42 +00001774 result = cmpLessThan;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001775 }
1776 }
1777
1778 return result;
1779}
1780
Dale Johannesen6e547b42008-10-09 23:00:39 +00001781/// APFloat::convert - convert a value of one floating point type to another.
1782/// The return value corresponds to the IEEE754 exceptions. *losesInfo
1783/// records whether the transformation lost information, i.e. whether
1784/// converting the result back to the original type will produce the
1785/// original value (this is almost the same as return value==fsOK, but there
1786/// are edge cases where this is not so).
1787
Chris Lattnerdb80e212007-08-20 22:49:32 +00001788APFloat::opStatus
1789APFloat::convert(const fltSemantics &toSemantics,
Dale Johannesen6e547b42008-10-09 23:00:39 +00001790 roundingMode rounding_mode, bool *losesInfo)
Chris Lattnerdb80e212007-08-20 22:49:32 +00001791{
Neil Boothd9330782007-09-22 02:56:19 +00001792 lostFraction lostFraction;
1793 unsigned int newPartCount, oldPartCount;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001794 opStatus fs;
Neil Booth6479f712007-09-26 21:33:42 +00001795
Neil Booth6721b8a2007-10-14 10:29:28 +00001796 assertArithmeticOK(*semantics);
Dale Johannesen18603c22008-04-20 01:34:03 +00001797 assertArithmeticOK(toSemantics);
Neil Boothd9330782007-09-22 02:56:19 +00001798 lostFraction = lfExactlyZero;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001799 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothd9330782007-09-22 02:56:19 +00001800 oldPartCount = partCount();
Chris Lattnerdb80e212007-08-20 22:49:32 +00001801
Neil Boothd9330782007-09-22 02:56:19 +00001802 /* Handle storage complications. If our new form is wider,
1803 re-allocate our bit pattern into wider storage. If it is
1804 narrower, we ignore the excess parts, but if narrowing to a
Dale Johannesendbb7f102007-09-25 17:25:00 +00001805 single part we need to free the old storage.
1806 Be careful not to reference significandParts for zeroes
1807 and infinities, since it aborts. */
Neil Boothd9330782007-09-22 02:56:19 +00001808 if (newPartCount > oldPartCount) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00001809 integerPart *newParts;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001810 newParts = new integerPart[newPartCount];
1811 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesendbb7f102007-09-25 17:25:00 +00001812 if (category==fcNormal || category==fcNaN)
1813 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerdb80e212007-08-20 22:49:32 +00001814 freeSignificand();
1815 significand.parts = newParts;
Neil Boothd9330782007-09-22 02:56:19 +00001816 } else if (newPartCount < oldPartCount) {
1817 /* Capture any lost fraction through truncation of parts so we get
1818 correct rounding whilst normalizing. */
Dale Johannesendbb7f102007-09-25 17:25:00 +00001819 if (category==fcNormal)
1820 lostFraction = lostFractionThroughTruncation
1821 (significandParts(), oldPartCount, toSemantics.precision);
1822 if (newPartCount == 1) {
1823 integerPart newPart = 0;
Neil Booth6479f712007-09-26 21:33:42 +00001824 if (category==fcNormal || category==fcNaN)
Dale Johannesendbb7f102007-09-25 17:25:00 +00001825 newPart = significandParts()[0];
1826 freeSignificand();
1827 significand.part = newPart;
1828 }
Chris Lattnerdb80e212007-08-20 22:49:32 +00001829 }
1830
1831 if(category == fcNormal) {
1832 /* Re-interpret our bit-pattern. */
1833 exponent += toSemantics.precision - semantics->precision;
1834 semantics = &toSemantics;
Neil Boothd9330782007-09-22 02:56:19 +00001835 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen6e547b42008-10-09 23:00:39 +00001836 *losesInfo = (fs != opOK);
Dale Johannesendbb7f102007-09-25 17:25:00 +00001837 } else if (category == fcNaN) {
1838 int shift = toSemantics.precision - semantics->precision;
Dale Johannesend8a3d9e2008-01-31 18:34:01 +00001839 // Do this now so significandParts gets the right answer
Dale Johannesene11479a2008-10-06 22:59:10 +00001840 const fltSemantics *oldSemantics = semantics;
Dale Johannesend8a3d9e2008-01-31 18:34:01 +00001841 semantics = &toSemantics;
Dale Johannesen6e547b42008-10-09 23:00:39 +00001842 *losesInfo = false;
Dale Johannesendbb7f102007-09-25 17:25:00 +00001843 // No normalization here, just truncate
1844 if (shift>0)
1845 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
Dale Johannesene11479a2008-10-06 22:59:10 +00001846 else if (shift < 0) {
1847 unsigned ushift = -shift;
Dale Johannesen6e547b42008-10-09 23:00:39 +00001848 // Figure out if we are losing information. This happens
Dale Johannesene11479a2008-10-06 22:59:10 +00001849 // if are shifting out something other than 0s, or if the x87 long
1850 // double input did not have its integer bit set (pseudo-NaN), or if the
1851 // x87 long double input did not have its QNan bit set (because the x87
1852 // hardware sets this bit when converting a lower-precision NaN to
1853 // x87 long double).
1854 if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
Dale Johannesen6e547b42008-10-09 23:00:39 +00001855 *losesInfo = true;
Dale Johannesene11479a2008-10-06 22:59:10 +00001856 if (oldSemantics == &APFloat::x87DoubleExtended &&
1857 (!(*significandParts() & 0x8000000000000000ULL) ||
1858 !(*significandParts() & 0x4000000000000000ULL)))
Dale Johannesen6e547b42008-10-09 23:00:39 +00001859 *losesInfo = true;
Dale Johannesene11479a2008-10-06 22:59:10 +00001860 APInt::tcShiftRight(significandParts(), newPartCount, ushift);
1861 }
Dale Johannesendbb7f102007-09-25 17:25:00 +00001862 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1863 // does not give you back the same bits. This is dubious, and we
1864 // don't currently do it. You're really supposed to get
1865 // an invalid operation signal at runtime, but nobody does that.
Dale Johannesen6e547b42008-10-09 23:00:39 +00001866 fs = opOK;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001867 } else {
1868 semantics = &toSemantics;
1869 fs = opOK;
Dale Johannesen6e547b42008-10-09 23:00:39 +00001870 *losesInfo = false;
Chris Lattnerdb80e212007-08-20 22:49:32 +00001871 }
1872
1873 return fs;
1874}
1875
1876/* Convert a floating point number to an integer according to the
1877 rounding mode. If the rounded integer value is out of range this
Neil Booth67ab5682007-11-01 22:43:37 +00001878 returns an invalid operation exception and the contents of the
1879 destination parts are unspecified. If the rounded value is in
Chris Lattnerdb80e212007-08-20 22:49:32 +00001880 range but the floating point number is not the exact integer, the C
1881 standard doesn't require an inexact exception to be raised. IEEE
1882 854 does require it so we do that.
1883
1884 Note that for conversions to integer type the C standard requires
1885 round-to-zero to always be used. */
1886APFloat::opStatus
Neil Booth67ab5682007-11-01 22:43:37 +00001887APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1888 bool isSigned,
Dale Johannesen6e547b42008-10-09 23:00:39 +00001889 roundingMode rounding_mode,
1890 bool *isExact) const
Neil Booth67ab5682007-11-01 22:43:37 +00001891{
1892 lostFraction lost_fraction;
1893 const integerPart *src;
1894 unsigned int dstPartsCount, truncatedBits;
1895
Evan Cheng30e65f62008-11-26 01:11:57 +00001896 assertArithmeticOK(*semantics);
Neil Booth30c5f122007-11-02 15:10:05 +00001897
Dale Johannesen6e547b42008-10-09 23:00:39 +00001898 *isExact = false;
1899
Neil Booth67ab5682007-11-01 22:43:37 +00001900 /* Handle the three special cases first. */
1901 if(category == fcInfinity || category == fcNaN)
1902 return opInvalidOp;
1903
1904 dstPartsCount = partCountForBits(width);
1905
1906 if(category == fcZero) {
1907 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesene2513ad2008-10-07 00:40:01 +00001908 // Negative zero can't be represented as an int.
Dale Johannesen6e547b42008-10-09 23:00:39 +00001909 *isExact = !sign;
1910 return opOK;
Neil Booth67ab5682007-11-01 22:43:37 +00001911 }
1912
1913 src = significandParts();
1914
1915 /* Step 1: place our absolute value, with any fraction truncated, in
1916 the destination. */
1917 if (exponent < 0) {
1918 /* Our absolute value is less than one; truncate everything. */
1919 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesen462be702009-01-19 21:17:05 +00001920 /* For exponent -1 the integer bit represents .5, look at that.
1921 For smaller exponents leftmost truncated bit is 0. */
1922 truncatedBits = semantics->precision -1U - exponent;
Neil Booth67ab5682007-11-01 22:43:37 +00001923 } else {
1924 /* We want the most significant (exponent + 1) bits; the rest are
1925 truncated. */
1926 unsigned int bits = exponent + 1U;
1927
1928 /* Hopelessly large in magnitude? */
1929 if (bits > width)
1930 return opInvalidOp;
1931
1932 if (bits < semantics->precision) {
1933 /* We truncate (semantics->precision - bits) bits. */
1934 truncatedBits = semantics->precision - bits;
1935 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1936 } else {
1937 /* We want at least as many bits as are available. */
1938 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1939 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1940 truncatedBits = 0;
1941 }
1942 }
1943
1944 /* Step 2: work out any lost fraction, and increment the absolute
1945 value if we would round away from zero. */
1946 if (truncatedBits) {
1947 lost_fraction = lostFractionThroughTruncation(src, partCount(),
1948 truncatedBits);
1949 if (lost_fraction != lfExactlyZero
1950 && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
1951 if (APInt::tcIncrement(parts, dstPartsCount))
1952 return opInvalidOp; /* Overflow. */
1953 }
1954 } else {
1955 lost_fraction = lfExactlyZero;
1956 }
1957
1958 /* Step 3: check if we fit in the destination. */
1959 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
1960
1961 if (sign) {
1962 if (!isSigned) {
1963 /* Negative numbers cannot be represented as unsigned. */
1964 if (omsb != 0)
1965 return opInvalidOp;
1966 } else {
1967 /* It takes omsb bits to represent the unsigned integer value.
1968 We lose a bit for the sign, but care is needed as the
1969 maximally negative integer is a special case. */
1970 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
1971 return opInvalidOp;
1972
1973 /* This case can happen because of rounding. */
1974 if (omsb > width)
1975 return opInvalidOp;
1976 }
1977
1978 APInt::tcNegate (parts, dstPartsCount);
1979 } else {
1980 if (omsb >= width + !isSigned)
1981 return opInvalidOp;
1982 }
1983
Dale Johannesen6e547b42008-10-09 23:00:39 +00001984 if (lost_fraction == lfExactlyZero) {
1985 *isExact = true;
Neil Booth67ab5682007-11-01 22:43:37 +00001986 return opOK;
Dale Johannesen6e547b42008-10-09 23:00:39 +00001987 } else
Neil Booth67ab5682007-11-01 22:43:37 +00001988 return opInexact;
1989}
1990
1991/* Same as convertToSignExtendedInteger, except we provide
1992 deterministic values in case of an invalid operation exception,
1993 namely zero for NaNs and the minimal or maximal value respectively
Dale Johannesen6e547b42008-10-09 23:00:39 +00001994 for underflow or overflow.
1995 The *isExact output tells whether the result is exact, in the sense
1996 that converting it back to the original floating point type produces
1997 the original value. This is almost equivalent to result==opOK,
1998 except for negative zeroes.
1999*/
Neil Booth67ab5682007-11-01 22:43:37 +00002000APFloat::opStatus
Chris Lattnerdb80e212007-08-20 22:49:32 +00002001APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth6479f712007-09-26 21:33:42 +00002002 bool isSigned,
Dale Johannesen6e547b42008-10-09 23:00:39 +00002003 roundingMode rounding_mode, bool *isExact) const
Chris Lattnerdb80e212007-08-20 22:49:32 +00002004{
Neil Booth67ab5682007-11-01 22:43:37 +00002005 opStatus fs;
Chris Lattnerdb80e212007-08-20 22:49:32 +00002006
Dale Johannesen6e547b42008-10-09 23:00:39 +00002007 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2008 isExact);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002009
Neil Booth67ab5682007-11-01 22:43:37 +00002010 if (fs == opInvalidOp) {
2011 unsigned int bits, dstPartsCount;
2012
2013 dstPartsCount = partCountForBits(width);
2014
2015 if (category == fcNaN)
2016 bits = 0;
2017 else if (sign)
2018 bits = isSigned;
2019 else
2020 bits = width - isSigned;
2021
2022 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2023 if (sign && isSigned)
2024 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002025 }
2026
Neil Booth67ab5682007-11-01 22:43:37 +00002027 return fs;
Chris Lattnerdb80e212007-08-20 22:49:32 +00002028}
2029
Neil Boothe4be5312007-10-07 12:07:53 +00002030/* Convert an unsigned integer SRC to a floating point number,
2031 rounding according to ROUNDING_MODE. The sign of the floating
2032 point number is not modified. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002033APFloat::opStatus
Neil Boothe4be5312007-10-07 12:07:53 +00002034APFloat::convertFromUnsignedParts(const integerPart *src,
2035 unsigned int srcCount,
2036 roundingMode rounding_mode)
Chris Lattnerdb80e212007-08-20 22:49:32 +00002037{
Neil Boothbfa82b52007-10-08 14:39:42 +00002038 unsigned int omsb, precision, dstCount;
Neil Boothe4be5312007-10-07 12:07:53 +00002039 integerPart *dst;
Neil Boothbfa82b52007-10-08 14:39:42 +00002040 lostFraction lost_fraction;
Chris Lattnerdb80e212007-08-20 22:49:32 +00002041
Neil Booth6721b8a2007-10-14 10:29:28 +00002042 assertArithmeticOK(*semantics);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002043 category = fcNormal;
Neil Boothbfa82b52007-10-08 14:39:42 +00002044 omsb = APInt::tcMSB(src, srcCount) + 1;
Neil Boothe4be5312007-10-07 12:07:53 +00002045 dst = significandParts();
2046 dstCount = partCount();
Neil Boothbfa82b52007-10-08 14:39:42 +00002047 precision = semantics->precision;
Neil Boothe4be5312007-10-07 12:07:53 +00002048
Neil Boothbfa82b52007-10-08 14:39:42 +00002049 /* We want the most significant PRECISON bits of SRC. There may not
2050 be that many; extract what we can. */
2051 if (precision <= omsb) {
2052 exponent = omsb - 1;
Neil Boothe4be5312007-10-07 12:07:53 +00002053 lost_fraction = lostFractionThroughTruncation(src, srcCount,
Neil Boothbfa82b52007-10-08 14:39:42 +00002054 omsb - precision);
2055 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2056 } else {
2057 exponent = precision - 1;
2058 lost_fraction = lfExactlyZero;
2059 APInt::tcExtract(dst, dstCount, src, omsb, 0);
Neil Boothe4be5312007-10-07 12:07:53 +00002060 }
Chris Lattnerdb80e212007-08-20 22:49:32 +00002061
2062 return normalize(rounding_mode, lost_fraction);
2063}
2064
Dan Gohmane7770632008-02-29 01:26:11 +00002065APFloat::opStatus
2066APFloat::convertFromAPInt(const APInt &Val,
2067 bool isSigned,
2068 roundingMode rounding_mode)
2069{
2070 unsigned int partCount = Val.getNumWords();
2071 APInt api = Val;
2072
2073 sign = false;
2074 if (isSigned && api.isNegative()) {
2075 sign = true;
2076 api = -api;
2077 }
2078
2079 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2080}
2081
Neil Booth28dd0962007-10-07 12:15:41 +00002082/* Convert a two's complement integer SRC to a floating point number,
2083 rounding according to ROUNDING_MODE. ISSIGNED is true if the
2084 integer is signed, in which case it must be sign-extended. */
2085APFloat::opStatus
2086APFloat::convertFromSignExtendedInteger(const integerPart *src,
2087 unsigned int srcCount,
2088 bool isSigned,
2089 roundingMode rounding_mode)
2090{
2091 opStatus status;
2092
Neil Booth6721b8a2007-10-14 10:29:28 +00002093 assertArithmeticOK(*semantics);
Neil Booth28dd0962007-10-07 12:15:41 +00002094 if (isSigned
2095 && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2096 integerPart *copy;
2097
2098 /* If we're signed and negative negate a copy. */
2099 sign = true;
2100 copy = new integerPart[srcCount];
2101 APInt::tcAssign(copy, src, srcCount);
2102 APInt::tcNegate(copy, srcCount);
2103 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2104 delete [] copy;
2105 } else {
2106 sign = false;
2107 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2108 }
2109
2110 return status;
2111}
2112
Neil Booth4bdd45a2007-10-07 11:45:55 +00002113/* FIXME: should this just take a const APInt reference? */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002114APFloat::opStatus
Neil Booth4bdd45a2007-10-07 11:45:55 +00002115APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2116 unsigned int width, bool isSigned,
2117 roundingMode rounding_mode)
Chris Lattnerdb80e212007-08-20 22:49:32 +00002118{
Dale Johannesena6f79742007-09-21 22:09:37 +00002119 unsigned int partCount = partCountForBits(width);
Dale Johannesena6f79742007-09-21 22:09:37 +00002120 APInt api = APInt(width, partCount, parts);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002121
2122 sign = false;
Dale Johannesene96fcea2007-09-30 18:17:01 +00002123 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
2124 sign = true;
2125 api = -api;
Chris Lattnerdb80e212007-08-20 22:49:32 +00002126 }
2127
Neil Booth80438042007-10-07 12:10:57 +00002128 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002129}
2130
2131APFloat::opStatus
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002132APFloat::convertFromHexadecimalString(const StringRef &s,
Neil Booth6479f712007-09-26 21:33:42 +00002133 roundingMode rounding_mode)
Chris Lattnerdb80e212007-08-20 22:49:32 +00002134{
2135 lostFraction lost_fraction;
2136 integerPart *significand;
2137 unsigned int bitPos, partsCount;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002138 StringRef::iterator dot, firstSignificantDigit;
Chris Lattnerdb80e212007-08-20 22:49:32 +00002139
2140 zeroSignificand();
2141 exponent = 0;
2142 category = fcNormal;
2143
2144 significand = significandParts();
2145 partsCount = partCount();
2146 bitPos = partsCount * integerPartWidth;
2147
Neil Booth8caf8252007-10-07 08:51:21 +00002148 /* Skip leading zeroes and any (hexa)decimal point. */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002149 StringRef::iterator p = skipLeadingZeroesAndAnyDot(s.begin(), s.end(), &dot);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002150 firstSignificantDigit = p;
2151
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002152 for(; p != s.end();) {
Dale Johannesenfbd40222008-05-14 22:53:25 +00002153 integerPart hex_value;
Chris Lattnerdb80e212007-08-20 22:49:32 +00002154
2155 if(*p == '.') {
2156 assert(dot == 0);
2157 dot = p++;
2158 }
2159
2160 hex_value = hexDigitValue(*p);
2161 if(hex_value == -1U) {
2162 lost_fraction = lfExactlyZero;
2163 break;
2164 }
2165
2166 p++;
2167
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002168 if (p == s.end()) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002169 break;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002170 } else {
2171 /* Store the number whilst 4-bit nibbles remain. */
2172 if(bitPos) {
2173 bitPos -= 4;
2174 hex_value <<= bitPos % integerPartWidth;
2175 significand[bitPos / integerPartWidth] |= hex_value;
2176 } else {
2177 lost_fraction = trailingHexadecimalFraction(p, s.end(), hex_value);
2178 while(p != s.end() && hexDigitValue(*p) != -1U)
2179 p++;
2180 break;
2181 }
Chris Lattnerdb80e212007-08-20 22:49:32 +00002182 }
2183 }
2184
2185 /* Hex floats require an exponent but not a hexadecimal point. */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002186 assert(p != s.end() && (*p == 'p' || *p == 'P') &&
2187 "Hex strings require an exponent");
Chris Lattnerdb80e212007-08-20 22:49:32 +00002188
2189 /* Ignore the exponent if we are zero. */
2190 if(p != firstSignificantDigit) {
2191 int expAdjustment;
2192
2193 /* Implicit hexadecimal point? */
2194 if(!dot)
2195 dot = p;
2196
2197 /* Calculate the exponent adjustment implicit in the number of
2198 significant digits. */
Evan Cheng279e2c42008-05-02 21:15:08 +00002199 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002200 if(expAdjustment < 0)
2201 expAdjustment++;
2202 expAdjustment = expAdjustment * 4 - 1;
2203
2204 /* Adjust for writing the significand starting at the most
2205 significant nibble. */
2206 expAdjustment += semantics->precision;
2207 expAdjustment -= partsCount * integerPartWidth;
2208
2209 /* Adjust for the given exponent. */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002210 exponent = totalExponent(p, s.end(), expAdjustment);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002211 }
2212
2213 return normalize(rounding_mode, lost_fraction);
2214}
2215
2216APFloat::opStatus
Neil Booth1171ddf2007-10-12 16:02:31 +00002217APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2218 unsigned sigPartCount, int exp,
2219 roundingMode rounding_mode)
2220{
2221 unsigned int parts, pow5PartCount;
Neil Booth6721b8a2007-10-14 10:29:28 +00002222 fltSemantics calcSemantics = { 32767, -32767, 0, true };
Neil Booth1171ddf2007-10-12 16:02:31 +00002223 integerPart pow5Parts[maxPowerOfFiveParts];
2224 bool isNearest;
2225
2226 isNearest = (rounding_mode == rmNearestTiesToEven
2227 || rounding_mode == rmNearestTiesToAway);
2228
2229 parts = partCountForBits(semantics->precision + 11);
2230
2231 /* Calculate pow(5, abs(exp)). */
2232 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2233
2234 for (;; parts *= 2) {
2235 opStatus sigStatus, powStatus;
2236 unsigned int excessPrecision, truncatedBits;
2237
2238 calcSemantics.precision = parts * integerPartWidth - 1;
2239 excessPrecision = calcSemantics.precision - semantics->precision;
2240 truncatedBits = excessPrecision;
2241
2242 APFloat decSig(calcSemantics, fcZero, sign);
2243 APFloat pow5(calcSemantics, fcZero, false);
2244
2245 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2246 rmNearestTiesToEven);
2247 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2248 rmNearestTiesToEven);
2249 /* Add exp, as 10^n = 5^n * 2^n. */
2250 decSig.exponent += exp;
2251
2252 lostFraction calcLostFraction;
Evan Cheng279e2c42008-05-02 21:15:08 +00002253 integerPart HUerr, HUdistance;
2254 unsigned int powHUerr;
Neil Booth1171ddf2007-10-12 16:02:31 +00002255
2256 if (exp >= 0) {
2257 /* multiplySignificand leaves the precision-th bit set to 1. */
2258 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2259 powHUerr = powStatus != opOK;
2260 } else {
2261 calcLostFraction = decSig.divideSignificand(pow5);
2262 /* Denormal numbers have less precision. */
2263 if (decSig.exponent < semantics->minExponent) {
2264 excessPrecision += (semantics->minExponent - decSig.exponent);
2265 truncatedBits = excessPrecision;
2266 if (excessPrecision > calcSemantics.precision)
2267 excessPrecision = calcSemantics.precision;
2268 }
2269 /* Extra half-ulp lost in reciprocal of exponent. */
Evan Cheng279e2c42008-05-02 21:15:08 +00002270 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
Neil Booth1171ddf2007-10-12 16:02:31 +00002271 }
2272
2273 /* Both multiplySignificand and divideSignificand return the
2274 result with the integer bit set. */
2275 assert (APInt::tcExtractBit
2276 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2277
2278 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2279 powHUerr);
2280 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2281 excessPrecision, isNearest);
2282
2283 /* Are we guaranteed to round correctly if we truncate? */
2284 if (HUdistance >= HUerr) {
2285 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2286 calcSemantics.precision - excessPrecision,
2287 excessPrecision);
2288 /* Take the exponent of decSig. If we tcExtract-ed less bits
2289 above we must adjust our exponent to compensate for the
2290 implicit right shift. */
2291 exponent = (decSig.exponent + semantics->precision
2292 - (calcSemantics.precision - excessPrecision));
2293 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2294 decSig.partCount(),
2295 truncatedBits);
2296 return normalize(rounding_mode, calcLostFraction);
2297 }
2298 }
2299}
2300
2301APFloat::opStatus
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002302APFloat::convertFromDecimalString(const StringRef &str, roundingMode rounding_mode)
Neil Booth1171ddf2007-10-12 16:02:31 +00002303{
Neil Booth666ea912007-10-14 10:16:12 +00002304 decimalInfo D;
Neil Booth1171ddf2007-10-12 16:02:31 +00002305 opStatus fs;
2306
Neil Booth666ea912007-10-14 10:16:12 +00002307 /* Scan the text. */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002308 StringRef::iterator p = str.begin();
2309 interpretDecimal(p, str.end(), &D);
Neil Booth1171ddf2007-10-12 16:02:31 +00002310
Neil Boothc4f88052007-10-15 15:00:55 +00002311 /* Handle the quick cases. First the case of no significant digits,
2312 i.e. zero, and then exponents that are obviously too large or too
2313 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2314 definitely overflows if
2315
2316 (exp - 1) * L >= maxExponent
2317
2318 and definitely underflows to zero where
2319
2320 (exp + 1) * L <= minExponent - precision
2321
2322 With integer arithmetic the tightest bounds for L are
2323
2324 93/28 < L < 196/59 [ numerator <= 256 ]
2325 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2326 */
2327
Neil Booth026773b2007-12-05 13:06:04 +00002328 if (decDigitValue(*D.firstSigDigit) >= 10U) {
Neil Booth1171ddf2007-10-12 16:02:31 +00002329 category = fcZero;
2330 fs = opOK;
Neil Boothc4f88052007-10-15 15:00:55 +00002331 } else if ((D.normalizedExponent + 1) * 28738
2332 <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
2333 /* Underflow to zero and round. */
2334 zeroSignificand();
2335 fs = normalize(rounding_mode, lfLessThanHalf);
2336 } else if ((D.normalizedExponent - 1) * 42039
2337 >= 12655 * semantics->maxExponent) {
2338 /* Overflow and round. */
2339 fs = handleOverflow(rounding_mode);
Neil Booth1171ddf2007-10-12 16:02:31 +00002340 } else {
Neil Booth666ea912007-10-14 10:16:12 +00002341 integerPart *decSignificand;
2342 unsigned int partCount;
Neil Booth1171ddf2007-10-12 16:02:31 +00002343
Neil Booth666ea912007-10-14 10:16:12 +00002344 /* A tight upper bound on number of bits required to hold an
Neil Boothc4f88052007-10-15 15:00:55 +00002345 N-digit decimal integer is N * 196 / 59. Allocate enough space
Neil Booth666ea912007-10-14 10:16:12 +00002346 to hold the full significand, and an extra part required by
2347 tcMultiplyPart. */
Evan Cheng279e2c42008-05-02 21:15:08 +00002348 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
Neil Boothc4f88052007-10-15 15:00:55 +00002349 partCount = partCountForBits(1 + 196 * partCount / 59);
Neil Booth666ea912007-10-14 10:16:12 +00002350 decSignificand = new integerPart[partCount + 1];
2351 partCount = 0;
Neil Booth1171ddf2007-10-12 16:02:31 +00002352
Neil Booth666ea912007-10-14 10:16:12 +00002353 /* Convert to binary efficiently - we do almost all multiplication
2354 in an integerPart. When this would overflow do we do a single
2355 bignum multiplication, and then revert again to multiplication
2356 in an integerPart. */
2357 do {
2358 integerPart decValue, val, multiplier;
2359
2360 val = 0;
2361 multiplier = 1;
2362
2363 do {
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002364 if (*p == '.') {
Neil Booth666ea912007-10-14 10:16:12 +00002365 p++;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002366 if (p == str.end()) {
2367 break;
2368 }
2369 }
Neil Booth666ea912007-10-14 10:16:12 +00002370 decValue = decDigitValue(*p++);
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002371 assert(decValue < 10U && "Invalid character in digit string");
Neil Booth666ea912007-10-14 10:16:12 +00002372 multiplier *= 10;
2373 val = val * 10 + decValue;
2374 /* The maximum number that can be multiplied by ten with any
2375 digit added without overflowing an integerPart. */
2376 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2377
2378 /* Multiply out the current part. */
2379 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2380 partCount, partCount + 1, false);
2381
2382 /* If we used another part (likely but not guaranteed), increase
2383 the count. */
2384 if (decSignificand[partCount])
2385 partCount++;
2386 } while (p <= D.lastSigDigit);
Neil Booth1171ddf2007-10-12 16:02:31 +00002387
Neil Booth5b0029f2007-11-01 22:51:07 +00002388 category = fcNormal;
Neil Booth1171ddf2007-10-12 16:02:31 +00002389 fs = roundSignificandWithExponent(decSignificand, partCount,
Neil Booth666ea912007-10-14 10:16:12 +00002390 D.exponent, rounding_mode);
Neil Booth1171ddf2007-10-12 16:02:31 +00002391
Neil Booth666ea912007-10-14 10:16:12 +00002392 delete [] decSignificand;
2393 }
Neil Booth1171ddf2007-10-12 16:02:31 +00002394
2395 return fs;
2396}
2397
2398APFloat::opStatus
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002399APFloat::convertFromString(const StringRef &str, roundingMode rounding_mode)
Neil Booth6479f712007-09-26 21:33:42 +00002400{
Neil Booth6721b8a2007-10-14 10:29:28 +00002401 assertArithmeticOK(*semantics);
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002402 assert(!str.empty() && "Invalid string length");
Neil Booth6721b8a2007-10-14 10:29:28 +00002403
Chris Lattnerdb80e212007-08-20 22:49:32 +00002404 /* Handle a leading minus sign. */
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002405 StringRef::iterator p = str.begin();
2406 size_t slen = str.size();
2407 unsigned isNegative = str.front() == '-';
2408 if(isNegative) {
2409 sign = 1;
2410 p++;
2411 slen--;
2412 assert(slen && "String is only a minus!");
2413 } else {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002414 sign = 0;
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002415 }
Chris Lattnerdb80e212007-08-20 22:49:32 +00002416
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002417 if(slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2418 assert(slen - 2 && "Invalid string");
2419 return convertFromHexadecimalString(str.substr(isNegative + 2),
2420 rounding_mode);
2421 }
Bill Wendling2f2253d2008-11-27 08:00:12 +00002422
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002423 return convertFromDecimalString(str.substr(isNegative), rounding_mode);
Chris Lattnerdb80e212007-08-20 22:49:32 +00002424}
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002425
Neil Booth3ba85132007-10-03 22:26:02 +00002426/* Write out a hexadecimal representation of the floating point value
2427 to DST, which must be of sufficient size, in the C99 form
2428 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2429 excluding the terminating NUL.
2430
2431 If UPPERCASE, the output is in upper case, otherwise in lower case.
2432
2433 HEXDIGITS digits appear altogether, rounding the value if
2434 necessary. If HEXDIGITS is 0, the minimal precision to display the
2435 number precisely is used instead. If nothing would appear after
2436 the decimal point it is suppressed.
2437
2438 The decimal exponent is always printed and has at least one digit.
2439 Zero values display an exponent of zero. Infinities and NaNs
2440 appear as "infinity" or "nan" respectively.
2441
2442 The above rules are as specified by C99. There is ambiguity about
2443 what the leading hexadecimal digit should be. This implementation
2444 uses whatever is necessary so that the exponent is displayed as
2445 stored. This implies the exponent will fall within the IEEE format
2446 range, and the leading hexadecimal digit will be 0 (for denormals),
2447 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2448 any other digits zero).
2449*/
2450unsigned int
2451APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2452 bool upperCase, roundingMode rounding_mode) const
2453{
2454 char *p;
2455
Neil Booth6721b8a2007-10-14 10:29:28 +00002456 assertArithmeticOK(*semantics);
2457
Neil Booth3ba85132007-10-03 22:26:02 +00002458 p = dst;
2459 if (sign)
2460 *dst++ = '-';
2461
2462 switch (category) {
2463 case fcInfinity:
2464 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2465 dst += sizeof infinityL - 1;
2466 break;
2467
2468 case fcNaN:
2469 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2470 dst += sizeof NaNU - 1;
2471 break;
2472
2473 case fcZero:
2474 *dst++ = '0';
2475 *dst++ = upperCase ? 'X': 'x';
2476 *dst++ = '0';
2477 if (hexDigits > 1) {
2478 *dst++ = '.';
2479 memset (dst, '0', hexDigits - 1);
2480 dst += hexDigits - 1;
2481 }
2482 *dst++ = upperCase ? 'P': 'p';
2483 *dst++ = '0';
2484 break;
2485
2486 case fcNormal:
2487 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2488 break;
2489 }
2490
2491 *dst = 0;
2492
Evan Cheng279e2c42008-05-02 21:15:08 +00002493 return static_cast<unsigned int>(dst - p);
Neil Booth3ba85132007-10-03 22:26:02 +00002494}
2495
2496/* Does the hard work of outputting the correctly rounded hexadecimal
2497 form of a normal floating point number with the specified number of
2498 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2499 digits necessary to print the value precisely is output. */
2500char *
2501APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2502 bool upperCase,
2503 roundingMode rounding_mode) const
2504{
2505 unsigned int count, valueBits, shift, partsCount, outputDigits;
2506 const char *hexDigitChars;
2507 const integerPart *significand;
2508 char *p;
2509 bool roundUp;
2510
2511 *dst++ = '0';
2512 *dst++ = upperCase ? 'X': 'x';
2513
2514 roundUp = false;
2515 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2516
2517 significand = significandParts();
2518 partsCount = partCount();
2519
2520 /* +3 because the first digit only uses the single integer bit, so
2521 we have 3 virtual zero most-significant-bits. */
2522 valueBits = semantics->precision + 3;
2523 shift = integerPartWidth - valueBits % integerPartWidth;
2524
2525 /* The natural number of digits required ignoring trailing
2526 insignificant zeroes. */
2527 outputDigits = (valueBits - significandLSB () + 3) / 4;
2528
2529 /* hexDigits of zero means use the required number for the
2530 precision. Otherwise, see if we are truncating. If we are,
Neil Booth004e9f42007-10-06 00:24:48 +00002531 find out if we need to round away from zero. */
Neil Booth3ba85132007-10-03 22:26:02 +00002532 if (hexDigits) {
2533 if (hexDigits < outputDigits) {
2534 /* We are dropping non-zero bits, so need to check how to round.
2535 "bits" is the number of dropped bits. */
2536 unsigned int bits;
2537 lostFraction fraction;
2538
2539 bits = valueBits - hexDigits * 4;
2540 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2541 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2542 }
2543 outputDigits = hexDigits;
2544 }
2545
2546 /* Write the digits consecutively, and start writing in the location
2547 of the hexadecimal point. We move the most significant digit
2548 left and add the hexadecimal point later. */
2549 p = ++dst;
2550
2551 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2552
2553 while (outputDigits && count) {
2554 integerPart part;
2555
2556 /* Put the most significant integerPartWidth bits in "part". */
2557 if (--count == partsCount)
2558 part = 0; /* An imaginary higher zero part. */
2559 else
2560 part = significand[count] << shift;
2561
2562 if (count && shift)
2563 part |= significand[count - 1] >> (integerPartWidth - shift);
2564
2565 /* Convert as much of "part" to hexdigits as we can. */
2566 unsigned int curDigits = integerPartWidth / 4;
2567
2568 if (curDigits > outputDigits)
2569 curDigits = outputDigits;
2570 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2571 outputDigits -= curDigits;
2572 }
2573
2574 if (roundUp) {
2575 char *q = dst;
2576
2577 /* Note that hexDigitChars has a trailing '0'. */
2578 do {
2579 q--;
2580 *q = hexDigitChars[hexDigitValue (*q) + 1];
Neil Booth004e9f42007-10-06 00:24:48 +00002581 } while (*q == '0');
2582 assert (q >= p);
Neil Booth3ba85132007-10-03 22:26:02 +00002583 } else {
2584 /* Add trailing zeroes. */
2585 memset (dst, '0', outputDigits);
2586 dst += outputDigits;
2587 }
2588
2589 /* Move the most significant digit to before the point, and if there
2590 is something after the decimal point add it. This must come
2591 after rounding above. */
2592 p[-1] = p[0];
2593 if (dst -1 == p)
2594 dst--;
2595 else
2596 p[0] = '.';
2597
2598 /* Finally output the exponent. */
2599 *dst++ = upperCase ? 'P': 'p';
2600
Neil Boothd37c3ad2007-10-06 07:29:25 +00002601 return writeSignedDecimal (dst, exponent);
Neil Booth3ba85132007-10-03 22:26:02 +00002602}
2603
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002604// For good performance it is desirable for different APFloats
2605// to produce different integers.
2606uint32_t
Neil Booth6479f712007-09-26 21:33:42 +00002607APFloat::getHashValue() const
2608{
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002609 if (category==fcZero) return sign<<8 | semantics->precision ;
2610 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johannesendf8a8312007-08-31 04:03:46 +00002611 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002612 else {
2613 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2614 const integerPart* p = significandParts();
2615 for (int i=partCount(); i>0; i--, p++)
Evan Cheng279e2c42008-05-02 21:15:08 +00002616 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002617 return hash;
2618 }
2619}
2620
2621// Conversion from APFloat to/from host float/double. It may eventually be
2622// possible to eliminate these and have everybody deal with APFloats, but that
2623// will take a while. This approach will not easily extend to long double.
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002624// Current implementation requires integerPartWidth==64, which is correct at
2625// the moment but could be made more general.
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002626
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00002627// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002628// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00002629
Dale Johannesen1616e902007-09-11 18:32:33 +00002630APInt
Neil Booth6479f712007-09-26 21:33:42 +00002631APFloat::convertF80LongDoubleAPFloatToAPInt() const
2632{
Dan Gohman61c6f912008-01-29 12:08:20 +00002633 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002634 assert (partCount()==2);
Dale Johannesen1616e902007-09-11 18:32:33 +00002635
2636 uint64_t myexponent, mysignificand;
2637
2638 if (category==fcNormal) {
2639 myexponent = exponent+16383; //bias
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002640 mysignificand = significandParts()[0];
Dale Johannesen1616e902007-09-11 18:32:33 +00002641 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2642 myexponent = 0; // denormal
2643 } else if (category==fcZero) {
2644 myexponent = 0;
2645 mysignificand = 0;
2646 } else if (category==fcInfinity) {
2647 myexponent = 0x7fff;
2648 mysignificand = 0x8000000000000000ULL;
Chris Lattner37076002007-10-06 06:13:42 +00002649 } else {
2650 assert(category == fcNaN && "Unknown category");
Dale Johannesen1616e902007-09-11 18:32:33 +00002651 myexponent = 0x7fff;
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002652 mysignificand = significandParts()[0];
Chris Lattner37076002007-10-06 06:13:42 +00002653 }
Dale Johannesen1616e902007-09-11 18:32:33 +00002654
2655 uint64_t words[2];
Dale Johannesen0a92eac2009-03-23 21:16:53 +00002656 words[0] = mysignificand;
2657 words[1] = ((uint64_t)(sign & 1) << 15) |
2658 (myexponent & 0x7fffLL);
Chris Lattner37076002007-10-06 06:13:42 +00002659 return APInt(80, 2, words);
Dale Johannesen1616e902007-09-11 18:32:33 +00002660}
2661
2662APInt
Dale Johannesen2aef5692007-10-11 18:07:22 +00002663APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2664{
Dan Gohman61c6f912008-01-29 12:08:20 +00002665 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
Dale Johannesen2aef5692007-10-11 18:07:22 +00002666 assert (partCount()==2);
2667
2668 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2669
2670 if (category==fcNormal) {
2671 myexponent = exponent + 1023; //bias
2672 myexponent2 = exponent2 + 1023;
2673 mysignificand = significandParts()[0];
2674 mysignificand2 = significandParts()[1];
2675 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2676 myexponent = 0; // denormal
2677 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2678 myexponent2 = 0; // denormal
2679 } else if (category==fcZero) {
2680 myexponent = 0;
2681 mysignificand = 0;
2682 myexponent2 = 0;
2683 mysignificand2 = 0;
2684 } else if (category==fcInfinity) {
2685 myexponent = 0x7ff;
2686 myexponent2 = 0;
2687 mysignificand = 0;
2688 mysignificand2 = 0;
2689 } else {
2690 assert(category == fcNaN && "Unknown category");
2691 myexponent = 0x7ff;
2692 mysignificand = significandParts()[0];
2693 myexponent2 = exponent2;
2694 mysignificand2 = significandParts()[1];
2695 }
2696
2697 uint64_t words[2];
Evan Cheng279e2c42008-05-02 21:15:08 +00002698 words[0] = ((uint64_t)(sign & 1) << 63) |
Dale Johannesen2aef5692007-10-11 18:07:22 +00002699 ((myexponent & 0x7ff) << 52) |
2700 (mysignificand & 0xfffffffffffffLL);
Evan Cheng279e2c42008-05-02 21:15:08 +00002701 words[1] = ((uint64_t)(sign2 & 1) << 63) |
Dale Johannesen2aef5692007-10-11 18:07:22 +00002702 ((myexponent2 & 0x7ff) << 52) |
2703 (mysignificand2 & 0xfffffffffffffLL);
2704 return APInt(128, 2, words);
2705}
2706
2707APInt
Neil Booth6479f712007-09-26 21:33:42 +00002708APFloat::convertDoubleAPFloatToAPInt() const
2709{
Dan Gohman5f222be2007-09-14 20:08:19 +00002710 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002711 assert (partCount()==1);
2712
Dale Johannesendf8a8312007-08-31 04:03:46 +00002713 uint64_t myexponent, mysignificand;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002714
2715 if (category==fcNormal) {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002716 myexponent = exponent+1023; //bias
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00002717 mysignificand = *significandParts();
2718 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2719 myexponent = 0; // denormal
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002720 } else if (category==fcZero) {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002721 myexponent = 0;
2722 mysignificand = 0;
2723 } else if (category==fcInfinity) {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002724 myexponent = 0x7ff;
2725 mysignificand = 0;
Chris Lattner37076002007-10-06 06:13:42 +00002726 } else {
2727 assert(category == fcNaN && "Unknown category!");
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002728 myexponent = 0x7ff;
Dale Johannesendf8a8312007-08-31 04:03:46 +00002729 mysignificand = *significandParts();
Chris Lattner37076002007-10-06 06:13:42 +00002730 }
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002731
Evan Cheng279e2c42008-05-02 21:15:08 +00002732 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
Chris Lattner37076002007-10-06 06:13:42 +00002733 ((myexponent & 0x7ff) << 52) |
2734 (mysignificand & 0xfffffffffffffLL))));
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002735}
2736
Dale Johannesen1616e902007-09-11 18:32:33 +00002737APInt
Neil Booth6479f712007-09-26 21:33:42 +00002738APFloat::convertFloatAPFloatToAPInt() const
2739{
Dan Gohman5f222be2007-09-14 20:08:19 +00002740 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002741 assert (partCount()==1);
Neil Booth6479f712007-09-26 21:33:42 +00002742
Dale Johannesendf8a8312007-08-31 04:03:46 +00002743 uint32_t myexponent, mysignificand;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002744
2745 if (category==fcNormal) {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002746 myexponent = exponent+127; //bias
Evan Cheng279e2c42008-05-02 21:15:08 +00002747 mysignificand = (uint32_t)*significandParts();
Dale Johannesen0690c132007-11-17 01:02:27 +00002748 if (myexponent == 1 && !(mysignificand & 0x800000))
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00002749 myexponent = 0; // denormal
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002750 } else if (category==fcZero) {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002751 myexponent = 0;
2752 mysignificand = 0;
2753 } else if (category==fcInfinity) {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002754 myexponent = 0xff;
2755 mysignificand = 0;
Chris Lattner37076002007-10-06 06:13:42 +00002756 } else {
2757 assert(category == fcNaN && "Unknown category!");
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00002758 myexponent = 0xff;
Evan Cheng279e2c42008-05-02 21:15:08 +00002759 mysignificand = (uint32_t)*significandParts();
Chris Lattner37076002007-10-06 06:13:42 +00002760 }
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002761
Chris Lattner37076002007-10-06 06:13:42 +00002762 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2763 (mysignificand & 0x7fffff)));
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002764}
2765
Dale Johannesen2aef5692007-10-11 18:07:22 +00002766// This function creates an APInt that is just a bit map of the floating
2767// point constant as it would appear in memory. It is not a conversion,
2768// and treating the result as a normal integer is unlikely to be useful.
2769
Dale Johannesen1616e902007-09-11 18:32:33 +00002770APInt
Dale Johannesen49cc7ce2008-10-09 18:53:47 +00002771APFloat::bitcastToAPInt() const
Neil Booth6479f712007-09-26 21:33:42 +00002772{
Dan Gohman61c6f912008-01-29 12:08:20 +00002773 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
Dale Johannesen1616e902007-09-11 18:32:33 +00002774 return convertFloatAPFloatToAPInt();
Chris Lattner37076002007-10-06 06:13:42 +00002775
Dan Gohman61c6f912008-01-29 12:08:20 +00002776 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
Dale Johannesen1616e902007-09-11 18:32:33 +00002777 return convertDoubleAPFloatToAPInt();
Neil Booth6479f712007-09-26 21:33:42 +00002778
Dan Gohman61c6f912008-01-29 12:08:20 +00002779 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
Dale Johannesen2aef5692007-10-11 18:07:22 +00002780 return convertPPCDoubleDoubleAPFloatToAPInt();
2781
Dan Gohman61c6f912008-01-29 12:08:20 +00002782 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
Chris Lattner37076002007-10-06 06:13:42 +00002783 "unknown format!");
2784 return convertF80LongDoubleAPFloatToAPInt();
Dale Johannesen1616e902007-09-11 18:32:33 +00002785}
2786
Neil Booth6479f712007-09-26 21:33:42 +00002787float
2788APFloat::convertToFloat() const
2789{
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002790 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle && "Float semantics are not IEEEsingle");
Dale Johannesen49cc7ce2008-10-09 18:53:47 +00002791 APInt api = bitcastToAPInt();
Dale Johannesen1616e902007-09-11 18:32:33 +00002792 return api.bitsToFloat();
2793}
2794
Neil Booth6479f712007-09-26 21:33:42 +00002795double
2796APFloat::convertToDouble() const
2797{
Erick Tryzelaar2ff79ef2009-08-16 23:36:19 +00002798 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble && "Float semantics are not IEEEdouble");
Dale Johannesen49cc7ce2008-10-09 18:53:47 +00002799 APInt api = bitcastToAPInt();
Dale Johannesen1616e902007-09-11 18:32:33 +00002800 return api.bitsToDouble();
2801}
2802
Dale Johannesen98e0dc72008-10-06 18:22:29 +00002803/// Integer bit is explicit in this format. Intel hardware (387 and later)
2804/// does not support these bit patterns:
2805/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2806/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2807/// exponent = 0, integer bit 1 ("pseudodenormal")
2808/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2809/// At the moment, the first two are treated as NaNs, the second two as Normal.
Dale Johannesen1616e902007-09-11 18:32:33 +00002810void
Neil Booth6479f712007-09-26 21:33:42 +00002811APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2812{
Dale Johannesen1616e902007-09-11 18:32:33 +00002813 assert(api.getBitWidth()==80);
2814 uint64_t i1 = api.getRawData()[0];
2815 uint64_t i2 = api.getRawData()[1];
Dale Johannesen0a92eac2009-03-23 21:16:53 +00002816 uint64_t myexponent = (i2 & 0x7fff);
2817 uint64_t mysignificand = i1;
Dale Johannesen1616e902007-09-11 18:32:33 +00002818
2819 initialize(&APFloat::x87DoubleExtended);
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002820 assert(partCount()==2);
Dale Johannesen1616e902007-09-11 18:32:33 +00002821
Dale Johannesen0a92eac2009-03-23 21:16:53 +00002822 sign = static_cast<unsigned int>(i2>>15);
Dale Johannesen1616e902007-09-11 18:32:33 +00002823 if (myexponent==0 && mysignificand==0) {
2824 // exponent, significand meaningless
2825 category = fcZero;
2826 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2827 // exponent, significand meaningless
2828 category = fcInfinity;
2829 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2830 // exponent meaningless
2831 category = fcNaN;
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002832 significandParts()[0] = mysignificand;
2833 significandParts()[1] = 0;
Dale Johannesen1616e902007-09-11 18:32:33 +00002834 } else {
2835 category = fcNormal;
2836 exponent = myexponent - 16383;
Dale Johannesenc044a3e2007-09-20 23:47:58 +00002837 significandParts()[0] = mysignificand;
2838 significandParts()[1] = 0;
Dale Johannesen1616e902007-09-11 18:32:33 +00002839 if (myexponent==0) // denormal
2840 exponent = -16382;
Neil Booth6479f712007-09-26 21:33:42 +00002841 }
Dale Johannesen1616e902007-09-11 18:32:33 +00002842}
2843
2844void
Dale Johannesen2aef5692007-10-11 18:07:22 +00002845APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2846{
2847 assert(api.getBitWidth()==128);
2848 uint64_t i1 = api.getRawData()[0];
2849 uint64_t i2 = api.getRawData()[1];
2850 uint64_t myexponent = (i1 >> 52) & 0x7ff;
2851 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
2852 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
2853 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
2854
2855 initialize(&APFloat::PPCDoubleDouble);
2856 assert(partCount()==2);
2857
Evan Cheng279e2c42008-05-02 21:15:08 +00002858 sign = static_cast<unsigned int>(i1>>63);
2859 sign2 = static_cast<unsigned int>(i2>>63);
Dale Johannesen2aef5692007-10-11 18:07:22 +00002860 if (myexponent==0 && mysignificand==0) {
2861 // exponent, significand meaningless
2862 // exponent2 and significand2 are required to be 0; we don't check
2863 category = fcZero;
2864 } else if (myexponent==0x7ff && mysignificand==0) {
2865 // exponent, significand meaningless
2866 // exponent2 and significand2 are required to be 0; we don't check
2867 category = fcInfinity;
2868 } else if (myexponent==0x7ff && mysignificand!=0) {
2869 // exponent meaningless. So is the whole second word, but keep it
2870 // for determinism.
2871 category = fcNaN;
2872 exponent2 = myexponent2;
2873 significandParts()[0] = mysignificand;
2874 significandParts()[1] = mysignificand2;
2875 } else {
2876 category = fcNormal;
2877 // Note there is no category2; the second word is treated as if it is
2878 // fcNormal, although it might be something else considered by itself.
2879 exponent = myexponent - 1023;
2880 exponent2 = myexponent2 - 1023;
2881 significandParts()[0] = mysignificand;
2882 significandParts()[1] = mysignificand2;
2883 if (myexponent==0) // denormal
2884 exponent = -1022;
2885 else
2886 significandParts()[0] |= 0x10000000000000LL; // integer bit
2887 if (myexponent2==0)
2888 exponent2 = -1022;
2889 else
2890 significandParts()[1] |= 0x10000000000000LL; // integer bit
2891 }
2892}
2893
2894void
Neil Booth6479f712007-09-26 21:33:42 +00002895APFloat::initFromDoubleAPInt(const APInt &api)
2896{
Dale Johannesen1616e902007-09-11 18:32:33 +00002897 assert(api.getBitWidth()==64);
2898 uint64_t i = *api.getRawData();
Dale Johannesen41b1f012007-08-24 05:08:11 +00002899 uint64_t myexponent = (i >> 52) & 0x7ff;
2900 uint64_t mysignificand = i & 0xfffffffffffffLL;
2901
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002902 initialize(&APFloat::IEEEdouble);
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002903 assert(partCount()==1);
2904
Evan Cheng279e2c42008-05-02 21:15:08 +00002905 sign = static_cast<unsigned int>(i>>63);
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002906 if (myexponent==0 && mysignificand==0) {
2907 // exponent, significand meaningless
2908 category = fcZero;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002909 } else if (myexponent==0x7ff && mysignificand==0) {
2910 // exponent, significand meaningless
2911 category = fcInfinity;
Dale Johannesendf8a8312007-08-31 04:03:46 +00002912 } else if (myexponent==0x7ff && mysignificand!=0) {
2913 // exponent meaningless
2914 category = fcNaN;
2915 *significandParts() = mysignificand;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002916 } else {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002917 category = fcNormal;
2918 exponent = myexponent - 1023;
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00002919 *significandParts() = mysignificand;
2920 if (myexponent==0) // denormal
2921 exponent = -1022;
2922 else
2923 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth6479f712007-09-26 21:33:42 +00002924 }
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002925}
2926
Dale Johannesen1616e902007-09-11 18:32:33 +00002927void
Neil Booth6479f712007-09-26 21:33:42 +00002928APFloat::initFromFloatAPInt(const APInt & api)
2929{
Dale Johannesen1616e902007-09-11 18:32:33 +00002930 assert(api.getBitWidth()==32);
2931 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesen41b1f012007-08-24 05:08:11 +00002932 uint32_t myexponent = (i >> 23) & 0xff;
2933 uint32_t mysignificand = i & 0x7fffff;
2934
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002935 initialize(&APFloat::IEEEsingle);
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002936 assert(partCount()==1);
2937
Dale Johannesendf8a8312007-08-31 04:03:46 +00002938 sign = i >> 31;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002939 if (myexponent==0 && mysignificand==0) {
2940 // exponent, significand meaningless
2941 category = fcZero;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002942 } else if (myexponent==0xff && mysignificand==0) {
2943 // exponent, significand meaningless
2944 category = fcInfinity;
Dale Johannesendbb7f102007-09-25 17:25:00 +00002945 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002946 // sign, exponent, significand meaningless
Dale Johannesendf8a8312007-08-31 04:03:46 +00002947 category = fcNaN;
2948 *significandParts() = mysignificand;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002949 } else {
2950 category = fcNormal;
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002951 exponent = myexponent - 127; //bias
Dale Johannesen8ef2f1f2007-09-05 20:39:49 +00002952 *significandParts() = mysignificand;
2953 if (myexponent==0) // denormal
2954 exponent = -126;
2955 else
2956 *significandParts() |= 0x800000; // integer bit
Dale Johannesen96ec39d2007-08-24 00:56:33 +00002957 }
2958}
Dale Johannesen1616e902007-09-11 18:32:33 +00002959
2960/// Treat api as containing the bits of a floating point number. Currently
Dale Johannesen2aef5692007-10-11 18:07:22 +00002961/// we infer the floating point type from the size of the APInt. The
2962/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
2963/// when the size is anything else).
Dale Johannesen1616e902007-09-11 18:32:33 +00002964void
Dale Johannesen2aef5692007-10-11 18:07:22 +00002965APFloat::initFromAPInt(const APInt& api, bool isIEEE)
Neil Booth6479f712007-09-26 21:33:42 +00002966{
Dale Johannesen1616e902007-09-11 18:32:33 +00002967 if (api.getBitWidth() == 32)
2968 return initFromFloatAPInt(api);
2969 else if (api.getBitWidth()==64)
2970 return initFromDoubleAPInt(api);
2971 else if (api.getBitWidth()==80)
2972 return initFromF80LongDoubleAPInt(api);
Dale Johannesen2aef5692007-10-11 18:07:22 +00002973 else if (api.getBitWidth()==128 && !isIEEE)
2974 return initFromPPCDoubleDoubleAPInt(api);
Dale Johannesen1616e902007-09-11 18:32:33 +00002975 else
Edwin Törökbd448e32009-07-14 16:55:14 +00002976 llvm_unreachable(0);
Dale Johannesen1616e902007-09-11 18:32:33 +00002977}
2978
Dale Johannesen2aef5692007-10-11 18:07:22 +00002979APFloat::APFloat(const APInt& api, bool isIEEE)
Neil Booth6479f712007-09-26 21:33:42 +00002980{
Dale Johannesen2aef5692007-10-11 18:07:22 +00002981 initFromAPInt(api, isIEEE);
Dale Johannesen1616e902007-09-11 18:32:33 +00002982}
2983
Neil Booth6479f712007-09-26 21:33:42 +00002984APFloat::APFloat(float f)
2985{
Dale Johannesen1616e902007-09-11 18:32:33 +00002986 APInt api = APInt(32, 0);
2987 initFromAPInt(api.floatToBits(f));
2988}
2989
Neil Booth6479f712007-09-26 21:33:42 +00002990APFloat::APFloat(double d)
2991{
Dale Johannesen1616e902007-09-11 18:32:33 +00002992 APInt api = APInt(64, 0);
2993 initFromAPInt(api.doubleToBits(d));
2994}