Chris Lattner | db80e21 | 2007-08-20 22:49:32 +0000 | [diff] [blame^] | 1 | //===-- APFloat.cpp - Implement APFloat class -----------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Neil Booth and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a class to represent arbitrary precision floating |
| 11 | // point values and provide a variety of arithmetic operations on them. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include <cassert> |
| 16 | #include "llvm/ADT/APFloat.h" |
| 17 | |
| 18 | using namespace llvm; |
| 19 | |
| 20 | #define convolve(lhs, rhs) ((lhs) * 4 + (rhs)) |
| 21 | |
| 22 | /* Assumed in hexadecimal significand parsing. */ |
| 23 | COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); |
| 24 | |
| 25 | namespace llvm { |
| 26 | |
| 27 | /* Represents floating point arithmetic semantics. */ |
| 28 | struct fltSemantics { |
| 29 | /* The largest E such that 2^E is representable; this matches the |
| 30 | definition of IEEE 754. */ |
| 31 | exponent_t maxExponent; |
| 32 | |
| 33 | /* The smallest E such that 2^E is a normalized number; this |
| 34 | matches the definition of IEEE 754. */ |
| 35 | exponent_t minExponent; |
| 36 | |
| 37 | /* Number of bits in the significand. This includes the integer |
| 38 | bit. */ |
| 39 | unsigned char precision; |
| 40 | |
| 41 | /* If the target format has an implicit integer bit. */ |
| 42 | bool implicitIntegerBit; |
| 43 | }; |
| 44 | |
| 45 | const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true }; |
| 46 | const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true }; |
| 47 | const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true }; |
| 48 | const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false }; |
| 49 | } |
| 50 | |
| 51 | /* Put a bunch of private, handy routines in an anonymous namespace. */ |
| 52 | namespace { |
| 53 | |
| 54 | inline unsigned int |
| 55 | partCountForBits(unsigned int bits) |
| 56 | { |
| 57 | return ((bits) + integerPartWidth - 1) / integerPartWidth; |
| 58 | } |
| 59 | |
| 60 | unsigned int |
| 61 | digitValue(unsigned int c) |
| 62 | { |
| 63 | unsigned int r; |
| 64 | |
| 65 | r = c - '0'; |
| 66 | if(r <= 9) |
| 67 | return r; |
| 68 | |
| 69 | return -1U; |
| 70 | } |
| 71 | |
| 72 | unsigned int |
| 73 | hexDigitValue (unsigned int c) |
| 74 | { |
| 75 | unsigned int r; |
| 76 | |
| 77 | r = c - '0'; |
| 78 | if(r <= 9) |
| 79 | return r; |
| 80 | |
| 81 | r = c - 'A'; |
| 82 | if(r <= 5) |
| 83 | return r + 10; |
| 84 | |
| 85 | r = c - 'a'; |
| 86 | if(r <= 5) |
| 87 | return r + 10; |
| 88 | |
| 89 | return -1U; |
| 90 | } |
| 91 | |
| 92 | /* This is ugly and needs cleaning up, but I don't immediately see |
| 93 | how whilst remaining safe. */ |
| 94 | static int |
| 95 | totalExponent(const char *p, int exponentAdjustment) |
| 96 | { |
| 97 | integerPart unsignedExponent; |
| 98 | bool negative, overflow; |
| 99 | long exponent; |
| 100 | |
| 101 | /* Move past the exponent letter and sign to the digits. */ |
| 102 | p++; |
| 103 | negative = *p == '-'; |
| 104 | if(*p == '-' || *p == '+') |
| 105 | p++; |
| 106 | |
| 107 | unsignedExponent = 0; |
| 108 | overflow = false; |
| 109 | for(;;) { |
| 110 | unsigned int value; |
| 111 | |
| 112 | value = digitValue(*p); |
| 113 | if(value == -1U) |
| 114 | break; |
| 115 | |
| 116 | p++; |
| 117 | unsignedExponent = unsignedExponent * 10 + value; |
| 118 | if(unsignedExponent > 65535) |
| 119 | overflow = true; |
| 120 | } |
| 121 | |
| 122 | if(exponentAdjustment > 65535 || exponentAdjustment < -65536) |
| 123 | overflow = true; |
| 124 | |
| 125 | if(!overflow) { |
| 126 | exponent = unsignedExponent; |
| 127 | if(negative) |
| 128 | exponent = -exponent; |
| 129 | exponent += exponentAdjustment; |
| 130 | if(exponent > 65535 || exponent < -65536) |
| 131 | overflow = true; |
| 132 | } |
| 133 | |
| 134 | if(overflow) |
| 135 | exponent = negative ? -65536: 65535; |
| 136 | |
| 137 | return exponent; |
| 138 | } |
| 139 | |
| 140 | const char * |
| 141 | skipLeadingZeroesAndAnyDot(const char *p, const char **dot) |
| 142 | { |
| 143 | *dot = 0; |
| 144 | while(*p == '0') |
| 145 | p++; |
| 146 | |
| 147 | if(*p == '.') { |
| 148 | *dot = p++; |
| 149 | while(*p == '0') |
| 150 | p++; |
| 151 | } |
| 152 | |
| 153 | return p; |
| 154 | } |
| 155 | |
| 156 | /* Return the trailing fraction of a hexadecimal number. |
| 157 | DIGITVALUE is the first hex digit of the fraction, P points to |
| 158 | the next digit. */ |
| 159 | lostFraction |
| 160 | trailingHexadecimalFraction(const char *p, unsigned int digitValue) |
| 161 | { |
| 162 | unsigned int hexDigit; |
| 163 | |
| 164 | /* If the first trailing digit isn't 0 or 8 we can work out the |
| 165 | fraction immediately. */ |
| 166 | if(digitValue > 8) |
| 167 | return lfMoreThanHalf; |
| 168 | else if(digitValue < 8 && digitValue > 0) |
| 169 | return lfLessThanHalf; |
| 170 | |
| 171 | /* Otherwise we need to find the first non-zero digit. */ |
| 172 | while(*p == '0') |
| 173 | p++; |
| 174 | |
| 175 | hexDigit = hexDigitValue(*p); |
| 176 | |
| 177 | /* If we ran off the end it is exactly zero or one-half, otherwise |
| 178 | a little more. */ |
| 179 | if(hexDigit == -1U) |
| 180 | return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; |
| 181 | else |
| 182 | return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; |
| 183 | } |
| 184 | |
| 185 | /* Return the fraction lost were a bignum truncated. */ |
| 186 | lostFraction |
| 187 | lostFractionThroughTruncation(integerPart *parts, |
| 188 | unsigned int partCount, |
| 189 | unsigned int bits) |
| 190 | { |
| 191 | unsigned int lsb; |
| 192 | |
| 193 | lsb = APInt::tcLSB(parts, partCount); |
| 194 | |
| 195 | /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ |
| 196 | if(bits <= lsb) |
| 197 | return lfExactlyZero; |
| 198 | if(bits == lsb + 1) |
| 199 | return lfExactlyHalf; |
| 200 | if(bits <= partCount * integerPartWidth |
| 201 | && APInt::tcExtractBit(parts, bits - 1)) |
| 202 | return lfMoreThanHalf; |
| 203 | |
| 204 | return lfLessThanHalf; |
| 205 | } |
| 206 | |
| 207 | /* Shift DST right BITS bits noting lost fraction. */ |
| 208 | lostFraction |
| 209 | shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) |
| 210 | { |
| 211 | lostFraction lost_fraction; |
| 212 | |
| 213 | lost_fraction = lostFractionThroughTruncation(dst, parts, bits); |
| 214 | |
| 215 | APInt::tcShiftRight(dst, parts, bits); |
| 216 | |
| 217 | return lost_fraction; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | /* Constructors. */ |
| 222 | void |
| 223 | APFloat::initialize(const fltSemantics *ourSemantics) |
| 224 | { |
| 225 | unsigned int count; |
| 226 | |
| 227 | semantics = ourSemantics; |
| 228 | count = partCount(); |
| 229 | if(count > 1) |
| 230 | significand.parts = new integerPart[count]; |
| 231 | } |
| 232 | |
| 233 | void |
| 234 | APFloat::freeSignificand() |
| 235 | { |
| 236 | if(partCount() > 1) |
| 237 | delete [] significand.parts; |
| 238 | } |
| 239 | |
| 240 | void |
| 241 | APFloat::assign(const APFloat &rhs) |
| 242 | { |
| 243 | assert(semantics == rhs.semantics); |
| 244 | |
| 245 | sign = rhs.sign; |
| 246 | category = rhs.category; |
| 247 | exponent = rhs.exponent; |
| 248 | if(category == fcNormal) |
| 249 | copySignificand(rhs); |
| 250 | } |
| 251 | |
| 252 | void |
| 253 | APFloat::copySignificand(const APFloat &rhs) |
| 254 | { |
| 255 | assert(category == fcNormal); |
| 256 | assert(rhs.partCount() >= partCount()); |
| 257 | |
| 258 | APInt::tcAssign(significandParts(), rhs.significandParts(), |
| 259 | partCount()); |
| 260 | } |
| 261 | |
| 262 | APFloat & |
| 263 | APFloat::operator=(const APFloat &rhs) |
| 264 | { |
| 265 | if(this != &rhs) { |
| 266 | if(semantics != rhs.semantics) { |
| 267 | freeSignificand(); |
| 268 | initialize(rhs.semantics); |
| 269 | } |
| 270 | assign(rhs); |
| 271 | } |
| 272 | |
| 273 | return *this; |
| 274 | } |
| 275 | |
| 276 | APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) |
| 277 | { |
| 278 | initialize(&ourSemantics); |
| 279 | sign = 0; |
| 280 | zeroSignificand(); |
| 281 | exponent = ourSemantics.precision - 1; |
| 282 | significandParts()[0] = value; |
| 283 | normalize(rmNearestTiesToEven, lfExactlyZero); |
| 284 | } |
| 285 | |
| 286 | APFloat::APFloat(const fltSemantics &ourSemantics, |
| 287 | fltCategory ourCategory, bool negative) |
| 288 | { |
| 289 | initialize(&ourSemantics); |
| 290 | category = ourCategory; |
| 291 | sign = negative; |
| 292 | if(category == fcNormal) |
| 293 | category = fcZero; |
| 294 | } |
| 295 | |
| 296 | APFloat::APFloat(const fltSemantics &ourSemantics, const char *text) |
| 297 | { |
| 298 | initialize(&ourSemantics); |
| 299 | convertFromString(text, rmNearestTiesToEven); |
| 300 | } |
| 301 | |
| 302 | APFloat::APFloat(const APFloat &rhs) |
| 303 | { |
| 304 | initialize(rhs.semantics); |
| 305 | assign(rhs); |
| 306 | } |
| 307 | |
| 308 | APFloat::~APFloat() |
| 309 | { |
| 310 | freeSignificand(); |
| 311 | } |
| 312 | |
| 313 | unsigned int |
| 314 | APFloat::partCount() const |
| 315 | { |
| 316 | return partCountForBits(semantics->precision + 1); |
| 317 | } |
| 318 | |
| 319 | unsigned int |
| 320 | APFloat::semanticsPrecision(const fltSemantics &semantics) |
| 321 | { |
| 322 | return semantics.precision; |
| 323 | } |
| 324 | |
| 325 | const integerPart * |
| 326 | APFloat::significandParts() const |
| 327 | { |
| 328 | return const_cast<APFloat *>(this)->significandParts(); |
| 329 | } |
| 330 | |
| 331 | integerPart * |
| 332 | APFloat::significandParts() |
| 333 | { |
| 334 | assert(category == fcNormal); |
| 335 | |
| 336 | if(partCount() > 1) |
| 337 | return significand.parts; |
| 338 | else |
| 339 | return &significand.part; |
| 340 | } |
| 341 | |
| 342 | /* Combine the effect of two lost fractions. */ |
| 343 | lostFraction |
| 344 | APFloat::combineLostFractions(lostFraction moreSignificant, |
| 345 | lostFraction lessSignificant) |
| 346 | { |
| 347 | if(lessSignificant != lfExactlyZero) { |
| 348 | if(moreSignificant == lfExactlyZero) |
| 349 | moreSignificant = lfLessThanHalf; |
| 350 | else if(moreSignificant == lfExactlyHalf) |
| 351 | moreSignificant = lfMoreThanHalf; |
| 352 | } |
| 353 | |
| 354 | return moreSignificant; |
| 355 | } |
| 356 | |
| 357 | void |
| 358 | APFloat::zeroSignificand() |
| 359 | { |
| 360 | category = fcNormal; |
| 361 | APInt::tcSet(significandParts(), 0, partCount()); |
| 362 | } |
| 363 | |
| 364 | /* Increment an fcNormal floating point number's significand. */ |
| 365 | void |
| 366 | APFloat::incrementSignificand() |
| 367 | { |
| 368 | integerPart carry; |
| 369 | |
| 370 | carry = APInt::tcIncrement(significandParts(), partCount()); |
| 371 | |
| 372 | /* Our callers should never cause us to overflow. */ |
| 373 | assert(carry == 0); |
| 374 | } |
| 375 | |
| 376 | /* Add the significand of the RHS. Returns the carry flag. */ |
| 377 | integerPart |
| 378 | APFloat::addSignificand(const APFloat &rhs) |
| 379 | { |
| 380 | integerPart *parts; |
| 381 | |
| 382 | parts = significandParts(); |
| 383 | |
| 384 | assert(semantics == rhs.semantics); |
| 385 | assert(exponent == rhs.exponent); |
| 386 | |
| 387 | return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); |
| 388 | } |
| 389 | |
| 390 | /* Subtract the significand of the RHS with a borrow flag. Returns |
| 391 | the borrow flag. */ |
| 392 | integerPart |
| 393 | APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) |
| 394 | { |
| 395 | integerPart *parts; |
| 396 | |
| 397 | parts = significandParts(); |
| 398 | |
| 399 | assert(semantics == rhs.semantics); |
| 400 | assert(exponent == rhs.exponent); |
| 401 | |
| 402 | return APInt::tcSubtract(parts, rhs.significandParts(), borrow, |
| 403 | partCount()); |
| 404 | } |
| 405 | |
| 406 | /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it |
| 407 | on to the full-precision result of the multiplication. Returns the |
| 408 | lost fraction. */ |
| 409 | lostFraction |
| 410 | APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) |
| 411 | { |
| 412 | unsigned int omsb; // One, not zero, based MSB. |
| 413 | unsigned int partsCount, newPartsCount, precision; |
| 414 | integerPart *lhsSignificand; |
| 415 | integerPart scratch[4]; |
| 416 | integerPart *fullSignificand; |
| 417 | lostFraction lost_fraction; |
| 418 | |
| 419 | assert(semantics == rhs.semantics); |
| 420 | |
| 421 | precision = semantics->precision; |
| 422 | newPartsCount = partCountForBits(precision * 2); |
| 423 | |
| 424 | if(newPartsCount > 4) |
| 425 | fullSignificand = new integerPart[newPartsCount]; |
| 426 | else |
| 427 | fullSignificand = scratch; |
| 428 | |
| 429 | lhsSignificand = significandParts(); |
| 430 | partsCount = partCount(); |
| 431 | |
| 432 | APInt::tcFullMultiply(fullSignificand, lhsSignificand, |
| 433 | rhs.significandParts(), partsCount); |
| 434 | |
| 435 | lost_fraction = lfExactlyZero; |
| 436 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| 437 | exponent += rhs.exponent; |
| 438 | |
| 439 | if(addend) { |
| 440 | Significand savedSignificand = significand; |
| 441 | const fltSemantics *savedSemantics = semantics; |
| 442 | fltSemantics extendedSemantics; |
| 443 | opStatus status; |
| 444 | unsigned int extendedPrecision; |
| 445 | |
| 446 | /* Normalize our MSB. */ |
| 447 | extendedPrecision = precision + precision - 1; |
| 448 | if(omsb != extendedPrecision) |
| 449 | { |
| 450 | APInt::tcShiftLeft(fullSignificand, newPartsCount, |
| 451 | extendedPrecision - omsb); |
| 452 | exponent -= extendedPrecision - omsb; |
| 453 | } |
| 454 | |
| 455 | /* Create new semantics. */ |
| 456 | extendedSemantics = *semantics; |
| 457 | extendedSemantics.precision = extendedPrecision; |
| 458 | |
| 459 | if(newPartsCount == 1) |
| 460 | significand.part = fullSignificand[0]; |
| 461 | else |
| 462 | significand.parts = fullSignificand; |
| 463 | semantics = &extendedSemantics; |
| 464 | |
| 465 | APFloat extendedAddend(*addend); |
| 466 | status = extendedAddend.convert(extendedSemantics, rmTowardZero); |
| 467 | assert(status == opOK); |
| 468 | lost_fraction = addOrSubtractSignificand(extendedAddend, false); |
| 469 | |
| 470 | /* Restore our state. */ |
| 471 | if(newPartsCount == 1) |
| 472 | fullSignificand[0] = significand.part; |
| 473 | significand = savedSignificand; |
| 474 | semantics = savedSemantics; |
| 475 | |
| 476 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| 477 | } |
| 478 | |
| 479 | exponent -= (precision - 1); |
| 480 | |
| 481 | if(omsb > precision) { |
| 482 | unsigned int bits, significantParts; |
| 483 | lostFraction lf; |
| 484 | |
| 485 | bits = omsb - precision; |
| 486 | significantParts = partCountForBits(omsb); |
| 487 | lf = shiftRight(fullSignificand, significantParts, bits); |
| 488 | lost_fraction = combineLostFractions(lf, lost_fraction); |
| 489 | exponent += bits; |
| 490 | } |
| 491 | |
| 492 | APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); |
| 493 | |
| 494 | if(newPartsCount > 4) |
| 495 | delete [] fullSignificand; |
| 496 | |
| 497 | return lost_fraction; |
| 498 | } |
| 499 | |
| 500 | /* Multiply the significands of LHS and RHS to DST. */ |
| 501 | lostFraction |
| 502 | APFloat::divideSignificand(const APFloat &rhs) |
| 503 | { |
| 504 | unsigned int bit, i, partsCount; |
| 505 | const integerPart *rhsSignificand; |
| 506 | integerPart *lhsSignificand, *dividend, *divisor; |
| 507 | integerPart scratch[4]; |
| 508 | lostFraction lost_fraction; |
| 509 | |
| 510 | assert(semantics == rhs.semantics); |
| 511 | |
| 512 | lhsSignificand = significandParts(); |
| 513 | rhsSignificand = rhs.significandParts(); |
| 514 | partsCount = partCount(); |
| 515 | |
| 516 | if(partsCount > 2) |
| 517 | dividend = new integerPart[partsCount * 2]; |
| 518 | else |
| 519 | dividend = scratch; |
| 520 | |
| 521 | divisor = dividend + partsCount; |
| 522 | |
| 523 | /* Copy the dividend and divisor as they will be modified in-place. */ |
| 524 | for(i = 0; i < partsCount; i++) { |
| 525 | dividend[i] = lhsSignificand[i]; |
| 526 | divisor[i] = rhsSignificand[i]; |
| 527 | lhsSignificand[i] = 0; |
| 528 | } |
| 529 | |
| 530 | exponent -= rhs.exponent; |
| 531 | |
| 532 | unsigned int precision = semantics->precision; |
| 533 | |
| 534 | /* Normalize the divisor. */ |
| 535 | bit = precision - APInt::tcMSB(divisor, partsCount) - 1; |
| 536 | if(bit) { |
| 537 | exponent += bit; |
| 538 | APInt::tcShiftLeft(divisor, partsCount, bit); |
| 539 | } |
| 540 | |
| 541 | /* Normalize the dividend. */ |
| 542 | bit = precision - APInt::tcMSB(dividend, partsCount) - 1; |
| 543 | if(bit) { |
| 544 | exponent -= bit; |
| 545 | APInt::tcShiftLeft(dividend, partsCount, bit); |
| 546 | } |
| 547 | |
| 548 | if(APInt::tcCompare(dividend, divisor, partsCount) < 0) { |
| 549 | exponent--; |
| 550 | APInt::tcShiftLeft(dividend, partsCount, 1); |
| 551 | assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); |
| 552 | } |
| 553 | |
| 554 | /* Long division. */ |
| 555 | for(bit = precision; bit; bit -= 1) { |
| 556 | if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) { |
| 557 | APInt::tcSubtract(dividend, divisor, 0, partsCount); |
| 558 | APInt::tcSetBit(lhsSignificand, bit - 1); |
| 559 | } |
| 560 | |
| 561 | APInt::tcShiftLeft(dividend, partsCount, 1); |
| 562 | } |
| 563 | |
| 564 | /* Figure out the lost fraction. */ |
| 565 | int cmp = APInt::tcCompare(dividend, divisor, partsCount); |
| 566 | |
| 567 | if(cmp > 0) |
| 568 | lost_fraction = lfMoreThanHalf; |
| 569 | else if(cmp == 0) |
| 570 | lost_fraction = lfExactlyHalf; |
| 571 | else if(APInt::tcIsZero(dividend, partsCount)) |
| 572 | lost_fraction = lfExactlyZero; |
| 573 | else |
| 574 | lost_fraction = lfLessThanHalf; |
| 575 | |
| 576 | if(partsCount > 2) |
| 577 | delete [] dividend; |
| 578 | |
| 579 | return lost_fraction; |
| 580 | } |
| 581 | |
| 582 | unsigned int |
| 583 | APFloat::significandMSB() const |
| 584 | { |
| 585 | return APInt::tcMSB(significandParts(), partCount()); |
| 586 | } |
| 587 | |
| 588 | unsigned int |
| 589 | APFloat::significandLSB() const |
| 590 | { |
| 591 | return APInt::tcLSB(significandParts(), partCount()); |
| 592 | } |
| 593 | |
| 594 | /* Note that a zero result is NOT normalized to fcZero. */ |
| 595 | lostFraction |
| 596 | APFloat::shiftSignificandRight(unsigned int bits) |
| 597 | { |
| 598 | /* Our exponent should not overflow. */ |
| 599 | assert((exponent_t) (exponent + bits) >= exponent); |
| 600 | |
| 601 | exponent += bits; |
| 602 | |
| 603 | return shiftRight(significandParts(), partCount(), bits); |
| 604 | } |
| 605 | |
| 606 | /* Shift the significand left BITS bits, subtract BITS from its exponent. */ |
| 607 | void |
| 608 | APFloat::shiftSignificandLeft(unsigned int bits) |
| 609 | { |
| 610 | assert(bits < semantics->precision); |
| 611 | |
| 612 | if(bits) { |
| 613 | unsigned int partsCount = partCount(); |
| 614 | |
| 615 | APInt::tcShiftLeft(significandParts(), partsCount, bits); |
| 616 | exponent -= bits; |
| 617 | |
| 618 | assert(!APInt::tcIsZero(significandParts(), partsCount)); |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | APFloat::cmpResult |
| 623 | APFloat::compareAbsoluteValue(const APFloat &rhs) const |
| 624 | { |
| 625 | int compare; |
| 626 | |
| 627 | assert(semantics == rhs.semantics); |
| 628 | assert(category == fcNormal); |
| 629 | assert(rhs.category == fcNormal); |
| 630 | |
| 631 | compare = exponent - rhs.exponent; |
| 632 | |
| 633 | /* If exponents are equal, do an unsigned bignum comparison of the |
| 634 | significands. */ |
| 635 | if(compare == 0) |
| 636 | compare = APInt::tcCompare(significandParts(), rhs.significandParts(), |
| 637 | partCount()); |
| 638 | |
| 639 | if(compare > 0) |
| 640 | return cmpGreaterThan; |
| 641 | else if(compare < 0) |
| 642 | return cmpLessThan; |
| 643 | else |
| 644 | return cmpEqual; |
| 645 | } |
| 646 | |
| 647 | /* Handle overflow. Sign is preserved. We either become infinity or |
| 648 | the largest finite number. */ |
| 649 | APFloat::opStatus |
| 650 | APFloat::handleOverflow(roundingMode rounding_mode) |
| 651 | { |
| 652 | /* Infinity? */ |
| 653 | if(rounding_mode == rmNearestTiesToEven |
| 654 | || rounding_mode == rmNearestTiesToAway |
| 655 | || (rounding_mode == rmTowardPositive && !sign) |
| 656 | || (rounding_mode == rmTowardNegative && sign)) |
| 657 | { |
| 658 | category = fcInfinity; |
| 659 | return (opStatus) (opOverflow | opInexact); |
| 660 | } |
| 661 | |
| 662 | /* Otherwise we become the largest finite number. */ |
| 663 | category = fcNormal; |
| 664 | exponent = semantics->maxExponent; |
| 665 | APInt::tcSetLeastSignificantBits(significandParts(), partCount(), |
| 666 | semantics->precision); |
| 667 | |
| 668 | return opInexact; |
| 669 | } |
| 670 | |
| 671 | /* This routine must work for fcZero of both signs, and fcNormal |
| 672 | numbers. */ |
| 673 | bool |
| 674 | APFloat::roundAwayFromZero(roundingMode rounding_mode, |
| 675 | lostFraction lost_fraction) |
| 676 | { |
| 677 | /* QNaNs and infinities should not have lost fractions. */ |
| 678 | assert(category == fcNormal || category == fcZero); |
| 679 | |
| 680 | /* Our caller has already handled this case. */ |
| 681 | assert(lost_fraction != lfExactlyZero); |
| 682 | |
| 683 | switch(rounding_mode) { |
| 684 | default: |
| 685 | assert(0); |
| 686 | |
| 687 | case rmNearestTiesToAway: |
| 688 | return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; |
| 689 | |
| 690 | case rmNearestTiesToEven: |
| 691 | if(lost_fraction == lfMoreThanHalf) |
| 692 | return true; |
| 693 | |
| 694 | /* Our zeroes don't have a significand to test. */ |
| 695 | if(lost_fraction == lfExactlyHalf && category != fcZero) |
| 696 | return significandParts()[0] & 1; |
| 697 | |
| 698 | return false; |
| 699 | |
| 700 | case rmTowardZero: |
| 701 | return false; |
| 702 | |
| 703 | case rmTowardPositive: |
| 704 | return sign == false; |
| 705 | |
| 706 | case rmTowardNegative: |
| 707 | return sign == true; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | APFloat::opStatus |
| 712 | APFloat::normalize(roundingMode rounding_mode, |
| 713 | lostFraction lost_fraction) |
| 714 | { |
| 715 | unsigned int omsb; /* One, not zero, based MSB. */ |
| 716 | int exponentChange; |
| 717 | |
| 718 | if(category != fcNormal) |
| 719 | return opOK; |
| 720 | |
| 721 | /* Before rounding normalize the exponent of fcNormal numbers. */ |
| 722 | omsb = significandMSB() + 1; |
| 723 | |
| 724 | if(omsb) { |
| 725 | /* OMSB is numbered from 1. We want to place it in the integer |
| 726 | bit numbered PRECISON if possible, with a compensating change in |
| 727 | the exponent. */ |
| 728 | exponentChange = omsb - semantics->precision; |
| 729 | |
| 730 | /* If the resulting exponent is too high, overflow according to |
| 731 | the rounding mode. */ |
| 732 | if(exponent + exponentChange > semantics->maxExponent) |
| 733 | return handleOverflow(rounding_mode); |
| 734 | |
| 735 | /* Subnormal numbers have exponent minExponent, and their MSB |
| 736 | is forced based on that. */ |
| 737 | if(exponent + exponentChange < semantics->minExponent) |
| 738 | exponentChange = semantics->minExponent - exponent; |
| 739 | |
| 740 | /* Shifting left is easy as we don't lose precision. */ |
| 741 | if(exponentChange < 0) { |
| 742 | assert(lost_fraction == lfExactlyZero); |
| 743 | |
| 744 | shiftSignificandLeft(-exponentChange); |
| 745 | |
| 746 | return opOK; |
| 747 | } |
| 748 | |
| 749 | if(exponentChange > 0) { |
| 750 | lostFraction lf; |
| 751 | |
| 752 | /* Shift right and capture any new lost fraction. */ |
| 753 | lf = shiftSignificandRight(exponentChange); |
| 754 | |
| 755 | lost_fraction = combineLostFractions(lf, lost_fraction); |
| 756 | |
| 757 | /* Keep OMSB up-to-date. */ |
| 758 | if(omsb > (unsigned) exponentChange) |
| 759 | omsb -= (unsigned) exponentChange; |
| 760 | else |
| 761 | omsb = 0; |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /* Now round the number according to rounding_mode given the lost |
| 766 | fraction. */ |
| 767 | |
| 768 | /* As specified in IEEE 754, since we do not trap we do not report |
| 769 | underflow for exact results. */ |
| 770 | if(lost_fraction == lfExactlyZero) { |
| 771 | /* Canonicalize zeroes. */ |
| 772 | if(omsb == 0) |
| 773 | category = fcZero; |
| 774 | |
| 775 | return opOK; |
| 776 | } |
| 777 | |
| 778 | /* Increment the significand if we're rounding away from zero. */ |
| 779 | if(roundAwayFromZero(rounding_mode, lost_fraction)) { |
| 780 | if(omsb == 0) |
| 781 | exponent = semantics->minExponent; |
| 782 | |
| 783 | incrementSignificand(); |
| 784 | omsb = significandMSB() + 1; |
| 785 | |
| 786 | /* Did the significand increment overflow? */ |
| 787 | if(omsb == (unsigned) semantics->precision + 1) { |
| 788 | /* Renormalize by incrementing the exponent and shifting our |
| 789 | significand right one. However if we already have the |
| 790 | maximum exponent we overflow to infinity. */ |
| 791 | if(exponent == semantics->maxExponent) { |
| 792 | category = fcInfinity; |
| 793 | |
| 794 | return (opStatus) (opOverflow | opInexact); |
| 795 | } |
| 796 | |
| 797 | shiftSignificandRight(1); |
| 798 | |
| 799 | return opInexact; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | /* The normal case - we were and are not denormal, and any |
| 804 | significand increment above didn't overflow. */ |
| 805 | if(omsb == semantics->precision) |
| 806 | return opInexact; |
| 807 | |
| 808 | /* We have a non-zero denormal. */ |
| 809 | assert(omsb < semantics->precision); |
| 810 | assert(exponent == semantics->minExponent); |
| 811 | |
| 812 | /* Canonicalize zeroes. */ |
| 813 | if(omsb == 0) |
| 814 | category = fcZero; |
| 815 | |
| 816 | /* The fcZero case is a denormal that underflowed to zero. */ |
| 817 | return (opStatus) (opUnderflow | opInexact); |
| 818 | } |
| 819 | |
| 820 | APFloat::opStatus |
| 821 | APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) |
| 822 | { |
| 823 | switch(convolve(category, rhs.category)) { |
| 824 | default: |
| 825 | assert(0); |
| 826 | |
| 827 | case convolve(fcQNaN, fcZero): |
| 828 | case convolve(fcQNaN, fcNormal): |
| 829 | case convolve(fcQNaN, fcInfinity): |
| 830 | case convolve(fcQNaN, fcQNaN): |
| 831 | case convolve(fcNormal, fcZero): |
| 832 | case convolve(fcInfinity, fcNormal): |
| 833 | case convolve(fcInfinity, fcZero): |
| 834 | return opOK; |
| 835 | |
| 836 | case convolve(fcZero, fcQNaN): |
| 837 | case convolve(fcNormal, fcQNaN): |
| 838 | case convolve(fcInfinity, fcQNaN): |
| 839 | category = fcQNaN; |
| 840 | return opOK; |
| 841 | |
| 842 | case convolve(fcNormal, fcInfinity): |
| 843 | case convolve(fcZero, fcInfinity): |
| 844 | category = fcInfinity; |
| 845 | sign = rhs.sign ^ subtract; |
| 846 | return opOK; |
| 847 | |
| 848 | case convolve(fcZero, fcNormal): |
| 849 | assign(rhs); |
| 850 | sign = rhs.sign ^ subtract; |
| 851 | return opOK; |
| 852 | |
| 853 | case convolve(fcZero, fcZero): |
| 854 | /* Sign depends on rounding mode; handled by caller. */ |
| 855 | return opOK; |
| 856 | |
| 857 | case convolve(fcInfinity, fcInfinity): |
| 858 | /* Differently signed infinities can only be validly |
| 859 | subtracted. */ |
| 860 | if(sign ^ rhs.sign != subtract) { |
| 861 | category = fcQNaN; |
| 862 | return opInvalidOp; |
| 863 | } |
| 864 | |
| 865 | return opOK; |
| 866 | |
| 867 | case convolve(fcNormal, fcNormal): |
| 868 | return opDivByZero; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | /* Add or subtract two normal numbers. */ |
| 873 | lostFraction |
| 874 | APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) |
| 875 | { |
| 876 | integerPart carry; |
| 877 | lostFraction lost_fraction; |
| 878 | int bits; |
| 879 | |
| 880 | /* Determine if the operation on the absolute values is effectively |
| 881 | an addition or subtraction. */ |
| 882 | subtract ^= (sign ^ rhs.sign); |
| 883 | |
| 884 | /* Are we bigger exponent-wise than the RHS? */ |
| 885 | bits = exponent - rhs.exponent; |
| 886 | |
| 887 | /* Subtraction is more subtle than one might naively expect. */ |
| 888 | if(subtract) { |
| 889 | APFloat temp_rhs(rhs); |
| 890 | bool reverse; |
| 891 | |
| 892 | if(bits == 0) { |
| 893 | reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; |
| 894 | lost_fraction = lfExactlyZero; |
| 895 | } else if(bits > 0) { |
| 896 | lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); |
| 897 | shiftSignificandLeft(1); |
| 898 | reverse = false; |
| 899 | } else if(bits < 0) { |
| 900 | lost_fraction = shiftSignificandRight(-bits - 1); |
| 901 | temp_rhs.shiftSignificandLeft(1); |
| 902 | reverse = true; |
| 903 | } |
| 904 | |
| 905 | if(reverse) { |
| 906 | carry = temp_rhs.subtractSignificand |
| 907 | (*this, lost_fraction != lfExactlyZero); |
| 908 | copySignificand(temp_rhs); |
| 909 | sign = !sign; |
| 910 | } else { |
| 911 | carry = subtractSignificand |
| 912 | (temp_rhs, lost_fraction != lfExactlyZero); |
| 913 | } |
| 914 | |
| 915 | /* Invert the lost fraction - it was on the RHS and |
| 916 | subtracted. */ |
| 917 | if(lost_fraction == lfLessThanHalf) |
| 918 | lost_fraction = lfMoreThanHalf; |
| 919 | else if(lost_fraction == lfMoreThanHalf) |
| 920 | lost_fraction = lfLessThanHalf; |
| 921 | |
| 922 | /* The code above is intended to ensure that no borrow is |
| 923 | necessary. */ |
| 924 | assert(!carry); |
| 925 | } else { |
| 926 | if(bits > 0) { |
| 927 | APFloat temp_rhs(rhs); |
| 928 | |
| 929 | lost_fraction = temp_rhs.shiftSignificandRight(bits); |
| 930 | carry = addSignificand(temp_rhs); |
| 931 | } else { |
| 932 | lost_fraction = shiftSignificandRight(-bits); |
| 933 | carry = addSignificand(rhs); |
| 934 | } |
| 935 | |
| 936 | /* We have a guard bit; generating a carry cannot happen. */ |
| 937 | assert(!carry); |
| 938 | } |
| 939 | |
| 940 | return lost_fraction; |
| 941 | } |
| 942 | |
| 943 | APFloat::opStatus |
| 944 | APFloat::multiplySpecials(const APFloat &rhs) |
| 945 | { |
| 946 | switch(convolve(category, rhs.category)) { |
| 947 | default: |
| 948 | assert(0); |
| 949 | |
| 950 | case convolve(fcQNaN, fcZero): |
| 951 | case convolve(fcQNaN, fcNormal): |
| 952 | case convolve(fcQNaN, fcInfinity): |
| 953 | case convolve(fcQNaN, fcQNaN): |
| 954 | case convolve(fcZero, fcQNaN): |
| 955 | case convolve(fcNormal, fcQNaN): |
| 956 | case convolve(fcInfinity, fcQNaN): |
| 957 | category = fcQNaN; |
| 958 | return opOK; |
| 959 | |
| 960 | case convolve(fcNormal, fcInfinity): |
| 961 | case convolve(fcInfinity, fcNormal): |
| 962 | case convolve(fcInfinity, fcInfinity): |
| 963 | category = fcInfinity; |
| 964 | return opOK; |
| 965 | |
| 966 | case convolve(fcZero, fcNormal): |
| 967 | case convolve(fcNormal, fcZero): |
| 968 | case convolve(fcZero, fcZero): |
| 969 | category = fcZero; |
| 970 | return opOK; |
| 971 | |
| 972 | case convolve(fcZero, fcInfinity): |
| 973 | case convolve(fcInfinity, fcZero): |
| 974 | category = fcQNaN; |
| 975 | return opInvalidOp; |
| 976 | |
| 977 | case convolve(fcNormal, fcNormal): |
| 978 | return opOK; |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | APFloat::opStatus |
| 983 | APFloat::divideSpecials(const APFloat &rhs) |
| 984 | { |
| 985 | switch(convolve(category, rhs.category)) { |
| 986 | default: |
| 987 | assert(0); |
| 988 | |
| 989 | case convolve(fcQNaN, fcZero): |
| 990 | case convolve(fcQNaN, fcNormal): |
| 991 | case convolve(fcQNaN, fcInfinity): |
| 992 | case convolve(fcQNaN, fcQNaN): |
| 993 | case convolve(fcInfinity, fcZero): |
| 994 | case convolve(fcInfinity, fcNormal): |
| 995 | case convolve(fcZero, fcInfinity): |
| 996 | case convolve(fcZero, fcNormal): |
| 997 | return opOK; |
| 998 | |
| 999 | case convolve(fcZero, fcQNaN): |
| 1000 | case convolve(fcNormal, fcQNaN): |
| 1001 | case convolve(fcInfinity, fcQNaN): |
| 1002 | category = fcQNaN; |
| 1003 | return opOK; |
| 1004 | |
| 1005 | case convolve(fcNormal, fcInfinity): |
| 1006 | category = fcZero; |
| 1007 | return opOK; |
| 1008 | |
| 1009 | case convolve(fcNormal, fcZero): |
| 1010 | category = fcInfinity; |
| 1011 | return opDivByZero; |
| 1012 | |
| 1013 | case convolve(fcInfinity, fcInfinity): |
| 1014 | case convolve(fcZero, fcZero): |
| 1015 | category = fcQNaN; |
| 1016 | return opInvalidOp; |
| 1017 | |
| 1018 | case convolve(fcNormal, fcNormal): |
| 1019 | return opOK; |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | /* Change sign. */ |
| 1024 | void |
| 1025 | APFloat::changeSign() |
| 1026 | { |
| 1027 | /* Look mummy, this one's easy. */ |
| 1028 | sign = !sign; |
| 1029 | } |
| 1030 | |
| 1031 | /* Normalized addition or subtraction. */ |
| 1032 | APFloat::opStatus |
| 1033 | APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, |
| 1034 | bool subtract) |
| 1035 | { |
| 1036 | opStatus fs; |
| 1037 | |
| 1038 | fs = addOrSubtractSpecials(rhs, subtract); |
| 1039 | |
| 1040 | /* This return code means it was not a simple case. */ |
| 1041 | if(fs == opDivByZero) { |
| 1042 | lostFraction lost_fraction; |
| 1043 | |
| 1044 | lost_fraction = addOrSubtractSignificand(rhs, subtract); |
| 1045 | fs = normalize(rounding_mode, lost_fraction); |
| 1046 | |
| 1047 | /* Can only be zero if we lost no fraction. */ |
| 1048 | assert(category != fcZero || lost_fraction == lfExactlyZero); |
| 1049 | } |
| 1050 | |
| 1051 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| 1052 | positive zero unless rounding to minus infinity, except that |
| 1053 | adding two like-signed zeroes gives that zero. */ |
| 1054 | if(category == fcZero) { |
| 1055 | if(rhs.category != fcZero || (sign == rhs.sign) == subtract) |
| 1056 | sign = (rounding_mode == rmTowardNegative); |
| 1057 | } |
| 1058 | |
| 1059 | return fs; |
| 1060 | } |
| 1061 | |
| 1062 | /* Normalized addition. */ |
| 1063 | APFloat::opStatus |
| 1064 | APFloat::add(const APFloat &rhs, roundingMode rounding_mode) |
| 1065 | { |
| 1066 | return addOrSubtract(rhs, rounding_mode, false); |
| 1067 | } |
| 1068 | |
| 1069 | /* Normalized subtraction. */ |
| 1070 | APFloat::opStatus |
| 1071 | APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) |
| 1072 | { |
| 1073 | return addOrSubtract(rhs, rounding_mode, true); |
| 1074 | } |
| 1075 | |
| 1076 | /* Normalized multiply. */ |
| 1077 | APFloat::opStatus |
| 1078 | APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) |
| 1079 | { |
| 1080 | opStatus fs; |
| 1081 | |
| 1082 | sign ^= rhs.sign; |
| 1083 | fs = multiplySpecials(rhs); |
| 1084 | |
| 1085 | if(category == fcNormal) { |
| 1086 | lostFraction lost_fraction = multiplySignificand(rhs, 0); |
| 1087 | fs = normalize(rounding_mode, lost_fraction); |
| 1088 | if(lost_fraction != lfExactlyZero) |
| 1089 | fs = (opStatus) (fs | opInexact); |
| 1090 | } |
| 1091 | |
| 1092 | return fs; |
| 1093 | } |
| 1094 | |
| 1095 | /* Normalized divide. */ |
| 1096 | APFloat::opStatus |
| 1097 | APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) |
| 1098 | { |
| 1099 | opStatus fs; |
| 1100 | |
| 1101 | sign ^= rhs.sign; |
| 1102 | fs = divideSpecials(rhs); |
| 1103 | |
| 1104 | if(category == fcNormal) { |
| 1105 | lostFraction lost_fraction = divideSignificand(rhs); |
| 1106 | fs = normalize(rounding_mode, lost_fraction); |
| 1107 | if(lost_fraction != lfExactlyZero) |
| 1108 | fs = (opStatus) (fs | opInexact); |
| 1109 | } |
| 1110 | |
| 1111 | return fs; |
| 1112 | } |
| 1113 | |
| 1114 | /* Normalized fused-multiply-add. */ |
| 1115 | APFloat::opStatus |
| 1116 | APFloat::fusedMultiplyAdd(const APFloat &multiplicand, |
| 1117 | const APFloat &addend, |
| 1118 | roundingMode rounding_mode) |
| 1119 | { |
| 1120 | opStatus fs; |
| 1121 | |
| 1122 | /* Post-multiplication sign, before addition. */ |
| 1123 | sign ^= multiplicand.sign; |
| 1124 | |
| 1125 | /* If and only if all arguments are normal do we need to do an |
| 1126 | extended-precision calculation. */ |
| 1127 | if(category == fcNormal |
| 1128 | && multiplicand.category == fcNormal |
| 1129 | && addend.category == fcNormal) { |
| 1130 | lostFraction lost_fraction; |
| 1131 | |
| 1132 | lost_fraction = multiplySignificand(multiplicand, &addend); |
| 1133 | fs = normalize(rounding_mode, lost_fraction); |
| 1134 | if(lost_fraction != lfExactlyZero) |
| 1135 | fs = (opStatus) (fs | opInexact); |
| 1136 | |
| 1137 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| 1138 | positive zero unless rounding to minus infinity, except that |
| 1139 | adding two like-signed zeroes gives that zero. */ |
| 1140 | if(category == fcZero && sign != addend.sign) |
| 1141 | sign = (rounding_mode == rmTowardNegative); |
| 1142 | } else { |
| 1143 | fs = multiplySpecials(multiplicand); |
| 1144 | |
| 1145 | /* FS can only be opOK or opInvalidOp. There is no more work |
| 1146 | to do in the latter case. The IEEE-754R standard says it is |
| 1147 | implementation-defined in this case whether, if ADDEND is a |
| 1148 | quiet QNaN, we raise invalid op; this implementation does so. |
| 1149 | |
| 1150 | If we need to do the addition we can do so with normal |
| 1151 | precision. */ |
| 1152 | if(fs == opOK) |
| 1153 | fs = addOrSubtract(addend, rounding_mode, false); |
| 1154 | } |
| 1155 | |
| 1156 | return fs; |
| 1157 | } |
| 1158 | |
| 1159 | /* Comparison requires normalized numbers. */ |
| 1160 | APFloat::cmpResult |
| 1161 | APFloat::compare(const APFloat &rhs) const |
| 1162 | { |
| 1163 | cmpResult result; |
| 1164 | |
| 1165 | assert(semantics == rhs.semantics); |
| 1166 | |
| 1167 | switch(convolve(category, rhs.category)) { |
| 1168 | default: |
| 1169 | assert(0); |
| 1170 | |
| 1171 | case convolve(fcQNaN, fcZero): |
| 1172 | case convolve(fcQNaN, fcNormal): |
| 1173 | case convolve(fcQNaN, fcInfinity): |
| 1174 | case convolve(fcQNaN, fcQNaN): |
| 1175 | case convolve(fcZero, fcQNaN): |
| 1176 | case convolve(fcNormal, fcQNaN): |
| 1177 | case convolve(fcInfinity, fcQNaN): |
| 1178 | return cmpUnordered; |
| 1179 | |
| 1180 | case convolve(fcInfinity, fcNormal): |
| 1181 | case convolve(fcInfinity, fcZero): |
| 1182 | case convolve(fcNormal, fcZero): |
| 1183 | if(sign) |
| 1184 | return cmpLessThan; |
| 1185 | else |
| 1186 | return cmpGreaterThan; |
| 1187 | |
| 1188 | case convolve(fcNormal, fcInfinity): |
| 1189 | case convolve(fcZero, fcInfinity): |
| 1190 | case convolve(fcZero, fcNormal): |
| 1191 | if(rhs.sign) |
| 1192 | return cmpGreaterThan; |
| 1193 | else |
| 1194 | return cmpLessThan; |
| 1195 | |
| 1196 | case convolve(fcInfinity, fcInfinity): |
| 1197 | if(sign == rhs.sign) |
| 1198 | return cmpEqual; |
| 1199 | else if(sign) |
| 1200 | return cmpLessThan; |
| 1201 | else |
| 1202 | return cmpGreaterThan; |
| 1203 | |
| 1204 | case convolve(fcZero, fcZero): |
| 1205 | return cmpEqual; |
| 1206 | |
| 1207 | case convolve(fcNormal, fcNormal): |
| 1208 | break; |
| 1209 | } |
| 1210 | |
| 1211 | /* Two normal numbers. Do they have the same sign? */ |
| 1212 | if(sign != rhs.sign) { |
| 1213 | if(sign) |
| 1214 | result = cmpLessThan; |
| 1215 | else |
| 1216 | result = cmpGreaterThan; |
| 1217 | } else { |
| 1218 | /* Compare absolute values; invert result if negative. */ |
| 1219 | result = compareAbsoluteValue(rhs); |
| 1220 | |
| 1221 | if(sign) { |
| 1222 | if(result == cmpLessThan) |
| 1223 | result = cmpGreaterThan; |
| 1224 | else if(result == cmpGreaterThan) |
| 1225 | result = cmpLessThan; |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | return result; |
| 1230 | } |
| 1231 | |
| 1232 | APFloat::opStatus |
| 1233 | APFloat::convert(const fltSemantics &toSemantics, |
| 1234 | roundingMode rounding_mode) |
| 1235 | { |
| 1236 | unsigned int newPartCount; |
| 1237 | opStatus fs; |
| 1238 | |
| 1239 | newPartCount = partCountForBits(toSemantics.precision + 1); |
| 1240 | |
| 1241 | /* If our new form is wider, re-allocate our bit pattern into wider |
| 1242 | storage. */ |
| 1243 | if(newPartCount > partCount()) { |
| 1244 | integerPart *newParts; |
| 1245 | |
| 1246 | newParts = new integerPart[newPartCount]; |
| 1247 | APInt::tcSet(newParts, 0, newPartCount); |
| 1248 | APInt::tcAssign(newParts, significandParts(), partCount()); |
| 1249 | freeSignificand(); |
| 1250 | significand.parts = newParts; |
| 1251 | } |
| 1252 | |
| 1253 | if(category == fcNormal) { |
| 1254 | /* Re-interpret our bit-pattern. */ |
| 1255 | exponent += toSemantics.precision - semantics->precision; |
| 1256 | semantics = &toSemantics; |
| 1257 | fs = normalize(rounding_mode, lfExactlyZero); |
| 1258 | } else { |
| 1259 | semantics = &toSemantics; |
| 1260 | fs = opOK; |
| 1261 | } |
| 1262 | |
| 1263 | return fs; |
| 1264 | } |
| 1265 | |
| 1266 | /* Convert a floating point number to an integer according to the |
| 1267 | rounding mode. If the rounded integer value is out of range this |
| 1268 | returns an invalid operation exception. If the rounded value is in |
| 1269 | range but the floating point number is not the exact integer, the C |
| 1270 | standard doesn't require an inexact exception to be raised. IEEE |
| 1271 | 854 does require it so we do that. |
| 1272 | |
| 1273 | Note that for conversions to integer type the C standard requires |
| 1274 | round-to-zero to always be used. */ |
| 1275 | APFloat::opStatus |
| 1276 | APFloat::convertToInteger(integerPart *parts, unsigned int width, |
| 1277 | bool isSigned, |
| 1278 | roundingMode rounding_mode) const |
| 1279 | { |
| 1280 | lostFraction lost_fraction; |
| 1281 | unsigned int msb, partsCount; |
| 1282 | int bits; |
| 1283 | |
| 1284 | /* Handle the three special cases first. */ |
| 1285 | if(category == fcInfinity || category == fcQNaN) |
| 1286 | return opInvalidOp; |
| 1287 | |
| 1288 | partsCount = partCountForBits(width); |
| 1289 | |
| 1290 | if(category == fcZero) { |
| 1291 | APInt::tcSet(parts, 0, partsCount); |
| 1292 | return opOK; |
| 1293 | } |
| 1294 | |
| 1295 | /* Shift the bit pattern so the fraction is lost. */ |
| 1296 | APFloat tmp(*this); |
| 1297 | |
| 1298 | bits = (int) semantics->precision - 1 - exponent; |
| 1299 | |
| 1300 | if(bits > 0) { |
| 1301 | lost_fraction = tmp.shiftSignificandRight(bits); |
| 1302 | } else { |
| 1303 | tmp.shiftSignificandLeft(-bits); |
| 1304 | lost_fraction = lfExactlyZero; |
| 1305 | } |
| 1306 | |
| 1307 | if(lost_fraction != lfExactlyZero |
| 1308 | && tmp.roundAwayFromZero(rounding_mode, lost_fraction)) |
| 1309 | tmp.incrementSignificand(); |
| 1310 | |
| 1311 | msb = tmp.significandMSB(); |
| 1312 | |
| 1313 | /* Negative numbers cannot be represented as unsigned. */ |
| 1314 | if(!isSigned && tmp.sign && msb != -1U) |
| 1315 | return opInvalidOp; |
| 1316 | |
| 1317 | /* It takes exponent + 1 bits to represent the truncated floating |
| 1318 | point number without its sign. We lose a bit for the sign, but |
| 1319 | the maximally negative integer is a special case. */ |
| 1320 | if(msb + 1 > width) /* !! Not same as msb >= width !! */ |
| 1321 | return opInvalidOp; |
| 1322 | |
| 1323 | if(isSigned && msb + 1 == width |
| 1324 | && (!tmp.sign || tmp.significandLSB() != msb)) |
| 1325 | return opInvalidOp; |
| 1326 | |
| 1327 | APInt::tcAssign(parts, tmp.significandParts(), partsCount); |
| 1328 | |
| 1329 | if(tmp.sign) |
| 1330 | APInt::tcNegate(parts, partsCount); |
| 1331 | |
| 1332 | if(lost_fraction == lfExactlyZero) |
| 1333 | return opOK; |
| 1334 | else |
| 1335 | return opInexact; |
| 1336 | } |
| 1337 | |
| 1338 | APFloat::opStatus |
| 1339 | APFloat::convertFromUnsignedInteger(integerPart *parts, |
| 1340 | unsigned int partCount, |
| 1341 | roundingMode rounding_mode) |
| 1342 | { |
| 1343 | unsigned int msb, precision; |
| 1344 | lostFraction lost_fraction; |
| 1345 | |
| 1346 | msb = APInt::tcMSB(parts, partCount) + 1; |
| 1347 | precision = semantics->precision; |
| 1348 | |
| 1349 | category = fcNormal; |
| 1350 | exponent = precision - 1; |
| 1351 | |
| 1352 | if(msb > precision) { |
| 1353 | exponent += (msb - precision); |
| 1354 | lost_fraction = shiftRight(parts, partCount, msb - precision); |
| 1355 | msb = precision; |
| 1356 | } else |
| 1357 | lost_fraction = lfExactlyZero; |
| 1358 | |
| 1359 | /* Copy the bit image. */ |
| 1360 | zeroSignificand(); |
| 1361 | APInt::tcAssign(significandParts(), parts, partCountForBits(msb)); |
| 1362 | |
| 1363 | return normalize(rounding_mode, lost_fraction); |
| 1364 | } |
| 1365 | |
| 1366 | APFloat::opStatus |
| 1367 | APFloat::convertFromInteger(const integerPart *parts, |
| 1368 | unsigned int partCount, bool isSigned, |
| 1369 | roundingMode rounding_mode) |
| 1370 | { |
| 1371 | unsigned int width; |
| 1372 | opStatus status; |
| 1373 | integerPart *copy; |
| 1374 | |
| 1375 | copy = new integerPart[partCount]; |
| 1376 | APInt::tcAssign(copy, parts, partCount); |
| 1377 | |
| 1378 | width = partCount * integerPartWidth; |
| 1379 | |
| 1380 | sign = false; |
| 1381 | if(isSigned && APInt::tcExtractBit(parts, width - 1)) { |
| 1382 | sign = true; |
| 1383 | APInt::tcNegate(copy, partCount); |
| 1384 | } |
| 1385 | |
| 1386 | status = convertFromUnsignedInteger(copy, partCount, rounding_mode); |
| 1387 | delete [] copy; |
| 1388 | |
| 1389 | return status; |
| 1390 | } |
| 1391 | |
| 1392 | APFloat::opStatus |
| 1393 | APFloat::convertFromHexadecimalString(const char *p, |
| 1394 | roundingMode rounding_mode) |
| 1395 | { |
| 1396 | lostFraction lost_fraction; |
| 1397 | integerPart *significand; |
| 1398 | unsigned int bitPos, partsCount; |
| 1399 | const char *dot, *firstSignificantDigit; |
| 1400 | |
| 1401 | zeroSignificand(); |
| 1402 | exponent = 0; |
| 1403 | category = fcNormal; |
| 1404 | |
| 1405 | significand = significandParts(); |
| 1406 | partsCount = partCount(); |
| 1407 | bitPos = partsCount * integerPartWidth; |
| 1408 | |
| 1409 | /* Skip leading zeroes and any(hexa)decimal point. */ |
| 1410 | p = skipLeadingZeroesAndAnyDot(p, &dot); |
| 1411 | firstSignificantDigit = p; |
| 1412 | |
| 1413 | for(;;) { |
| 1414 | integerPart hex_value; |
| 1415 | |
| 1416 | if(*p == '.') { |
| 1417 | assert(dot == 0); |
| 1418 | dot = p++; |
| 1419 | } |
| 1420 | |
| 1421 | hex_value = hexDigitValue(*p); |
| 1422 | if(hex_value == -1U) { |
| 1423 | lost_fraction = lfExactlyZero; |
| 1424 | break; |
| 1425 | } |
| 1426 | |
| 1427 | p++; |
| 1428 | |
| 1429 | /* Store the number whilst 4-bit nibbles remain. */ |
| 1430 | if(bitPos) { |
| 1431 | bitPos -= 4; |
| 1432 | hex_value <<= bitPos % integerPartWidth; |
| 1433 | significand[bitPos / integerPartWidth] |= hex_value; |
| 1434 | } else { |
| 1435 | lost_fraction = trailingHexadecimalFraction(p, hex_value); |
| 1436 | while(hexDigitValue(*p) != -1U) |
| 1437 | p++; |
| 1438 | break; |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | /* Hex floats require an exponent but not a hexadecimal point. */ |
| 1443 | assert(*p == 'p' || *p == 'P'); |
| 1444 | |
| 1445 | /* Ignore the exponent if we are zero. */ |
| 1446 | if(p != firstSignificantDigit) { |
| 1447 | int expAdjustment; |
| 1448 | |
| 1449 | /* Implicit hexadecimal point? */ |
| 1450 | if(!dot) |
| 1451 | dot = p; |
| 1452 | |
| 1453 | /* Calculate the exponent adjustment implicit in the number of |
| 1454 | significant digits. */ |
| 1455 | expAdjustment = dot - firstSignificantDigit; |
| 1456 | if(expAdjustment < 0) |
| 1457 | expAdjustment++; |
| 1458 | expAdjustment = expAdjustment * 4 - 1; |
| 1459 | |
| 1460 | /* Adjust for writing the significand starting at the most |
| 1461 | significant nibble. */ |
| 1462 | expAdjustment += semantics->precision; |
| 1463 | expAdjustment -= partsCount * integerPartWidth; |
| 1464 | |
| 1465 | /* Adjust for the given exponent. */ |
| 1466 | exponent = totalExponent(p, expAdjustment); |
| 1467 | } |
| 1468 | |
| 1469 | return normalize(rounding_mode, lost_fraction); |
| 1470 | } |
| 1471 | |
| 1472 | APFloat::opStatus |
| 1473 | APFloat::convertFromString(const char *p, roundingMode rounding_mode) |
| 1474 | { |
| 1475 | /* Handle a leading minus sign. */ |
| 1476 | if(*p == '-') |
| 1477 | sign = 1, p++; |
| 1478 | else |
| 1479 | sign = 0; |
| 1480 | |
| 1481 | if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) |
| 1482 | return convertFromHexadecimalString(p + 2, rounding_mode); |
| 1483 | else |
| 1484 | { |
| 1485 | assert(0 && "Decimal to binary conversions not yet imlemented"); |
| 1486 | abort(); |
| 1487 | } |
| 1488 | } |