blob: d579ae0965b338eb84b934717fabe1b616f0e2e7 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <limits>
22#include <cstring>
23#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include <iomanip>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025
26using namespace llvm;
27
Reid Spencera15c5012007-12-11 06:53:58 +000028/// This enumeration just provides for internal constants used in this
29/// translation unit.
30enum {
31 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
32 ///< Note that this must remain synchronized with IntegerType::MIN_INT_BITS
33 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
34 ///< Note that this must remain synchronized with IntegerType::MAX_INT_BITS
35};
36
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037/// A utility function for allocating memory, checking for allocation failures,
38/// and ensuring the contents are zeroed.
39inline static uint64_t* getClearedMemory(uint32_t numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 memset(result, 0, numWords * sizeof(uint64_t));
43 return result;
44}
45
46/// A utility function for allocating memory and checking for allocation
47/// failure. The content is not zeroed.
48inline static uint64_t* getMemory(uint32_t numWords) {
49 uint64_t * result = new uint64_t[numWords];
50 assert(result && "APInt memory allocation fails!");
51 return result;
52}
53
54APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
55 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000056 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
57 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058 if (isSingleWord())
59 VAL = val;
60 else {
61 pVal = getClearedMemory(getNumWords());
62 pVal[0] = val;
63 if (isSigned && int64_t(val) < 0)
64 for (unsigned i = 1; i < getNumWords(); ++i)
65 pVal[i] = -1ULL;
66 }
67 clearUnusedBits();
68}
69
Dale Johannesena6f79742007-09-21 22:09:37 +000070APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000072 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
73 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 assert(bigVal && "Null pointer detected!");
75 if (isSingleWord())
76 VAL = bigVal[0];
77 else {
78 // Get memory, cleared to 0
79 pVal = getClearedMemory(getNumWords());
80 // Calculate the number of words to copy
81 uint32_t words = std::min<uint32_t>(numWords, getNumWords());
82 // Copy the words from bigVal to pVal
83 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
84 }
85 // Make sure unused high bits are cleared
86 clearUnusedBits();
87}
88
89APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
90 uint8_t radix)
91 : BitWidth(numbits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000092 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
93 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 fromString(numbits, StrStart, slen, radix);
95}
96
Dan Gohmanf17a25c2007-07-18 16:29:46 +000097APInt::APInt(const APInt& that)
98 : BitWidth(that.BitWidth), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000099 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
100 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101 if (isSingleWord())
102 VAL = that.VAL;
103 else {
104 pVal = getMemory(getNumWords());
105 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
106 }
107}
108
109APInt::~APInt() {
110 if (!isSingleWord() && pVal)
111 delete [] pVal;
112}
113
114APInt& APInt::operator=(const APInt& RHS) {
115 // Don't do anything for X = X
116 if (this == &RHS)
117 return *this;
118
119 // If the bitwidths are the same, we can avoid mucking with memory
120 if (BitWidth == RHS.getBitWidth()) {
121 if (isSingleWord())
122 VAL = RHS.VAL;
123 else
124 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
125 return *this;
126 }
127
128 if (isSingleWord())
129 if (RHS.isSingleWord())
130 VAL = RHS.VAL;
131 else {
132 VAL = 0;
133 pVal = getMemory(RHS.getNumWords());
134 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
135 }
136 else if (getNumWords() == RHS.getNumWords())
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 else if (RHS.isSingleWord()) {
139 delete [] pVal;
140 VAL = RHS.VAL;
141 } else {
142 delete [] pVal;
143 pVal = getMemory(RHS.getNumWords());
144 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
145 }
146 BitWidth = RHS.BitWidth;
147 return clearUnusedBits();
148}
149
150APInt& APInt::operator=(uint64_t RHS) {
151 if (isSingleWord())
152 VAL = RHS;
153 else {
154 pVal[0] = RHS;
155 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
156 }
157 return clearUnusedBits();
158}
159
Ted Kremenek109de0d2008-01-19 04:23:33 +0000160/// Profile - This method 'profiles' an APInt for use with FoldingSet.
161void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000162 ID.AddInteger(BitWidth);
163
Ted Kremenek109de0d2008-01-19 04:23:33 +0000164 if (isSingleWord()) {
165 ID.AddInteger(VAL);
166 return;
167 }
168
169 uint32_t NumWords = getNumWords();
170 for (unsigned i = 0; i < NumWords; ++i)
171 ID.AddInteger(pVal[i]);
172}
173
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000174/// add_1 - This function adds a single "digit" integer, y, to the multiple
175/// "digit" integer array, x[]. x[] is modified to reflect the addition and
176/// 1 is returned if there is a carry out, otherwise 0 is returned.
177/// @returns the carry of the addition.
178static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
179 for (uint32_t i = 0; i < len; ++i) {
180 dest[i] = y + x[i];
181 if (dest[i] < y)
182 y = 1; // Carry one to next digit.
183 else {
184 y = 0; // No need to carry so exit early
185 break;
186 }
187 }
188 return y;
189}
190
191/// @brief Prefix increment operator. Increments the APInt by one.
192APInt& APInt::operator++() {
193 if (isSingleWord())
194 ++VAL;
195 else
196 add_1(pVal, pVal, getNumWords(), 1);
197 return clearUnusedBits();
198}
199
200/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
201/// the multi-digit integer array, x[], propagating the borrowed 1 value until
202/// no further borrowing is neeeded or it runs out of "digits" in x. The result
203/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
204/// In other words, if y > x then this function returns 1, otherwise 0.
205/// @returns the borrow out of the subtraction
206static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
207 for (uint32_t i = 0; i < len; ++i) {
208 uint64_t X = x[i];
209 x[i] -= y;
210 if (y > X)
211 y = 1; // We have to "borrow 1" from next "digit"
212 else {
213 y = 0; // No need to borrow
214 break; // Remaining digits are unchanged so exit early
215 }
216 }
217 return bool(y);
218}
219
220/// @brief Prefix decrement operator. Decrements the APInt by one.
221APInt& APInt::operator--() {
222 if (isSingleWord())
223 --VAL;
224 else
225 sub_1(pVal, getNumWords(), 1);
226 return clearUnusedBits();
227}
228
229/// add - This function adds the integer array x to the integer array Y and
230/// places the result in dest.
231/// @returns the carry out from the addition
232/// @brief General addition of 64-bit integer arrays
233static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
234 uint32_t len) {
235 bool carry = false;
236 for (uint32_t i = 0; i< len; ++i) {
237 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
238 dest[i] = x[i] + y[i] + carry;
239 carry = dest[i] < limit || (carry && dest[i] == limit);
240 }
241 return carry;
242}
243
244/// Adds the RHS APint to this APInt.
245/// @returns this, after addition of RHS.
246/// @brief Addition assignment operator.
247APInt& APInt::operator+=(const APInt& RHS) {
248 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
249 if (isSingleWord())
250 VAL += RHS.VAL;
251 else {
252 add(pVal, pVal, RHS.pVal, getNumWords());
253 }
254 return clearUnusedBits();
255}
256
257/// Subtracts the integer array y from the integer array x
258/// @returns returns the borrow out.
259/// @brief Generalized subtraction of 64-bit integer arrays.
260static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
261 uint32_t len) {
262 bool borrow = false;
263 for (uint32_t i = 0; i < len; ++i) {
264 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
265 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
266 dest[i] = x_tmp - y[i];
267 }
268 return borrow;
269}
270
271/// Subtracts the RHS APInt from this APInt
272/// @returns this, after subtraction
273/// @brief Subtraction assignment operator.
274APInt& APInt::operator-=(const APInt& RHS) {
275 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
276 if (isSingleWord())
277 VAL -= RHS.VAL;
278 else
279 sub(pVal, pVal, RHS.pVal, getNumWords());
280 return clearUnusedBits();
281}
282
283/// Multiplies an integer array, x by a a uint64_t integer and places the result
284/// into dest.
285/// @returns the carry out of the multiplication.
286/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
287static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
288 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
289 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
290 uint64_t carry = 0;
291
292 // For each digit of x.
293 for (uint32_t i = 0; i < len; ++i) {
294 // Split x into high and low words
295 uint64_t lx = x[i] & 0xffffffffULL;
296 uint64_t hx = x[i] >> 32;
297 // hasCarry - A flag to indicate if there is a carry to the next digit.
298 // hasCarry == 0, no carry
299 // hasCarry == 1, has carry
300 // hasCarry == 2, no carry and the calculation result == 0.
301 uint8_t hasCarry = 0;
302 dest[i] = carry + lx * ly;
303 // Determine if the add above introduces carry.
304 hasCarry = (dest[i] < carry) ? 1 : 0;
305 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
306 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
307 // (2^32 - 1) + 2^32 = 2^64.
308 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
309
310 carry += (lx * hy) & 0xffffffffULL;
311 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
312 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
313 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
314 }
315 return carry;
316}
317
318/// Multiplies integer array x by integer array y and stores the result into
319/// the integer array dest. Note that dest's size must be >= xlen + ylen.
320/// @brief Generalized multiplicate of integer arrays.
321static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
322 uint32_t ylen) {
323 dest[xlen] = mul_1(dest, x, xlen, y[0]);
324 for (uint32_t i = 1; i < ylen; ++i) {
325 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
326 uint64_t carry = 0, lx = 0, hx = 0;
327 for (uint32_t j = 0; j < xlen; ++j) {
328 lx = x[j] & 0xffffffffULL;
329 hx = x[j] >> 32;
330 // hasCarry - A flag to indicate if has carry.
331 // hasCarry == 0, no carry
332 // hasCarry == 1, has carry
333 // hasCarry == 2, no carry and the calculation result == 0.
334 uint8_t hasCarry = 0;
335 uint64_t resul = carry + lx * ly;
336 hasCarry = (resul < carry) ? 1 : 0;
337 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
338 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
339
340 carry += (lx * hy) & 0xffffffffULL;
341 resul = (carry << 32) | (resul & 0xffffffffULL);
342 dest[i+j] += resul;
343 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
344 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
345 ((lx * hy) >> 32) + hx * hy;
346 }
347 dest[i+xlen] = carry;
348 }
349}
350
351APInt& APInt::operator*=(const APInt& RHS) {
352 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
353 if (isSingleWord()) {
354 VAL *= RHS.VAL;
355 clearUnusedBits();
356 return *this;
357 }
358
359 // Get some bit facts about LHS and check for zero
360 uint32_t lhsBits = getActiveBits();
361 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
362 if (!lhsWords)
363 // 0 * X ===> 0
364 return *this;
365
366 // Get some bit facts about RHS and check for zero
367 uint32_t rhsBits = RHS.getActiveBits();
368 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
369 if (!rhsWords) {
370 // X * 0 ===> 0
371 clear();
372 return *this;
373 }
374
375 // Allocate space for the result
376 uint32_t destWords = rhsWords + lhsWords;
377 uint64_t *dest = getMemory(destWords);
378
379 // Perform the long multiply
380 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
381
382 // Copy result back into *this
383 clear();
384 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
385 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
386
387 // delete dest array and return
388 delete[] dest;
389 return *this;
390}
391
392APInt& APInt::operator&=(const APInt& RHS) {
393 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
394 if (isSingleWord()) {
395 VAL &= RHS.VAL;
396 return *this;
397 }
398 uint32_t numWords = getNumWords();
399 for (uint32_t i = 0; i < numWords; ++i)
400 pVal[i] &= RHS.pVal[i];
401 return *this;
402}
403
404APInt& APInt::operator|=(const APInt& RHS) {
405 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
406 if (isSingleWord()) {
407 VAL |= RHS.VAL;
408 return *this;
409 }
410 uint32_t numWords = getNumWords();
411 for (uint32_t i = 0; i < numWords; ++i)
412 pVal[i] |= RHS.pVal[i];
413 return *this;
414}
415
416APInt& APInt::operator^=(const APInt& RHS) {
417 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
418 if (isSingleWord()) {
419 VAL ^= RHS.VAL;
420 this->clearUnusedBits();
421 return *this;
422 }
423 uint32_t numWords = getNumWords();
424 for (uint32_t i = 0; i < numWords; ++i)
425 pVal[i] ^= RHS.pVal[i];
426 return clearUnusedBits();
427}
428
429APInt APInt::operator&(const APInt& RHS) const {
430 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
431 if (isSingleWord())
432 return APInt(getBitWidth(), VAL & RHS.VAL);
433
434 uint32_t numWords = getNumWords();
435 uint64_t* val = getMemory(numWords);
436 for (uint32_t i = 0; i < numWords; ++i)
437 val[i] = pVal[i] & RHS.pVal[i];
438 return APInt(val, getBitWidth());
439}
440
441APInt APInt::operator|(const APInt& RHS) const {
442 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
443 if (isSingleWord())
444 return APInt(getBitWidth(), VAL | RHS.VAL);
445
446 uint32_t numWords = getNumWords();
447 uint64_t *val = getMemory(numWords);
448 for (uint32_t i = 0; i < numWords; ++i)
449 val[i] = pVal[i] | RHS.pVal[i];
450 return APInt(val, getBitWidth());
451}
452
453APInt APInt::operator^(const APInt& RHS) const {
454 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
455 if (isSingleWord())
456 return APInt(BitWidth, VAL ^ RHS.VAL);
457
458 uint32_t numWords = getNumWords();
459 uint64_t *val = getMemory(numWords);
460 for (uint32_t i = 0; i < numWords; ++i)
461 val[i] = pVal[i] ^ RHS.pVal[i];
462
463 // 0^0==1 so clear the high bits in case they got set.
464 return APInt(val, getBitWidth()).clearUnusedBits();
465}
466
467bool APInt::operator !() const {
468 if (isSingleWord())
469 return !VAL;
470
471 for (uint32_t i = 0; i < getNumWords(); ++i)
472 if (pVal[i])
473 return false;
474 return true;
475}
476
477APInt APInt::operator*(const APInt& RHS) const {
478 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
479 if (isSingleWord())
480 return APInt(BitWidth, VAL * RHS.VAL);
481 APInt Result(*this);
482 Result *= RHS;
483 return Result.clearUnusedBits();
484}
485
486APInt APInt::operator+(const APInt& RHS) const {
487 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
488 if (isSingleWord())
489 return APInt(BitWidth, VAL + RHS.VAL);
490 APInt Result(BitWidth, 0);
491 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
492 return Result.clearUnusedBits();
493}
494
495APInt APInt::operator-(const APInt& RHS) const {
496 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
497 if (isSingleWord())
498 return APInt(BitWidth, VAL - RHS.VAL);
499 APInt Result(BitWidth, 0);
500 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
501 return Result.clearUnusedBits();
502}
503
504bool APInt::operator[](uint32_t bitPosition) const {
505 return (maskBit(bitPosition) &
506 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
507}
508
509bool APInt::operator==(const APInt& RHS) const {
510 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
511 if (isSingleWord())
512 return VAL == RHS.VAL;
513
514 // Get some facts about the number of bits used in the two operands.
515 uint32_t n1 = getActiveBits();
516 uint32_t n2 = RHS.getActiveBits();
517
518 // If the number of bits isn't the same, they aren't equal
519 if (n1 != n2)
520 return false;
521
522 // If the number of bits fits in a word, we only need to compare the low word.
523 if (n1 <= APINT_BITS_PER_WORD)
524 return pVal[0] == RHS.pVal[0];
525
526 // Otherwise, compare everything
527 for (int i = whichWord(n1 - 1); i >= 0; --i)
528 if (pVal[i] != RHS.pVal[i])
529 return false;
530 return true;
531}
532
533bool APInt::operator==(uint64_t Val) const {
534 if (isSingleWord())
535 return VAL == Val;
536
537 uint32_t n = getActiveBits();
538 if (n <= APINT_BITS_PER_WORD)
539 return pVal[0] == Val;
540 else
541 return false;
542}
543
544bool APInt::ult(const APInt& RHS) const {
545 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
546 if (isSingleWord())
547 return VAL < RHS.VAL;
548
549 // Get active bit length of both operands
550 uint32_t n1 = getActiveBits();
551 uint32_t n2 = RHS.getActiveBits();
552
553 // If magnitude of LHS is less than RHS, return true.
554 if (n1 < n2)
555 return true;
556
557 // If magnitude of RHS is greather than LHS, return false.
558 if (n2 < n1)
559 return false;
560
561 // If they bot fit in a word, just compare the low order word
562 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
563 return pVal[0] < RHS.pVal[0];
564
565 // Otherwise, compare all words
566 uint32_t topWord = whichWord(std::max(n1,n2)-1);
567 for (int i = topWord; i >= 0; --i) {
568 if (pVal[i] > RHS.pVal[i])
569 return false;
570 if (pVal[i] < RHS.pVal[i])
571 return true;
572 }
573 return false;
574}
575
576bool APInt::slt(const APInt& RHS) const {
577 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
578 if (isSingleWord()) {
579 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
580 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
581 return lhsSext < rhsSext;
582 }
583
584 APInt lhs(*this);
585 APInt rhs(RHS);
586 bool lhsNeg = isNegative();
587 bool rhsNeg = rhs.isNegative();
588 if (lhsNeg) {
589 // Sign bit is set so perform two's complement to make it positive
590 lhs.flip();
591 lhs++;
592 }
593 if (rhsNeg) {
594 // Sign bit is set so perform two's complement to make it positive
595 rhs.flip();
596 rhs++;
597 }
598
599 // Now we have unsigned values to compare so do the comparison if necessary
600 // based on the negativeness of the values.
601 if (lhsNeg)
602 if (rhsNeg)
603 return lhs.ugt(rhs);
604 else
605 return true;
606 else if (rhsNeg)
607 return false;
608 else
609 return lhs.ult(rhs);
610}
611
612APInt& APInt::set(uint32_t bitPosition) {
613 if (isSingleWord())
614 VAL |= maskBit(bitPosition);
615 else
616 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
617 return *this;
618}
619
620APInt& APInt::set() {
621 if (isSingleWord()) {
622 VAL = -1ULL;
623 return clearUnusedBits();
624 }
625
626 // Set all the bits in all the words.
627 for (uint32_t i = 0; i < getNumWords(); ++i)
628 pVal[i] = -1ULL;
629 // Clear the unused ones
630 return clearUnusedBits();
631}
632
633/// Set the given bit to 0 whose position is given as "bitPosition".
634/// @brief Set a given bit to 0.
635APInt& APInt::clear(uint32_t bitPosition) {
636 if (isSingleWord())
637 VAL &= ~maskBit(bitPosition);
638 else
639 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
640 return *this;
641}
642
643/// @brief Set every bit to 0.
644APInt& APInt::clear() {
645 if (isSingleWord())
646 VAL = 0;
647 else
648 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
649 return *this;
650}
651
652/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
653/// this APInt.
654APInt APInt::operator~() const {
655 APInt Result(*this);
656 Result.flip();
657 return Result;
658}
659
660/// @brief Toggle every bit to its opposite value.
661APInt& APInt::flip() {
662 if (isSingleWord()) {
663 VAL ^= -1ULL;
664 return clearUnusedBits();
665 }
666 for (uint32_t i = 0; i < getNumWords(); ++i)
667 pVal[i] ^= -1ULL;
668 return clearUnusedBits();
669}
670
671/// Toggle a given bit to its opposite value whose position is given
672/// as "bitPosition".
673/// @brief Toggles a given bit to its opposite value.
674APInt& APInt::flip(uint32_t bitPosition) {
675 assert(bitPosition < BitWidth && "Out of the bit-width range!");
676 if ((*this)[bitPosition]) clear(bitPosition);
677 else set(bitPosition);
678 return *this;
679}
680
681uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
682 assert(str != 0 && "Invalid value string");
683 assert(slen > 0 && "Invalid string length");
684
685 // Each computation below needs to know if its negative
686 uint32_t isNegative = str[0] == '-';
687 if (isNegative) {
688 slen--;
689 str++;
690 }
691 // For radixes of power-of-two values, the bits required is accurately and
692 // easily computed
693 if (radix == 2)
694 return slen + isNegative;
695 if (radix == 8)
696 return slen * 3 + isNegative;
697 if (radix == 16)
698 return slen * 4 + isNegative;
699
700 // Otherwise it must be radix == 10, the hard case
701 assert(radix == 10 && "Invalid radix");
702
703 // This is grossly inefficient but accurate. We could probably do something
704 // with a computation of roughly slen*64/20 and then adjust by the value of
705 // the first few digits. But, I'm not sure how accurate that could be.
706
707 // Compute a sufficient number of bits that is always large enough but might
708 // be too large. This avoids the assertion in the constructor.
709 uint32_t sufficient = slen*64/18;
710
711 // Convert to the actual binary value.
712 APInt tmp(sufficient, str, slen, radix);
713
714 // Compute how many bits are required.
715 return isNegative + tmp.logBase2() + 1;
716}
717
718uint64_t APInt::getHashValue() const {
719 // Put the bit width into the low order bits.
720 uint64_t hash = BitWidth;
721
722 // Add the sum of the words to the hash.
723 if (isSingleWord())
724 hash += VAL << 6; // clear separation of up to 64 bits
725 else
726 for (uint32_t i = 0; i < getNumWords(); ++i)
727 hash += pVal[i] << 6; // clear sepration of up to 64 bits
728 return hash;
729}
730
731/// HiBits - This function returns the high "numBits" bits of this APInt.
732APInt APInt::getHiBits(uint32_t numBits) const {
733 return APIntOps::lshr(*this, BitWidth - numBits);
734}
735
736/// LoBits - This function returns the low "numBits" bits of this APInt.
737APInt APInt::getLoBits(uint32_t numBits) const {
738 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
739 BitWidth - numBits);
740}
741
742bool APInt::isPowerOf2() const {
743 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
744}
745
746uint32_t APInt::countLeadingZeros() const {
747 uint32_t Count = 0;
748 if (isSingleWord())
749 Count = CountLeadingZeros_64(VAL);
750 else {
751 for (uint32_t i = getNumWords(); i > 0u; --i) {
752 if (pVal[i-1] == 0)
753 Count += APINT_BITS_PER_WORD;
754 else {
755 Count += CountLeadingZeros_64(pVal[i-1]);
756 break;
757 }
758 }
759 }
760 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
761 if (remainder)
762 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000763 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764}
765
766static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
767 uint32_t Count = 0;
768 if (skip)
769 V <<= skip;
770 while (V && (V & (1ULL << 63))) {
771 Count++;
772 V <<= 1;
773 }
774 return Count;
775}
776
777uint32_t APInt::countLeadingOnes() const {
778 if (isSingleWord())
779 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
780
781 uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
782 uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
783 int i = getNumWords() - 1;
784 uint32_t Count = countLeadingOnes_64(pVal[i], shift);
785 if (Count == highWordBits) {
786 for (i--; i >= 0; --i) {
787 if (pVal[i] == -1ULL)
788 Count += APINT_BITS_PER_WORD;
789 else {
790 Count += countLeadingOnes_64(pVal[i], 0);
791 break;
792 }
793 }
794 }
795 return Count;
796}
797
798uint32_t APInt::countTrailingZeros() const {
799 if (isSingleWord())
Anton Korobeynikova0bd36c2007-12-24 11:16:47 +0000800 return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000801 uint32_t Count = 0;
802 uint32_t i = 0;
803 for (; i < getNumWords() && pVal[i] == 0; ++i)
804 Count += APINT_BITS_PER_WORD;
805 if (i < getNumWords())
806 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000807 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000808}
809
Dan Gohmanf550d412008-02-13 21:11:05 +0000810uint32_t APInt::countTrailingOnes() const {
811 if (isSingleWord())
812 return std::min(uint32_t(CountTrailingOnes_64(VAL)), BitWidth);
813 uint32_t Count = 0;
814 uint32_t i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000815 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000816 Count += APINT_BITS_PER_WORD;
817 if (i < getNumWords())
818 Count += CountTrailingOnes_64(pVal[i]);
819 return std::min(Count, BitWidth);
820}
821
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822uint32_t APInt::countPopulation() const {
823 if (isSingleWord())
824 return CountPopulation_64(VAL);
825 uint32_t Count = 0;
826 for (uint32_t i = 0; i < getNumWords(); ++i)
827 Count += CountPopulation_64(pVal[i]);
828 return Count;
829}
830
831APInt APInt::byteSwap() const {
832 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
833 if (BitWidth == 16)
834 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
835 else if (BitWidth == 32)
836 return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
837 else if (BitWidth == 48) {
838 uint32_t Tmp1 = uint32_t(VAL >> 16);
839 Tmp1 = ByteSwap_32(Tmp1);
840 uint16_t Tmp2 = uint16_t(VAL);
841 Tmp2 = ByteSwap_16(Tmp2);
842 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
843 } else if (BitWidth == 64)
844 return APInt(BitWidth, ByteSwap_64(VAL));
845 else {
846 APInt Result(BitWidth, 0);
847 char *pByte = (char*)Result.pVal;
848 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
849 char Tmp = pByte[i];
850 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
851 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
852 }
853 return Result;
854 }
855}
856
857APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
858 const APInt& API2) {
859 APInt A = API1, B = API2;
860 while (!!B) {
861 APInt T = B;
862 B = APIntOps::urem(A, B);
863 A = T;
864 }
865 return A;
866}
867
868APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
869 union {
870 double D;
871 uint64_t I;
872 } T;
873 T.D = Double;
874
875 // Get the sign bit from the highest order bit
876 bool isNeg = T.I >> 63;
877
878 // Get the 11-bit exponent and adjust for the 1023 bit bias
879 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
880
881 // If the exponent is negative, the value is < 0 so just return 0.
882 if (exp < 0)
883 return APInt(width, 0u);
884
885 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
886 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
887
888 // If the exponent doesn't shift all bits out of the mantissa
889 if (exp < 52)
890 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
891 APInt(width, mantissa >> (52 - exp));
892
893 // If the client didn't provide enough bits for us to shift the mantissa into
894 // then the result is undefined, just return 0
895 if (width <= exp - 52)
896 return APInt(width, 0);
897
898 // Otherwise, we have to shift the mantissa bits up to the right location
899 APInt Tmp(width, mantissa);
Evan Cheng279e2c42008-05-02 21:15:08 +0000900 Tmp = Tmp.shl((uint32_t)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000901 return isNeg ? -Tmp : Tmp;
902}
903
904/// RoundToDouble - This function convert this APInt to a double.
905/// The layout for double is as following (IEEE Standard 754):
906/// --------------------------------------
907/// | Sign Exponent Fraction Bias |
908/// |-------------------------------------- |
909/// | 1[63] 11[62-52] 52[51-00] 1023 |
910/// --------------------------------------
911double APInt::roundToDouble(bool isSigned) const {
912
913 // Handle the simple case where the value is contained in one uint64_t.
914 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
915 if (isSigned) {
916 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
917 return double(sext);
918 } else
919 return double(VAL);
920 }
921
922 // Determine if the value is negative.
923 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
924
925 // Construct the absolute value if we're negative.
926 APInt Tmp(isNeg ? -(*this) : (*this));
927
928 // Figure out how many bits we're using.
929 uint32_t n = Tmp.getActiveBits();
930
931 // The exponent (without bias normalization) is just the number of bits
932 // we are using. Note that the sign bit is gone since we constructed the
933 // absolute value.
934 uint64_t exp = n;
935
936 // Return infinity for exponent overflow
937 if (exp > 1023) {
938 if (!isSigned || !isNeg)
939 return std::numeric_limits<double>::infinity();
940 else
941 return -std::numeric_limits<double>::infinity();
942 }
943 exp += 1023; // Increment for 1023 bias
944
945 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
946 // extract the high 52 bits from the correct words in pVal.
947 uint64_t mantissa;
948 unsigned hiWord = whichWord(n-1);
949 if (hiWord == 0) {
950 mantissa = Tmp.pVal[0];
951 if (n > 52)
952 mantissa >>= n - 52; // shift down, we want the top 52 bits.
953 } else {
954 assert(hiWord > 0 && "huh?");
955 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
956 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
957 mantissa = hibits | lobits;
958 }
959
960 // The leading bit of mantissa is implicit, so get rid of it.
961 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
962 union {
963 double D;
964 uint64_t I;
965 } T;
966 T.I = sign | (exp << 52) | mantissa;
967 return T.D;
968}
969
970// Truncate to new width.
971APInt &APInt::trunc(uint32_t width) {
972 assert(width < BitWidth && "Invalid APInt Truncate request");
Reid Spencera15c5012007-12-11 06:53:58 +0000973 assert(width >= MIN_INT_BITS && "Can't truncate to 0 bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974 uint32_t wordsBefore = getNumWords();
975 BitWidth = width;
976 uint32_t wordsAfter = getNumWords();
977 if (wordsBefore != wordsAfter) {
978 if (wordsAfter == 1) {
979 uint64_t *tmp = pVal;
980 VAL = pVal[0];
981 delete [] tmp;
982 } else {
983 uint64_t *newVal = getClearedMemory(wordsAfter);
984 for (uint32_t i = 0; i < wordsAfter; ++i)
985 newVal[i] = pVal[i];
986 delete [] pVal;
987 pVal = newVal;
988 }
989 }
990 return clearUnusedBits();
991}
992
993// Sign extend to a new width.
994APInt &APInt::sext(uint32_t width) {
995 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +0000996 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997 // If the sign bit isn't set, this is the same as zext.
998 if (!isNegative()) {
999 zext(width);
1000 return *this;
1001 }
1002
1003 // The sign bit is set. First, get some facts
1004 uint32_t wordsBefore = getNumWords();
1005 uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
1006 BitWidth = width;
1007 uint32_t wordsAfter = getNumWords();
1008
1009 // Mask the high order word appropriately
1010 if (wordsBefore == wordsAfter) {
1011 uint32_t newWordBits = width % APINT_BITS_PER_WORD;
1012 // The extension is contained to the wordsBefore-1th word.
1013 uint64_t mask = ~0ULL;
1014 if (newWordBits)
1015 mask >>= APINT_BITS_PER_WORD - newWordBits;
1016 mask <<= wordBits;
1017 if (wordsBefore == 1)
1018 VAL |= mask;
1019 else
1020 pVal[wordsBefore-1] |= mask;
1021 return clearUnusedBits();
1022 }
1023
1024 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1025 uint64_t *newVal = getMemory(wordsAfter);
1026 if (wordsBefore == 1)
1027 newVal[0] = VAL | mask;
1028 else {
1029 for (uint32_t i = 0; i < wordsBefore; ++i)
1030 newVal[i] = pVal[i];
1031 newVal[wordsBefore-1] |= mask;
1032 }
1033 for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1034 newVal[i] = -1ULL;
1035 if (wordsBefore != 1)
1036 delete [] pVal;
1037 pVal = newVal;
1038 return clearUnusedBits();
1039}
1040
1041// Zero extend to a new width.
1042APInt &APInt::zext(uint32_t width) {
1043 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +00001044 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 uint32_t wordsBefore = getNumWords();
1046 BitWidth = width;
1047 uint32_t wordsAfter = getNumWords();
1048 if (wordsBefore != wordsAfter) {
1049 uint64_t *newVal = getClearedMemory(wordsAfter);
1050 if (wordsBefore == 1)
1051 newVal[0] = VAL;
1052 else
1053 for (uint32_t i = 0; i < wordsBefore; ++i)
1054 newVal[i] = pVal[i];
1055 if (wordsBefore != 1)
1056 delete [] pVal;
1057 pVal = newVal;
1058 }
1059 return *this;
1060}
1061
1062APInt &APInt::zextOrTrunc(uint32_t width) {
1063 if (BitWidth < width)
1064 return zext(width);
1065 if (BitWidth > width)
1066 return trunc(width);
1067 return *this;
1068}
1069
1070APInt &APInt::sextOrTrunc(uint32_t width) {
1071 if (BitWidth < width)
1072 return sext(width);
1073 if (BitWidth > width)
1074 return trunc(width);
1075 return *this;
1076}
1077
1078/// Arithmetic right-shift this APInt by shiftAmt.
1079/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001080APInt APInt::ashr(const APInt &shiftAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001081 return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001082}
1083
1084/// Arithmetic right-shift this APInt by shiftAmt.
1085/// @brief Arithmetic right-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001086APInt APInt::ashr(uint32_t shiftAmt) const {
1087 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1088 // Handle a degenerate case
1089 if (shiftAmt == 0)
1090 return *this;
1091
1092 // Handle single word shifts with built-in ashr
1093 if (isSingleWord()) {
1094 if (shiftAmt == BitWidth)
1095 return APInt(BitWidth, 0); // undefined
1096 else {
1097 uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1098 return APInt(BitWidth,
1099 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1100 }
1101 }
1102
1103 // If all the bits were shifted out, the result is, technically, undefined.
1104 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1105 // issues in the algorithm below.
1106 if (shiftAmt == BitWidth) {
1107 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001108 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001109 else
1110 return APInt(BitWidth, 0);
1111 }
1112
1113 // Create some space for the result.
1114 uint64_t * val = new uint64_t[getNumWords()];
1115
1116 // Compute some values needed by the following shift algorithms
1117 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1118 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1119 uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1120 uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1121 if (bitsInWord == 0)
1122 bitsInWord = APINT_BITS_PER_WORD;
1123
1124 // If we are shifting whole words, just move whole words
1125 if (wordShift == 0) {
1126 // Move the words containing significant bits
1127 for (uint32_t i = 0; i <= breakWord; ++i)
1128 val[i] = pVal[i+offset]; // move whole word
1129
1130 // Adjust the top significant word for sign bit fill, if negative
1131 if (isNegative())
1132 if (bitsInWord < APINT_BITS_PER_WORD)
1133 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1134 } else {
1135 // Shift the low order words
1136 for (uint32_t i = 0; i < breakWord; ++i) {
1137 // This combines the shifted corresponding word with the low bits from
1138 // the next word (shifted into this word's high bits).
1139 val[i] = (pVal[i+offset] >> wordShift) |
1140 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1141 }
1142
1143 // Shift the break word. In this case there are no bits from the next word
1144 // to include in this word.
1145 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1146
1147 // Deal with sign extenstion in the break word, and possibly the word before
1148 // it.
1149 if (isNegative()) {
1150 if (wordShift > bitsInWord) {
1151 if (breakWord > 0)
1152 val[breakWord-1] |=
1153 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1154 val[breakWord] |= ~0ULL;
1155 } else
1156 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1157 }
1158 }
1159
1160 // Remaining words are 0 or -1, just assign them.
1161 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1162 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1163 val[i] = fillValue;
1164 return APInt(val, BitWidth).clearUnusedBits();
1165}
1166
1167/// Logical right-shift this APInt by shiftAmt.
1168/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001169APInt APInt::lshr(const APInt &shiftAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001170 return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001171}
1172
1173/// Logical right-shift this APInt by shiftAmt.
1174/// @brief Logical right-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001175APInt APInt::lshr(uint32_t shiftAmt) const {
1176 if (isSingleWord()) {
1177 if (shiftAmt == BitWidth)
1178 return APInt(BitWidth, 0);
1179 else
1180 return APInt(BitWidth, this->VAL >> shiftAmt);
1181 }
1182
1183 // If all the bits were shifted out, the result is 0. This avoids issues
1184 // with shifting by the size of the integer type, which produces undefined
1185 // results. We define these "undefined results" to always be 0.
1186 if (shiftAmt == BitWidth)
1187 return APInt(BitWidth, 0);
1188
1189 // If none of the bits are shifted out, the result is *this. This avoids
1190 // issues with shifting byt he size of the integer type, which produces
1191 // undefined results in the code below. This is also an optimization.
1192 if (shiftAmt == 0)
1193 return *this;
1194
1195 // Create some space for the result.
1196 uint64_t * val = new uint64_t[getNumWords()];
1197
1198 // If we are shifting less than a word, compute the shift with a simple carry
1199 if (shiftAmt < APINT_BITS_PER_WORD) {
1200 uint64_t carry = 0;
1201 for (int i = getNumWords()-1; i >= 0; --i) {
1202 val[i] = (pVal[i] >> shiftAmt) | carry;
1203 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1204 }
1205 return APInt(val, BitWidth).clearUnusedBits();
1206 }
1207
1208 // Compute some values needed by the remaining shift algorithms
1209 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1210 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1211
1212 // If we are shifting whole words, just move whole words
1213 if (wordShift == 0) {
1214 for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1215 val[i] = pVal[i+offset];
1216 for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1217 val[i] = 0;
1218 return APInt(val,BitWidth).clearUnusedBits();
1219 }
1220
1221 // Shift the low order words
1222 uint32_t breakWord = getNumWords() - offset -1;
1223 for (uint32_t i = 0; i < breakWord; ++i)
1224 val[i] = (pVal[i+offset] >> wordShift) |
1225 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1226 // Shift the break word.
1227 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1228
1229 // Remaining words are 0
1230 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1231 val[i] = 0;
1232 return APInt(val, BitWidth).clearUnusedBits();
1233}
1234
1235/// Left-shift this APInt by shiftAmt.
1236/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001237APInt APInt::shl(const APInt &shiftAmt) const {
1238 // It's undefined behavior in C to shift by BitWidth or greater, but
Evan Cheng279e2c42008-05-02 21:15:08 +00001239 return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001240}
1241
1242/// Left-shift this APInt by shiftAmt.
1243/// @brief Left-shift function.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244APInt APInt::shl(uint32_t shiftAmt) const {
1245 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1246 if (isSingleWord()) {
1247 if (shiftAmt == BitWidth)
1248 return APInt(BitWidth, 0); // avoid undefined shift results
1249 return APInt(BitWidth, VAL << shiftAmt);
1250 }
1251
1252 // If all the bits were shifted out, the result is 0. This avoids issues
1253 // with shifting by the size of the integer type, which produces undefined
1254 // results. We define these "undefined results" to always be 0.
1255 if (shiftAmt == BitWidth)
1256 return APInt(BitWidth, 0);
1257
1258 // If none of the bits are shifted out, the result is *this. This avoids a
1259 // lshr by the words size in the loop below which can produce incorrect
1260 // results. It also avoids the expensive computation below for a common case.
1261 if (shiftAmt == 0)
1262 return *this;
1263
1264 // Create some space for the result.
1265 uint64_t * val = new uint64_t[getNumWords()];
1266
1267 // If we are shifting less than a word, do it the easy way
1268 if (shiftAmt < APINT_BITS_PER_WORD) {
1269 uint64_t carry = 0;
1270 for (uint32_t i = 0; i < getNumWords(); i++) {
1271 val[i] = pVal[i] << shiftAmt | carry;
1272 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1273 }
1274 return APInt(val, BitWidth).clearUnusedBits();
1275 }
1276
1277 // Compute some values needed by the remaining shift algorithms
1278 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1279 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1280
1281 // If we are shifting whole words, just move whole words
1282 if (wordShift == 0) {
1283 for (uint32_t i = 0; i < offset; i++)
1284 val[i] = 0;
1285 for (uint32_t i = offset; i < getNumWords(); i++)
1286 val[i] = pVal[i-offset];
1287 return APInt(val,BitWidth).clearUnusedBits();
1288 }
1289
1290 // Copy whole words from this to Result.
1291 uint32_t i = getNumWords() - 1;
1292 for (; i > offset; --i)
1293 val[i] = pVal[i-offset] << wordShift |
1294 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1295 val[offset] = pVal[0] << wordShift;
1296 for (i = 0; i < offset; ++i)
1297 val[i] = 0;
1298 return APInt(val, BitWidth).clearUnusedBits();
1299}
1300
Dan Gohman625ff8d2008-02-29 01:40:47 +00001301APInt APInt::rotl(const APInt &rotateAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001302 return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001303}
1304
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001305APInt APInt::rotl(uint32_t rotateAmt) const {
1306 if (rotateAmt == 0)
1307 return *this;
1308 // Don't get too fancy, just use existing shift/or facilities
1309 APInt hi(*this);
1310 APInt lo(*this);
1311 hi.shl(rotateAmt);
1312 lo.lshr(BitWidth - rotateAmt);
1313 return hi | lo;
1314}
1315
Dan Gohman625ff8d2008-02-29 01:40:47 +00001316APInt APInt::rotr(const APInt &rotateAmt) const {
Evan Cheng279e2c42008-05-02 21:15:08 +00001317 return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001318}
1319
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001320APInt APInt::rotr(uint32_t rotateAmt) const {
1321 if (rotateAmt == 0)
1322 return *this;
1323 // Don't get too fancy, just use existing shift/or facilities
1324 APInt hi(*this);
1325 APInt lo(*this);
1326 lo.lshr(rotateAmt);
1327 hi.shl(BitWidth - rotateAmt);
1328 return hi | lo;
1329}
1330
1331// Square Root - this method computes and returns the square root of "this".
1332// Three mechanisms are used for computation. For small values (<= 5 bits),
1333// a table lookup is done. This gets some performance for common cases. For
1334// values using less than 52 bits, the value is converted to double and then
1335// the libc sqrt function is called. The result is rounded and then converted
1336// back to a uint64_t which is then used to construct the result. Finally,
1337// the Babylonian method for computing square roots is used.
1338APInt APInt::sqrt() const {
1339
1340 // Determine the magnitude of the value.
1341 uint32_t magnitude = getActiveBits();
1342
1343 // Use a fast table for some small values. This also gets rid of some
1344 // rounding errors in libc sqrt for small values.
1345 if (magnitude <= 5) {
1346 static const uint8_t results[32] = {
1347 /* 0 */ 0,
1348 /* 1- 2 */ 1, 1,
1349 /* 3- 6 */ 2, 2, 2, 2,
1350 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1351 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1352 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1353 /* 31 */ 6
1354 };
1355 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1356 }
1357
1358 // If the magnitude of the value fits in less than 52 bits (the precision of
1359 // an IEEE double precision floating point value), then we can use the
1360 // libc sqrt function which will probably use a hardware sqrt computation.
1361 // This should be faster than the algorithm below.
1362 if (magnitude < 52) {
1363#ifdef _MSC_VER
1364 // Amazingly, VC++ doesn't have round().
1365 return APInt(BitWidth,
1366 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1367#else
1368 return APInt(BitWidth,
1369 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1370#endif
1371 }
1372
1373 // Okay, all the short cuts are exhausted. We must compute it. The following
1374 // is a classical Babylonian method for computing the square root. This code
1375 // was adapted to APINt from a wikipedia article on such computations.
1376 // See http://www.wikipedia.org/ and go to the page named
1377 // Calculate_an_integer_square_root.
1378 uint32_t nbits = BitWidth, i = 4;
1379 APInt testy(BitWidth, 16);
1380 APInt x_old(BitWidth, 1);
1381 APInt x_new(BitWidth, 0);
1382 APInt two(BitWidth, 2);
1383
1384 // Select a good starting value using binary logarithms.
1385 for (;; i += 2, testy = testy.shl(2))
1386 if (i >= nbits || this->ule(testy)) {
1387 x_old = x_old.shl(i / 2);
1388 break;
1389 }
1390
1391 // Use the Babylonian method to arrive at the integer square root:
1392 for (;;) {
1393 x_new = (this->udiv(x_old) + x_old).udiv(two);
1394 if (x_old.ule(x_new))
1395 break;
1396 x_old = x_new;
1397 }
1398
1399 // Make sure we return the closest approximation
1400 // NOTE: The rounding calculation below is correct. It will produce an
1401 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1402 // determined to be a rounding issue with pari/gp as it begins to use a
1403 // floating point representation after 192 bits. There are no discrepancies
1404 // between this algorithm and pari/gp for bit widths < 192 bits.
1405 APInt square(x_old * x_old);
1406 APInt nextSquare((x_old + 1) * (x_old +1));
1407 if (this->ult(square))
1408 return x_old;
1409 else if (this->ule(nextSquare)) {
1410 APInt midpoint((nextSquare - square).udiv(two));
1411 APInt offset(*this - square);
1412 if (offset.ult(midpoint))
1413 return x_old;
1414 else
1415 return x_old + 1;
1416 } else
1417 assert(0 && "Error in APInt::sqrt computation");
1418 return x_old + 1;
1419}
1420
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001421/// Computes the multiplicative inverse of this APInt for a given modulo. The
1422/// iterative extended Euclidean algorithm is used to solve for this value,
1423/// however we simplify it to speed up calculating only the inverse, and take
1424/// advantage of div+rem calculations. We also use some tricks to avoid copying
1425/// (potentially large) APInts around.
1426APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1427 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1428
1429 // Using the properties listed at the following web page (accessed 06/21/08):
1430 // http://www.numbertheory.org/php/euclid.html
1431 // (especially the properties numbered 3, 4 and 9) it can be proved that
1432 // BitWidth bits suffice for all the computations in the algorithm implemented
1433 // below. More precisely, this number of bits suffice if the multiplicative
1434 // inverse exists, but may not suffice for the general extended Euclidean
1435 // algorithm.
1436
1437 APInt r[2] = { modulo, *this };
1438 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1439 APInt q(BitWidth, 0);
1440
1441 unsigned i;
1442 for (i = 0; r[i^1] != 0; i ^= 1) {
1443 // An overview of the math without the confusing bit-flipping:
1444 // q = r[i-2] / r[i-1]
1445 // r[i] = r[i-2] % r[i-1]
1446 // t[i] = t[i-2] - t[i-1] * q
1447 udivrem(r[i], r[i^1], q, r[i]);
1448 t[i] -= t[i^1] * q;
1449 }
1450
1451 // If this APInt and the modulo are not coprime, there is no multiplicative
1452 // inverse, so return 0. We check this by looking at the next-to-last
1453 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1454 // algorithm.
1455 if (r[i] != 1)
1456 return APInt(BitWidth, 0);
1457
1458 // The next-to-last t is the multiplicative inverse. However, we are
1459 // interested in a positive inverse. Calcuate a positive one from a negative
1460 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001461 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001462 return t[i].isNegative() ? t[i] + modulo : t[i];
1463}
1464
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001465/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1466/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1467/// variables here have the same names as in the algorithm. Comments explain
1468/// the algorithm and any deviation from it.
1469static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1470 uint32_t m, uint32_t n) {
1471 assert(u && "Must provide dividend");
1472 assert(v && "Must provide divisor");
1473 assert(q && "Must provide quotient");
1474 assert(u != v && u != q && v != q && "Must us different memory");
1475 assert(n>1 && "n must be > 1");
1476
1477 // Knuth uses the value b as the base of the number system. In our case b
1478 // is 2^31 so we just set it to -1u.
1479 uint64_t b = uint64_t(1) << 32;
1480
1481 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1482 DEBUG(cerr << "KnuthDiv: original:");
1483 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1484 DEBUG(cerr << " by");
1485 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1486 DEBUG(cerr << '\n');
1487 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1488 // u and v by d. Note that we have taken Knuth's advice here to use a power
1489 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1490 // 2 allows us to shift instead of multiply and it is easy to determine the
1491 // shift amount from the leading zeros. We are basically normalizing the u
1492 // and v so that its high bits are shifted to the top of v's range without
1493 // overflow. Note that this can require an extra word in u so that u must
1494 // be of length m+n+1.
1495 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1496 uint32_t v_carry = 0;
1497 uint32_t u_carry = 0;
1498 if (shift) {
1499 for (uint32_t i = 0; i < m+n; ++i) {
1500 uint32_t u_tmp = u[i] >> (32 - shift);
1501 u[i] = (u[i] << shift) | u_carry;
1502 u_carry = u_tmp;
1503 }
1504 for (uint32_t i = 0; i < n; ++i) {
1505 uint32_t v_tmp = v[i] >> (32 - shift);
1506 v[i] = (v[i] << shift) | v_carry;
1507 v_carry = v_tmp;
1508 }
1509 }
1510 u[m+n] = u_carry;
1511 DEBUG(cerr << "KnuthDiv: normal:");
1512 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1513 DEBUG(cerr << " by");
1514 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1515 DEBUG(cerr << '\n');
1516
1517 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1518 int j = m;
1519 do {
1520 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1521 // D3. [Calculate q'.].
1522 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1523 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1524 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1525 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1526 // on v[n-2] determines at high speed most of the cases in which the trial
1527 // value qp is one too large, and it eliminates all cases where qp is two
1528 // too large.
1529 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1530 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1531 uint64_t qp = dividend / v[n-1];
1532 uint64_t rp = dividend % v[n-1];
1533 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1534 qp--;
1535 rp += v[n-1];
1536 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1537 qp--;
1538 }
1539 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1540
1541 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1542 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1543 // consists of a simple multiplication by a one-place number, combined with
1544 // a subtraction.
1545 bool isNeg = false;
1546 for (uint32_t i = 0; i < n; ++i) {
1547 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1548 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1549 bool borrow = subtrahend > u_tmp;
1550 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1551 << ", subtrahend == " << subtrahend
1552 << ", borrow = " << borrow << '\n');
1553
1554 uint64_t result = u_tmp - subtrahend;
1555 uint32_t k = j + i;
Evan Cheng279e2c42008-05-02 21:15:08 +00001556 u[k++] = (uint32_t)(result & (b-1)); // subtract low word
1557 u[k++] = (uint32_t)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001558 while (borrow && k <= m+n) { // deal with borrow to the left
1559 borrow = u[k] == 0;
1560 u[k]--;
1561 k++;
1562 }
1563 isNeg |= borrow;
1564 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1565 u[j+i+1] << '\n');
1566 }
1567 DEBUG(cerr << "KnuthDiv: after subtraction:");
1568 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1569 DEBUG(cerr << '\n');
1570 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1571 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1572 // true value plus b**(n+1), namely as the b's complement of
1573 // the true value, and a "borrow" to the left should be remembered.
1574 //
1575 if (isNeg) {
1576 bool carry = true; // true because b's complement is "complement + 1"
1577 for (uint32_t i = 0; i <= m+n; ++i) {
1578 u[i] = ~u[i] + carry; // b's complement
1579 carry = carry && u[i] == 0;
1580 }
1581 }
1582 DEBUG(cerr << "KnuthDiv: after complement:");
1583 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1584 DEBUG(cerr << '\n');
1585
1586 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1587 // negative, go to step D6; otherwise go on to step D7.
Evan Cheng279e2c42008-05-02 21:15:08 +00001588 q[j] = (uint32_t)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001589 if (isNeg) {
1590 // D6. [Add back]. The probability that this step is necessary is very
1591 // small, on the order of only 2/b. Make sure that test data accounts for
1592 // this possibility. Decrease q[j] by 1
1593 q[j]--;
1594 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1595 // A carry will occur to the left of u[j+n], and it should be ignored
1596 // since it cancels with the borrow that occurred in D4.
1597 bool carry = false;
1598 for (uint32_t i = 0; i < n; i++) {
1599 uint32_t limit = std::min(u[j+i],v[i]);
1600 u[j+i] += v[i] + carry;
1601 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1602 }
1603 u[j+n] += carry;
1604 }
1605 DEBUG(cerr << "KnuthDiv: after correction:");
1606 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1607 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1608
1609 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1610 } while (--j >= 0);
1611
1612 DEBUG(cerr << "KnuthDiv: quotient:");
1613 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1614 DEBUG(cerr << '\n');
1615
1616 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1617 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1618 // compute the remainder (urem uses this).
1619 if (r) {
1620 // The value d is expressed by the "shift" value above since we avoided
1621 // multiplication by d by using a shift left. So, all we have to do is
1622 // shift right here. In order to mak
1623 if (shift) {
1624 uint32_t carry = 0;
1625 DEBUG(cerr << "KnuthDiv: remainder:");
1626 for (int i = n-1; i >= 0; i--) {
1627 r[i] = (u[i] >> shift) | carry;
1628 carry = u[i] << (32 - shift);
1629 DEBUG(cerr << " " << r[i]);
1630 }
1631 } else {
1632 for (int i = n-1; i >= 0; i--) {
1633 r[i] = u[i];
1634 DEBUG(cerr << " " << r[i]);
1635 }
1636 }
1637 DEBUG(cerr << '\n');
1638 }
1639 DEBUG(cerr << std::setbase(10) << '\n');
1640}
1641
1642void APInt::divide(const APInt LHS, uint32_t lhsWords,
1643 const APInt &RHS, uint32_t rhsWords,
1644 APInt *Quotient, APInt *Remainder)
1645{
1646 assert(lhsWords >= rhsWords && "Fractional result");
1647
1648 // First, compose the values into an array of 32-bit words instead of
1649 // 64-bit words. This is a necessity of both the "short division" algorithm
1650 // and the the Knuth "classical algorithm" which requires there to be native
1651 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1652 // can't use 64-bit operands here because we don't have native results of
1653 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1654 // work on large-endian machines.
1655 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1656 uint32_t n = rhsWords * 2;
1657 uint32_t m = (lhsWords * 2) - n;
1658
1659 // Allocate space for the temporary values we need either on the stack, if
1660 // it will fit, or on the heap if it won't.
1661 uint32_t SPACE[128];
1662 uint32_t *U = 0;
1663 uint32_t *V = 0;
1664 uint32_t *Q = 0;
1665 uint32_t *R = 0;
1666 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1667 U = &SPACE[0];
1668 V = &SPACE[m+n+1];
1669 Q = &SPACE[(m+n+1) + n];
1670 if (Remainder)
1671 R = &SPACE[(m+n+1) + n + (m+n)];
1672 } else {
1673 U = new uint32_t[m + n + 1];
1674 V = new uint32_t[n];
1675 Q = new uint32_t[m+n];
1676 if (Remainder)
1677 R = new uint32_t[n];
1678 }
1679
1680 // Initialize the dividend
1681 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1682 for (unsigned i = 0; i < lhsWords; ++i) {
1683 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Evan Cheng279e2c42008-05-02 21:15:08 +00001684 U[i * 2] = (uint32_t)(tmp & mask);
1685 U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001686 }
1687 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1688
1689 // Initialize the divisor
1690 memset(V, 0, (n)*sizeof(uint32_t));
1691 for (unsigned i = 0; i < rhsWords; ++i) {
1692 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Evan Cheng279e2c42008-05-02 21:15:08 +00001693 V[i * 2] = (uint32_t)(tmp & mask);
1694 V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001695 }
1696
1697 // initialize the quotient and remainder
1698 memset(Q, 0, (m+n) * sizeof(uint32_t));
1699 if (Remainder)
1700 memset(R, 0, n * sizeof(uint32_t));
1701
1702 // Now, adjust m and n for the Knuth division. n is the number of words in
1703 // the divisor. m is the number of words by which the dividend exceeds the
1704 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1705 // contain any zero words or the Knuth algorithm fails.
1706 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1707 n--;
1708 m++;
1709 }
1710 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1711 m--;
1712
1713 // If we're left with only a single word for the divisor, Knuth doesn't work
1714 // so we implement the short division algorithm here. This is much simpler
1715 // and faster because we are certain that we can divide a 64-bit quantity
1716 // by a 32-bit quantity at hardware speed and short division is simply a
1717 // series of such operations. This is just like doing short division but we
1718 // are using base 2^32 instead of base 10.
1719 assert(n != 0 && "Divide by zero?");
1720 if (n == 1) {
1721 uint32_t divisor = V[0];
1722 uint32_t remainder = 0;
1723 for (int i = m+n-1; i >= 0; i--) {
1724 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1725 if (partial_dividend == 0) {
1726 Q[i] = 0;
1727 remainder = 0;
1728 } else if (partial_dividend < divisor) {
1729 Q[i] = 0;
Evan Cheng279e2c42008-05-02 21:15:08 +00001730 remainder = (uint32_t)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001731 } else if (partial_dividend == divisor) {
1732 Q[i] = 1;
1733 remainder = 0;
1734 } else {
Evan Cheng279e2c42008-05-02 21:15:08 +00001735 Q[i] = (uint32_t)(partial_dividend / divisor);
1736 remainder = (uint32_t)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737 }
1738 }
1739 if (R)
1740 R[0] = remainder;
1741 } else {
1742 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1743 // case n > 1.
1744 KnuthDiv(U, V, Q, R, m, n);
1745 }
1746
1747 // If the caller wants the quotient
1748 if (Quotient) {
1749 // Set up the Quotient value's memory.
1750 if (Quotient->BitWidth != LHS.BitWidth) {
1751 if (Quotient->isSingleWord())
1752 Quotient->VAL = 0;
1753 else
1754 delete [] Quotient->pVal;
1755 Quotient->BitWidth = LHS.BitWidth;
1756 if (!Quotient->isSingleWord())
1757 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1758 } else
1759 Quotient->clear();
1760
1761 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1762 // order words.
1763 if (lhsWords == 1) {
1764 uint64_t tmp =
1765 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1766 if (Quotient->isSingleWord())
1767 Quotient->VAL = tmp;
1768 else
1769 Quotient->pVal[0] = tmp;
1770 } else {
1771 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1772 for (unsigned i = 0; i < lhsWords; ++i)
1773 Quotient->pVal[i] =
1774 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1775 }
1776 }
1777
1778 // If the caller wants the remainder
1779 if (Remainder) {
1780 // Set up the Remainder value's memory.
1781 if (Remainder->BitWidth != RHS.BitWidth) {
1782 if (Remainder->isSingleWord())
1783 Remainder->VAL = 0;
1784 else
1785 delete [] Remainder->pVal;
1786 Remainder->BitWidth = RHS.BitWidth;
1787 if (!Remainder->isSingleWord())
1788 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1789 } else
1790 Remainder->clear();
1791
1792 // The remainder is in R. Reconstitute the remainder into Remainder's low
1793 // order words.
1794 if (rhsWords == 1) {
1795 uint64_t tmp =
1796 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1797 if (Remainder->isSingleWord())
1798 Remainder->VAL = tmp;
1799 else
1800 Remainder->pVal[0] = tmp;
1801 } else {
1802 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1803 for (unsigned i = 0; i < rhsWords; ++i)
1804 Remainder->pVal[i] =
1805 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1806 }
1807 }
1808
1809 // Clean up the memory we allocated.
1810 if (U != &SPACE[0]) {
1811 delete [] U;
1812 delete [] V;
1813 delete [] Q;
1814 delete [] R;
1815 }
1816}
1817
1818APInt APInt::udiv(const APInt& RHS) const {
1819 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1820
1821 // First, deal with the easy case
1822 if (isSingleWord()) {
1823 assert(RHS.VAL != 0 && "Divide by zero?");
1824 return APInt(BitWidth, VAL / RHS.VAL);
1825 }
1826
1827 // Get some facts about the LHS and RHS number of bits and words
1828 uint32_t rhsBits = RHS.getActiveBits();
1829 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1830 assert(rhsWords && "Divided by zero???");
1831 uint32_t lhsBits = this->getActiveBits();
1832 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1833
1834 // Deal with some degenerate cases
1835 if (!lhsWords)
1836 // 0 / X ===> 0
1837 return APInt(BitWidth, 0);
1838 else if (lhsWords < rhsWords || this->ult(RHS)) {
1839 // X / Y ===> 0, iff X < Y
1840 return APInt(BitWidth, 0);
1841 } else if (*this == RHS) {
1842 // X / X ===> 1
1843 return APInt(BitWidth, 1);
1844 } else if (lhsWords == 1 && rhsWords == 1) {
1845 // All high words are zero, just use native divide
1846 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1847 }
1848
1849 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1850 APInt Quotient(1,0); // to hold result.
1851 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1852 return Quotient;
1853}
1854
1855APInt APInt::urem(const APInt& RHS) const {
1856 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1857 if (isSingleWord()) {
1858 assert(RHS.VAL != 0 && "Remainder by zero?");
1859 return APInt(BitWidth, VAL % RHS.VAL);
1860 }
1861
1862 // Get some facts about the LHS
1863 uint32_t lhsBits = getActiveBits();
1864 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1865
1866 // Get some facts about the RHS
1867 uint32_t rhsBits = RHS.getActiveBits();
1868 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1869 assert(rhsWords && "Performing remainder operation by zero ???");
1870
1871 // Check the degenerate cases
1872 if (lhsWords == 0) {
1873 // 0 % Y ===> 0
1874 return APInt(BitWidth, 0);
1875 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1876 // X % Y ===> X, iff X < Y
1877 return *this;
1878 } else if (*this == RHS) {
1879 // X % X == 0;
1880 return APInt(BitWidth, 0);
1881 } else if (lhsWords == 1) {
1882 // All high words are zero, just use native remainder
1883 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1884 }
1885
1886 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1887 APInt Remainder(1,0);
1888 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1889 return Remainder;
1890}
1891
1892void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1893 APInt &Quotient, APInt &Remainder) {
1894 // Get some size facts about the dividend and divisor
1895 uint32_t lhsBits = LHS.getActiveBits();
1896 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1897 uint32_t rhsBits = RHS.getActiveBits();
1898 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1899
1900 // Check the degenerate cases
1901 if (lhsWords == 0) {
1902 Quotient = 0; // 0 / Y ===> 0
1903 Remainder = 0; // 0 % Y ===> 0
1904 return;
1905 }
1906
1907 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1908 Quotient = 0; // X / Y ===> 0, iff X < Y
1909 Remainder = LHS; // X % Y ===> X, iff X < Y
1910 return;
1911 }
1912
1913 if (LHS == RHS) {
1914 Quotient = 1; // X / X ===> 1
1915 Remainder = 0; // X % X ===> 0;
1916 return;
1917 }
1918
1919 if (lhsWords == 1 && rhsWords == 1) {
1920 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001921 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1922 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1923 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1924 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001925 return;
1926 }
1927
1928 // Okay, lets do it the long way
1929 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1930}
1931
1932void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1933 uint8_t radix) {
1934 // Check our assumptions here
1935 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1936 "Radix should be 2, 8, 10, or 16!");
1937 assert(str && "String is null?");
1938 bool isNeg = str[0] == '-';
1939 if (isNeg)
1940 str++, slen--;
1941 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1942 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1943 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1944 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1945
1946 // Allocate memory
1947 if (!isSingleWord())
1948 pVal = getClearedMemory(getNumWords());
1949
1950 // Figure out if we can shift instead of multiply
1951 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1952
1953 // Set up an APInt for the digit to add outside the loop so we don't
1954 // constantly construct/destruct it.
1955 APInt apdigit(getBitWidth(), 0);
1956 APInt apradix(getBitWidth(), radix);
1957
1958 // Enter digit traversal loop
1959 for (unsigned i = 0; i < slen; i++) {
1960 // Get a digit
1961 uint32_t digit = 0;
1962 char cdigit = str[i];
1963 if (radix == 16) {
1964 if (!isxdigit(cdigit))
1965 assert(0 && "Invalid hex digit in string");
1966 if (isdigit(cdigit))
1967 digit = cdigit - '0';
1968 else if (cdigit >= 'a')
1969 digit = cdigit - 'a' + 10;
1970 else if (cdigit >= 'A')
1971 digit = cdigit - 'A' + 10;
1972 else
1973 assert(0 && "huh? we shouldn't get here");
1974 } else if (isdigit(cdigit)) {
1975 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00001976 assert((radix == 10 ||
1977 (radix == 8 && digit != 8 && digit != 9) ||
1978 (radix == 2 && (digit == 0 || digit == 1))) &&
1979 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980 } else {
1981 assert(0 && "Invalid character in digit string");
1982 }
1983
1984 // Shift or multiply the value by the radix
1985 if (shift)
1986 *this <<= shift;
1987 else
1988 *this *= apradix;
1989
1990 // Add in the digit we just interpreted
1991 if (apdigit.isSingleWord())
1992 apdigit.VAL = digit;
1993 else
1994 apdigit.pVal[0] = digit;
1995 *this += apdigit;
1996 }
1997 // If its negative, put it in two's complement form
1998 if (isNeg) {
1999 (*this)--;
2000 this->flip();
2001 }
2002}
2003
2004std::string APInt::toString(uint8_t radix, bool wantSigned) const {
2005 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2006 "Radix should be 2, 8, 10, or 16!");
Dan Gohman12300e12008-03-25 21:45:14 +00002007 static const char *const digits[] = {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002008 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
2009 };
2010 std::string result;
2011 uint32_t bits_used = getActiveBits();
2012 if (isSingleWord()) {
2013 char buf[65];
2014 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
2015 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
2016 if (format) {
2017 if (wantSigned) {
2018 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
2019 (APINT_BITS_PER_WORD-BitWidth);
2020 sprintf(buf, format, sextVal);
2021 } else
2022 sprintf(buf, format, VAL);
2023 } else {
2024 memset(buf, 0, 65);
2025 uint64_t v = VAL;
2026 while (bits_used) {
Evan Cheng279e2c42008-05-02 21:15:08 +00002027 uint32_t bit = (uint32_t)v & 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002028 bits_used--;
2029 buf[bits_used] = digits[bit][0];
2030 v >>=1;
2031 }
2032 }
2033 result = buf;
2034 return result;
2035 }
2036
2037 if (radix != 10) {
2038 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2039 // because the number of bits per digit (1,3 and 4 respectively) divides
2040 // equaly. We just shift until there value is zero.
2041
2042 // First, check for a zero value and just short circuit the logic below.
2043 if (*this == 0)
2044 result = "0";
2045 else {
2046 APInt tmp(*this);
2047 size_t insert_at = 0;
2048 if (wantSigned && this->isNegative()) {
2049 // They want to print the signed version and it is a negative value
2050 // Flip the bits and add one to turn it into the equivalent positive
2051 // value and put a '-' in the result.
2052 tmp.flip();
2053 tmp++;
2054 result = "-";
2055 insert_at = 1;
2056 }
2057 // Just shift tmp right for each digit width until it becomes zero
2058 uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
2059 uint64_t mask = radix - 1;
2060 APInt zero(tmp.getBitWidth(), 0);
2061 while (tmp.ne(zero)) {
Evan Cheng279e2c42008-05-02 21:15:08 +00002062 unsigned digit =
2063 (unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002064 result.insert(insert_at, digits[digit]);
2065 tmp = tmp.lshr(shift);
2066 }
2067 }
2068 return result;
2069 }
2070
2071 APInt tmp(*this);
2072 APInt divisor(4, radix);
2073 APInt zero(tmp.getBitWidth(), 0);
2074 size_t insert_at = 0;
2075 if (wantSigned && tmp[BitWidth-1]) {
2076 // They want to print the signed version and it is a negative value
2077 // Flip the bits and add one to turn it into the equivalent positive
2078 // value and put a '-' in the result.
2079 tmp.flip();
2080 tmp++;
2081 result = "-";
2082 insert_at = 1;
2083 }
Dan Gohmanb24eb902008-06-21 22:03:12 +00002084 if (tmp == zero)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002085 result = "0";
2086 else while (tmp.ne(zero)) {
2087 APInt APdigit(1,0);
2088 APInt tmp2(tmp.getBitWidth(), 0);
2089 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2090 &APdigit);
Evan Cheng279e2c42008-05-02 21:15:08 +00002091 uint32_t digit = (uint32_t)APdigit.getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002092 assert(digit < radix && "divide failed");
2093 result.insert(insert_at,digits[digit]);
2094 tmp = tmp2;
2095 }
2096
2097 return result;
2098}
2099
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002100void APInt::dump() const
2101{
2102 cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
2103 if (isSingleWord())
2104 cerr << VAL;
2105 else for (unsigned i = getNumWords(); i > 0; i--) {
2106 cerr << pVal[i-1] << " ";
2107 }
Chris Lattner9b502d42007-08-23 05:15:32 +00002108 cerr << " U(" << this->toStringUnsigned(10) << ") S("
Dale Johannesen2fc20782007-09-14 22:26:36 +00002109 << this->toStringSigned(10) << ")" << std::setbase(10);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002110}
Chris Lattner73cde982007-08-16 15:56:55 +00002111
2112// This implements a variety of operations on a representation of
2113// arbitrary precision, two's-complement, bignum integer values.
2114
2115/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2116 and unrestricting assumption. */
Chris Lattner12e44312008-08-17 04:58:58 +00002117#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002118COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002119
2120/* Some handy functions local to this file. */
2121namespace {
2122
Chris Lattnerdb80e212007-08-20 22:49:32 +00002123 /* Returns the integer part with the least significant BITS set.
2124 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002125 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002126 lowBitMask(unsigned int bits)
2127 {
2128 assert (bits != 0 && bits <= integerPartWidth);
2129
2130 return ~(integerPart) 0 >> (integerPartWidth - bits);
2131 }
2132
Neil Booth58ffb232007-10-06 00:43:45 +00002133 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002134 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002135 lowHalf(integerPart part)
2136 {
2137 return part & lowBitMask(integerPartWidth / 2);
2138 }
2139
Neil Booth58ffb232007-10-06 00:43:45 +00002140 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002141 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002142 highHalf(integerPart part)
2143 {
2144 return part >> (integerPartWidth / 2);
2145 }
2146
Neil Booth58ffb232007-10-06 00:43:45 +00002147 /* Returns the bit number of the most significant set bit of a part.
2148 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002149 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002150 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002151 {
2152 unsigned int n, msb;
2153
2154 if (value == 0)
2155 return -1U;
2156
2157 n = integerPartWidth / 2;
2158
2159 msb = 0;
2160 do {
2161 if (value >> n) {
2162 value >>= n;
2163 msb += n;
2164 }
2165
2166 n >>= 1;
2167 } while (n);
2168
2169 return msb;
2170 }
2171
Neil Booth58ffb232007-10-06 00:43:45 +00002172 /* Returns the bit number of the least significant set bit of a
2173 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002174 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002175 partLSB(integerPart value)
2176 {
2177 unsigned int n, lsb;
2178
2179 if (value == 0)
2180 return -1U;
2181
2182 lsb = integerPartWidth - 1;
2183 n = integerPartWidth / 2;
2184
2185 do {
2186 if (value << n) {
2187 value <<= n;
2188 lsb -= n;
2189 }
2190
2191 n >>= 1;
2192 } while (n);
2193
2194 return lsb;
2195 }
2196}
2197
2198/* Sets the least significant part of a bignum to the input value, and
2199 zeroes out higher parts. */
2200void
2201APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2202{
2203 unsigned int i;
2204
Neil Bootha0f524a2007-10-08 13:47:12 +00002205 assert (parts > 0);
2206
Chris Lattner73cde982007-08-16 15:56:55 +00002207 dst[0] = part;
2208 for(i = 1; i < parts; i++)
2209 dst[i] = 0;
2210}
2211
2212/* Assign one bignum to another. */
2213void
2214APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2215{
2216 unsigned int i;
2217
2218 for(i = 0; i < parts; i++)
2219 dst[i] = src[i];
2220}
2221
2222/* Returns true if a bignum is zero, false otherwise. */
2223bool
2224APInt::tcIsZero(const integerPart *src, unsigned int parts)
2225{
2226 unsigned int i;
2227
2228 for(i = 0; i < parts; i++)
2229 if (src[i])
2230 return false;
2231
2232 return true;
2233}
2234
2235/* Extract the given bit of a bignum; returns 0 or 1. */
2236int
2237APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2238{
2239 return(parts[bit / integerPartWidth]
2240 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2241}
2242
2243/* Set the given bit of a bignum. */
2244void
2245APInt::tcSetBit(integerPart *parts, unsigned int bit)
2246{
2247 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2248}
2249
Neil Booth58ffb232007-10-06 00:43:45 +00002250/* Returns the bit number of the least significant set bit of a
2251 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002252unsigned int
2253APInt::tcLSB(const integerPart *parts, unsigned int n)
2254{
2255 unsigned int i, lsb;
2256
2257 for(i = 0; i < n; i++) {
2258 if (parts[i] != 0) {
2259 lsb = partLSB(parts[i]);
2260
2261 return lsb + i * integerPartWidth;
2262 }
2263 }
2264
2265 return -1U;
2266}
2267
Neil Booth58ffb232007-10-06 00:43:45 +00002268/* Returns the bit number of the most significant set bit of a number.
2269 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002270unsigned int
2271APInt::tcMSB(const integerPart *parts, unsigned int n)
2272{
2273 unsigned int msb;
2274
2275 do {
2276 --n;
2277
2278 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002279 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002280
2281 return msb + n * integerPartWidth;
2282 }
2283 } while (n);
2284
2285 return -1U;
2286}
2287
Neil Bootha0f524a2007-10-08 13:47:12 +00002288/* Copy the bit vector of width srcBITS from SRC, starting at bit
2289 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2290 the least significant bit of DST. All high bits above srcBITS in
2291 DST are zero-filled. */
2292void
2293APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2294 unsigned int srcBits, unsigned int srcLSB)
2295{
2296 unsigned int firstSrcPart, dstParts, shift, n;
2297
2298 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2299 assert (dstParts <= dstCount);
2300
2301 firstSrcPart = srcLSB / integerPartWidth;
2302 tcAssign (dst, src + firstSrcPart, dstParts);
2303
2304 shift = srcLSB % integerPartWidth;
2305 tcShiftRight (dst, dstParts, shift);
2306
2307 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2308 in DST. If this is less that srcBits, append the rest, else
2309 clear the high bits. */
2310 n = dstParts * integerPartWidth - shift;
2311 if (n < srcBits) {
2312 integerPart mask = lowBitMask (srcBits - n);
2313 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2314 << n % integerPartWidth);
2315 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002316 if (srcBits % integerPartWidth)
2317 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002318 }
2319
2320 /* Clear high parts. */
2321 while (dstParts < dstCount)
2322 dst[dstParts++] = 0;
2323}
2324
Chris Lattner73cde982007-08-16 15:56:55 +00002325/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2326integerPart
2327APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2328 integerPart c, unsigned int parts)
2329{
2330 unsigned int i;
2331
2332 assert(c <= 1);
2333
2334 for(i = 0; i < parts; i++) {
2335 integerPart l;
2336
2337 l = dst[i];
2338 if (c) {
2339 dst[i] += rhs[i] + 1;
2340 c = (dst[i] <= l);
2341 } else {
2342 dst[i] += rhs[i];
2343 c = (dst[i] < l);
2344 }
2345 }
2346
2347 return c;
2348}
2349
2350/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2351integerPart
2352APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2353 integerPart c, unsigned int parts)
2354{
2355 unsigned int i;
2356
2357 assert(c <= 1);
2358
2359 for(i = 0; i < parts; i++) {
2360 integerPart l;
2361
2362 l = dst[i];
2363 if (c) {
2364 dst[i] -= rhs[i] + 1;
2365 c = (dst[i] >= l);
2366 } else {
2367 dst[i] -= rhs[i];
2368 c = (dst[i] > l);
2369 }
2370 }
2371
2372 return c;
2373}
2374
2375/* Negate a bignum in-place. */
2376void
2377APInt::tcNegate(integerPart *dst, unsigned int parts)
2378{
2379 tcComplement(dst, parts);
2380 tcIncrement(dst, parts);
2381}
2382
Neil Booth58ffb232007-10-06 00:43:45 +00002383/* DST += SRC * MULTIPLIER + CARRY if add is true
2384 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002385
2386 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2387 they must start at the same point, i.e. DST == SRC.
2388
2389 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2390 returned. Otherwise DST is filled with the least significant
2391 DSTPARTS parts of the result, and if all of the omitted higher
2392 parts were zero return zero, otherwise overflow occurred and
2393 return one. */
2394int
2395APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2396 integerPart multiplier, integerPart carry,
2397 unsigned int srcParts, unsigned int dstParts,
2398 bool add)
2399{
2400 unsigned int i, n;
2401
2402 /* Otherwise our writes of DST kill our later reads of SRC. */
2403 assert(dst <= src || dst >= src + srcParts);
2404 assert(dstParts <= srcParts + 1);
2405
2406 /* N loops; minimum of dstParts and srcParts. */
2407 n = dstParts < srcParts ? dstParts: srcParts;
2408
2409 for(i = 0; i < n; i++) {
2410 integerPart low, mid, high, srcPart;
2411
2412 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2413
2414 This cannot overflow, because
2415
2416 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2417
2418 which is less than n^2. */
2419
2420 srcPart = src[i];
2421
2422 if (multiplier == 0 || srcPart == 0) {
2423 low = carry;
2424 high = 0;
2425 } else {
2426 low = lowHalf(srcPart) * lowHalf(multiplier);
2427 high = highHalf(srcPart) * highHalf(multiplier);
2428
2429 mid = lowHalf(srcPart) * highHalf(multiplier);
2430 high += highHalf(mid);
2431 mid <<= integerPartWidth / 2;
2432 if (low + mid < low)
2433 high++;
2434 low += mid;
2435
2436 mid = highHalf(srcPart) * lowHalf(multiplier);
2437 high += highHalf(mid);
2438 mid <<= integerPartWidth / 2;
2439 if (low + mid < low)
2440 high++;
2441 low += mid;
2442
2443 /* Now add carry. */
2444 if (low + carry < low)
2445 high++;
2446 low += carry;
2447 }
2448
2449 if (add) {
2450 /* And now DST[i], and store the new low part there. */
2451 if (low + dst[i] < low)
2452 high++;
2453 dst[i] += low;
2454 } else
2455 dst[i] = low;
2456
2457 carry = high;
2458 }
2459
2460 if (i < dstParts) {
2461 /* Full multiplication, there is no overflow. */
2462 assert(i + 1 == dstParts);
2463 dst[i] = carry;
2464 return 0;
2465 } else {
2466 /* We overflowed if there is carry. */
2467 if (carry)
2468 return 1;
2469
2470 /* We would overflow if any significant unwritten parts would be
2471 non-zero. This is true if any remaining src parts are non-zero
2472 and the multiplier is non-zero. */
2473 if (multiplier)
2474 for(; i < srcParts; i++)
2475 if (src[i])
2476 return 1;
2477
2478 /* We fitted in the narrow destination. */
2479 return 0;
2480 }
2481}
2482
2483/* DST = LHS * RHS, where DST has the same width as the operands and
2484 is filled with the least significant parts of the result. Returns
2485 one if overflow occurred, otherwise zero. DST must be disjoint
2486 from both operands. */
2487int
2488APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2489 const integerPart *rhs, unsigned int parts)
2490{
2491 unsigned int i;
2492 int overflow;
2493
2494 assert(dst != lhs && dst != rhs);
2495
2496 overflow = 0;
2497 tcSet(dst, 0, parts);
2498
2499 for(i = 0; i < parts; i++)
2500 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2501 parts - i, true);
2502
2503 return overflow;
2504}
2505
Neil Booth004e9f42007-10-06 00:24:48 +00002506/* DST = LHS * RHS, where DST has width the sum of the widths of the
2507 operands. No overflow occurs. DST must be disjoint from both
2508 operands. Returns the number of parts required to hold the
2509 result. */
2510unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002511APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002512 const integerPart *rhs, unsigned int lhsParts,
2513 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002514{
Neil Booth004e9f42007-10-06 00:24:48 +00002515 /* Put the narrower number on the LHS for less loops below. */
2516 if (lhsParts > rhsParts) {
2517 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2518 } else {
2519 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002520
Neil Booth004e9f42007-10-06 00:24:48 +00002521 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002522
Neil Booth004e9f42007-10-06 00:24:48 +00002523 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002524
Neil Booth004e9f42007-10-06 00:24:48 +00002525 for(n = 0; n < lhsParts; n++)
2526 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002527
Neil Booth004e9f42007-10-06 00:24:48 +00002528 n = lhsParts + rhsParts;
2529
2530 return n - (dst[n - 1] == 0);
2531 }
Chris Lattner73cde982007-08-16 15:56:55 +00002532}
2533
2534/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2535 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2536 set REMAINDER to the remainder, return zero. i.e.
2537
2538 OLD_LHS = RHS * LHS + REMAINDER
2539
2540 SCRATCH is a bignum of the same size as the operands and result for
2541 use by the routine; its contents need not be initialized and are
2542 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2543*/
2544int
2545APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2546 integerPart *remainder, integerPart *srhs,
2547 unsigned int parts)
2548{
2549 unsigned int n, shiftCount;
2550 integerPart mask;
2551
2552 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2553
Chris Lattnerdb80e212007-08-20 22:49:32 +00002554 shiftCount = tcMSB(rhs, parts) + 1;
2555 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002556 return true;
2557
Chris Lattnerdb80e212007-08-20 22:49:32 +00002558 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002559 n = shiftCount / integerPartWidth;
2560 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2561
2562 tcAssign(srhs, rhs, parts);
2563 tcShiftLeft(srhs, parts, shiftCount);
2564 tcAssign(remainder, lhs, parts);
2565 tcSet(lhs, 0, parts);
2566
2567 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2568 the total. */
2569 for(;;) {
2570 int compare;
2571
2572 compare = tcCompare(remainder, srhs, parts);
2573 if (compare >= 0) {
2574 tcSubtract(remainder, srhs, 0, parts);
2575 lhs[n] |= mask;
2576 }
2577
2578 if (shiftCount == 0)
2579 break;
2580 shiftCount--;
2581 tcShiftRight(srhs, parts, 1);
2582 if ((mask >>= 1) == 0)
2583 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2584 }
2585
2586 return false;
2587}
2588
2589/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2590 There are no restrictions on COUNT. */
2591void
2592APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2593{
Neil Bootha0f524a2007-10-08 13:47:12 +00002594 if (count) {
2595 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002596
Neil Bootha0f524a2007-10-08 13:47:12 +00002597 /* Jump is the inter-part jump; shift is is intra-part shift. */
2598 jump = count / integerPartWidth;
2599 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002600
Neil Bootha0f524a2007-10-08 13:47:12 +00002601 while (parts > jump) {
2602 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002603
Neil Bootha0f524a2007-10-08 13:47:12 +00002604 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002605
Neil Bootha0f524a2007-10-08 13:47:12 +00002606 /* dst[i] comes from the two parts src[i - jump] and, if we have
2607 an intra-part shift, src[i - jump - 1]. */
2608 part = dst[parts - jump];
2609 if (shift) {
2610 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002611 if (parts >= jump + 1)
2612 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2613 }
2614
Neil Bootha0f524a2007-10-08 13:47:12 +00002615 dst[parts] = part;
2616 }
Chris Lattner73cde982007-08-16 15:56:55 +00002617
Neil Bootha0f524a2007-10-08 13:47:12 +00002618 while (parts > 0)
2619 dst[--parts] = 0;
2620 }
Chris Lattner73cde982007-08-16 15:56:55 +00002621}
2622
2623/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2624 zero. There are no restrictions on COUNT. */
2625void
2626APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2627{
Neil Bootha0f524a2007-10-08 13:47:12 +00002628 if (count) {
2629 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002630
Neil Bootha0f524a2007-10-08 13:47:12 +00002631 /* Jump is the inter-part jump; shift is is intra-part shift. */
2632 jump = count / integerPartWidth;
2633 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002634
Neil Bootha0f524a2007-10-08 13:47:12 +00002635 /* Perform the shift. This leaves the most significant COUNT bits
2636 of the result at zero. */
2637 for(i = 0; i < parts; i++) {
2638 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002639
Neil Bootha0f524a2007-10-08 13:47:12 +00002640 if (i + jump >= parts) {
2641 part = 0;
2642 } else {
2643 part = dst[i + jump];
2644 if (shift) {
2645 part >>= shift;
2646 if (i + jump + 1 < parts)
2647 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2648 }
Chris Lattner73cde982007-08-16 15:56:55 +00002649 }
Chris Lattner73cde982007-08-16 15:56:55 +00002650
Neil Bootha0f524a2007-10-08 13:47:12 +00002651 dst[i] = part;
2652 }
Chris Lattner73cde982007-08-16 15:56:55 +00002653 }
2654}
2655
2656/* Bitwise and of two bignums. */
2657void
2658APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2659{
2660 unsigned int i;
2661
2662 for(i = 0; i < parts; i++)
2663 dst[i] &= rhs[i];
2664}
2665
2666/* Bitwise inclusive or of two bignums. */
2667void
2668APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2669{
2670 unsigned int i;
2671
2672 for(i = 0; i < parts; i++)
2673 dst[i] |= rhs[i];
2674}
2675
2676/* Bitwise exclusive or of two bignums. */
2677void
2678APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2679{
2680 unsigned int i;
2681
2682 for(i = 0; i < parts; i++)
2683 dst[i] ^= rhs[i];
2684}
2685
2686/* Complement a bignum in-place. */
2687void
2688APInt::tcComplement(integerPart *dst, unsigned int parts)
2689{
2690 unsigned int i;
2691
2692 for(i = 0; i < parts; i++)
2693 dst[i] = ~dst[i];
2694}
2695
2696/* Comparison (unsigned) of two bignums. */
2697int
2698APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2699 unsigned int parts)
2700{
2701 while (parts) {
2702 parts--;
2703 if (lhs[parts] == rhs[parts])
2704 continue;
2705
2706 if (lhs[parts] > rhs[parts])
2707 return 1;
2708 else
2709 return -1;
2710 }
2711
2712 return 0;
2713}
2714
2715/* Increment a bignum in-place, return the carry flag. */
2716integerPart
2717APInt::tcIncrement(integerPart *dst, unsigned int parts)
2718{
2719 unsigned int i;
2720
2721 for(i = 0; i < parts; i++)
2722 if (++dst[i] != 0)
2723 break;
2724
2725 return i == parts;
2726}
2727
2728/* Set the least significant BITS bits of a bignum, clear the
2729 rest. */
2730void
2731APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2732 unsigned int bits)
2733{
2734 unsigned int i;
2735
2736 i = 0;
2737 while (bits > integerPartWidth) {
2738 dst[i++] = ~(integerPart) 0;
2739 bits -= integerPartWidth;
2740 }
2741
2742 if (bits)
2743 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2744
2745 while (i < parts)
2746 dst[i++] = 0;
2747}