blob: 01e125502cf2d05e2e47ca40a80e954e40163c4d [file] [log] [blame]
Erick Tryzelaar35295ff2008-03-31 08:44:50 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Extending the Language: Control Flow</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <meta name="author" content="Erick Tryzelaar">
10 <link rel="stylesheet" href="../llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title">Kaleidoscope: Extending the Language: Control Flow</div>
16
17<ul>
18<li><a href="index.html">Up to Tutorial Index</a></li>
19<li>Chapter 5
20 <ol>
21 <li><a href="#intro">Chapter 5 Introduction</a></li>
22 <li><a href="#ifthen">If/Then/Else</a>
23 <ol>
24 <li><a href="#iflexer">Lexer Extensions</a></li>
25 <li><a href="#ifast">AST Extensions</a></li>
26 <li><a href="#ifparser">Parser Extensions</a></li>
27 <li><a href="#ifir">LLVM IR</a></li>
28 <li><a href="#ifcodegen">Code Generation</a></li>
29 </ol>
30 </li>
31 <li><a href="#for">'for' Loop Expression</a>
32 <ol>
33 <li><a href="#forlexer">Lexer Extensions</a></li>
34 <li><a href="#forast">AST Extensions</a></li>
35 <li><a href="#forparser">Parser Extensions</a></li>
36 <li><a href="#forir">LLVM IR</a></li>
37 <li><a href="#forcodegen">Code Generation</a></li>
38 </ol>
39 </li>
40 <li><a href="#code">Full Code Listing</a></li>
41 </ol>
42</li>
43<li><a href="OCamlLangImpl6.html">Chapter 6</a>: Extending the Language:
44User-defined Operators</li>
45</ul>
46
47<div class="doc_author">
48 <p>
49 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
50 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
51 </p>
52</div>
53
54<!-- *********************************************************************** -->
55<div class="doc_section"><a name="intro">Chapter 5 Introduction</a></div>
56<!-- *********************************************************************** -->
57
58<div class="doc_text">
59
60<p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
61with LLVM</a>" tutorial. Parts 1-4 described the implementation of the simple
62Kaleidoscope language and included support for generating LLVM IR, followed by
63optimizations and a JIT compiler. Unfortunately, as presented, Kaleidoscope is
64mostly useless: it has no control flow other than call and return. This means
65that you can't have conditional branches in the code, significantly limiting its
66power. In this episode of "build that compiler", we'll extend Kaleidoscope to
67have an if/then/else expression plus a simple 'for' loop.</p>
68
69</div>
70
71<!-- *********************************************************************** -->
72<div class="doc_section"><a name="ifthen">If/Then/Else</a></div>
73<!-- *********************************************************************** -->
74
75<div class="doc_text">
76
77<p>
78Extending Kaleidoscope to support if/then/else is quite straightforward. It
79basically requires adding lexer support for this "new" concept to the lexer,
80parser, AST, and LLVM code emitter. This example is nice, because it shows how
81easy it is to "grow" a language over time, incrementally extending it as new
82ideas are discovered.</p>
83
84<p>Before we get going on "how" we add this extension, lets talk about "what" we
85want. The basic idea is that we want to be able to write this sort of thing:
86</p>
87
88<div class="doc_code">
89<pre>
90def fib(x)
91 if x &lt; 3 then
92 1
93 else
94 fib(x-1)+fib(x-2);
95</pre>
96</div>
97
98<p>In Kaleidoscope, every construct is an expression: there are no statements.
99As such, the if/then/else expression needs to return a value like any other.
100Since we're using a mostly functional form, we'll have it evaluate its
101conditional, then return the 'then' or 'else' value based on how the condition
102was resolved. This is very similar to the C "?:" expression.</p>
103
104<p>The semantics of the if/then/else expression is that it evaluates the
105condition to a boolean equality value: 0.0 is considered to be false and
106everything else is considered to be true.
107If the condition is true, the first subexpression is evaluated and returned, if
108the condition is false, the second subexpression is evaluated and returned.
109Since Kaleidoscope allows side-effects, this behavior is important to nail down.
110</p>
111
112<p>Now that we know what we "want", lets break this down into its constituent
113pieces.</p>
114
115</div>
116
117<!-- ======================================================================= -->
118<div class="doc_subsubsection"><a name="iflexer">Lexer Extensions for
119If/Then/Else</a></div>
120<!-- ======================================================================= -->
121
122
123<div class="doc_text">
124
125<p>The lexer extensions are straightforward. First we add new variants
126for the relevant tokens:</p>
127
128<div class="doc_code">
129<pre>
130 (* control *)
131 | If | Then | Else | For | In
132</pre>
133</div>
134
135<p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
136stuff:</p>
137
138<div class="doc_code">
139<pre>
140 ...
141 match Buffer.contents buffer with
142 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
143 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
144 | "if" -&gt; [&lt; 'Token.If; stream &gt;]
145 | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
146 | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
147 | "for" -&gt; [&lt; 'Token.For; stream &gt;]
148 | "in" -&gt; [&lt; 'Token.In; stream &gt;]
149 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
150</pre>
151</div>
152
153</div>
154
155<!-- ======================================================================= -->
156<div class="doc_subsubsection"><a name="ifast">AST Extensions for
157 If/Then/Else</a></div>
158<!-- ======================================================================= -->
159
160<div class="doc_text">
161
162<p>To represent the new expression we add a new AST variant for it:</p>
163
164<div class="doc_code">
165<pre>
166type expr =
167 ...
168 (* variant for if/then/else. *)
169 | If of expr * expr * expr
170</pre>
171</div>
172
173<p>The AST variant just has pointers to the various subexpressions.</p>
174
175</div>
176
177<!-- ======================================================================= -->
178<div class="doc_subsubsection"><a name="ifparser">Parser Extensions for
179If/Then/Else</a></div>
180<!-- ======================================================================= -->
181
182<div class="doc_text">
183
184<p>Now that we have the relevant tokens coming from the lexer and we have the
185AST node to build, our parsing logic is relatively straightforward. First we
186define a new parsing function:</p>
187
188<div class="doc_code">
189<pre>
190let rec parse_primary = parser
191 ...
192 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
193 | [&lt; 'Token.If; c=parse_expr;
194 'Token.Then ?? "expected 'then'"; t=parse_expr;
195 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
196 Ast.If (c, t, e)
197</pre>
198</div>
199
200<p>Next we hook it up as a primary expression:</p>
201
202<div class="doc_code">
203<pre>
204let rec parse_primary = parser
205 ...
206 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
207 | [&lt; 'Token.If; c=parse_expr;
208 'Token.Then ?? "expected 'then'"; t=parse_expr;
209 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
210 Ast.If (c, t, e)
211</pre>
212</div>
213
214</div>
215
216<!-- ======================================================================= -->
217<div class="doc_subsubsection"><a name="ifir">LLVM IR for If/Then/Else</a></div>
218<!-- ======================================================================= -->
219
220<div class="doc_text">
221
222<p>Now that we have it parsing and building the AST, the final piece is adding
223LLVM code generation support. This is the most interesting part of the
224if/then/else example, because this is where it starts to introduce new concepts.
225All of the code above has been thoroughly described in previous chapters.
226</p>
227
228<p>To motivate the code we want to produce, lets take a look at a simple
229example. Consider:</p>
230
231<div class="doc_code">
232<pre>
233extern foo();
234extern bar();
235def baz(x) if x then foo() else bar();
236</pre>
237</div>
238
239<p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
240looks like this:</p>
241
242<div class="doc_code">
243<pre>
244declare double @foo()
245
246declare double @bar()
247
248define double @baz(double %x) {
249entry:
250 %ifcond = fcmp one double %x, 0.000000e+00
251 br i1 %ifcond, label %then, label %else
252
253then: ; preds = %entry
254 %calltmp = call double @foo()
255 br label %ifcont
256
257else: ; preds = %entry
258 %calltmp1 = call double @bar()
259 br label %ifcont
260
261ifcont: ; preds = %else, %then
262 %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
263 ret double %iftmp
264}
265</pre>
266</div>
267
268<p>To visualize the control flow graph, you can use a nifty feature of the LLVM
269'<a href="http://llvm.org/cmds/opt.html">opt</a>' tool. If you put this LLVM IR
270into "t.ll" and run "<tt>llvm-as &lt; t.ll | opt -analyze -view-cfg</tt>", <a
271href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
272see this graph:</p>
273
Benjamin Kramere15192b2009-08-05 15:42:44 +0000274<div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423"
275height="315"></div>
Erick Tryzelaar35295ff2008-03-31 08:44:50 +0000276
277<p>Another way to get this is to call "<tt>Llvm_analysis.view_function_cfg
278f</tt>" or "<tt>Llvm_analysis.view_function_cfg_only f</tt>" (where <tt>f</tt>
279is a "<tt>Function</tt>") either by inserting actual calls into the code and
280recompiling or by calling these in the debugger. LLVM has many nice features
281for visualizing various graphs.</p>
282
283<p>Getting back to the generated code, it is fairly simple: the entry block
284evaluates the conditional expression ("x" in our case here) and compares the
285result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
286instruction ('one' is "Ordered and Not Equal"). Based on the result of this
287expression, the code jumps to either the "then" or "else" blocks, which contain
288the expressions for the true/false cases.</p>
289
290<p>Once the then/else blocks are finished executing, they both branch back to the
291'ifcont' block to execute the code that happens after the if/then/else. In this
292case the only thing left to do is to return to the caller of the function. The
293question then becomes: how does the code know which expression to return?</p>
294
295<p>The answer to this question involves an important SSA operation: the
296<a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
297operation</a>. If you're not familiar with SSA, <a
298href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
299article</a> is a good introduction and there are various other introductions to
300it available on your favorite search engine. The short version is that
301"execution" of the Phi operation requires "remembering" which block control came
302from. The Phi operation takes on the value corresponding to the input control
303block. In this case, if control comes in from the "then" block, it gets the
304value of "calltmp". If control comes from the "else" block, it gets the value
305of "calltmp1".</p>
306
307<p>At this point, you are probably starting to think "Oh no! This means my
308simple and elegant front-end will have to start generating SSA form in order to
309use LLVM!". Fortunately, this is not the case, and we strongly advise
310<em>not</em> implementing an SSA construction algorithm in your front-end
311unless there is an amazingly good reason to do so. In practice, there are two
312sorts of values that float around in code written for your average imperative
313programming language that might need Phi nodes:</p>
314
315<ol>
316<li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
317<li>Values that are implicit in the structure of your AST, such as the Phi node
318in this case.</li>
319</ol>
320
321<p>In <a href="OCamlLangImpl7.html">Chapter 7</a> of this tutorial ("mutable
322variables"), we'll talk about #1
323in depth. For now, just believe me that you don't need SSA construction to
324handle this case. For #2, you have the choice of using the techniques that we will
325describe for #1, or you can insert Phi nodes directly, if convenient. In this
326case, it is really really easy to generate the Phi node, so we choose to do it
327directly.</p>
328
329<p>Okay, enough of the motivation and overview, lets generate code!</p>
330
331</div>
332
333<!-- ======================================================================= -->
334<div class="doc_subsubsection"><a name="ifcodegen">Code Generation for
335If/Then/Else</a></div>
336<!-- ======================================================================= -->
337
338<div class="doc_text">
339
340<p>In order to generate code for this, we implement the <tt>Codegen</tt> method
341for <tt>IfExprAST</tt>:</p>
342
343<div class="doc_code">
344<pre>
345let rec codegen_expr = function
346 ...
347 | Ast.If (cond, then_, else_) -&gt;
348 let cond = codegen_expr cond in
349
350 (* Convert condition to a bool by comparing equal to 0.0 *)
351 let zero = const_float double_type 0.0 in
352 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
353</pre>
354</div>
355
356<p>This code is straightforward and similar to what we saw before. We emit the
357expression for the condition, then compare that value to zero to get a truth
358value as a 1-bit (bool) value.</p>
359
360<div class="doc_code">
361<pre>
362 (* Grab the first block so that we might later add the conditional branch
363 * to it at the end of the function. *)
364 let start_bb = insertion_block builder in
365 let the_function = block_parent start_bb in
366
367 let then_bb = append_block "then" the_function in
368 position_at_end then_bb builder;
369</pre>
370</div>
371
372<p>
373As opposed to the <a href="LangImpl5.html">C++ tutorial</a>, we have to build
374our basic blocks bottom up since we can't have dangling BasicBlocks. We start
375off by saving a pointer to the first block (which might not be the entry
376block), which we'll need to build a conditional branch later. We do this by
377asking the <tt>builder</tt> for the current BasicBlock. The fourth line
378gets the current Function object that is being built. It gets this by the
379<tt>start_bb</tt> for its "parent" (the function it is currently embedded
380into).</p>
381
382<p>Once it has that, it creates one block. It is automatically appended into
383the function's list of blocks.</p>
384
385<div class="doc_code">
386<pre>
387 (* Emit 'then' value. *)
388 position_at_end then_bb builder;
389 let then_val = codegen_expr then_ in
390
391 (* Codegen of 'then' can change the current block, update then_bb for the
392 * phi. We create a new name because one is used for the phi node, and the
393 * other is used for the conditional branch. *)
394 let new_then_bb = insertion_block builder in
395</pre>
396</div>
397
398<p>We move the builder to start inserting into the "then" block. Strictly
399speaking, this call moves the insertion point to be at the end of the specified
400block. However, since the "then" block is empty, it also starts out by
401inserting at the beginning of the block. :)</p>
402
403<p>Once the insertion point is set, we recursively codegen the "then" expression
404from the AST.</p>
405
406<p>The final line here is quite subtle, but is very important. The basic issue
407is that when we create the Phi node in the merge block, we need to set up the
408block/value pairs that indicate how the Phi will work. Importantly, the Phi
409node expects to have an entry for each predecessor of the block in the CFG. Why
410then, are we getting the current block when we just set it to ThenBB 5 lines
411above? The problem is that the "Then" expression may actually itself change the
412block that the Builder is emitting into if, for example, it contains a nested
413"if/then/else" expression. Because calling Codegen recursively could
414arbitrarily change the notion of the current block, we are required to get an
415up-to-date value for code that will set up the Phi node.</p>
416
417<div class="doc_code">
418<pre>
419 (* Emit 'else' value. *)
420 let else_bb = append_block "else" the_function in
421 position_at_end else_bb builder;
422 let else_val = codegen_expr else_ in
423
424 (* Codegen of 'else' can change the current block, update else_bb for the
425 * phi. *)
426 let new_else_bb = insertion_block builder in
427</pre>
428</div>
429
430<p>Code generation for the 'else' block is basically identical to codegen for
431the 'then' block.</p>
432
433<div class="doc_code">
434<pre>
435 (* Emit merge block. *)
436 let merge_bb = append_block "ifcont" the_function in
437 position_at_end merge_bb builder;
438 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
439 let phi = build_phi incoming "iftmp" builder in
440</pre>
441</div>
442
443<p>The first two lines here are now familiar: the first adds the "merge" block
444to the Function object. The second block changes the insertion point so that
445newly created code will go into the "merge" block. Once that is done, we need
446to create the PHI node and set up the block/value pairs for the PHI.</p>
447
448<div class="doc_code">
449<pre>
450 (* Return to the start block to add the conditional branch. *)
451 position_at_end start_bb builder;
452 ignore (build_cond_br cond_val then_bb else_bb builder);
453</pre>
454</div>
455
456<p>Once the blocks are created, we can emit the conditional branch that chooses
457between them. Note that creating new blocks does not implicitly affect the
Duncan Sands89f6d882008-04-13 06:22:09 +0000458IRBuilder, so it is still inserting into the block that the condition
Erick Tryzelaar35295ff2008-03-31 08:44:50 +0000459went into. This is why we needed to save the "start" block.</p>
460
461<div class="doc_code">
462<pre>
463 (* Set a unconditional branch at the end of the 'then' block and the
464 * 'else' block to the 'merge' block. *)
465 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
466 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
467
468 (* Finally, set the builder to the end of the merge block. *)
469 position_at_end merge_bb builder;
470
471 phi
472</pre>
473</div>
474
475<p>To finish off the blocks, we create an unconditional branch
476to the merge block. One interesting (and very important) aspect of the LLVM IR
477is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
478to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
479instruction</a> such as return or branch. This means that all control flow,
480<em>including fall throughs</em> must be made explicit in the LLVM IR. If you
481violate this rule, the verifier will emit an error.
482
483<p>Finally, the CodeGen function returns the phi node as the value computed by
484the if/then/else expression. In our example above, this returned value will
485feed into the code for the top-level function, which will create the return
486instruction.</p>
487
488<p>Overall, we now have the ability to execute conditional code in
489Kaleidoscope. With this extension, Kaleidoscope is a fairly complete language
490that can calculate a wide variety of numeric functions. Next up we'll add
491another useful expression that is familiar from non-functional languages...</p>
492
493</div>
494
495<!-- *********************************************************************** -->
496<div class="doc_section"><a name="for">'for' Loop Expression</a></div>
497<!-- *********************************************************************** -->
498
499<div class="doc_text">
500
501<p>Now that we know how to add basic control flow constructs to the language,
502we have the tools to add more powerful things. Lets add something more
503aggressive, a 'for' expression:</p>
504
505<div class="doc_code">
506<pre>
507 extern putchard(char);
508 def printstar(n)
509 for i = 1, i &lt; n, 1.0 in
510 putchard(42); # ascii 42 = '*'
511
512 # print 100 '*' characters
513 printstar(100);
514</pre>
515</div>
516
517<p>This expression defines a new variable ("i" in this case) which iterates from
518a starting value, while the condition ("i &lt; n" in this case) is true,
519incrementing by an optional step value ("1.0" in this case). If the step value
520is omitted, it defaults to 1.0. While the loop is true, it executes its
521body expression. Because we don't have anything better to return, we'll just
522define the loop as always returning 0.0. In the future when we have mutable
523variables, it will get more useful.</p>
524
525<p>As before, lets talk about the changes that we need to Kaleidoscope to
526support this.</p>
527
528</div>
529
530<!-- ======================================================================= -->
531<div class="doc_subsubsection"><a name="forlexer">Lexer Extensions for
532the 'for' Loop</a></div>
533<!-- ======================================================================= -->
534
535<div class="doc_text">
536
537<p>The lexer extensions are the same sort of thing as for if/then/else:</p>
538
539<div class="doc_code">
540<pre>
541 ... in Token.token ...
542 (* control *)
543 | If | Then | Else
544 <b>| For | In</b>
545
546 ... in Lexer.lex_ident...
547 match Buffer.contents buffer with
548 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
549 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
550 | "if" -&gt; [&lt; 'Token.If; stream &gt;]
551 | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
552 | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
553 <b>| "for" -&gt; [&lt; 'Token.For; stream &gt;]
554 | "in" -&gt; [&lt; 'Token.In; stream &gt;]</b>
555 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
556</pre>
557</div>
558
559</div>
560
561<!-- ======================================================================= -->
562<div class="doc_subsubsection"><a name="forast">AST Extensions for
563the 'for' Loop</a></div>
564<!-- ======================================================================= -->
565
566<div class="doc_text">
567
568<p>The AST variant is just as simple. It basically boils down to capturing
569the variable name and the constituent expressions in the node.</p>
570
571<div class="doc_code">
572<pre>
573type expr =
574 ...
575 (* variant for for/in. *)
576 | For of string * expr * expr * expr option * expr
577</pre>
578</div>
579
580</div>
581
582<!-- ======================================================================= -->
583<div class="doc_subsubsection"><a name="forparser">Parser Extensions for
584the 'for' Loop</a></div>
585<!-- ======================================================================= -->
586
587<div class="doc_text">
588
589<p>The parser code is also fairly standard. The only interesting thing here is
590handling of the optional step value. The parser code handles it by checking to
591see if the second comma is present. If not, it sets the step value to null in
592the AST node:</p>
593
594<div class="doc_code">
595<pre>
596let rec parse_primary = parser
597 ...
598 (* forexpr
599 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
600 | [&lt; 'Token.For;
601 'Token.Ident id ?? "expected identifier after for";
602 'Token.Kwd '=' ?? "expected '=' after for";
603 stream &gt;] -&gt;
604 begin parser
605 | [&lt;
606 start=parse_expr;
607 'Token.Kwd ',' ?? "expected ',' after for";
608 end_=parse_expr;
609 stream &gt;] -&gt;
610 let step =
611 begin parser
612 | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
613 | [&lt; &gt;] -&gt; None
614 end stream
615 in
616 begin parser
617 | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
618 Ast.For (id, start, end_, step, body)
619 | [&lt; &gt;] -&gt;
620 raise (Stream.Error "expected 'in' after for")
621 end stream
622 | [&lt; &gt;] -&gt;
623 raise (Stream.Error "expected '=' after for")
624 end stream
625</pre>
626</div>
627
628</div>
629
630<!-- ======================================================================= -->
631<div class="doc_subsubsection"><a name="forir">LLVM IR for
632the 'for' Loop</a></div>
633<!-- ======================================================================= -->
634
635<div class="doc_text">
636
637<p>Now we get to the good part: the LLVM IR we want to generate for this thing.
638With the simple example above, we get this LLVM IR (note that this dump is
639generated with optimizations disabled for clarity):
640</p>
641
642<div class="doc_code">
643<pre>
644declare double @putchard(double)
645
646define double @printstar(double %n) {
647entry:
648 ; initial value = 1.0 (inlined into phi)
649 br label %loop
650
651loop: ; preds = %loop, %entry
652 %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
653 ; body
654 %calltmp = call double @putchard( double 4.200000e+01 )
655 ; increment
656 %nextvar = add double %i, 1.000000e+00
657
658 ; termination test
659 %cmptmp = fcmp ult double %i, %n
660 %booltmp = uitofp i1 %cmptmp to double
661 %loopcond = fcmp one double %booltmp, 0.000000e+00
662 br i1 %loopcond, label %loop, label %afterloop
663
664afterloop: ; preds = %loop
665 ; loop always returns 0.0
666 ret double 0.000000e+00
667}
668</pre>
669</div>
670
671<p>This loop contains all the same constructs we saw before: a phi node, several
672expressions, and some basic blocks. Lets see how this fits together.</p>
673
674</div>
675
676<!-- ======================================================================= -->
677<div class="doc_subsubsection"><a name="forcodegen">Code Generation for
678the 'for' Loop</a></div>
679<!-- ======================================================================= -->
680
681<div class="doc_text">
682
683<p>The first part of Codegen is very simple: we just output the start expression
684for the loop value:</p>
685
686<div class="doc_code">
687<pre>
688let rec codegen_expr = function
689 ...
690 | Ast.For (var_name, start, end_, step, body) -&gt;
691 (* Emit the start code first, without 'variable' in scope. *)
692 let start_val = codegen_expr start in
693</pre>
694</div>
695
696<p>With this out of the way, the next step is to set up the LLVM basic block
697for the start of the loop body. In the case above, the whole loop body is one
698block, but remember that the body code itself could consist of multiple blocks
699(e.g. if it contains an if/then/else or a for/in expression).</p>
700
701<div class="doc_code">
702<pre>
703 (* Make the new basic block for the loop header, inserting after current
704 * block. *)
705 let preheader_bb = insertion_block builder in
706 let the_function = block_parent preheader_bb in
707 let loop_bb = append_block "loop" the_function in
708
709 (* Insert an explicit fall through from the current block to the
710 * loop_bb. *)
711 ignore (build_br loop_bb builder);
712</pre>
713</div>
714
715<p>This code is similar to what we saw for if/then/else. Because we will need
716it to create the Phi node, we remember the block that falls through into the
717loop. Once we have that, we create the actual block that starts the loop and
718create an unconditional branch for the fall-through between the two blocks.</p>
719
720<div class="doc_code">
721<pre>
722 (* Start insertion in loop_bb. *)
723 position_at_end loop_bb builder;
724
725 (* Start the PHI node with an entry for start. *)
726 let variable = build_phi [(start_val, preheader_bb)] var_name builder in
727</pre>
728</div>
729
730<p>Now that the "preheader" for the loop is set up, we switch to emitting code
731for the loop body. To begin with, we move the insertion point and create the
732PHI node for the loop induction variable. Since we already know the incoming
733value for the starting value, we add it to the Phi node. Note that the Phi will
734eventually get a second value for the backedge, but we can't set it up yet
735(because it doesn't exist!).</p>
736
737<div class="doc_code">
738<pre>
739 (* Within the loop, the variable is defined equal to the PHI node. If it
740 * shadows an existing variable, we have to restore it, so save it
741 * now. *)
742 let old_val =
743 try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
744 in
745 Hashtbl.add named_values var_name variable;
746
747 (* Emit the body of the loop. This, like any other expr, can change the
748 * current BB. Note that we ignore the value computed by the body, but
749 * don't allow an error *)
750 ignore (codegen_expr body);
751</pre>
752</div>
753
754<p>Now the code starts to get more interesting. Our 'for' loop introduces a new
755variable to the symbol table. This means that our symbol table can now contain
756either function arguments or loop variables. To handle this, before we codegen
757the body of the loop, we add the loop variable as the current value for its
758name. Note that it is possible that there is a variable of the same name in the
759outer scope. It would be easy to make this an error (emit an error and return
760null if there is already an entry for VarName) but we choose to allow shadowing
761of variables. In order to handle this correctly, we remember the Value that
762we are potentially shadowing in <tt>old_val</tt> (which will be None if there is
763no shadowed variable).</p>
764
765<p>Once the loop variable is set into the symbol table, the code recursively
766codegen's the body. This allows the body to use the loop variable: any
767references to it will naturally find it in the symbol table.</p>
768
769<div class="doc_code">
770<pre>
771 (* Emit the step value. *)
772 let step_val =
773 match step with
774 | Some step -&gt; codegen_expr step
775 (* If not specified, use 1.0. *)
776 | None -&gt; const_float double_type 1.0
777 in
778
779 let next_var = build_add variable step_val "nextvar" builder in
780</pre>
781</div>
782
783<p>Now that the body is emitted, we compute the next value of the iteration
784variable by adding the step value, or 1.0 if it isn't present.
785'<tt>next_var</tt>' will be the value of the loop variable on the next iteration
786of the loop.</p>
787
788<div class="doc_code">
789<pre>
790 (* Compute the end condition. *)
791 let end_cond = codegen_expr end_ in
792
793 (* Convert condition to a bool by comparing equal to 0.0. *)
794 let zero = const_float double_type 0.0 in
795 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
796</pre>
797</div>
798
799<p>Finally, we evaluate the exit value of the loop, to determine whether the
800loop should exit. This mirrors the condition evaluation for the if/then/else
801statement.</p>
802
803<div class="doc_code">
804<pre>
805 (* Create the "after loop" block and insert it. *)
806 let loop_end_bb = insertion_block builder in
807 let after_bb = append_block "afterloop" the_function in
808
809 (* Insert the conditional branch into the end of loop_end_bb. *)
810 ignore (build_cond_br end_cond loop_bb after_bb builder);
811
812 (* Any new code will be inserted in after_bb. *)
813 position_at_end after_bb builder;
814</pre>
815</div>
816
817<p>With the code for the body of the loop complete, we just need to finish up
818the control flow for it. This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop"). Based on the value of the
819exit condition, it creates a conditional branch that chooses between executing
820the loop again and exiting the loop. Any future code is emitted in the
821"afterloop" block, so it sets the insertion position to it.</p>
822
823<div class="doc_code">
824<pre>
825 (* Add a new entry to the PHI node for the backedge. *)
826 add_incoming (next_var, loop_end_bb) variable;
827
828 (* Restore the unshadowed variable. *)
829 begin match old_val with
830 | Some old_val -&gt; Hashtbl.add named_values var_name old_val
831 | None -&gt; ()
832 end;
833
834 (* for expr always returns 0.0. *)
835 const_null double_type
836</pre>
837</div>
838
839<p>The final code handles various cleanups: now that we have the
840"<tt>next_var</tt>" value, we can add the incoming value to the loop PHI node.
841After that, we remove the loop variable from the symbol table, so that it isn't
842in scope after the for loop. Finally, code generation of the for loop always
843returns 0.0, so that is what we return from <tt>Codegen.codegen_expr</tt>.</p>
844
845<p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
846the tutorial. In this chapter we added two control flow constructs, and used
847them to motivate a couple of aspects of the LLVM IR that are important for
848front-end implementors to know. In the next chapter of our saga, we will get
849a bit crazier and add <a href="OCamlLangImpl6.html">user-defined operators</a>
850to our poor innocent language.</p>
851
852</div>
853
854<!-- *********************************************************************** -->
855<div class="doc_section"><a name="code">Full Code Listing</a></div>
856<!-- *********************************************************************** -->
857
858<div class="doc_text">
859
860<p>
861Here is the complete code listing for our running example, enhanced with the
862if/then/else and for expressions.. To build this example, use:
863</p>
864
865<div class="doc_code">
866<pre>
867# Compile
868ocamlbuild toy.byte
869# Run
870./toy.byte
871</pre>
872</div>
873
874<p>Here is the code:</p>
875
876<dl>
877<dt>_tags:</dt>
878<dd class="doc_code">
879<pre>
880&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
881&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
882&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
883&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
884</pre>
885</dd>
886
887<dt>myocamlbuild.ml:</dt>
888<dd class="doc_code">
889<pre>
890open Ocamlbuild_plugin;;
891
892ocaml_lib ~extern:true "llvm";;
893ocaml_lib ~extern:true "llvm_analysis";;
894ocaml_lib ~extern:true "llvm_executionengine";;
895ocaml_lib ~extern:true "llvm_target";;
896ocaml_lib ~extern:true "llvm_scalar_opts";;
897
898flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
899dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
900</pre>
901</dd>
902
903<dt>token.ml:</dt>
904<dd class="doc_code">
905<pre>
906(*===----------------------------------------------------------------------===
907 * Lexer Tokens
908 *===----------------------------------------------------------------------===*)
909
910(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
911 * these others for known things. *)
912type token =
913 (* commands *)
914 | Def | Extern
915
916 (* primary *)
917 | Ident of string | Number of float
918
919 (* unknown *)
920 | Kwd of char
921
922 (* control *)
923 | If | Then | Else
924 | For | In
925</pre>
926</dd>
927
928<dt>lexer.ml:</dt>
929<dd class="doc_code">
930<pre>
931(*===----------------------------------------------------------------------===
932 * Lexer
933 *===----------------------------------------------------------------------===*)
934
935let rec lex = parser
936 (* Skip any whitespace. *)
937 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
938
939 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
940 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
941 let buffer = Buffer.create 1 in
942 Buffer.add_char buffer c;
943 lex_ident buffer stream
944
945 (* number: [0-9.]+ *)
946 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
947 let buffer = Buffer.create 1 in
948 Buffer.add_char buffer c;
949 lex_number buffer stream
950
951 (* Comment until end of line. *)
952 | [&lt; ' ('#'); stream &gt;] -&gt;
953 lex_comment stream
954
955 (* Otherwise, just return the character as its ascii value. *)
956 | [&lt; 'c; stream &gt;] -&gt;
957 [&lt; 'Token.Kwd c; lex stream &gt;]
958
959 (* end of stream. *)
960 | [&lt; &gt;] -&gt; [&lt; &gt;]
961
962and lex_number buffer = parser
963 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
964 Buffer.add_char buffer c;
965 lex_number buffer stream
966 | [&lt; stream=lex &gt;] -&gt;
967 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
968
969and lex_ident buffer = parser
970 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
971 Buffer.add_char buffer c;
972 lex_ident buffer stream
973 | [&lt; stream=lex &gt;] -&gt;
974 match Buffer.contents buffer with
975 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
976 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
977 | "if" -&gt; [&lt; 'Token.If; stream &gt;]
978 | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
979 | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
980 | "for" -&gt; [&lt; 'Token.For; stream &gt;]
981 | "in" -&gt; [&lt; 'Token.In; stream &gt;]
982 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
983
984and lex_comment = parser
985 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
986 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
987 | [&lt; &gt;] -&gt; [&lt; &gt;]
988</pre>
989</dd>
990
991<dt>ast.ml:</dt>
992<dd class="doc_code">
993<pre>
994(*===----------------------------------------------------------------------===
995 * Abstract Syntax Tree (aka Parse Tree)
996 *===----------------------------------------------------------------------===*)
997
998(* expr - Base type for all expression nodes. *)
999type expr =
1000 (* variant for numeric literals like "1.0". *)
1001 | Number of float
1002
1003 (* variant for referencing a variable, like "a". *)
1004 | Variable of string
1005
1006 (* variant for a binary operator. *)
1007 | Binary of char * expr * expr
1008
1009 (* variant for function calls. *)
1010 | Call of string * expr array
1011
1012 (* variant for if/then/else. *)
1013 | If of expr * expr * expr
1014
1015 (* variant for for/in. *)
1016 | For of string * expr * expr * expr option * expr
1017
1018(* proto - This type represents the "prototype" for a function, which captures
1019 * its name, and its argument names (thus implicitly the number of arguments the
1020 * function takes). *)
1021type proto = Prototype of string * string array
1022
1023(* func - This type represents a function definition itself. *)
1024type func = Function of proto * expr
1025</pre>
1026</dd>
1027
1028<dt>parser.ml:</dt>
1029<dd class="doc_code">
1030<pre>
1031(*===---------------------------------------------------------------------===
1032 * Parser
1033 *===---------------------------------------------------------------------===*)
1034
1035(* binop_precedence - This holds the precedence for each binary operator that is
1036 * defined *)
1037let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
1038
1039(* precedence - Get the precedence of the pending binary operator token. *)
1040let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
1041
1042(* primary
1043 * ::= identifier
1044 * ::= numberexpr
1045 * ::= parenexpr
1046 * ::= ifexpr
1047 * ::= forexpr *)
1048let rec parse_primary = parser
1049 (* numberexpr ::= number *)
1050 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
1051
1052 (* parenexpr ::= '(' expression ')' *)
1053 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
1054
1055 (* identifierexpr
1056 * ::= identifier
1057 * ::= identifier '(' argumentexpr ')' *)
1058 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
1059 let rec parse_args accumulator = parser
1060 | [&lt; e=parse_expr; stream &gt;] -&gt;
1061 begin parser
1062 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
1063 | [&lt; &gt;] -&gt; e :: accumulator
1064 end stream
1065 | [&lt; &gt;] -&gt; accumulator
1066 in
1067 let rec parse_ident id = parser
1068 (* Call. *)
1069 | [&lt; 'Token.Kwd '(';
1070 args=parse_args [];
1071 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
1072 Ast.Call (id, Array.of_list (List.rev args))
1073
1074 (* Simple variable ref. *)
1075 | [&lt; &gt;] -&gt; Ast.Variable id
1076 in
1077 parse_ident id stream
1078
1079 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
1080 | [&lt; 'Token.If; c=parse_expr;
1081 'Token.Then ?? "expected 'then'"; t=parse_expr;
1082 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
1083 Ast.If (c, t, e)
1084
1085 (* forexpr
1086 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
1087 | [&lt; 'Token.For;
1088 'Token.Ident id ?? "expected identifier after for";
1089 'Token.Kwd '=' ?? "expected '=' after for";
1090 stream &gt;] -&gt;
1091 begin parser
1092 | [&lt;
1093 start=parse_expr;
1094 'Token.Kwd ',' ?? "expected ',' after for";
1095 end_=parse_expr;
1096 stream &gt;] -&gt;
1097 let step =
1098 begin parser
1099 | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
1100 | [&lt; &gt;] -&gt; None
1101 end stream
1102 in
1103 begin parser
1104 | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
1105 Ast.For (id, start, end_, step, body)
1106 | [&lt; &gt;] -&gt;
1107 raise (Stream.Error "expected 'in' after for")
1108 end stream
1109 | [&lt; &gt;] -&gt;
1110 raise (Stream.Error "expected '=' after for")
1111 end stream
1112
1113 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
1114
1115(* binoprhs
1116 * ::= ('+' primary)* *)
1117and parse_bin_rhs expr_prec lhs stream =
1118 match Stream.peek stream with
1119 (* If this is a binop, find its precedence. *)
1120 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
1121 let token_prec = precedence c in
1122
1123 (* If this is a binop that binds at least as tightly as the current binop,
1124 * consume it, otherwise we are done. *)
1125 if token_prec &lt; expr_prec then lhs else begin
1126 (* Eat the binop. *)
1127 Stream.junk stream;
1128
1129 (* Parse the primary expression after the binary operator. *)
1130 let rhs = parse_primary stream in
1131
1132 (* Okay, we know this is a binop. *)
1133 let rhs =
1134 match Stream.peek stream with
1135 | Some (Token.Kwd c2) -&gt;
1136 (* If BinOp binds less tightly with rhs than the operator after
1137 * rhs, let the pending operator take rhs as its lhs. *)
1138 let next_prec = precedence c2 in
1139 if token_prec &lt; next_prec
1140 then parse_bin_rhs (token_prec + 1) rhs stream
1141 else rhs
1142 | _ -&gt; rhs
1143 in
1144
1145 (* Merge lhs/rhs. *)
1146 let lhs = Ast.Binary (c, lhs, rhs) in
1147 parse_bin_rhs expr_prec lhs stream
1148 end
1149 | _ -&gt; lhs
1150
1151(* expression
1152 * ::= primary binoprhs *)
1153and parse_expr = parser
1154 | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
1155
1156(* prototype
1157 * ::= id '(' id* ')' *)
1158let parse_prototype =
1159 let rec parse_args accumulator = parser
1160 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
1161 | [&lt; &gt;] -&gt; accumulator
1162 in
1163
1164 parser
1165 | [&lt; 'Token.Ident id;
1166 'Token.Kwd '(' ?? "expected '(' in prototype";
1167 args=parse_args [];
1168 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
1169 (* success. *)
1170 Ast.Prototype (id, Array.of_list (List.rev args))
1171
1172 | [&lt; &gt;] -&gt;
1173 raise (Stream.Error "expected function name in prototype")
1174
1175(* definition ::= 'def' prototype expression *)
1176let parse_definition = parser
1177 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
1178 Ast.Function (p, e)
1179
1180(* toplevelexpr ::= expression *)
1181let parse_toplevel = parser
1182 | [&lt; e=parse_expr &gt;] -&gt;
1183 (* Make an anonymous proto. *)
1184 Ast.Function (Ast.Prototype ("", [||]), e)
1185
1186(* external ::= 'extern' prototype *)
1187let parse_extern = parser
1188 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
1189</pre>
1190</dd>
1191
1192<dt>codegen.ml:</dt>
1193<dd class="doc_code">
1194<pre>
1195(*===----------------------------------------------------------------------===
1196 * Code Generation
1197 *===----------------------------------------------------------------------===*)
1198
1199open Llvm
1200
1201exception Error of string
1202
Erick Tryzelaar1f3d2762009-08-19 17:32:38 +00001203let context = global_context ()
1204let the_module = create_module context "my cool jit"
1205let builder = builder context
Erick Tryzelaar35295ff2008-03-31 08:44:50 +00001206let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
1207
1208let rec codegen_expr = function
1209 | Ast.Number n -&gt; const_float double_type n
1210 | Ast.Variable name -&gt;
1211 (try Hashtbl.find named_values name with
1212 | Not_found -&gt; raise (Error "unknown variable name"))
1213 | Ast.Binary (op, lhs, rhs) -&gt;
1214 let lhs_val = codegen_expr lhs in
1215 let rhs_val = codegen_expr rhs in
1216 begin
1217 match op with
1218 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
1219 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
1220 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
1221 | '&lt;' -&gt;
1222 (* Convert bool 0/1 to double 0.0 or 1.0 *)
1223 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
1224 build_uitofp i double_type "booltmp" builder
1225 | _ -&gt; raise (Error "invalid binary operator")
1226 end
1227 | Ast.Call (callee, args) -&gt;
1228 (* Look up the name in the module table. *)
1229 let callee =
1230 match lookup_function callee the_module with
1231 | Some callee -&gt; callee
1232 | None -&gt; raise (Error "unknown function referenced")
1233 in
1234 let params = params callee in
1235
1236 (* If argument mismatch error. *)
1237 if Array.length params == Array.length args then () else
1238 raise (Error "incorrect # arguments passed");
1239 let args = Array.map codegen_expr args in
1240 build_call callee args "calltmp" builder
1241 | Ast.If (cond, then_, else_) -&gt;
1242 let cond = codegen_expr cond in
1243
1244 (* Convert condition to a bool by comparing equal to 0.0 *)
1245 let zero = const_float double_type 0.0 in
1246 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
1247
1248 (* Grab the first block so that we might later add the conditional branch
1249 * to it at the end of the function. *)
1250 let start_bb = insertion_block builder in
1251 let the_function = block_parent start_bb in
1252
1253 let then_bb = append_block "then" the_function in
1254
1255 (* Emit 'then' value. *)
1256 position_at_end then_bb builder;
1257 let then_val = codegen_expr then_ in
1258
1259 (* Codegen of 'then' can change the current block, update then_bb for the
1260 * phi. We create a new name because one is used for the phi node, and the
1261 * other is used for the conditional branch. *)
1262 let new_then_bb = insertion_block builder in
1263
1264 (* Emit 'else' value. *)
1265 let else_bb = append_block "else" the_function in
1266 position_at_end else_bb builder;
1267 let else_val = codegen_expr else_ in
1268
1269 (* Codegen of 'else' can change the current block, update else_bb for the
1270 * phi. *)
1271 let new_else_bb = insertion_block builder in
1272
1273 (* Emit merge block. *)
1274 let merge_bb = append_block "ifcont" the_function in
1275 position_at_end merge_bb builder;
1276 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
1277 let phi = build_phi incoming "iftmp" builder in
1278
1279 (* Return to the start block to add the conditional branch. *)
1280 position_at_end start_bb builder;
1281 ignore (build_cond_br cond_val then_bb else_bb builder);
1282
1283 (* Set a unconditional branch at the end of the 'then' block and the
1284 * 'else' block to the 'merge' block. *)
1285 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
1286 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
1287
1288 (* Finally, set the builder to the end of the merge block. *)
1289 position_at_end merge_bb builder;
1290
1291 phi
1292 | Ast.For (var_name, start, end_, step, body) -&gt;
1293 (* Emit the start code first, without 'variable' in scope. *)
1294 let start_val = codegen_expr start in
1295
1296 (* Make the new basic block for the loop header, inserting after current
1297 * block. *)
1298 let preheader_bb = insertion_block builder in
1299 let the_function = block_parent preheader_bb in
1300 let loop_bb = append_block "loop" the_function in
1301
1302 (* Insert an explicit fall through from the current block to the
1303 * loop_bb. *)
1304 ignore (build_br loop_bb builder);
1305
1306 (* Start insertion in loop_bb. *)
1307 position_at_end loop_bb builder;
1308
1309 (* Start the PHI node with an entry for start. *)
1310 let variable = build_phi [(start_val, preheader_bb)] var_name builder in
1311
1312 (* Within the loop, the variable is defined equal to the PHI node. If it
1313 * shadows an existing variable, we have to restore it, so save it
1314 * now. *)
1315 let old_val =
1316 try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
1317 in
1318 Hashtbl.add named_values var_name variable;
1319
1320 (* Emit the body of the loop. This, like any other expr, can change the
1321 * current BB. Note that we ignore the value computed by the body, but
1322 * don't allow an error *)
1323 ignore (codegen_expr body);
1324
1325 (* Emit the step value. *)
1326 let step_val =
1327 match step with
1328 | Some step -&gt; codegen_expr step
1329 (* If not specified, use 1.0. *)
1330 | None -&gt; const_float double_type 1.0
1331 in
1332
1333 let next_var = build_add variable step_val "nextvar" builder in
1334
1335 (* Compute the end condition. *)
1336 let end_cond = codegen_expr end_ in
1337
1338 (* Convert condition to a bool by comparing equal to 0.0. *)
1339 let zero = const_float double_type 0.0 in
1340 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
1341
1342 (* Create the "after loop" block and insert it. *)
1343 let loop_end_bb = insertion_block builder in
1344 let after_bb = append_block "afterloop" the_function in
1345
1346 (* Insert the conditional branch into the end of loop_end_bb. *)
1347 ignore (build_cond_br end_cond loop_bb after_bb builder);
1348
1349 (* Any new code will be inserted in after_bb. *)
1350 position_at_end after_bb builder;
1351
1352 (* Add a new entry to the PHI node for the backedge. *)
1353 add_incoming (next_var, loop_end_bb) variable;
1354
1355 (* Restore the unshadowed variable. *)
1356 begin match old_val with
1357 | Some old_val -&gt; Hashtbl.add named_values var_name old_val
1358 | None -&gt; ()
1359 end;
1360
1361 (* for expr always returns 0.0. *)
1362 const_null double_type
1363
1364let codegen_proto = function
1365 | Ast.Prototype (name, args) -&gt;
1366 (* Make the function type: double(double,double) etc. *)
1367 let doubles = Array.make (Array.length args) double_type in
1368 let ft = function_type double_type doubles in
1369 let f =
1370 match lookup_function name the_module with
1371 | None -&gt; declare_function name ft the_module
1372
1373 (* If 'f' conflicted, there was already something named 'name'. If it
1374 * has a body, don't allow redefinition or reextern. *)
1375 | Some f -&gt;
1376 (* If 'f' already has a body, reject this. *)
1377 if block_begin f &lt;&gt; At_end f then
1378 raise (Error "redefinition of function");
1379
1380 (* If 'f' took a different number of arguments, reject. *)
1381 if element_type (type_of f) &lt;&gt; ft then
1382 raise (Error "redefinition of function with different # args");
1383 f
1384 in
1385
1386 (* Set names for all arguments. *)
1387 Array.iteri (fun i a -&gt;
1388 let n = args.(i) in
1389 set_value_name n a;
1390 Hashtbl.add named_values n a;
1391 ) (params f);
1392 f
1393
1394let codegen_func the_fpm = function
1395 | Ast.Function (proto, body) -&gt;
1396 Hashtbl.clear named_values;
1397 let the_function = codegen_proto proto in
1398
1399 (* Create a new basic block to start insertion into. *)
1400 let bb = append_block "entry" the_function in
1401 position_at_end bb builder;
1402
1403 try
1404 let ret_val = codegen_expr body in
1405
1406 (* Finish off the function. *)
1407 let _ = build_ret ret_val builder in
1408
1409 (* Validate the generated code, checking for consistency. *)
1410 Llvm_analysis.assert_valid_function the_function;
1411
1412 (* Optimize the function. *)
1413 let _ = PassManager.run_function the_function the_fpm in
1414
1415 the_function
1416 with e -&gt;
1417 delete_function the_function;
1418 raise e
1419</pre>
1420</dd>
1421
1422<dt>toplevel.ml:</dt>
1423<dd class="doc_code">
1424<pre>
1425(*===----------------------------------------------------------------------===
1426 * Top-Level parsing and JIT Driver
1427 *===----------------------------------------------------------------------===*)
1428
1429open Llvm
1430open Llvm_executionengine
1431
1432(* top ::= definition | external | expression | ';' *)
1433let rec main_loop the_fpm the_execution_engine stream =
1434 match Stream.peek stream with
1435 | None -&gt; ()
1436
1437 (* ignore top-level semicolons. *)
1438 | Some (Token.Kwd ';') -&gt;
1439 Stream.junk stream;
1440 main_loop the_fpm the_execution_engine stream
1441
1442 | Some token -&gt;
1443 begin
1444 try match token with
1445 | Token.Def -&gt;
1446 let e = Parser.parse_definition stream in
1447 print_endline "parsed a function definition.";
1448 dump_value (Codegen.codegen_func the_fpm e);
1449 | Token.Extern -&gt;
1450 let e = Parser.parse_extern stream in
1451 print_endline "parsed an extern.";
1452 dump_value (Codegen.codegen_proto e);
1453 | _ -&gt;
1454 (* Evaluate a top-level expression into an anonymous function. *)
1455 let e = Parser.parse_toplevel stream in
1456 print_endline "parsed a top-level expr";
1457 let the_function = Codegen.codegen_func the_fpm e in
1458 dump_value the_function;
1459
1460 (* JIT the function, returning a function pointer. *)
1461 let result = ExecutionEngine.run_function the_function [||]
1462 the_execution_engine in
1463
1464 print_string "Evaluated to ";
1465 print_float (GenericValue.as_float double_type result);
1466 print_newline ();
1467 with Stream.Error s | Codegen.Error s -&gt;
1468 (* Skip token for error recovery. *)
1469 Stream.junk stream;
1470 print_endline s;
1471 end;
1472 print_string "ready&gt; "; flush stdout;
1473 main_loop the_fpm the_execution_engine stream
1474</pre>
1475</dd>
1476
1477<dt>toy.ml:</dt>
1478<dd class="doc_code">
1479<pre>
1480(*===----------------------------------------------------------------------===
1481 * Main driver code.
1482 *===----------------------------------------------------------------------===*)
1483
1484open Llvm
1485open Llvm_executionengine
1486open Llvm_target
1487open Llvm_scalar_opts
1488
1489let main () =
Erick Tryzelaar46262682009-09-14 21:54:32 +00001490 ignore (initialize_native_target ());
1491
Erick Tryzelaar35295ff2008-03-31 08:44:50 +00001492 (* Install standard binary operators.
1493 * 1 is the lowest precedence. *)
1494 Hashtbl.add Parser.binop_precedence '&lt;' 10;
1495 Hashtbl.add Parser.binop_precedence '+' 20;
1496 Hashtbl.add Parser.binop_precedence '-' 20;
1497 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
1498
1499 (* Prime the first token. *)
1500 print_string "ready&gt; "; flush stdout;
1501 let stream = Lexer.lex (Stream.of_channel stdin) in
1502
1503 (* Create the JIT. *)
1504 let the_module_provider = ModuleProvider.create Codegen.the_module in
1505 let the_execution_engine = ExecutionEngine.create the_module_provider in
1506 let the_fpm = PassManager.create_function the_module_provider in
1507
1508 (* Set up the optimizer pipeline. Start with registering info about how the
1509 * target lays out data structures. *)
1510 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
1511
1512 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
1513 add_instruction_combining the_fpm;
1514
1515 (* reassociate expressions. *)
1516 add_reassociation the_fpm;
1517
1518 (* Eliminate Common SubExpressions. *)
1519 add_gvn the_fpm;
1520
1521 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
1522 add_cfg_simplification the_fpm;
1523
Erick Tryzelaar126d86b2009-09-14 21:54:15 +00001524 ignore (PassManager.initialize the_fpm);
1525
Erick Tryzelaar35295ff2008-03-31 08:44:50 +00001526 (* Run the main "interpreter loop" now. *)
1527 Toplevel.main_loop the_fpm the_execution_engine stream;
1528
1529 (* Print out all the generated code. *)
1530 dump_module Codegen.the_module
1531;;
1532
1533main ()
1534</pre>
1535</dd>
1536
1537<dt>bindings.c</dt>
1538<dd class="doc_code">
1539<pre>
1540#include &lt;stdio.h&gt;
1541
1542/* putchard - putchar that takes a double and returns 0. */
1543extern double putchard(double X) {
1544 putchar((char)X);
1545 return 0;
1546}
1547</pre>
1548</dd>
1549</dl>
1550
1551<a href="OCamlLangImpl6.html">Next: Extending the language: user-defined
1552operators</a>
1553</div>
1554
1555<!-- *********************************************************************** -->
1556<hr>
1557<address>
1558 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1559 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1560 <a href="http://validator.w3.org/check/referer"><img
1561 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1562
1563 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1564 <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1565 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Dan Gohman523e3922010-02-03 17:27:31 +00001566 Last modified: $Date$
Erick Tryzelaar35295ff2008-03-31 08:44:50 +00001567</address>
1568</body>
1569</html>