Scott Michel | 8b6b420 | 2007-12-04 22:35:58 +0000 | [diff] [blame^] | 1 | //==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by The Aerospace Corporation. |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // Cell SPU Instructions: |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | // TODO Items (not urgent today, but would be nice, low priority) |
| 13 | // |
| 14 | // ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by |
| 15 | // concatenating the byte argument b as "bbbb". Could recognize this bit pattern |
| 16 | // in 16-bit and 32-bit constants and reduce instruction count. |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | // Pseudo instructions: |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in { |
| 24 | def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt), |
| 25 | "${:comment} ADJCALLSTACKDOWN", |
| 26 | [(callseq_start imm:$amt)]>; |
| 27 | def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt), |
| 28 | "${:comment} ADJCALLSTACKUP", |
| 29 | [(callseq_end imm:$amt)]>; |
| 30 | } |
| 31 | |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | // DWARF debugging Pseudo Instructions |
| 34 | //===----------------------------------------------------------------------===// |
| 35 | |
| 36 | def DWARF_LOC : Pseudo<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file), |
| 37 | "${:comment} .loc $file, $line, $col", |
| 38 | [(dwarf_loc (i32 imm:$line), (i32 imm:$col), |
| 39 | (i32 imm:$file))]>; |
| 40 | |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | // Loads: |
| 43 | // NB: The ordering is actually important, since the instruction selection |
| 44 | // will try each of the instructions in sequence, i.e., the D-form first with |
| 45 | // the 10-bit displacement, then the A-form with the 16 bit displacement, and |
| 46 | // finally the X-form with the register-register. |
| 47 | //===----------------------------------------------------------------------===// |
| 48 | |
| 49 | let isLoad = 1 in { |
| 50 | def LQDv16i8: |
| 51 | RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src), |
| 52 | "lqd\t$rT, $src", LoadStore, |
| 53 | [(set (v16i8 VECREG:$rT), (load dform_addr:$src))]>; |
| 54 | |
| 55 | def LQDv8i16: |
| 56 | RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src), |
| 57 | "lqd\t$rT, $src", LoadStore, |
| 58 | [(set (v8i16 VECREG:$rT), (load dform_addr:$src))]>; |
| 59 | |
| 60 | def LQDv4i32: |
| 61 | RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src), |
| 62 | "lqd\t$rT, $src", LoadStore, |
| 63 | [(set (v4i32 VECREG:$rT), (load dform_addr:$src))]>; |
| 64 | |
| 65 | def LQDv2i64: |
| 66 | RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src), |
| 67 | "lqd\t$rT, $src", LoadStore, |
| 68 | [(set (v2i64 VECREG:$rT), (load dform_addr:$src))]>; |
| 69 | |
| 70 | def LQDv4f32: |
| 71 | RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src), |
| 72 | "lqd\t$rT, $src", LoadStore, |
| 73 | [(set (v4f32 VECREG:$rT), (load dform_addr:$src))]>; |
| 74 | |
| 75 | def LQDv2f64: |
| 76 | RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src), |
| 77 | "lqd\t$rT, $src", LoadStore, |
| 78 | [(set (v2f64 VECREG:$rT), (load dform_addr:$src))]>; |
| 79 | |
| 80 | def LQDr128: |
| 81 | RI10Form<0b00101100, (outs GPRC:$rT), (ins memri10:$src), |
| 82 | "lqd\t$rT, $src", LoadStore, |
| 83 | [(set GPRC:$rT, (load dform_addr:$src))]>; |
| 84 | |
| 85 | def LQDr64: |
| 86 | RI10Form<0b00101100, (outs R64C:$rT), (ins memri10:$src), |
| 87 | "lqd\t$rT, $src", LoadStore, |
| 88 | [(set R64C:$rT, (load dform_addr:$src))]>; |
| 89 | |
| 90 | def LQDr32: |
| 91 | RI10Form<0b00101100, (outs R32C:$rT), (ins memri10:$src), |
| 92 | "lqd\t$rT, $src", LoadStore, |
| 93 | [(set R32C:$rT, (load dform_addr:$src))]>; |
| 94 | |
| 95 | // Floating Point |
| 96 | def LQDf32: |
| 97 | RI10Form<0b00101100, (outs R32FP:$rT), (ins memri10:$src), |
| 98 | "lqd\t$rT, $src", LoadStore, |
| 99 | [(set R32FP:$rT, (load dform_addr:$src))]>; |
| 100 | |
| 101 | def LQDf64: |
| 102 | RI10Form<0b00101100, (outs R64FP:$rT), (ins memri10:$src), |
| 103 | "lqd\t$rT, $src", LoadStore, |
| 104 | [(set R64FP:$rT, (load dform_addr:$src))]>; |
| 105 | // END Floating Point |
| 106 | |
| 107 | def LQDr16: |
| 108 | RI10Form<0b00101100, (outs R16C:$rT), (ins memri10:$src), |
| 109 | "lqd\t$rT, $src", LoadStore, |
| 110 | [(set R16C:$rT, (load dform_addr:$src))]>; |
| 111 | |
| 112 | def LQAv16i8: |
| 113 | RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), |
| 114 | "lqa\t$rT, $src", LoadStore, |
| 115 | [(set (v16i8 VECREG:$rT), (load aform_addr:$src))]>; |
| 116 | |
| 117 | def LQAv8i16: |
| 118 | RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), |
| 119 | "lqa\t$rT, $src", LoadStore, |
| 120 | [(set (v8i16 VECREG:$rT), (load aform_addr:$src))]>; |
| 121 | |
| 122 | def LQAv4i32: |
| 123 | RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), |
| 124 | "lqa\t$rT, $src", LoadStore, |
| 125 | [(set (v4i32 VECREG:$rT), (load aform_addr:$src))]>; |
| 126 | |
| 127 | def LQAv2i64: |
| 128 | RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), |
| 129 | "lqa\t$rT, $src", LoadStore, |
| 130 | [(set (v2i64 VECREG:$rT), (load aform_addr:$src))]>; |
| 131 | |
| 132 | def LQAv4f32: |
| 133 | RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), |
| 134 | "lqa\t$rT, $src", LoadStore, |
| 135 | [(set (v4f32 VECREG:$rT), (load aform_addr:$src))]>; |
| 136 | |
| 137 | def LQAv2f64: |
| 138 | RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), |
| 139 | "lqa\t$rT, $src", LoadStore, |
| 140 | [(set (v2f64 VECREG:$rT), (load aform_addr:$src))]>; |
| 141 | |
| 142 | def LQAr128: |
| 143 | RI16Form<0b100001100, (outs GPRC:$rT), (ins addr256k:$src), |
| 144 | "lqa\t$rT, $src", LoadStore, |
| 145 | [(set GPRC:$rT, (load aform_addr:$src))]>; |
| 146 | |
| 147 | def LQAr64: |
| 148 | RI16Form<0b100001100, (outs R64C:$rT), (ins addr256k:$src), |
| 149 | "lqa\t$rT, $src", LoadStore, |
| 150 | [(set R64C:$rT, (load aform_addr:$src))]>; |
| 151 | |
| 152 | def LQAr32: |
| 153 | RI16Form<0b100001100, (outs R32C:$rT), (ins addr256k:$src), |
| 154 | "lqa\t$rT, $src", LoadStore, |
| 155 | [(set R32C:$rT, (load aform_addr:$src))]>; |
| 156 | |
| 157 | def LQAf32: |
| 158 | RI16Form<0b100001100, (outs R32FP:$rT), (ins addr256k:$src), |
| 159 | "lqa\t$rT, $src", LoadStore, |
| 160 | [(set R32FP:$rT, (load aform_addr:$src))]>; |
| 161 | |
| 162 | def LQAf64: |
| 163 | RI16Form<0b100001100, (outs R64FP:$rT), (ins addr256k:$src), |
| 164 | "lqa\t$rT, $src", LoadStore, |
| 165 | [(set R64FP:$rT, (load aform_addr:$src))]>; |
| 166 | |
| 167 | def LQAr16: |
| 168 | RI16Form<0b100001100, (outs R16C:$rT), (ins addr256k:$src), |
| 169 | "lqa\t$rT, $src", LoadStore, |
| 170 | [(set R16C:$rT, (load aform_addr:$src))]>; |
| 171 | |
| 172 | def LQXv16i8: |
| 173 | RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), |
| 174 | "lqx\t$rT, $src", LoadStore, |
| 175 | [(set (v16i8 VECREG:$rT), (load xform_addr:$src))]>; |
| 176 | |
| 177 | def LQXv8i16: |
| 178 | RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), |
| 179 | "lqx\t$rT, $src", LoadStore, |
| 180 | [(set (v8i16 VECREG:$rT), (load xform_addr:$src))]>; |
| 181 | |
| 182 | def LQXv4i32: |
| 183 | RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), |
| 184 | "lqx\t$rT, $src", LoadStore, |
| 185 | [(set (v4i32 VECREG:$rT), (load xform_addr:$src))]>; |
| 186 | |
| 187 | def LQXv2i64: |
| 188 | RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), |
| 189 | "lqx\t$rT, $src", LoadStore, |
| 190 | [(set (v2i64 VECREG:$rT), (load xform_addr:$src))]>; |
| 191 | |
| 192 | def LQXv4f32: |
| 193 | RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), |
| 194 | "lqx\t$rT, $src", LoadStore, |
| 195 | [(set (v4f32 VECREG:$rT), (load xform_addr:$src))]>; |
| 196 | |
| 197 | def LQXv2f64: |
| 198 | RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), |
| 199 | "lqx\t$rT, $src", LoadStore, |
| 200 | [(set (v2f64 VECREG:$rT), (load xform_addr:$src))]>; |
| 201 | |
| 202 | def LQXr128: |
| 203 | RRForm<0b00100011100, (outs GPRC:$rT), (ins memrr:$src), |
| 204 | "lqx\t$rT, $src", LoadStore, |
| 205 | [(set GPRC:$rT, (load xform_addr:$src))]>; |
| 206 | |
| 207 | def LQXr64: |
| 208 | RRForm<0b00100011100, (outs R64C:$rT), (ins memrr:$src), |
| 209 | "lqx\t$rT, $src", LoadStore, |
| 210 | [(set R64C:$rT, (load xform_addr:$src))]>; |
| 211 | |
| 212 | def LQXr32: |
| 213 | RRForm<0b00100011100, (outs R32C:$rT), (ins memrr:$src), |
| 214 | "lqx\t$rT, $src", LoadStore, |
| 215 | [(set R32C:$rT, (load xform_addr:$src))]>; |
| 216 | |
| 217 | def LQXf32: |
| 218 | RRForm<0b00100011100, (outs R32FP:$rT), (ins memrr:$src), |
| 219 | "lqx\t$rT, $src", LoadStore, |
| 220 | [(set R32FP:$rT, (load xform_addr:$src))]>; |
| 221 | |
| 222 | def LQXf64: |
| 223 | RRForm<0b00100011100, (outs R64FP:$rT), (ins memrr:$src), |
| 224 | "lqx\t$rT, $src", LoadStore, |
| 225 | [(set R64FP:$rT, (load xform_addr:$src))]>; |
| 226 | |
| 227 | def LQXr16: |
| 228 | RRForm<0b00100011100, (outs R16C:$rT), (ins memrr:$src), |
| 229 | "lqx\t$rT, $src", LoadStore, |
| 230 | [(set R16C:$rT, (load xform_addr:$src))]>; |
| 231 | |
| 232 | /* Load quadword, PC relative: Not much use at this point in time. |
| 233 | Might be of use later for relocatable code. |
| 234 | def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp), |
| 235 | "lqr\t$rT, $disp", LoadStore, |
| 236 | [(set VECREG:$rT, (load iaddr:$disp))]>; |
| 237 | */ |
| 238 | |
| 239 | // Catch-all for unaligned loads: |
| 240 | } |
| 241 | |
| 242 | //===----------------------------------------------------------------------===// |
| 243 | // Stores: |
| 244 | //===----------------------------------------------------------------------===// |
| 245 | |
| 246 | let isStore = 1 in { |
| 247 | def STQDv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src), |
| 248 | "stqd\t$rT, $src", LoadStore, |
| 249 | [(store (v16i8 VECREG:$rT), dform_addr:$src)]>; |
| 250 | |
| 251 | def STQDv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src), |
| 252 | "stqd\t$rT, $src", LoadStore, |
| 253 | [(store (v8i16 VECREG:$rT), dform_addr:$src)]>; |
| 254 | |
| 255 | def STQDv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src), |
| 256 | "stqd\t$rT, $src", LoadStore, |
| 257 | [(store (v4i32 VECREG:$rT), dform_addr:$src)]>; |
| 258 | |
| 259 | def STQDv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src), |
| 260 | "stqd\t$rT, $src", LoadStore, |
| 261 | [(store (v2i64 VECREG:$rT), dform_addr:$src)]>; |
| 262 | |
| 263 | def STQDv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src), |
| 264 | "stqd\t$rT, $src", LoadStore, |
| 265 | [(store (v4f32 VECREG:$rT), dform_addr:$src)]>; |
| 266 | |
| 267 | def STQDv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src), |
| 268 | "stqd\t$rT, $src", LoadStore, |
| 269 | [(store (v2f64 VECREG:$rT), dform_addr:$src)]>; |
| 270 | |
| 271 | def STQDr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, memri10:$src), |
| 272 | "stqd\t$rT, $src", LoadStore, |
| 273 | [(store GPRC:$rT, dform_addr:$src)]>; |
| 274 | |
| 275 | def STQDr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, memri10:$src), |
| 276 | "stqd\t$rT, $src", LoadStore, |
| 277 | [(store R64C:$rT, dform_addr:$src)]>; |
| 278 | |
| 279 | def STQDr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, memri10:$src), |
| 280 | "stqd\t$rT, $src", LoadStore, |
| 281 | [(store R32C:$rT, dform_addr:$src)]>; |
| 282 | |
| 283 | // Floating Point |
| 284 | def STQDf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, memri10:$src), |
| 285 | "stqd\t$rT, $src", LoadStore, |
| 286 | [(store R32FP:$rT, dform_addr:$src)]>; |
| 287 | |
| 288 | def STQDf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, memri10:$src), |
| 289 | "stqd\t$rT, $src", LoadStore, |
| 290 | [(store R64FP:$rT, dform_addr:$src)]>; |
| 291 | |
| 292 | def STQDr16 : RI10Form<0b00100100, (outs), (ins R16C:$rT, memri10:$src), |
| 293 | "stqd\t$rT, $src", LoadStore, |
| 294 | [(store R16C:$rT, dform_addr:$src)]>; |
| 295 | |
| 296 | def STQAv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src), |
| 297 | "stqa\t$rT, $src", LoadStore, |
| 298 | [(store (v16i8 VECREG:$rT), aform_addr:$src)]>; |
| 299 | |
| 300 | def STQAv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src), |
| 301 | "stqa\t$rT, $src", LoadStore, |
| 302 | [(store (v8i16 VECREG:$rT), aform_addr:$src)]>; |
| 303 | |
| 304 | def STQAv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src), |
| 305 | "stqa\t$rT, $src", LoadStore, |
| 306 | [(store (v4i32 VECREG:$rT), aform_addr:$src)]>; |
| 307 | |
| 308 | def STQAv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src), |
| 309 | "stqa\t$rT, $src", LoadStore, |
| 310 | [(store (v2i64 VECREG:$rT), aform_addr:$src)]>; |
| 311 | |
| 312 | def STQAv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src), |
| 313 | "stqa\t$rT, $src", LoadStore, |
| 314 | [(store (v4f32 VECREG:$rT), aform_addr:$src)]>; |
| 315 | |
| 316 | def STQAv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src), |
| 317 | "stqa\t$rT, $src", LoadStore, |
| 318 | [(store (v2f64 VECREG:$rT), aform_addr:$src)]>; |
| 319 | |
| 320 | def STQAr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, addr256k:$src), |
| 321 | "stqa\t$rT, $src", LoadStore, |
| 322 | [(store GPRC:$rT, aform_addr:$src)]>; |
| 323 | |
| 324 | def STQAr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, addr256k:$src), |
| 325 | "stqa\t$rT, $src", LoadStore, |
| 326 | [(store R64C:$rT, aform_addr:$src)]>; |
| 327 | |
| 328 | def STQAr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, addr256k:$src), |
| 329 | "stqa\t$rT, $src", LoadStore, |
| 330 | [(store R32C:$rT, aform_addr:$src)]>; |
| 331 | |
| 332 | // Floating Point |
| 333 | def STQAf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, addr256k:$src), |
| 334 | "stqa\t$rT, $src", LoadStore, |
| 335 | [(store R32FP:$rT, aform_addr:$src)]>; |
| 336 | |
| 337 | def STQAf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, addr256k:$src), |
| 338 | "stqa\t$rT, $src", LoadStore, |
| 339 | [(store R64FP:$rT, aform_addr:$src)]>; |
| 340 | |
| 341 | def STQXv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), |
| 342 | "stqx\t$rT, $src", LoadStore, |
| 343 | [(store (v16i8 VECREG:$rT), xform_addr:$src)]>; |
| 344 | |
| 345 | def STQXv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), |
| 346 | "stqx\t$rT, $src", LoadStore, |
| 347 | [(store (v8i16 VECREG:$rT), xform_addr:$src)]>; |
| 348 | |
| 349 | def STQXv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), |
| 350 | "stqx\t$rT, $src", LoadStore, |
| 351 | [(store (v4i32 VECREG:$rT), xform_addr:$src)]>; |
| 352 | |
| 353 | def STQXv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), |
| 354 | "stqx\t$rT, $src", LoadStore, |
| 355 | [(store (v2i64 VECREG:$rT), xform_addr:$src)]>; |
| 356 | |
| 357 | def STQXv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), |
| 358 | "stqx\t$rT, $src", LoadStore, |
| 359 | [(store (v4f32 VECREG:$rT), xform_addr:$src)]>; |
| 360 | |
| 361 | def STQXv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), |
| 362 | "stqx\t$rT, $src", LoadStore, |
| 363 | [(store (v2f64 VECREG:$rT), xform_addr:$src)]>; |
| 364 | |
| 365 | def STQXr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, memrr:$src), |
| 366 | "stqx\t$rT, $src", LoadStore, |
| 367 | [(store GPRC:$rT, xform_addr:$src)]>; |
| 368 | |
| 369 | def STQXr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, memrr:$src), |
| 370 | "stqx\t$rT, $src", LoadStore, |
| 371 | [(store R64C:$rT, xform_addr:$src)]>; |
| 372 | |
| 373 | def STQXr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, memrr:$src), |
| 374 | "stqx\t$rT, $src", LoadStore, |
| 375 | [(store R32C:$rT, xform_addr:$src)]>; |
| 376 | |
| 377 | // Floating Point |
| 378 | def STQXf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, memrr:$src), |
| 379 | "stqx\t$rT, $src", LoadStore, |
| 380 | [(store R32FP:$rT, xform_addr:$src)]>; |
| 381 | |
| 382 | def STQXf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, memrr:$src), |
| 383 | "stqx\t$rT, $src", LoadStore, |
| 384 | [(store R64FP:$rT, xform_addr:$src)]>; |
| 385 | |
| 386 | def STQXr16 : RI10Form<0b00100100, (outs), (ins R16C:$rT, memrr:$src), |
| 387 | "stqx\t$rT, $src", LoadStore, |
| 388 | [(store R16C:$rT, xform_addr:$src)]>; |
| 389 | |
| 390 | /* Store quadword, PC relative: Not much use at this point in time. Might |
| 391 | be useful for relocatable code. |
| 392 | def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp), |
| 393 | "stqr\t$rT, $disp", LoadStore, |
| 394 | [(store VECREG:$rT, iaddr:$disp)]>; |
| 395 | */ |
| 396 | } |
| 397 | |
| 398 | //===----------------------------------------------------------------------===// |
| 399 | // Generate Controls for Insertion: |
| 400 | //===----------------------------------------------------------------------===// |
| 401 | |
| 402 | def CBD : |
| 403 | RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src), |
| 404 | "cbd\t$rT, $src", ShuffleOp, |
| 405 | [(set (v16i8 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; |
| 406 | |
| 407 | def CBX : RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src), |
| 408 | "cbx\t$rT, $src", ShuffleOp, |
| 409 | [(set (v16i8 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; |
| 410 | |
| 411 | def CHD : RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src), |
| 412 | "chd\t$rT, $src", ShuffleOp, |
| 413 | [(set (v8i16 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; |
| 414 | |
| 415 | def CHX : RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src), |
| 416 | "chx\t$rT, $src", ShuffleOp, |
| 417 | [(set (v8i16 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; |
| 418 | |
| 419 | def CWD : RI7Form<0b01101111100, (outs VECREG:$rT), (ins memri7:$src), |
| 420 | "cwd\t$rT, $src", ShuffleOp, |
| 421 | [(set (v4i32 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; |
| 422 | |
| 423 | def CWX : RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), |
| 424 | "cwx\t$rT, $src", ShuffleOp, |
| 425 | [(set (v4i32 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; |
| 426 | |
| 427 | def CDD : RI7Form<0b11101111100, (outs VECREG:$rT), (ins memri7:$src), |
| 428 | "cdd\t$rT, $src", ShuffleOp, |
| 429 | [(set (v2i64 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; |
| 430 | |
| 431 | def CDX : RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), |
| 432 | "cdx\t$rT, $src", ShuffleOp, |
| 433 | [(set (v2i64 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; |
| 434 | |
| 435 | //===----------------------------------------------------------------------===// |
| 436 | // Constant formation: |
| 437 | //===----------------------------------------------------------------------===// |
| 438 | |
| 439 | def ILHv8i16: |
| 440 | RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val), |
| 441 | "ilh\t$rT, $val", ImmLoad, |
| 442 | [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>; |
| 443 | |
| 444 | def ILHr16: |
| 445 | RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val), |
| 446 | "ilh\t$rT, $val", ImmLoad, |
| 447 | [(set R16C:$rT, immSExt16:$val)]>; |
| 448 | |
| 449 | // IL does sign extension! |
| 450 | def ILr64: |
| 451 | RI16Form<0b100000010, (outs R64C:$rT), (ins s16imm_i64:$val), |
| 452 | "il\t$rT, $val", ImmLoad, |
| 453 | [(set R64C:$rT, immSExt16:$val)]>; |
| 454 | |
| 455 | def ILv2i64: |
| 456 | RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm_i64:$val), |
| 457 | "il\t$rT, $val", ImmLoad, |
| 458 | [(set VECREG:$rT, (v2i64 v2i64SExt16Imm:$val))]>; |
| 459 | |
| 460 | def ILv4i32: |
| 461 | RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm:$val), |
| 462 | "il\t$rT, $val", ImmLoad, |
| 463 | [(set VECREG:$rT, (v4i32 v4i32SExt16Imm:$val))]>; |
| 464 | |
| 465 | def ILr32: |
| 466 | RI16Form<0b100000010, (outs R32C:$rT), (ins s16imm_i32:$val), |
| 467 | "il\t$rT, $val", ImmLoad, |
| 468 | [(set R32C:$rT, immSExt16:$val)]>; |
| 469 | |
| 470 | def ILf32: |
| 471 | RI16Form<0b100000010, (outs R32FP:$rT), (ins s16imm_f32:$val), |
| 472 | "il\t$rT, $val", ImmLoad, |
| 473 | [(set R32FP:$rT, (SPUFPconstant fpimmSExt16:$val))]>; |
| 474 | |
| 475 | def ILf64: |
| 476 | RI16Form<0b100000010, (outs R64FP:$rT), (ins s16imm_f64:$val), |
| 477 | "il\t$rT, $val", ImmLoad, |
| 478 | [(set R64FP:$rT, (SPUFPconstant fpimmSExt16:$val))]>; |
| 479 | |
| 480 | def ILHUv4i32: |
| 481 | RI16Form<0b010000010, (outs VECREG:$rT), (ins u16imm:$val), |
| 482 | "ilhu\t$rT, $val", ImmLoad, |
| 483 | [(set VECREG:$rT, (v4i32 immILHUvec:$val))]>; |
| 484 | |
| 485 | def ILHUr32: |
| 486 | RI16Form<0b010000010, (outs R32C:$rT), (ins u16imm:$val), |
| 487 | "ilhu\t$rT, $val", ImmLoad, |
| 488 | [(set R32C:$rT, hi16:$val)]>; |
| 489 | |
| 490 | // ILHUf32: Used to custom lower float constant loads |
| 491 | def ILHUf32: |
| 492 | RI16Form<0b010000010, (outs R32FP:$rT), (ins f16imm:$val), |
| 493 | "ilhu\t$rT, $val", ImmLoad, |
| 494 | [(set R32FP:$rT, (SPUFPconstant hi16_f32:$val))]>; |
| 495 | |
| 496 | // ILHUhi: Used for loading high portion of an address. Note the symbolHi |
| 497 | // printer used for the operand. |
| 498 | def ILHUhi : RI16Form<0b010000010, (outs R32C:$rT), (ins symbolHi:$val), |
| 499 | "ilhu\t$rT, $val", ImmLoad, |
| 500 | [(set R32C:$rT, hi16:$val)]>; |
| 501 | |
| 502 | // Immediate load address (can also be used to load 18-bit unsigned constants, |
| 503 | // see the zext 16->32 pattern) |
| 504 | def ILAr64: |
| 505 | RI18Form<0b1000010, (outs R64C:$rT), (ins u18imm_i64:$val), |
| 506 | "ila\t$rT, $val", LoadNOP, |
| 507 | [(set R64C:$rT, imm18:$val)]>; |
| 508 | |
| 509 | // TODO: ILAv2i64 |
| 510 | |
| 511 | def ILAv2i64: |
| 512 | RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val), |
| 513 | "ila\t$rT, $val", LoadNOP, |
| 514 | [(set (v2i64 VECREG:$rT), v2i64Uns18Imm:$val)]>; |
| 515 | |
| 516 | def ILAv4i32: |
| 517 | RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val), |
| 518 | "ila\t$rT, $val", LoadNOP, |
| 519 | [(set (v4i32 VECREG:$rT), v4i32Uns18Imm:$val)]>; |
| 520 | |
| 521 | def ILAr32: |
| 522 | RI18Form<0b1000010, (outs R32C:$rT), (ins u18imm:$val), |
| 523 | "ila\t$rT, $val", LoadNOP, |
| 524 | [(set R32C:$rT, imm18:$val)]>; |
| 525 | |
| 526 | def ILAf32: |
| 527 | RI18Form<0b1000010, (outs R32FP:$rT), (ins f18imm:$val), |
| 528 | "ila\t$rT, $val", LoadNOP, |
| 529 | [(set R32FP:$rT, (SPUFPconstant fpimm18:$val))]>; |
| 530 | |
| 531 | def ILAf64: |
| 532 | RI18Form<0b1000010, (outs R64FP:$rT), (ins f18imm_f64:$val), |
| 533 | "ila\t$rT, $val", LoadNOP, |
| 534 | [(set R64FP:$rT, (SPUFPconstant fpimm18:$val))]>; |
| 535 | |
| 536 | def ILAlo: |
| 537 | RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLo:$val), |
| 538 | "ila\t$rT, $val", ImmLoad, |
| 539 | [(set R32C:$rT, imm18:$val)]>; |
| 540 | |
| 541 | def ILAlsa: |
| 542 | RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLSA:$val), |
| 543 | "ila\t$rT, $val", ImmLoad, |
| 544 | [/* no pattern */]>; |
| 545 | |
| 546 | // Immediate OR, Halfword Lower: The "other" part of loading large constants |
| 547 | // into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...> |
| 548 | // Note that these are really two operand instructions, but they're encoded |
| 549 | // as three operands with the first two arguments tied-to each other. |
| 550 | |
| 551 | def IOHLvec: |
| 552 | RI16Form<0b100000110, (outs VECREG:$rT), (ins VECREG:$rS, u16imm:$val), |
| 553 | "iohl\t$rT, $val", ImmLoad, |
| 554 | [/* insert intrinsic here */]>, |
| 555 | RegConstraint<"$rS = $rT">, |
| 556 | NoEncode<"$rS">; |
| 557 | |
| 558 | def IOHLr32: |
| 559 | RI16Form<0b100000110, (outs R32C:$rT), (ins R32C:$rS, i32imm:$val), |
| 560 | "iohl\t$rT, $val", ImmLoad, |
| 561 | [/* insert intrinsic here */]>, |
| 562 | RegConstraint<"$rS = $rT">, |
| 563 | NoEncode<"$rS">; |
| 564 | |
| 565 | def IOHLf32: |
| 566 | RI16Form<0b100000110, (outs R32FP:$rT), (ins R32FP:$rS, f32imm:$val), |
| 567 | "iohl\t$rT, $val", ImmLoad, |
| 568 | [/* insert intrinsic here */]>, |
| 569 | RegConstraint<"$rS = $rT">, |
| 570 | NoEncode<"$rS">; |
| 571 | |
| 572 | // Form select mask for bytes using immediate, used in conjunction with the |
| 573 | // SELB instruction: |
| 574 | |
| 575 | def FSMBIv16i8 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val), |
| 576 | "fsmbi\t$rT, $val", SelectOp, |
| 577 | [(set (v16i8 VECREG:$rT), (SPUfsmbi_v16i8 immU16:$val))]>; |
| 578 | |
| 579 | def FSMBIv8i16 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val), |
| 580 | "fsmbi\t$rT, $val", SelectOp, |
| 581 | [(set (v8i16 VECREG:$rT), (SPUfsmbi_v8i16 immU16:$val))]>; |
| 582 | |
| 583 | def FSMBIvecv4i32 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val), |
| 584 | "fsmbi\t$rT, $val", SelectOp, |
| 585 | [(set (v4i32 VECREG:$rT), (SPUfsmbi_v4i32 immU16:$val))]>; |
| 586 | |
| 587 | //===----------------------------------------------------------------------===// |
| 588 | // Integer and Logical Operations: |
| 589 | //===----------------------------------------------------------------------===// |
| 590 | |
| 591 | def AHv8i16: |
| 592 | RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 593 | "ah\t$rT, $rA, $rB", IntegerOp, |
| 594 | [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>; |
| 595 | |
| 596 | def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), |
| 597 | (AHv8i16 VECREG:$rA, VECREG:$rB)>; |
| 598 | |
| 599 | // [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; |
| 600 | |
| 601 | def AHr16: |
| 602 | RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 603 | "ah\t$rT, $rA, $rB", IntegerOp, |
| 604 | [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>; |
| 605 | |
| 606 | def AHIvec: |
| 607 | RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 608 | "ahi\t$rT, $rA, $val", IntegerOp, |
| 609 | [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), |
| 610 | v8i16SExt10Imm:$val))]>; |
| 611 | |
| 612 | def AHIr16 : RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 613 | "ahi\t$rT, $rA, $val", IntegerOp, |
| 614 | [(set R16C:$rT, (add R16C:$rA, v8i16SExt10Imm:$val))]>; |
| 615 | |
| 616 | def Avec : RRForm<0b00000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 617 | "a\t$rT, $rA, $rB", IntegerOp, |
| 618 | [(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| 619 | |
| 620 | def : Pat<(add (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)), |
| 621 | (Avec VECREG:$rA, VECREG:$rB)>; |
| 622 | |
| 623 | def Ar32 : RRForm<0b00000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 624 | "a\t$rT, $rA, $rB", IntegerOp, |
| 625 | [(set R32C:$rT, (add R32C:$rA, R32C:$rB))]>; |
| 626 | |
| 627 | def AIvec: |
| 628 | RI10Form<0b00111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 629 | "ai\t$rT, $rA, $val", IntegerOp, |
| 630 | [(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA), |
| 631 | v4i32SExt10Imm:$val))]>; |
| 632 | |
| 633 | def AIr32 : RI10Form<0b00111000, (outs R32C:$rT), |
| 634 | (ins R32C:$rA, s10imm_i32:$val), |
| 635 | "ai\t$rT, $rA, $val", IntegerOp, |
| 636 | [(set R32C:$rT, (add R32C:$rA, i32ImmSExt10:$val))]>; |
| 637 | |
| 638 | def SFHvec : RRForm<0b00010010000, (outs VECREG:$rT), |
| 639 | (ins VECREG:$rA, VECREG:$rB), |
| 640 | "sfh\t$rT, $rA, $rB", IntegerOp, |
| 641 | [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; |
| 642 | |
| 643 | def SFHr16 : RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 644 | "sfh\t$rT, $rA, $rB", IntegerOp, |
| 645 | [(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>; |
| 646 | |
| 647 | def SFHIvec: |
| 648 | RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 649 | "sfhi\t$rT, $rA, $val", IntegerOp, |
| 650 | [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val, |
| 651 | (v8i16 VECREG:$rA)))]>; |
| 652 | |
| 653 | def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 654 | "sfhi\t$rT, $rA, $val", IntegerOp, |
| 655 | [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>; |
| 656 | |
| 657 | def SFvec : RRForm<0b00000010000, (outs VECREG:$rT), |
| 658 | (ins VECREG:$rA, VECREG:$rB), |
| 659 | "sf\t$rT, $rA, $rB", IntegerOp, |
| 660 | [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| 661 | |
| 662 | def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 663 | "sf\t$rT, $rA, $rB", IntegerOp, |
| 664 | [(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>; |
| 665 | |
| 666 | def SFIvec: |
| 667 | RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 668 | "sfi\t$rT, $rA, $val", IntegerOp, |
| 669 | [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val, |
| 670 | (v4i32 VECREG:$rA)))]>; |
| 671 | |
| 672 | def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT), |
| 673 | (ins R32C:$rA, s10imm_i32:$val), |
| 674 | "sfi\t$rT, $rA, $val", IntegerOp, |
| 675 | [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>; |
| 676 | |
| 677 | // ADDX: only available in vector form, doesn't match a pattern. |
| 678 | def ADDXvec: |
| 679 | RRForm<0b00000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, |
| 680 | VECREG:$rCarry), |
| 681 | "addx\t$rT, $rA, $rB", IntegerOp, |
| 682 | []>, |
| 683 | RegConstraint<"$rCarry = $rT">, |
| 684 | NoEncode<"$rCarry">; |
| 685 | |
| 686 | // CG: only available in vector form, doesn't match a pattern. |
| 687 | def CGvec: |
| 688 | RRForm<0b01000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, |
| 689 | VECREG:$rCarry), |
| 690 | "cg\t$rT, $rA, $rB", IntegerOp, |
| 691 | []>, |
| 692 | RegConstraint<"$rCarry = $rT">, |
| 693 | NoEncode<"$rCarry">; |
| 694 | |
| 695 | // SFX: only available in vector form, doesn't match a pattern |
| 696 | def SFXvec: |
| 697 | RRForm<0b10000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, |
| 698 | VECREG:$rCarry), |
| 699 | "sfx\t$rT, $rA, $rB", IntegerOp, |
| 700 | []>, |
| 701 | RegConstraint<"$rCarry = $rT">, |
| 702 | NoEncode<"$rCarry">; |
| 703 | |
| 704 | // BG: only available in vector form, doesn't match a pattern. |
| 705 | def BGvec: |
| 706 | RRForm<0b01000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, |
| 707 | VECREG:$rCarry), |
| 708 | "bg\t$rT, $rA, $rB", IntegerOp, |
| 709 | []>, |
| 710 | RegConstraint<"$rCarry = $rT">, |
| 711 | NoEncode<"$rCarry">; |
| 712 | |
| 713 | // BGX: only available in vector form, doesn't match a pattern. |
| 714 | def BGXvec: |
| 715 | RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, |
| 716 | VECREG:$rCarry), |
| 717 | "bgx\t$rT, $rA, $rB", IntegerOp, |
| 718 | []>, |
| 719 | RegConstraint<"$rCarry = $rT">, |
| 720 | NoEncode<"$rCarry">; |
| 721 | |
| 722 | // Halfword multiply variants: |
| 723 | // N.B: These can be used to build up larger quantities (16x16 -> 32) |
| 724 | |
| 725 | def MPYv8i16: |
| 726 | RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 727 | "mpy\t$rT, $rA, $rB", IntegerMulDiv, |
| 728 | [(set (v8i16 VECREG:$rT), (SPUmpy_v8i16 (v8i16 VECREG:$rA), |
| 729 | (v8i16 VECREG:$rB)))]>; |
| 730 | |
| 731 | def MPYr16: |
| 732 | RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 733 | "mpy\t$rT, $rA, $rB", IntegerMulDiv, |
| 734 | [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>; |
| 735 | |
| 736 | def MPYUv4i32: |
| 737 | RRForm<0b00110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 738 | "mpyu\t$rT, $rA, $rB", IntegerMulDiv, |
| 739 | [(set (v4i32 VECREG:$rT), |
| 740 | (SPUmpyu_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| 741 | |
| 742 | def MPYUr16: |
| 743 | RRForm<0b00110011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB), |
| 744 | "mpyu\t$rT, $rA, $rB", IntegerMulDiv, |
| 745 | [(set R32C:$rT, (mul (zext R16C:$rA), |
| 746 | (zext R16C:$rB)))]>; |
| 747 | |
| 748 | def MPYUr32: |
| 749 | RRForm<0b00110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 750 | "mpyu\t$rT, $rA, $rB", IntegerMulDiv, |
| 751 | [(set R32C:$rT, (SPUmpyu_i32 R32C:$rA, R32C:$rB))]>; |
| 752 | |
| 753 | // mpyi: multiply 16 x s10imm -> 32 result (custom lowering for 32 bit result, |
| 754 | // this only produces the lower 16 bits) |
| 755 | def MPYIvec: |
| 756 | RI10Form<0b00101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 757 | "mpyi\t$rT, $rA, $val", IntegerMulDiv, |
| 758 | [(set (v8i16 VECREG:$rT), (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; |
| 759 | |
| 760 | def MPYIr16: |
| 761 | RI10Form<0b00101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 762 | "mpyi\t$rT, $rA, $val", IntegerMulDiv, |
| 763 | [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>; |
| 764 | |
| 765 | // mpyui: same issues as other multiplies, plus, this doesn't match a |
| 766 | // pattern... but may be used during target DAG selection or lowering |
| 767 | def MPYUIvec: |
| 768 | RI10Form<0b10101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 769 | "mpyui\t$rT, $rA, $val", IntegerMulDiv, |
| 770 | []>; |
| 771 | |
| 772 | def MPYUIr16: |
| 773 | RI10Form<0b10101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 774 | "mpyui\t$rT, $rA, $val", IntegerMulDiv, |
| 775 | []>; |
| 776 | |
| 777 | // mpya: 16 x 16 + 16 -> 32 bit result |
| 778 | def MPYAvec: |
| 779 | RRRForm<0b0011, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 780 | "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, |
| 781 | [(set (v4i32 VECREG:$rT), (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA), |
| 782 | (v8i16 VECREG:$rB)))), |
| 783 | (v4i32 VECREG:$rC)))]>; |
| 784 | |
| 785 | def MPYAr32: |
| 786 | RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), |
| 787 | "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, |
| 788 | [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)), |
| 789 | R32C:$rC))]>; |
| 790 | |
| 791 | def : Pat<(add (mul (sext R16C:$rA), (sext R16C:$rB)), R32C:$rC), |
| 792 | (MPYAr32 R16C:$rA, R16C:$rB, R32C:$rC)>; |
| 793 | |
| 794 | def MPYAr32_sextinreg: |
| 795 | RRRForm<0b0011, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC), |
| 796 | "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, |
| 797 | [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16), |
| 798 | (sext_inreg R32C:$rB, i16)), |
| 799 | R32C:$rC))]>; |
| 800 | |
| 801 | //def MPYAr32: |
| 802 | // RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), |
| 803 | // "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, |
| 804 | // [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)), |
| 805 | // R32C:$rC))]>; |
| 806 | |
| 807 | // mpyh: multiply high, used to synthesize 32-bit multiplies |
| 808 | def MPYHv4i32: |
| 809 | RRForm<0b10100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 810 | "mpyh\t$rT, $rA, $rB", IntegerMulDiv, |
| 811 | [(set (v4i32 VECREG:$rT), |
| 812 | (SPUmpyh_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| 813 | |
| 814 | def MPYHr32: |
| 815 | RRForm<0b10100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 816 | "mpyh\t$rT, $rA, $rB", IntegerMulDiv, |
| 817 | [(set R32C:$rT, (SPUmpyh_i32 R32C:$rA, R32C:$rB))]>; |
| 818 | |
| 819 | // mpys: multiply high and shift right (returns the top half of |
| 820 | // a 16-bit multiply, sign extended to 32 bits.) |
| 821 | def MPYSvec: |
| 822 | RRForm<0b11100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 823 | "mpys\t$rT, $rA, $rB", IntegerMulDiv, |
| 824 | []>; |
| 825 | |
| 826 | def MPYSr16: |
| 827 | RRForm<0b11100011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB), |
| 828 | "mpys\t$rT, $rA, $rB", IntegerMulDiv, |
| 829 | []>; |
| 830 | |
| 831 | // mpyhh: multiply high-high (returns the 32-bit result from multiplying |
| 832 | // the top 16 bits of the $rA, $rB) |
| 833 | def MPYHHv8i16: |
| 834 | RRForm<0b01100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 835 | "mpyhh\t$rT, $rA, $rB", IntegerMulDiv, |
| 836 | [(set (v8i16 VECREG:$rT), |
| 837 | (SPUmpyhh_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; |
| 838 | |
| 839 | def MPYHHr32: |
| 840 | RRForm<0b01100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 841 | "mpyhh\t$rT, $rA, $rB", IntegerMulDiv, |
| 842 | []>; |
| 843 | |
| 844 | // mpyhha: Multiply high-high, add to $rT: |
| 845 | def MPYHHAvec: |
| 846 | RRForm<0b01100010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 847 | "mpyhha\t$rT, $rA, $rB", IntegerMulDiv, |
| 848 | []>; |
| 849 | |
| 850 | def MPYHHAr32: |
| 851 | RRForm<0b01100010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 852 | "mpyhha\t$rT, $rA, $rB", IntegerMulDiv, |
| 853 | []>; |
| 854 | |
| 855 | // mpyhhu: Multiply high-high, unsigned |
| 856 | def MPYHHUvec: |
| 857 | RRForm<0b01110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 858 | "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv, |
| 859 | []>; |
| 860 | |
| 861 | def MPYHHUr32: |
| 862 | RRForm<0b01110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 863 | "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv, |
| 864 | []>; |
| 865 | |
| 866 | // mpyhhau: Multiply high-high, unsigned |
| 867 | def MPYHHAUvec: |
| 868 | RRForm<0b01110010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 869 | "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv, |
| 870 | []>; |
| 871 | |
| 872 | def MPYHHAUr32: |
| 873 | RRForm<0b01110010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 874 | "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv, |
| 875 | []>; |
| 876 | |
| 877 | // clz: Count leading zeroes |
| 878 | def CLZv4i32: |
| 879 | RRForm_1<0b10100101010, (outs VECREG:$rT), (ins VECREG:$rA), |
| 880 | "clz\t$rT, $rA", IntegerOp, |
| 881 | [/* intrinsic */]>; |
| 882 | |
| 883 | def CLZr32: |
| 884 | RRForm_1<0b10100101010, (outs R32C:$rT), (ins R32C:$rA), |
| 885 | "clz\t$rT, $rA", IntegerOp, |
| 886 | [(set R32C:$rT, (ctlz R32C:$rA))]>; |
| 887 | |
| 888 | // cntb: Count ones in bytes (aka "population count") |
| 889 | // NOTE: This instruction is really a vector instruction, but the custom |
| 890 | // lowering code uses it in unorthodox ways to support CTPOP for other |
| 891 | // data types! |
| 892 | def CNTBv16i8: |
| 893 | RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), |
| 894 | "cntb\t$rT, $rA", IntegerOp, |
| 895 | [(set (v16i8 VECREG:$rT), (SPUcntb_v16i8 (v16i8 VECREG:$rA)))]>; |
| 896 | |
| 897 | def CNTBv8i16 : |
| 898 | RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), |
| 899 | "cntb\t$rT, $rA", IntegerOp, |
| 900 | [(set (v8i16 VECREG:$rT), (SPUcntb_v8i16 (v8i16 VECREG:$rA)))]>; |
| 901 | |
| 902 | def CNTBv4i32 : |
| 903 | RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), |
| 904 | "cntb\t$rT, $rA", IntegerOp, |
| 905 | [(set (v4i32 VECREG:$rT), (SPUcntb_v4i32 (v4i32 VECREG:$rA)))]>; |
| 906 | |
| 907 | // fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits |
| 908 | def FSMB: |
| 909 | RRForm_1<0b01101101100, (outs VECREG:$rT), (ins R16C:$rA), |
| 910 | "fsmb\t$rT, $rA", SelectOp, |
| 911 | []>; |
| 912 | |
| 913 | // fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is |
| 914 | // only 8-bits wide (even though it's input as 16-bits here) |
| 915 | def FSMH: |
| 916 | RRForm_1<0b10101101100, (outs VECREG:$rT), (ins R16C:$rA), |
| 917 | "fsmh\t$rT, $rA", SelectOp, |
| 918 | []>; |
| 919 | |
| 920 | // fsm: Form select mask for words. Like the other fsm* instructions, |
| 921 | // only the lower 4 bits of $rA are significant. |
| 922 | def FSM: |
| 923 | RRForm_1<0b00101101100, (outs VECREG:$rT), (ins R16C:$rA), |
| 924 | "fsm\t$rT, $rA", SelectOp, |
| 925 | []>; |
| 926 | |
| 927 | // gbb: Gather all low order bits from each byte in $rA into a single 16-bit |
| 928 | // quantity stored into $rT |
| 929 | def GBB: |
| 930 | RRForm_1<0b01001101100, (outs R16C:$rT), (ins VECREG:$rA), |
| 931 | "gbb\t$rT, $rA", GatherOp, |
| 932 | []>; |
| 933 | |
| 934 | // gbh: Gather all low order bits from each halfword in $rA into a single |
| 935 | // 8-bit quantity stored in $rT |
| 936 | def GBH: |
| 937 | RRForm_1<0b10001101100, (outs R16C:$rT), (ins VECREG:$rA), |
| 938 | "gbh\t$rT, $rA", GatherOp, |
| 939 | []>; |
| 940 | |
| 941 | // gb: Gather all low order bits from each word in $rA into a single |
| 942 | // 4-bit quantity stored in $rT |
| 943 | def GB: |
| 944 | RRForm_1<0b00001101100, (outs R16C:$rT), (ins VECREG:$rA), |
| 945 | "gb\t$rT, $rA", GatherOp, |
| 946 | []>; |
| 947 | |
| 948 | // avgb: average bytes |
| 949 | def AVGB: |
| 950 | RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 951 | "avgb\t$rT, $rA, $rB", ByteOp, |
| 952 | []>; |
| 953 | |
| 954 | // absdb: absolute difference of bytes |
| 955 | def ABSDB: |
| 956 | RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 957 | "absdb\t$rT, $rA, $rB", ByteOp, |
| 958 | []>; |
| 959 | |
| 960 | // sumb: sum bytes into halfwords |
| 961 | def SUMB: |
| 962 | RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 963 | "sumb\t$rT, $rA, $rB", ByteOp, |
| 964 | []>; |
| 965 | |
| 966 | // Sign extension operations: |
| 967 | def XSBHvec: |
| 968 | RRForm_1<0b01101101010, (outs VECREG:$rDst), (ins VECREG:$rSrc), |
| 969 | "xsbh\t$rDst, $rSrc", IntegerOp, |
| 970 | [(set (v8i16 VECREG:$rDst), (sext (v16i8 VECREG:$rSrc)))]>; |
| 971 | |
| 972 | // Ordinary form for XSBH |
| 973 | def XSBHr16: |
| 974 | RRForm_1<0b01101101010, (outs R16C:$rDst), (ins R16C:$rSrc), |
| 975 | "xsbh\t$rDst, $rSrc", IntegerOp, |
| 976 | [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>; |
| 977 | |
| 978 | // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit |
| 979 | // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32 |
| 980 | // pattern below). Intentionally doesn't match a pattern because we want the |
| 981 | // sext 8->32 pattern to do the work for us, namely because we need the extra |
| 982 | // XSHWr32. |
| 983 | def XSBHr32: |
| 984 | RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc), |
| 985 | "xsbh\t$rDst, $rSrc", IntegerOp, |
| 986 | [(set R32C:$rDst, (sext_inreg R32C:$rSrc, i8))]>; |
| 987 | |
| 988 | // Sign extend halfwords to words: |
| 989 | def XSHWvec: |
| 990 | RRForm_1<0b01101101010, (outs VECREG:$rDest), (ins VECREG:$rSrc), |
| 991 | "xshw\t$rDest, $rSrc", IntegerOp, |
| 992 | [(set (v4i32 VECREG:$rDest), (sext (v8i16 VECREG:$rSrc)))]>; |
| 993 | |
| 994 | def XSHWr32: |
| 995 | RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc), |
| 996 | "xshw\t$rDst, $rSrc", IntegerOp, |
| 997 | [(set R32C:$rDst, (sext_inreg R32C:$rSrc, i16))]>; |
| 998 | |
| 999 | def XSHWr16: |
| 1000 | RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R16C:$rSrc), |
| 1001 | "xshw\t$rDst, $rSrc", IntegerOp, |
| 1002 | [(set R32C:$rDst, (sext R16C:$rSrc))]>; |
| 1003 | |
| 1004 | def XSWDvec: |
| 1005 | RRForm_1<0b01100101010, (outs VECREG:$rDst), (ins VECREG:$rSrc), |
| 1006 | "xswd\t$rDst, $rSrc", IntegerOp, |
| 1007 | [(set (v2i64 VECREG:$rDst), (sext (v4i32 VECREG:$rSrc)))]>; |
| 1008 | |
| 1009 | def XSWDr64: |
| 1010 | RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R64C:$rSrc), |
| 1011 | "xswd\t$rDst, $rSrc", IntegerOp, |
| 1012 | [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>; |
| 1013 | |
| 1014 | def XSWDr32: |
| 1015 | RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R32C:$rSrc), |
| 1016 | "xswd\t$rDst, $rSrc", IntegerOp, |
| 1017 | [(set R64C:$rDst, (SPUsext32_to_64 R32C:$rSrc))]>; |
| 1018 | |
| 1019 | def : Pat<(sext R32C:$inp), |
| 1020 | (XSWDr32 R32C:$inp)>; |
| 1021 | |
| 1022 | // AND operations |
| 1023 | def ANDv16i8: |
| 1024 | RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1025 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1026 | [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA), |
| 1027 | (v16i8 VECREG:$rB)))]>; |
| 1028 | |
| 1029 | def ANDv8i16: |
| 1030 | RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1031 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1032 | [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA), |
| 1033 | (v8i16 VECREG:$rB)))]>; |
| 1034 | |
| 1035 | def ANDv4i32: |
| 1036 | RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1037 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1038 | [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA), |
| 1039 | (v4i32 VECREG:$rB)))]>; |
| 1040 | |
| 1041 | def ANDr32: |
| 1042 | RRForm<0b10000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1043 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1044 | [(set R32C:$rT, (and R32C:$rA, R32C:$rB))]>; |
| 1045 | |
| 1046 | //===--------------------------------------------- |
| 1047 | // Special instructions to perform the fabs instruction |
| 1048 | def ANDfabs32: |
| 1049 | RRForm<0b10000011000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), |
| 1050 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1051 | [/* Intentionally does not match a pattern */]>; |
| 1052 | |
| 1053 | def ANDfabs64: |
| 1054 | RRForm<0b10000011000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB), |
| 1055 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1056 | [/* Intentionally does not match a pattern */]>; |
| 1057 | |
| 1058 | // Could use ANDv4i32, but won't for clarity |
| 1059 | def ANDfabsvec: |
| 1060 | RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1061 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1062 | [/* Intentionally does not match a pattern */]>; |
| 1063 | |
| 1064 | //===--------------------------------------------- |
| 1065 | |
| 1066 | def ANDr16: |
| 1067 | RRForm<0b10000011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1068 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1069 | [(set R16C:$rT, (and R16C:$rA, R16C:$rB))]>; |
| 1070 | |
| 1071 | // Hacked form of AND to zero-extend 16-bit quantities to 32-bit |
| 1072 | // quantities -- see 16->32 zext pattern. |
| 1073 | // |
| 1074 | // This pattern is somewhat artificial, since it might match some |
| 1075 | // compiler generated pattern but it is unlikely to do so. |
| 1076 | def AND2To4: |
| 1077 | RRForm<0b10000011000, (outs R32C:$rT), (ins R16C:$rA, R32C:$rB), |
| 1078 | "and\t$rT, $rA, $rB", IntegerOp, |
| 1079 | [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>; |
| 1080 | |
| 1081 | // N.B.: vnot_conv is one of those special target selection pattern fragments, |
| 1082 | // in which we expect there to be a bit_convert on the constant. Bear in mind |
| 1083 | // that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a |
| 1084 | // constant -1 vector.) |
| 1085 | def ANDCv16i8: |
| 1086 | RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1087 | "andc\t$rT, $rA, $rB", IntegerOp, |
| 1088 | [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA), |
| 1089 | (vnot (v16i8 VECREG:$rB))))]>; |
| 1090 | |
| 1091 | def ANDCv8i16: |
| 1092 | RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1093 | "andc\t$rT, $rA, $rB", IntegerOp, |
| 1094 | [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA), |
| 1095 | (vnot (v8i16 VECREG:$rB))))]>; |
| 1096 | |
| 1097 | def ANDCv4i32: |
| 1098 | RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1099 | "andc\t$rT, $rA, $rB", IntegerOp, |
| 1100 | [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA), |
| 1101 | (vnot (v4i32 VECREG:$rB))))]>; |
| 1102 | |
| 1103 | def ANDCr32: |
| 1104 | RRForm<0b10000011010, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1105 | "andc\t$rT, $rA, $rB", IntegerOp, |
| 1106 | [(set R32C:$rT, (and R32C:$rA, (not R32C:$rB)))]>; |
| 1107 | |
| 1108 | def ANDCr16: |
| 1109 | RRForm<0b10000011010, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1110 | "andc\t$rT, $rA, $rB", IntegerOp, |
| 1111 | [(set R16C:$rT, (and R16C:$rA, (not R16C:$rB)))]>; |
| 1112 | |
| 1113 | def ANDBIv16i8: |
| 1114 | RI10Form<0b01101000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| 1115 | "andbi\t$rT, $rA, $val", IntegerOp, |
| 1116 | [(set (v16i8 VECREG:$rT), |
| 1117 | (and (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>; |
| 1118 | |
| 1119 | def ANDHIv8i16: |
| 1120 | RI10Form<0b10101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 1121 | "andhi\t$rT, $rA, $val", IntegerOp, |
| 1122 | [(set (v8i16 VECREG:$rT), |
| 1123 | (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; |
| 1124 | |
| 1125 | def ANDHIr16: |
| 1126 | RI10Form<0b10101000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 1127 | "andhi\t$rT, $rA, $val", IntegerOp, |
| 1128 | [(set R16C:$rT, (and R16C:$rA, i16ImmSExt10:$val))]>; |
| 1129 | |
| 1130 | def ANDIv4i32: |
| 1131 | RI10Form<0b00101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 1132 | "andi\t$rT, $rA, $val", IntegerOp, |
| 1133 | [(set (v4i32 VECREG:$rT), |
| 1134 | (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; |
| 1135 | |
| 1136 | def ANDIr32: |
| 1137 | RI10Form<0b10101000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| 1138 | "andi\t$rT, $rA, $val", IntegerOp, |
| 1139 | [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>; |
| 1140 | |
| 1141 | // Hacked form of ANDI to zero-extend i16 quantities to i32. See the |
| 1142 | // zext 16->32 pattern below. |
| 1143 | // |
| 1144 | // Note that this pattern is somewhat artificial, since it might match |
| 1145 | // something the compiler generates but is unlikely to occur in practice. |
| 1146 | def ANDI2To4: |
| 1147 | RI10Form<0b10101000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), |
| 1148 | "andi\t$rT, $rA, $val", IntegerOp, |
| 1149 | [(set R32C:$rT, (and (zext R16C:$rA), i32ImmSExt10:$val))]>; |
| 1150 | |
| 1151 | // Bitwise OR group: |
| 1152 | // Bitwise "or" (N.B.: These are also register-register copy instructions...) |
| 1153 | def ORv16i8: |
| 1154 | RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1155 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1156 | [(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>; |
| 1157 | |
| 1158 | def ORv8i16: |
| 1159 | RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1160 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1161 | [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; |
| 1162 | |
| 1163 | def ORv4i32: |
| 1164 | RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1165 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1166 | [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| 1167 | |
| 1168 | def ORv4f32: |
| 1169 | RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1170 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1171 | [(set (v4f32 VECREG:$rT), |
| 1172 | (v4f32 (bitconvert (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))))]>; |
| 1173 | |
| 1174 | def ORv2f64: |
| 1175 | RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1176 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1177 | [(set (v2f64 VECREG:$rT), |
| 1178 | (v2f64 (bitconvert (or (v2i64 VECREG:$rA), (v2i64 VECREG:$rB)))))]>; |
| 1179 | |
| 1180 | def ORgprc: |
| 1181 | RRForm<0b10000010000, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), |
| 1182 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1183 | [(set GPRC:$rT, (or GPRC:$rA, GPRC:$rB))]>; |
| 1184 | |
| 1185 | def ORr64: |
| 1186 | RRForm<0b10000010000, (outs R64C:$rT), (ins R64C:$rA, R64C:$rB), |
| 1187 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1188 | [(set R64C:$rT, (or R64C:$rA, R64C:$rB))]>; |
| 1189 | |
| 1190 | def ORr32: |
| 1191 | RRForm<0b10000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1192 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1193 | [(set R32C:$rT, (or R32C:$rA, R32C:$rB))]>; |
| 1194 | |
| 1195 | def ORr16: |
| 1196 | RRForm<0b10000010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1197 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1198 | [(set R16C:$rT, (or R16C:$rA, R16C:$rB))]>; |
| 1199 | |
| 1200 | // ORv*_*: Used in scalar->vector promotions: |
| 1201 | def ORv8i16_i16: |
| 1202 | RRForm<0b10000010000, (outs VECREG:$rT), (ins R16C:$rA, R16C:$rB), |
| 1203 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1204 | [/* no pattern */]>; |
| 1205 | |
| 1206 | def : Pat<(v8i16 (SPUpromote_scalar R16C:$rA)), |
| 1207 | (ORv8i16_i16 R16C:$rA, R16C:$rA)>; |
| 1208 | |
| 1209 | def ORv4i32_i32: |
| 1210 | RRForm<0b10000010000, (outs VECREG:$rT), (ins R32C:$rA, R32C:$rB), |
| 1211 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1212 | [/* no pattern */]>; |
| 1213 | |
| 1214 | def : Pat<(v4i32 (SPUpromote_scalar R32C:$rA)), |
| 1215 | (ORv4i32_i32 R32C:$rA, R32C:$rA)>; |
| 1216 | |
| 1217 | def ORv2i64_i64: |
| 1218 | RRForm<0b10000010000, (outs VECREG:$rT), (ins R64C:$rA, R64C:$rB), |
| 1219 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1220 | [/* no pattern */]>; |
| 1221 | |
| 1222 | def : Pat<(v2i64 (SPUpromote_scalar R64C:$rA)), |
| 1223 | (ORv2i64_i64 R64C:$rA, R64C:$rA)>; |
| 1224 | |
| 1225 | def ORv4f32_f32: |
| 1226 | RRForm<0b10000010000, (outs VECREG:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 1227 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1228 | [/* no pattern */]>; |
| 1229 | |
| 1230 | def : Pat<(v4f32 (SPUpromote_scalar R32FP:$rA)), |
| 1231 | (ORv4f32_f32 R32FP:$rA, R32FP:$rA)>; |
| 1232 | |
| 1233 | def ORv2f64_f64: |
| 1234 | RRForm<0b10000010000, (outs VECREG:$rT), (ins R64FP:$rA, R64FP:$rB), |
| 1235 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1236 | [/* no pattern */]>; |
| 1237 | |
| 1238 | def : Pat<(v2f64 (SPUpromote_scalar R64FP:$rA)), |
| 1239 | (ORv2f64_f64 R64FP:$rA, R64FP:$rA)>; |
| 1240 | |
| 1241 | // ORi*_v*: Used to extract vector element 0 (the preferred slot) |
| 1242 | def ORi16_v8i16: |
| 1243 | RRForm<0b10000010000, (outs R16C:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1244 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1245 | [/* no pattern */]>; |
| 1246 | |
| 1247 | def : Pat<(SPUextract_elt0 (v8i16 VECREG:$rA)), |
| 1248 | (ORi16_v8i16 VECREG:$rA, VECREG:$rA)>; |
| 1249 | |
| 1250 | def : Pat<(SPUextract_elt0_chained (v8i16 VECREG:$rA)), |
| 1251 | (ORi16_v8i16 VECREG:$rA, VECREG:$rA)>; |
| 1252 | |
| 1253 | def ORi32_v4i32: |
| 1254 | RRForm<0b10000010000, (outs R32C:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1255 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1256 | [/* no pattern */]>; |
| 1257 | |
| 1258 | def : Pat<(SPUextract_elt0 (v4i32 VECREG:$rA)), |
| 1259 | (ORi32_v4i32 VECREG:$rA, VECREG:$rA)>; |
| 1260 | |
| 1261 | def : Pat<(SPUextract_elt0_chained (v4i32 VECREG:$rA)), |
| 1262 | (ORi32_v4i32 VECREG:$rA, VECREG:$rA)>; |
| 1263 | |
| 1264 | def ORi64_v2i64: |
| 1265 | RRForm<0b10000010000, (outs R64C:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1266 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1267 | [/* no pattern */]>; |
| 1268 | |
| 1269 | def : Pat<(SPUextract_elt0 (v2i64 VECREG:$rA)), |
| 1270 | (ORi64_v2i64 VECREG:$rA, VECREG:$rA)>; |
| 1271 | |
| 1272 | def : Pat<(SPUextract_elt0_chained (v2i64 VECREG:$rA)), |
| 1273 | (ORi64_v2i64 VECREG:$rA, VECREG:$rA)>; |
| 1274 | |
| 1275 | def ORf32_v4f32: |
| 1276 | RRForm<0b10000010000, (outs R32FP:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1277 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1278 | [/* no pattern */]>; |
| 1279 | |
| 1280 | def : Pat<(SPUextract_elt0 (v4f32 VECREG:$rA)), |
| 1281 | (ORf32_v4f32 VECREG:$rA, VECREG:$rA)>; |
| 1282 | |
| 1283 | def : Pat<(SPUextract_elt0_chained (v4f32 VECREG:$rA)), |
| 1284 | (ORf32_v4f32 VECREG:$rA, VECREG:$rA)>; |
| 1285 | |
| 1286 | def ORf64_v2f64: |
| 1287 | RRForm<0b10000010000, (outs R64FP:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1288 | "or\t$rT, $rA, $rB", IntegerOp, |
| 1289 | [/* no pattern */]>; |
| 1290 | |
| 1291 | def : Pat<(SPUextract_elt0 (v2f64 VECREG:$rA)), |
| 1292 | (ORf64_v2f64 VECREG:$rA, VECREG:$rA)>; |
| 1293 | |
| 1294 | def : Pat<(SPUextract_elt0_chained (v2f64 VECREG:$rA)), |
| 1295 | (ORf64_v2f64 VECREG:$rA, VECREG:$rA)>; |
| 1296 | |
| 1297 | // ORC: Bitwise "or" with complement (match before ORvec, ORr32) |
| 1298 | def ORCv16i8: |
| 1299 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1300 | "orc\t$rT, $rA, $rB", IntegerOp, |
| 1301 | [(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA), |
| 1302 | (vnot (v16i8 VECREG:$rB))))]>; |
| 1303 | |
| 1304 | def ORCv8i16: |
| 1305 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1306 | "orc\t$rT, $rA, $rB", IntegerOp, |
| 1307 | [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), |
| 1308 | (vnot (v8i16 VECREG:$rB))))]>; |
| 1309 | |
| 1310 | def ORCv4i32: |
| 1311 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1312 | "orc\t$rT, $rA, $rB", IntegerOp, |
| 1313 | [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), |
| 1314 | (vnot (v4i32 VECREG:$rB))))]>; |
| 1315 | |
| 1316 | def ORCr32: |
| 1317 | RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1318 | "orc\t$rT, $rA, $rB", IntegerOp, |
| 1319 | [(set R32C:$rT, (or R32C:$rA, (not R32C:$rB)))]>; |
| 1320 | |
| 1321 | def ORCr16: |
| 1322 | RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1323 | "orc\t$rT, $rA, $rB", IntegerOp, |
| 1324 | [(set R16C:$rT, (or R16C:$rA, (not R16C:$rB)))]>; |
| 1325 | |
| 1326 | // OR byte immediate |
| 1327 | def ORBIv16i8: |
| 1328 | RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| 1329 | "orbi\t$rT, $rA, $val", IntegerOp, |
| 1330 | [(set (v16i8 VECREG:$rT), |
| 1331 | (or (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>; |
| 1332 | |
| 1333 | // OR halfword immediate |
| 1334 | def ORHIv8i16: |
| 1335 | RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 1336 | "orhi\t$rT, $rA, $val", IntegerOp, |
| 1337 | [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), |
| 1338 | v8i16SExt10Imm:$val))]>; |
| 1339 | |
| 1340 | def ORHIr16: |
| 1341 | RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 1342 | "orhi\t$rT, $rA, $val", IntegerOp, |
| 1343 | [(set R16C:$rT, (or R16C:$rA, i16ImmSExt10:$val))]>; |
| 1344 | |
| 1345 | // Bitwise "or" with immediate |
| 1346 | def ORIv4i32: |
| 1347 | RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 1348 | "ori\t$rT, $rA, $val", IntegerOp, |
| 1349 | [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), |
| 1350 | v4i32SExt10Imm:$val))]>; |
| 1351 | |
| 1352 | def ORIr32: |
| 1353 | RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| 1354 | "ori\t$rT, $rA, $val", IntegerOp, |
| 1355 | [(set R32C:$rT, (or R32C:$rA, i32ImmSExt10:$val))]>; |
| 1356 | |
| 1357 | // Hacked forms of or immediate to copy one 32- and 64-bit FP register |
| 1358 | // to another. Do not match patterns. |
| 1359 | def ORIf32: |
| 1360 | RI10Form_1<0b00100000, (outs R32FP:$rT), (ins R32FP:$rA, s10imm_i32:$val), |
| 1361 | "ori\t$rT, $rA, $val", IntegerOp, |
| 1362 | [/* no pattern */]>; |
| 1363 | |
| 1364 | def ORIf64: |
| 1365 | RI10Form_1<0b00100000, (outs R64FP:$rT), (ins R64FP:$rA, s10imm_i32:$val), |
| 1366 | "ori\t$rT, $rA, $val", IntegerOp, |
| 1367 | [/* no pattern */]>; |
| 1368 | |
| 1369 | def ORIr64: |
| 1370 | RI10Form_1<0b00100000, (outs R64C:$rT), (ins R64C:$rA, s10imm_i32:$val), |
| 1371 | "ori\t$rT, $rA, $val", IntegerOp, |
| 1372 | [/* no pattern */]>; |
| 1373 | |
| 1374 | // ORI2To4: hacked version of the ori instruction to extend 16-bit quantities |
| 1375 | // to 32-bit quantities. used exclusively to match "anyext" conversions (vide |
| 1376 | // infra "anyext 16->32" pattern.) |
| 1377 | def ORI2To4: |
| 1378 | RI10Form<0b00100000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), |
| 1379 | "ori\t$rT, $rA, $val", IntegerOp, |
| 1380 | [(set R32C:$rT, (or (anyext R16C:$rA), i32ImmSExt10:$val))]>; |
| 1381 | |
| 1382 | // ORX: "or" across the vector: or's $rA's word slots leaving the result in |
| 1383 | // $rT[0], slots 1-3 are zeroed. |
| 1384 | // |
| 1385 | // Needs to match an intrinsic pattern. |
| 1386 | def ORXv4i32: |
| 1387 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1388 | "orx\t$rT, $rA, $rB", IntegerOp, |
| 1389 | []>; |
| 1390 | |
| 1391 | def XORv16i8: |
| 1392 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1393 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1394 | [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>; |
| 1395 | |
| 1396 | def XORv8i16: |
| 1397 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1398 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1399 | [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; |
| 1400 | |
| 1401 | def XORv4i32: |
| 1402 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1403 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1404 | [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| 1405 | |
| 1406 | def XORr32: |
| 1407 | RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1408 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1409 | [(set R32C:$rT, (xor R32C:$rA, R32C:$rB))]>; |
| 1410 | |
| 1411 | //==---------------------------------------------------------- |
| 1412 | // Special forms for floating point instructions. |
| 1413 | // Bitwise ORs and ANDs don't make sense for normal floating |
| 1414 | // point numbers. These operations (fneg and fabs), however, |
| 1415 | // require bitwise logical ops to manipulate the sign bit. |
| 1416 | def XORfneg32: |
| 1417 | RRForm<0b10010010000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), |
| 1418 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1419 | [/* Intentionally does not match a pattern, see fneg32 */]>; |
| 1420 | |
| 1421 | // KLUDGY! Better way to do this without a VECREG? bitconvert? |
| 1422 | // VECREG is assumed to contain two identical 64-bit masks, so |
| 1423 | // it doesn't matter which word we select for the xor |
| 1424 | def XORfneg64: |
| 1425 | RRForm<0b10010010000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB), |
| 1426 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1427 | [/* Intentionally does not match a pattern, see fneg64 */]>; |
| 1428 | |
| 1429 | // Could use XORv4i32, but will use this for clarity |
| 1430 | def XORfnegvec: |
| 1431 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1432 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1433 | [/* Intentionally does not match a pattern, see fneg{32,64} */]>; |
| 1434 | |
| 1435 | //==---------------------------------------------------------- |
| 1436 | |
| 1437 | def XORr16: |
| 1438 | RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1439 | "xor\t$rT, $rA, $rB", IntegerOp, |
| 1440 | [(set R16C:$rT, (xor R16C:$rA, R16C:$rB))]>; |
| 1441 | |
| 1442 | def XORBIv16i8: |
| 1443 | RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| 1444 | "xorbi\t$rT, $rA, $val", IntegerOp, |
| 1445 | [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>; |
| 1446 | |
| 1447 | def XORHIv8i16: |
| 1448 | RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 1449 | "xorhi\t$rT, $rA, $val", IntegerOp, |
| 1450 | [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), |
| 1451 | v8i16SExt10Imm:$val))]>; |
| 1452 | |
| 1453 | def XORHIr16: |
| 1454 | RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 1455 | "xorhi\t$rT, $rA, $val", IntegerOp, |
| 1456 | [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>; |
| 1457 | |
| 1458 | def XORIv4i32: |
| 1459 | RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 1460 | "xori\t$rT, $rA, $val", IntegerOp, |
| 1461 | [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), |
| 1462 | v4i32SExt10Imm:$val))]>; |
| 1463 | |
| 1464 | def XORIr32: |
| 1465 | RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| 1466 | "xori\t$rT, $rA, $val", IntegerOp, |
| 1467 | [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>; |
| 1468 | |
| 1469 | // NAND: |
| 1470 | def NANDv16i8: |
| 1471 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1472 | "nand\t$rT, $rA, $rB", IntegerOp, |
| 1473 | [(set (v16i8 VECREG:$rT), (vnot (and (v16i8 VECREG:$rA), |
| 1474 | (v16i8 VECREG:$rB))))]>; |
| 1475 | |
| 1476 | def NANDv8i16: |
| 1477 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1478 | "nand\t$rT, $rA, $rB", IntegerOp, |
| 1479 | [(set (v8i16 VECREG:$rT), (vnot (and (v8i16 VECREG:$rA), |
| 1480 | (v8i16 VECREG:$rB))))]>; |
| 1481 | |
| 1482 | def NANDv4i32: |
| 1483 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1484 | "nand\t$rT, $rA, $rB", IntegerOp, |
| 1485 | [(set (v4i32 VECREG:$rT), (vnot (and (v4i32 VECREG:$rA), |
| 1486 | (v4i32 VECREG:$rB))))]>; |
| 1487 | |
| 1488 | def NANDr32: |
| 1489 | RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1490 | "nand\t$rT, $rA, $rB", IntegerOp, |
| 1491 | [(set R32C:$rT, (not (and R32C:$rA, R32C:$rB)))]>; |
| 1492 | |
| 1493 | def NANDr16: |
| 1494 | RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1495 | "nand\t$rT, $rA, $rB", IntegerOp, |
| 1496 | [(set R16C:$rT, (not (and R16C:$rA, R16C:$rB)))]>; |
| 1497 | |
| 1498 | // NOR: |
| 1499 | def NORv16i8: |
| 1500 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1501 | "nor\t$rT, $rA, $rB", IntegerOp, |
| 1502 | [(set (v16i8 VECREG:$rT), (vnot (or (v16i8 VECREG:$rA), |
| 1503 | (v16i8 VECREG:$rB))))]>; |
| 1504 | |
| 1505 | def NORv8i16: |
| 1506 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1507 | "nor\t$rT, $rA, $rB", IntegerOp, |
| 1508 | [(set (v8i16 VECREG:$rT), (vnot (or (v8i16 VECREG:$rA), |
| 1509 | (v8i16 VECREG:$rB))))]>; |
| 1510 | |
| 1511 | def NORv4i32: |
| 1512 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1513 | "nor\t$rT, $rA, $rB", IntegerOp, |
| 1514 | [(set (v4i32 VECREG:$rT), (vnot (or (v4i32 VECREG:$rA), |
| 1515 | (v4i32 VECREG:$rB))))]>; |
| 1516 | |
| 1517 | def NORr32: |
| 1518 | RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1519 | "nor\t$rT, $rA, $rB", IntegerOp, |
| 1520 | [(set R32C:$rT, (not (or R32C:$rA, R32C:$rB)))]>; |
| 1521 | |
| 1522 | def NORr16: |
| 1523 | RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1524 | "nor\t$rT, $rA, $rB", IntegerOp, |
| 1525 | [(set R16C:$rT, (not (or R16C:$rA, R16C:$rB)))]>; |
| 1526 | |
| 1527 | // EQV: Equivalence (1 for each same bit, otherwise 0) |
| 1528 | def EQVv16i8: |
| 1529 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1530 | "eqv\t$rT, $rA, $rB", IntegerOp, |
| 1531 | [(set (v16i8 VECREG:$rT), (or (and (v16i8 VECREG:$rA), |
| 1532 | (v16i8 VECREG:$rB)), |
| 1533 | (and (vnot (v16i8 VECREG:$rA)), |
| 1534 | (vnot (v16i8 VECREG:$rB)))))]>; |
| 1535 | |
| 1536 | def : Pat<(xor (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rB))), |
| 1537 | (EQVv16i8 VECREG:$rA, VECREG:$rB)>; |
| 1538 | |
| 1539 | def : Pat<(xor (vnot (v16i8 VECREG:$rA)), (v16i8 VECREG:$rB)), |
| 1540 | (EQVv16i8 VECREG:$rA, VECREG:$rB)>; |
| 1541 | |
| 1542 | def EQVv8i16: |
| 1543 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1544 | "eqv\t$rT, $rA, $rB", IntegerOp, |
| 1545 | [(set (v8i16 VECREG:$rT), (or (and (v8i16 VECREG:$rA), |
| 1546 | (v8i16 VECREG:$rB)), |
| 1547 | (and (vnot (v8i16 VECREG:$rA)), |
| 1548 | (vnot (v8i16 VECREG:$rB)))))]>; |
| 1549 | |
| 1550 | def : Pat<(xor (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rB))), |
| 1551 | (EQVv8i16 VECREG:$rA, VECREG:$rB)>; |
| 1552 | |
| 1553 | def : Pat<(xor (vnot (v8i16 VECREG:$rA)), (v8i16 VECREG:$rB)), |
| 1554 | (EQVv8i16 VECREG:$rA, VECREG:$rB)>; |
| 1555 | |
| 1556 | def EQVv4i32: |
| 1557 | RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 1558 | "eqv\t$rT, $rA, $rB", IntegerOp, |
| 1559 | [(set (v4i32 VECREG:$rT), (or (and (v4i32 VECREG:$rA), |
| 1560 | (v4i32 VECREG:$rB)), |
| 1561 | (and (vnot (v4i32 VECREG:$rA)), |
| 1562 | (vnot (v4i32 VECREG:$rB)))))]>; |
| 1563 | |
| 1564 | def : Pat<(xor (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rB))), |
| 1565 | (EQVv4i32 VECREG:$rA, VECREG:$rB)>; |
| 1566 | |
| 1567 | def : Pat<(xor (vnot (v4i32 VECREG:$rA)), (v4i32 VECREG:$rB)), |
| 1568 | (EQVv4i32 VECREG:$rA, VECREG:$rB)>; |
| 1569 | |
| 1570 | def EQVr32: |
| 1571 | RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1572 | "eqv\t$rT, $rA, $rB", IntegerOp, |
| 1573 | [(set R32C:$rT, (or (and R32C:$rA, R32C:$rB), |
| 1574 | (and (not R32C:$rA), (not R32C:$rB))))]>; |
| 1575 | |
| 1576 | def : Pat<(xor R32C:$rA, (not R32C:$rB)), |
| 1577 | (EQVr32 R32C:$rA, R32C:$rB)>; |
| 1578 | |
| 1579 | def : Pat<(xor (not R32C:$rA), R32C:$rB), |
| 1580 | (EQVr32 R32C:$rA, R32C:$rB)>; |
| 1581 | |
| 1582 | def EQVr16: |
| 1583 | RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1584 | "eqv\t$rT, $rA, $rB", IntegerOp, |
| 1585 | [(set R16C:$rT, (or (and R16C:$rA, R16C:$rB), |
| 1586 | (and (not R16C:$rA), (not R16C:$rB))))]>; |
| 1587 | |
| 1588 | def : Pat<(xor R16C:$rA, (not R16C:$rB)), |
| 1589 | (EQVr16 R16C:$rA, R16C:$rB)>; |
| 1590 | |
| 1591 | def : Pat<(xor (not R16C:$rA), R16C:$rB), |
| 1592 | (EQVr16 R16C:$rA, R16C:$rB)>; |
| 1593 | |
| 1594 | // gcc optimizes (p & q) | (~p & ~q) -> ~(p | q) | (p & q), so match that |
| 1595 | // pattern also: |
| 1596 | def : Pat<(or (vnot (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))), |
| 1597 | (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))), |
| 1598 | (EQVv16i8 VECREG:$rA, VECREG:$rB)>; |
| 1599 | |
| 1600 | def : Pat<(or (vnot (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))), |
| 1601 | (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))), |
| 1602 | (EQVv8i16 VECREG:$rA, VECREG:$rB)>; |
| 1603 | |
| 1604 | def : Pat<(or (vnot (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))), |
| 1605 | (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))), |
| 1606 | (EQVv4i32 VECREG:$rA, VECREG:$rB)>; |
| 1607 | |
| 1608 | def : Pat<(or (not (or R32C:$rA, R32C:$rB)), (and R32C:$rA, R32C:$rB)), |
| 1609 | (EQVr32 R32C:$rA, R32C:$rB)>; |
| 1610 | |
| 1611 | def : Pat<(or (not (or R16C:$rA, R16C:$rB)), (and R16C:$rA, R16C:$rB)), |
| 1612 | (EQVr16 R16C:$rA, R16C:$rB)>; |
| 1613 | |
| 1614 | // Select bits: |
| 1615 | def SELBv16i8: |
| 1616 | RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 1617 | "selb\t$rT, $rA, $rB, $rC", IntegerOp, |
| 1618 | [(set (v16i8 VECREG:$rT), |
| 1619 | (SPUselb_v16i8 (v16i8 VECREG:$rA), (v16i8 VECREG:$rB), |
| 1620 | (v16i8 VECREG:$rC)))]>; |
| 1621 | |
| 1622 | def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), |
| 1623 | (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), |
| 1624 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1625 | |
| 1626 | def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), |
| 1627 | (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), |
| 1628 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1629 | |
| 1630 | def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), |
| 1631 | (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), |
| 1632 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1633 | |
| 1634 | def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), |
| 1635 | (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), |
| 1636 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1637 | |
| 1638 | def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), |
| 1639 | (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), |
| 1640 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1641 | |
| 1642 | def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), |
| 1643 | (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), |
| 1644 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1645 | |
| 1646 | def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), |
| 1647 | (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), |
| 1648 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1649 | |
| 1650 | def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), |
| 1651 | (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), |
| 1652 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1653 | |
| 1654 | def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), |
| 1655 | (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), |
| 1656 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1657 | |
| 1658 | def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), |
| 1659 | (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), |
| 1660 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1661 | |
| 1662 | def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), |
| 1663 | (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), |
| 1664 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1665 | |
| 1666 | def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), |
| 1667 | (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), |
| 1668 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1669 | |
| 1670 | def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), |
| 1671 | (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), |
| 1672 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1673 | |
| 1674 | def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), |
| 1675 | (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), |
| 1676 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1677 | |
| 1678 | def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), |
| 1679 | (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), |
| 1680 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1681 | |
| 1682 | def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), |
| 1683 | (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), |
| 1684 | (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1685 | |
| 1686 | def SELBv8i16: |
| 1687 | RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 1688 | "selb\t$rT, $rA, $rB, $rC", IntegerOp, |
| 1689 | [(set (v8i16 VECREG:$rT), |
| 1690 | (SPUselb_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB), |
| 1691 | (v8i16 VECREG:$rC)))]>; |
| 1692 | |
| 1693 | def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), |
| 1694 | (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), |
| 1695 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1696 | |
| 1697 | def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), |
| 1698 | (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), |
| 1699 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1700 | |
| 1701 | def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), |
| 1702 | (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), |
| 1703 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1704 | |
| 1705 | def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), |
| 1706 | (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), |
| 1707 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1708 | |
| 1709 | def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), |
| 1710 | (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), |
| 1711 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1712 | |
| 1713 | def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), |
| 1714 | (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), |
| 1715 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1716 | |
| 1717 | def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), |
| 1718 | (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), |
| 1719 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1720 | |
| 1721 | def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), |
| 1722 | (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), |
| 1723 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1724 | |
| 1725 | def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), |
| 1726 | (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), |
| 1727 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1728 | |
| 1729 | def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), |
| 1730 | (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), |
| 1731 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1732 | |
| 1733 | def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), |
| 1734 | (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), |
| 1735 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1736 | |
| 1737 | def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), |
| 1738 | (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), |
| 1739 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1740 | |
| 1741 | def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), |
| 1742 | (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), |
| 1743 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1744 | |
| 1745 | def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), |
| 1746 | (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), |
| 1747 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1748 | |
| 1749 | def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), |
| 1750 | (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), |
| 1751 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1752 | |
| 1753 | def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), |
| 1754 | (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), |
| 1755 | (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1756 | |
| 1757 | def SELBv4i32: |
| 1758 | RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 1759 | "selb\t$rT, $rA, $rB, $rC", IntegerOp, |
| 1760 | [(set (v4i32 VECREG:$rT), |
| 1761 | (SPUselb_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB), |
| 1762 | (v4i32 VECREG:$rC)))]>; |
| 1763 | |
| 1764 | def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), |
| 1765 | (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), |
| 1766 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1767 | |
| 1768 | def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), |
| 1769 | (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), |
| 1770 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1771 | |
| 1772 | def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), |
| 1773 | (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), |
| 1774 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1775 | |
| 1776 | def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), |
| 1777 | (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), |
| 1778 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1779 | |
| 1780 | def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), |
| 1781 | (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), |
| 1782 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1783 | |
| 1784 | def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), |
| 1785 | (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), |
| 1786 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1787 | |
| 1788 | def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), |
| 1789 | (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), |
| 1790 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1791 | |
| 1792 | def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), |
| 1793 | (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), |
| 1794 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1795 | |
| 1796 | def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), |
| 1797 | (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), |
| 1798 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1799 | |
| 1800 | def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), |
| 1801 | (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), |
| 1802 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1803 | |
| 1804 | def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), |
| 1805 | (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), |
| 1806 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1807 | |
| 1808 | def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), |
| 1809 | (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), |
| 1810 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1811 | |
| 1812 | def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), |
| 1813 | (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), |
| 1814 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1815 | |
| 1816 | def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), |
| 1817 | (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), |
| 1818 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1819 | |
| 1820 | def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), |
| 1821 | (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), |
| 1822 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1823 | |
| 1824 | def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), |
| 1825 | (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), |
| 1826 | (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1827 | |
| 1828 | def SELBr32: |
| 1829 | RRRForm<0b1000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC), |
| 1830 | "selb\t$rT, $rA, $rB, $rC", IntegerOp, |
| 1831 | []>; |
| 1832 | |
| 1833 | // And the various patterns that can be matched... (all 8 of them :-) |
| 1834 | def : Pat<(or (and R32C:$rA, R32C:$rC), |
| 1835 | (and R32C:$rB, (not R32C:$rC))), |
| 1836 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1837 | |
| 1838 | def : Pat<(or (and R32C:$rC, R32C:$rA), |
| 1839 | (and R32C:$rB, (not R32C:$rC))), |
| 1840 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1841 | |
| 1842 | def : Pat<(or (and R32C:$rA, R32C:$rC), |
| 1843 | (and (not R32C:$rC), R32C:$rB)), |
| 1844 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1845 | |
| 1846 | def : Pat<(or (and R32C:$rC, R32C:$rA), |
| 1847 | (and (not R32C:$rC), R32C:$rB)), |
| 1848 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1849 | |
| 1850 | def : Pat<(or (and R32C:$rA, (not R32C:$rC)), |
| 1851 | (and R32C:$rB, R32C:$rC)), |
| 1852 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1853 | |
| 1854 | def : Pat<(or (and R32C:$rA, (not R32C:$rC)), |
| 1855 | (and R32C:$rC, R32C:$rB)), |
| 1856 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1857 | |
| 1858 | def : Pat<(or (and (not R32C:$rC), R32C:$rA), |
| 1859 | (and R32C:$rB, R32C:$rC)), |
| 1860 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1861 | |
| 1862 | def : Pat<(or (and (not R32C:$rC), R32C:$rA), |
| 1863 | (and R32C:$rC, R32C:$rB)), |
| 1864 | (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; |
| 1865 | |
| 1866 | def SELBr16: |
| 1867 | RRRForm<0b1000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB, R16C:$rC), |
| 1868 | "selb\t$rT, $rA, $rB, $rC", IntegerOp, |
| 1869 | []>; |
| 1870 | |
| 1871 | def : Pat<(or (and R16C:$rA, R16C:$rC), |
| 1872 | (and R16C:$rB, (not R16C:$rC))), |
| 1873 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1874 | |
| 1875 | def : Pat<(or (and R16C:$rC, R16C:$rA), |
| 1876 | (and R16C:$rB, (not R16C:$rC))), |
| 1877 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1878 | |
| 1879 | def : Pat<(or (and R16C:$rA, R16C:$rC), |
| 1880 | (and (not R16C:$rC), R16C:$rB)), |
| 1881 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1882 | |
| 1883 | def : Pat<(or (and R16C:$rC, R16C:$rA), |
| 1884 | (and (not R16C:$rC), R16C:$rB)), |
| 1885 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1886 | |
| 1887 | def : Pat<(or (and R16C:$rA, (not R16C:$rC)), |
| 1888 | (and R16C:$rB, R16C:$rC)), |
| 1889 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1890 | |
| 1891 | def : Pat<(or (and R16C:$rA, (not R16C:$rC)), |
| 1892 | (and R16C:$rC, R16C:$rB)), |
| 1893 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1894 | |
| 1895 | def : Pat<(or (and (not R16C:$rC), R16C:$rA), |
| 1896 | (and R16C:$rB, R16C:$rC)), |
| 1897 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1898 | |
| 1899 | def : Pat<(or (and (not R16C:$rC), R16C:$rA), |
| 1900 | (and R16C:$rC, R16C:$rB)), |
| 1901 | (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; |
| 1902 | |
| 1903 | //===----------------------------------------------------------------------===// |
| 1904 | // Vector shuffle... |
| 1905 | //===----------------------------------------------------------------------===// |
| 1906 | |
| 1907 | def SHUFB: |
| 1908 | RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 1909 | "shufb\t$rT, $rA, $rB, $rC", IntegerOp, |
| 1910 | [/* insert intrinsic here */]>; |
| 1911 | |
| 1912 | // SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB. |
| 1913 | // See the SPUshuffle SDNode operand above, which sets up the DAG pattern |
| 1914 | // matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with |
| 1915 | // the SPUISD::SHUFB opcode. |
| 1916 | def : Pat<(SPUshuffle (v16i8 VECREG:$rA), (v16i8 VECREG:$rB), VECREG:$rC), |
| 1917 | (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1918 | |
| 1919 | def : Pat<(SPUshuffle (v8i16 VECREG:$rA), (v8i16 VECREG:$rB), VECREG:$rC), |
| 1920 | (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1921 | |
| 1922 | def : Pat<(SPUshuffle (v4i32 VECREG:$rA), (v4i32 VECREG:$rB), VECREG:$rC), |
| 1923 | (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1924 | |
| 1925 | def : Pat<(SPUshuffle (v2i64 VECREG:$rA), (v2i64 VECREG:$rB), VECREG:$rC), |
| 1926 | (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 1927 | |
| 1928 | //===----------------------------------------------------------------------===// |
| 1929 | // Shift and rotate group: |
| 1930 | //===----------------------------------------------------------------------===// |
| 1931 | |
| 1932 | def SHLHv8i16: |
| 1933 | RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), |
| 1934 | "shlh\t$rT, $rA, $rB", RotateShift, |
| 1935 | [(set (v8i16 VECREG:$rT), |
| 1936 | (SPUvec_shl_v8i16 (v8i16 VECREG:$rA), R16C:$rB))]>; |
| 1937 | |
| 1938 | // $rB gets promoted to 32-bit register type when confronted with |
| 1939 | // this llvm assembly code: |
| 1940 | // |
| 1941 | // define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) { |
| 1942 | // %A = shl i16 %arg1, %arg2 |
| 1943 | // ret i16 %A |
| 1944 | // } |
| 1945 | // |
| 1946 | // However, we will generate this code when lowering 8-bit shifts and rotates. |
| 1947 | |
| 1948 | def SHLHr16: |
| 1949 | RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 1950 | "shlh\t$rT, $rA, $rB", RotateShift, |
| 1951 | [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>; |
| 1952 | |
| 1953 | def SHLHr16_r32: |
| 1954 | RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| 1955 | "shlh\t$rT, $rA, $rB", RotateShift, |
| 1956 | [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>; |
| 1957 | |
| 1958 | def SHLHIv8i16: |
| 1959 | RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| 1960 | "shlhi\t$rT, $rA, $val", RotateShift, |
| 1961 | [(set (v8i16 VECREG:$rT), |
| 1962 | (SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)))]>; |
| 1963 | |
| 1964 | def : Pat<(SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)), |
| 1965 | (SHLHIv8i16 VECREG:$rA, imm:$val)>; |
| 1966 | |
| 1967 | def SHLHIr16: |
| 1968 | RI7Form<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val), |
| 1969 | "shlhi\t$rT, $rA, $val", RotateShift, |
| 1970 | [(set R16C:$rT, (shl R16C:$rA, (i32 uimm7:$val)))]>; |
| 1971 | |
| 1972 | def : Pat<(shl R16C:$rA, (i16 uimm7:$val)), |
| 1973 | (SHLHIr16 R16C:$rA, uimm7:$val)>; |
| 1974 | |
| 1975 | def SHLv4i32: |
| 1976 | RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), |
| 1977 | "shl\t$rT, $rA, $rB", RotateShift, |
| 1978 | [(set (v4i32 VECREG:$rT), |
| 1979 | (SPUvec_shl_v4i32 (v4i32 VECREG:$rA), R16C:$rB))]>; |
| 1980 | |
| 1981 | def SHLr32: |
| 1982 | RRForm<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 1983 | "shl\t$rT, $rA, $rB", RotateShift, |
| 1984 | [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>; |
| 1985 | |
| 1986 | def SHLIv4i32: |
| 1987 | RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| 1988 | "shli\t$rT, $rA, $val", RotateShift, |
| 1989 | [(set (v4i32 VECREG:$rT), |
| 1990 | (SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)))]>; |
| 1991 | |
| 1992 | def: Pat<(SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)), |
| 1993 | (SHLIv4i32 VECREG:$rA, uimm7:$val)>; |
| 1994 | |
| 1995 | def SHLIr32: |
| 1996 | RI7Form<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val), |
| 1997 | "shli\t$rT, $rA, $val", RotateShift, |
| 1998 | [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>; |
| 1999 | |
| 2000 | def : Pat<(shl R32C:$rA, (i16 uimm7:$val)), |
| 2001 | (SHLIr32 R32C:$rA, uimm7:$val)>; |
| 2002 | |
| 2003 | // SHLQBI vec form: Note that this will shift the entire vector (the 128-bit |
| 2004 | // register) to the left. Vector form is here to ensure type correctness. |
| 2005 | def SHLQBIvec: |
| 2006 | RRForm<0b11011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2007 | "shlqbi\t$rT, $rA, $rB", RotateShift, |
| 2008 | [/* intrinsic */]>; |
| 2009 | |
| 2010 | // See note above on SHLQBI. |
| 2011 | def SHLQBIIvec: |
| 2012 | RI7Form<0b11011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| 2013 | "shlqbii\t$rT, $rA, $val", RotateShift, |
| 2014 | [/* intrinsic */]>; |
| 2015 | |
| 2016 | // SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes, |
| 2017 | // not by bits. |
| 2018 | def SHLQBYvec: |
| 2019 | RI7Form<0b11111011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2020 | "shlqbyi\t$rT, $rA, $rB", RotateShift, |
| 2021 | [/* intrinsic */]>; |
| 2022 | |
| 2023 | def SHLQBYIvec: |
| 2024 | RI7Form<0b11111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| 2025 | "shlqbyi\t$rT, $rA, $val", RotateShift, |
| 2026 | [/* intrinsic */]>; |
| 2027 | |
| 2028 | // ROTH v8i16 form: |
| 2029 | def ROTHv8i16: |
| 2030 | RRForm<0b00111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2031 | "roth\t$rT, $rA, $rB", RotateShift, |
| 2032 | [(set (v8i16 VECREG:$rT), |
| 2033 | (SPUvec_rotl_v8i16 VECREG:$rA, VECREG:$rB))]>; |
| 2034 | |
| 2035 | def ROTHr16: |
| 2036 | RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 2037 | "roth\t$rT, $rA, $rB", RotateShift, |
| 2038 | [(set R16C:$rT, (rotl R16C:$rA, R16C:$rB))]>; |
| 2039 | |
| 2040 | def ROTHr16_r32: |
| 2041 | RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| 2042 | "roth\t$rT, $rA, $rB", RotateShift, |
| 2043 | [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>; |
| 2044 | |
| 2045 | def ROTHIv8i16: |
| 2046 | RI7Form<0b00111110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| 2047 | "rothi\t$rT, $rA, $val", RotateShift, |
| 2048 | [(set (v8i16 VECREG:$rT), |
| 2049 | (SPUvec_rotl_v8i16 VECREG:$rA, (i16 uimm7:$val)))]>; |
| 2050 | |
| 2051 | def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i16 uimm7:$val)), |
| 2052 | (ROTHIv8i16 VECREG:$rA, imm:$val)>; |
| 2053 | |
| 2054 | def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i32 uimm7:$val)), |
| 2055 | (ROTHIv8i16 VECREG:$rA, imm:$val)>; |
| 2056 | |
| 2057 | def ROTHIr16: |
| 2058 | RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm:$val), |
| 2059 | "rothi\t$rT, $rA, $val", RotateShift, |
| 2060 | [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>; |
| 2061 | |
| 2062 | def ROTHIr16_i32: |
| 2063 | RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val), |
| 2064 | "rothi\t$rT, $rA, $val", RotateShift, |
| 2065 | [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>; |
| 2066 | |
| 2067 | def ROTv4i32: |
| 2068 | RRForm<0b00011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| 2069 | "rot\t$rT, $rA, $rB", RotateShift, |
| 2070 | [(set (v4i32 VECREG:$rT), |
| 2071 | (SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), R32C:$rB))]>; |
| 2072 | |
| 2073 | def ROTr32: |
| 2074 | RRForm<0b00011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 2075 | "rot\t$rT, $rA, $rB", RotateShift, |
| 2076 | [(set R32C:$rT, (rotl R32C:$rA, R32C:$rB))]>; |
| 2077 | |
| 2078 | def ROTIv4i32: |
| 2079 | RI7Form<0b00011110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), |
| 2080 | "roti\t$rT, $rA, $val", RotateShift, |
| 2081 | [(set (v4i32 VECREG:$rT), |
| 2082 | (SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>; |
| 2083 | |
| 2084 | def : Pat<(SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)), |
| 2085 | (ROTIv4i32 VECREG:$rA, imm:$val)>; |
| 2086 | |
| 2087 | def ROTIr32: |
| 2088 | RI7Form<0b00011110000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val), |
| 2089 | "roti\t$rT, $rA, $val", RotateShift, |
| 2090 | [(set R32C:$rT, (rotl R32C:$rA, (i32 uimm7:$val)))]>; |
| 2091 | |
| 2092 | def ROTIr32_i16: |
| 2093 | RI7Form<0b00111110000, (outs R32C:$rT), (ins R32C:$rA, u7imm:$val), |
| 2094 | "roti\t$rT, $rA, $val", RotateShift, |
| 2095 | [(set R32C:$rT, (rotl R32C:$rA, (i16 uimm7:$val)))]>; |
| 2096 | |
| 2097 | // ROTQBY* vector forms: This rotates the entire vector, but vector registers |
| 2098 | // are used here for type checking (instances where ROTQBI is used actually |
| 2099 | // use vector registers) |
| 2100 | def ROTQBYvec: |
| 2101 | RRForm<0b00111011100, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), |
| 2102 | "rotqby\t$rT, $rA, $rB", RotateShift, |
| 2103 | [(set (v16i8 VECREG:$rT), (SPUrotbytes_left (v16i8 VECREG:$rA), R16C:$rB))]>; |
| 2104 | |
| 2105 | def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), R16C:$rB), |
| 2106 | (ROTQBYvec VECREG:$rA, R16C:$rB)>; |
| 2107 | |
| 2108 | // See ROTQBY note above. |
| 2109 | def ROTQBYIvec: |
| 2110 | RI7Form<0b00111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| 2111 | "rotqbyi\t$rT, $rA, $val", RotateShift, |
| 2112 | [(set (v16i8 VECREG:$rT), |
| 2113 | (SPUrotbytes_left (v16i8 VECREG:$rA), (i16 uimm7:$val)))]>; |
| 2114 | |
| 2115 | def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), (i16 uimm7:$val)), |
| 2116 | (ROTQBYIvec VECREG:$rA, uimm7:$val)>; |
| 2117 | |
| 2118 | // See ROTQBY note above. |
| 2119 | def ROTQBYBIvec: |
| 2120 | RI7Form<0b00110011100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| 2121 | "rotqbybi\t$rT, $rA, $val", RotateShift, |
| 2122 | [/* intrinsic */]>; |
| 2123 | |
| 2124 | // See ROTQBY note above. |
| 2125 | // |
| 2126 | // Assume that the user of this instruction knows to shift the rotate count |
| 2127 | // into bit 29 |
| 2128 | def ROTQBIvec: |
| 2129 | RRForm<0b00011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2130 | "rotqbi\t$rT, $rA, $rB", RotateShift, |
| 2131 | [/* insert intrinsic here */]>; |
| 2132 | |
| 2133 | // See ROTQBY note above. |
| 2134 | def ROTQBIIvec: |
| 2135 | RI7Form<0b00011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), |
| 2136 | "rotqbii\t$rT, $rA, $val", RotateShift, |
| 2137 | [/* insert intrinsic here */]>; |
| 2138 | |
| 2139 | // ROTHM v8i16 form: |
| 2140 | // NOTE(1): No vector rotate is generated by the C/C++ frontend (today), |
| 2141 | // so this only matches a synthetically generated/lowered code |
| 2142 | // fragment. |
| 2143 | // NOTE(2): $rB must be negated before the right rotate! |
| 2144 | def ROTHMv8i16: |
| 2145 | RRForm<0b10111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| 2146 | "rothm\t$rT, $rA, $rB", RotateShift, |
| 2147 | [/* see patterns below - $rB must be negated */]>; |
| 2148 | |
| 2149 | def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R32C:$rB), |
| 2150 | (ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; |
| 2151 | |
| 2152 | def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R16C:$rB), |
| 2153 | (ROTHMv8i16 VECREG:$rA, |
| 2154 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2155 | |
| 2156 | def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), /* R8C */ R16C:$rB), |
| 2157 | (ROTHMv8i16 VECREG:$rA, |
| 2158 | (SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /*)*/, 0))>; |
| 2159 | |
| 2160 | // ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left |
| 2161 | // Note: This instruction doesn't match a pattern because rB must be negated |
| 2162 | // for the instruction to work. Thus, the pattern below the instruction! |
| 2163 | def ROTHMr16: |
| 2164 | RRForm<0b10111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| 2165 | "rothm\t$rT, $rA, $rB", RotateShift, |
| 2166 | [/* see patterns below - $rB must be negated! */]>; |
| 2167 | |
| 2168 | def : Pat<(srl R16C:$rA, R32C:$rB), |
| 2169 | (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; |
| 2170 | |
| 2171 | def : Pat<(srl R16C:$rA, R16C:$rB), |
| 2172 | (ROTHMr16 R16C:$rA, |
| 2173 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2174 | |
| 2175 | def : Pat<(srl R16C:$rA, /* R8C */ R16C:$rB), |
| 2176 | (ROTHMr16 R16C:$rA, |
| 2177 | (SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /* ) */, 0))>; |
| 2178 | |
| 2179 | // ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is |
| 2180 | // that the immediate can be complemented, so that the user doesn't have to |
| 2181 | // worry about it. |
| 2182 | def ROTHMIv8i16: |
| 2183 | RI7Form<0b10111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), |
| 2184 | "rothmi\t$rT, $rA, $val", RotateShift, |
| 2185 | [(set (v8i16 VECREG:$rT), |
| 2186 | (SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i32 imm:$val)))]>; |
| 2187 | |
| 2188 | def: Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i16 imm:$val)), |
| 2189 | (ROTHMIv8i16 VECREG:$rA, imm:$val)>; |
| 2190 | |
| 2191 | def ROTHMIr16: |
| 2192 | RI7Form<0b10111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val), |
| 2193 | "rothmi\t$rT, $rA, $val", RotateShift, |
| 2194 | [(set R16C:$rT, (srl R16C:$rA, (i32 uimm7:$val)))]>; |
| 2195 | |
| 2196 | def: Pat<(srl R16C:$rA, (i16 uimm7:$val)), |
| 2197 | (ROTHMIr16 R16C:$rA, uimm7:$val)>; |
| 2198 | |
| 2199 | // ROTM v4i32 form: See the ROTHM v8i16 comments. |
| 2200 | def ROTMv4i32: |
| 2201 | RRForm<0b10011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| 2202 | "rotm\t$rT, $rA, $rB", RotateShift, |
| 2203 | [/* see patterns below - $rB must be negated */]>; |
| 2204 | |
| 2205 | def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R32C:$rB), |
| 2206 | (ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; |
| 2207 | |
| 2208 | def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R16C:$rB), |
| 2209 | (ROTMv4i32 VECREG:$rA, |
| 2210 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2211 | |
| 2212 | def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, /* R8C */ R16C:$rB), |
| 2213 | (ROTMv4i32 VECREG:$rA, |
| 2214 | (SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /*)*/, 0))>; |
| 2215 | |
| 2216 | def ROTMr32: |
| 2217 | RRForm<0b10011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 2218 | "rotm\t$rT, $rA, $rB", RotateShift, |
| 2219 | [/* see patterns below - $rB must be negated */]>; |
| 2220 | |
| 2221 | def : Pat<(srl R32C:$rA, R32C:$rB), |
| 2222 | (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; |
| 2223 | |
| 2224 | def : Pat<(srl R32C:$rA, R16C:$rB), |
| 2225 | (ROTMr32 R32C:$rA, |
| 2226 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2227 | |
| 2228 | // ROTMI v4i32 form: See the comment for ROTHM v8i16. |
| 2229 | def ROTMIv4i32: |
| 2230 | RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), |
| 2231 | "rotmi\t$rT, $rA, $val", RotateShift, |
| 2232 | [(set (v4i32 VECREG:$rT), |
| 2233 | (SPUvec_srl_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>; |
| 2234 | |
| 2235 | def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, (i16 uimm7:$val)), |
| 2236 | (ROTMIv4i32 VECREG:$rA, uimm7:$val)>; |
| 2237 | |
| 2238 | // ROTMI r32 form: know how to complement the immediate value. |
| 2239 | def ROTMIr32: |
| 2240 | RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val), |
| 2241 | "rotmi\t$rT, $rA, $val", RotateShift, |
| 2242 | [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>; |
| 2243 | |
| 2244 | def : Pat<(srl R32C:$rA, (i16 imm:$val)), |
| 2245 | (ROTMIr32 R32C:$rA, uimm7:$val)>; |
| 2246 | |
| 2247 | // ROTQMBYvec: This is a vector form merely so that when used in an |
| 2248 | // instruction pattern, type checking will succeed. This instruction assumes |
| 2249 | // that the user knew to complement $rB. |
| 2250 | def ROTQMBYvec: |
| 2251 | RRForm<0b10111011100, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| 2252 | "rotqmby\t$rT, $rA, $rB", RotateShift, |
| 2253 | [(set (v16i8 VECREG:$rT), |
| 2254 | (SPUrotbytes_right_zfill (v16i8 VECREG:$rA), R32C:$rB))]>; |
| 2255 | |
| 2256 | def ROTQMBYIvec: |
| 2257 | RI7Form<0b10111111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), |
| 2258 | "rotqmbyi\t$rT, $rA, $val", RotateShift, |
| 2259 | [(set (v16i8 VECREG:$rT), |
| 2260 | (SPUrotbytes_right_zfill (v16i8 VECREG:$rA), (i32 uimm7:$val)))]>; |
| 2261 | |
| 2262 | def : Pat<(SPUrotbytes_right_zfill VECREG:$rA, (i16 uimm7:$val)), |
| 2263 | (ROTQMBYIvec VECREG:$rA, uimm7:$val)>; |
| 2264 | |
| 2265 | def ROTQMBYBIvec: |
| 2266 | RRForm<0b10110011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2267 | "rotqmbybi\t$rT, $rA, $rB", RotateShift, |
| 2268 | [/* intrinsic */]>; |
| 2269 | |
| 2270 | def ROTQMBIvec: |
| 2271 | RRForm<0b10011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2272 | "rotqmbi\t$rT, $rA, $rB", RotateShift, |
| 2273 | [/* intrinsic */]>; |
| 2274 | |
| 2275 | def ROTQMBIIvec: |
| 2276 | RI7Form<0b10011111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), |
| 2277 | "rotqmbii\t$rT, $rA, $val", RotateShift, |
| 2278 | [/* intrinsic */]>; |
| 2279 | |
| 2280 | def ROTMAHv8i16: |
| 2281 | RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| 2282 | "rotmah\t$rT, $rA, $rB", RotateShift, |
| 2283 | [/* see patterns below - $rB must be negated */]>; |
| 2284 | |
| 2285 | def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R32C:$rB), |
| 2286 | (ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; |
| 2287 | |
| 2288 | def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R16C:$rB), |
| 2289 | (ROTMAHv8i16 VECREG:$rA, |
| 2290 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2291 | |
| 2292 | def ROTMAHr16: |
| 2293 | RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| 2294 | "rotmah\t$rT, $rA, $rB", RotateShift, |
| 2295 | [/* see patterns below - $rB must be negated */]>; |
| 2296 | |
| 2297 | def : Pat<(sra R16C:$rA, R32C:$rB), |
| 2298 | (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; |
| 2299 | |
| 2300 | def : Pat<(sra R16C:$rA, R16C:$rB), |
| 2301 | (ROTMAHr16 R16C:$rA, |
| 2302 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2303 | |
| 2304 | def ROTMAHIv8i16: |
| 2305 | RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), |
| 2306 | "rotmahi\t$rT, $rA, $val", RotateShift, |
| 2307 | [(set (v8i16 VECREG:$rT), |
| 2308 | (SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>; |
| 2309 | |
| 2310 | def : Pat<(SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)), |
| 2311 | (ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>; |
| 2312 | |
| 2313 | def ROTMAHIr16: |
| 2314 | RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val), |
| 2315 | "rotmahi\t$rT, $rA, $val", RotateShift, |
| 2316 | [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>; |
| 2317 | |
| 2318 | def : Pat<(sra R16C:$rA, (i32 imm:$val)), |
| 2319 | (ROTMAHIr16 R16C:$rA, uimm7:$val)>; |
| 2320 | |
| 2321 | def ROTMAv4i32: |
| 2322 | RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| 2323 | "rotma\t$rT, $rA, $rB", RotateShift, |
| 2324 | [/* see patterns below - $rB must be negated */]>; |
| 2325 | |
| 2326 | def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R32C:$rB), |
| 2327 | (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>; |
| 2328 | |
| 2329 | def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R16C:$rB), |
| 2330 | (ROTMAv4i32 (v4i32 VECREG:$rA), |
| 2331 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2332 | |
| 2333 | def ROTMAr32: |
| 2334 | RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 2335 | "rotma\t$rT, $rA, $rB", RotateShift, |
| 2336 | [/* see patterns below - $rB must be negated */]>; |
| 2337 | |
| 2338 | def : Pat<(sra R32C:$rA, R32C:$rB), |
| 2339 | (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; |
| 2340 | |
| 2341 | def : Pat<(sra R32C:$rA, R16C:$rB), |
| 2342 | (ROTMAr32 R32C:$rA, |
| 2343 | (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| 2344 | |
| 2345 | def ROTMAIv4i32: |
| 2346 | RRForm<0b01011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), |
| 2347 | "rotmai\t$rT, $rA, $val", RotateShift, |
| 2348 | [(set (v4i32 VECREG:$rT), |
| 2349 | (SPUvec_sra_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>; |
| 2350 | |
| 2351 | def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, (i16 uimm7:$val)), |
| 2352 | (ROTMAIv4i32 VECREG:$rA, uimm7:$val)>; |
| 2353 | |
| 2354 | def ROTMAIr32: |
| 2355 | RRForm<0b01011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val), |
| 2356 | "rotmai\t$rT, $rA, $val", RotateShift, |
| 2357 | [(set R32C:$rT, (sra R32C:$rA, (i32 uimm7:$val)))]>; |
| 2358 | |
| 2359 | def : Pat<(sra R32C:$rA, (i16 uimm7:$val)), |
| 2360 | (ROTMAIr32 R32C:$rA, uimm7:$val)>; |
| 2361 | |
| 2362 | //===----------------------------------------------------------------------===// |
| 2363 | // Branch and conditionals: |
| 2364 | //===----------------------------------------------------------------------===// |
| 2365 | |
| 2366 | let isTerminator = 1, isBarrier = 1 in { |
| 2367 | // Halt If Equal (r32 preferred slot only, no vector form) |
| 2368 | def HEQr32: |
| 2369 | RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB), |
| 2370 | "heq\t$rA, $rB", BranchResolv, |
| 2371 | [/* no pattern to match */]>; |
| 2372 | |
| 2373 | def HEQIr32 : |
| 2374 | RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val), |
| 2375 | "heqi\t$rA, $val", BranchResolv, |
| 2376 | [/* no pattern to match */]>; |
| 2377 | |
| 2378 | // HGT/HGTI: These instructions use signed arithmetic for the comparison, |
| 2379 | // contrasting with HLGT/HLGTI, which use unsigned comparison: |
| 2380 | def HGTr32: |
| 2381 | RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB), |
| 2382 | "hgt\t$rA, $rB", BranchResolv, |
| 2383 | [/* no pattern to match */]>; |
| 2384 | |
| 2385 | def HGTIr32: |
| 2386 | RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val), |
| 2387 | "hgti\t$rA, $val", BranchResolv, |
| 2388 | [/* no pattern to match */]>; |
| 2389 | |
| 2390 | def HLGTr32: |
| 2391 | RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB), |
| 2392 | "hlgt\t$rA, $rB", BranchResolv, |
| 2393 | [/* no pattern to match */]>; |
| 2394 | |
| 2395 | def HLGTIr32: |
| 2396 | RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val), |
| 2397 | "hlgti\t$rA, $val", BranchResolv, |
| 2398 | [/* no pattern to match */]>; |
| 2399 | } |
| 2400 | |
| 2401 | // Comparison operators: |
| 2402 | |
| 2403 | def CEQBv16i8: |
| 2404 | RRForm<0b00001011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2405 | "ceqb\t$rT, $rA, $rB", ByteOp, |
| 2406 | [/* no pattern to match: intrinsic */]>; |
| 2407 | |
| 2408 | def CEQBIv16i8: |
| 2409 | RI10Form<0b01111110, (outs VECREG:$rT), (ins VECREG:$rA, s7imm:$val), |
| 2410 | "ceqbi\t$rT, $rA, $val", ByteOp, |
| 2411 | [/* no pattern to match: intrinsic */]>; |
| 2412 | |
| 2413 | def CEQHr16: |
| 2414 | RRForm<0b00010011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| 2415 | "ceqh\t$rT, $rA, $rB", ByteOp, |
| 2416 | [/* no pattern to match */]>; |
| 2417 | |
| 2418 | def CEQHv8i16: |
| 2419 | RRForm<0b00010011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2420 | "ceqh\t$rT, $rA, $rB", ByteOp, |
| 2421 | [/* no pattern to match: intrinsic */]>; |
| 2422 | |
| 2423 | def CEQHIr16: |
| 2424 | RI10Form<0b10111110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| 2425 | "ceqhi\t$rT, $rA, $val", ByteOp, |
| 2426 | [/* no pattern to match: intrinsic */]>; |
| 2427 | |
| 2428 | def CEQHIv8i16: |
| 2429 | RI10Form<0b10111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 2430 | "ceqhi\t$rT, $rA, $val", ByteOp, |
| 2431 | [/* no pattern to match: intrinsic */]>; |
| 2432 | |
| 2433 | def CEQr32: |
| 2434 | RRForm<0b00000011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| 2435 | "ceq\t$rT, $rA, $rB", ByteOp, |
| 2436 | [/* no pattern to match: intrinsic */]>; |
| 2437 | |
| 2438 | def CEQv4i32: |
| 2439 | RRForm<0b00000011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2440 | "ceq\t$rT, $rA, $rB", ByteOp, |
| 2441 | [/* no pattern to match: intrinsic */]>; |
| 2442 | |
| 2443 | def CEQIr32: |
| 2444 | RI10Form<0b00111110, (outs R32C:$rT), (ins R32C:$rA, s10imm:$val), |
| 2445 | "ceqi\t$rT, $rA, $val", ByteOp, |
| 2446 | [/* no pattern to match: intrinsic */]>; |
| 2447 | |
| 2448 | def CEQIv4i32: |
| 2449 | RI10Form<0b00111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| 2450 | "ceqi\t$rT, $rA, $val", ByteOp, |
| 2451 | [/* no pattern to match: intrinsic */]>; |
| 2452 | |
| 2453 | let isCall = 1, |
| 2454 | // All calls clobber the non-callee-saved registers: |
| 2455 | Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, |
| 2456 | R10,R11,R12,R13,R14,R15,R16,R17,R18,R19, |
| 2457 | R20,R21,R22,R23,R24,R25,R26,R27,R28,R29, |
| 2458 | R30,R31,R32,R33,R34,R35,R36,R37,R38,R39, |
| 2459 | R40,R41,R42,R43,R44,R45,R46,R47,R48,R49, |
| 2460 | R50,R51,R52,R53,R54,R55,R56,R57,R58,R59, |
| 2461 | R60,R61,R62,R63,R64,R65,R66,R67,R68,R69, |
| 2462 | R70,R71,R72,R73,R74,R75,R76,R77,R78,R79], |
| 2463 | // All of these instructions use $lr (aka $0) |
| 2464 | Uses = [R0] in { |
| 2465 | // Branch relative and set link: Used if we actually know that the target |
| 2466 | // is within [-32768, 32767] bytes of the target |
| 2467 | def BRSL: |
| 2468 | BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops), |
| 2469 | "brsl\t$$lr, $func", |
| 2470 | [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>; |
| 2471 | |
| 2472 | // Branch absolute and set link: Used if we actually know that the target |
| 2473 | // is an absolute address |
| 2474 | def BRASL: |
| 2475 | BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops), |
| 2476 | "brasl\t$$lr, $func", |
| 2477 | [(SPUcall tglobaladdr:$func)]>; |
| 2478 | |
| 2479 | // Branch indirect and set link if external data. These instructions are not |
| 2480 | // actually generated, matched by an intrinsic: |
| 2481 | def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| 2482 | def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| 2483 | def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| 2484 | def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| 2485 | |
| 2486 | // Branch indirect and set link. This is the "X-form" address version of a |
| 2487 | // function call |
| 2488 | def BISL: |
| 2489 | BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>; |
| 2490 | } |
| 2491 | |
| 2492 | // Unconditional branches: |
| 2493 | let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in { |
| 2494 | def BR : |
| 2495 | UncondBranch<0b001001100, (outs), (ins brtarget:$dest), |
| 2496 | "br\t$dest", |
| 2497 | [(br bb:$dest)]>; |
| 2498 | |
| 2499 | // Unconditional, absolute address branch |
| 2500 | def BRA: |
| 2501 | UncondBranch<0b001100000, (outs), (ins brtarget:$dest), |
| 2502 | "bra\t$dest", |
| 2503 | [/* no pattern */]>; |
| 2504 | |
| 2505 | // Indirect branch |
| 2506 | def BI: |
| 2507 | BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>; |
| 2508 | |
| 2509 | // Various branches: |
| 2510 | def BRNZ: |
| 2511 | RI16Form<0b010000100, (outs), (ins R32C:$rCond, brtarget:$dest), |
| 2512 | "brnz\t$rCond,$dest", |
| 2513 | BranchResolv, |
| 2514 | [(brcond R32C:$rCond, bb:$dest)]>; |
| 2515 | |
| 2516 | def BRZ: |
| 2517 | RI16Form<0b000000100, (outs), (ins R32C:$rT, brtarget:$dest), |
| 2518 | "brz\t$rT,$dest", |
| 2519 | BranchResolv, |
| 2520 | [/* no pattern */]>; |
| 2521 | |
| 2522 | def BRHNZ: |
| 2523 | RI16Form<0b011000100, (outs), (ins R16C:$rCond, brtarget:$dest), |
| 2524 | "brhnz\t$rCond,$dest", |
| 2525 | BranchResolv, |
| 2526 | [(brcond R16C:$rCond, bb:$dest)]>; |
| 2527 | |
| 2528 | def BRHZ: |
| 2529 | RI16Form<0b001000100, (outs), (ins R16C:$rT, brtarget:$dest), |
| 2530 | "brhz\t$rT,$dest", |
| 2531 | BranchResolv, |
| 2532 | [/* no pattern */]>; |
| 2533 | |
| 2534 | /* |
| 2535 | def BINZ: |
| 2536 | BICondForm<0b10010100100, "binz\t$rA, $func", |
| 2537 | [(SPUbinz R32C:$rA, R32C:$func)]>; |
| 2538 | |
| 2539 | def BIZ: |
| 2540 | BICondForm<0b00010100100, "biz\t$rA, $func", |
| 2541 | [(SPUbiz R32C:$rA, R32C:$func)]>; |
| 2542 | */ |
| 2543 | } |
| 2544 | |
| 2545 | def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest), |
| 2546 | (BRHZ R16C:$rA, bb:$dest)>; |
| 2547 | def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest), |
| 2548 | (BRHNZ R16C:$rA, bb:$dest)>; |
| 2549 | |
| 2550 | def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest), |
| 2551 | (BRZ R32C:$rA, bb:$dest)>; |
| 2552 | def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest), |
| 2553 | (BRZ R32C:$rA, bb:$dest)>; |
| 2554 | |
| 2555 | let isTerminator = 1, isBarrier = 1 in { |
| 2556 | let isReturn = 1 in { |
| 2557 | def RET: |
| 2558 | RETForm<"bi\t$$lr", [(retflag)]>; |
| 2559 | } |
| 2560 | } |
| 2561 | |
| 2562 | //===----------------------------------------------------------------------===// |
| 2563 | // Various brcond predicates: |
| 2564 | //===----------------------------------------------------------------------===// |
| 2565 | /* |
| 2566 | def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest), |
| 2567 | (BRZ R32C:$rA, bb:$dest)>; |
| 2568 | |
| 2569 | def : Pat<(brcond (i32 (seteq R32C:$rA, R32C:$rB)), bb:$dest), |
| 2570 | (BRNZ (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>; |
| 2571 | |
| 2572 | def : Pat<(brcond (i16 (seteq R16C:$rA, i16ImmSExt10:$val)), bb:$dest), |
| 2573 | (BRHNZ (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; |
| 2574 | |
| 2575 | def : Pat<(brcond (i16 (seteq R16C:$rA, R16C:$rB)), bb:$dest), |
| 2576 | (BRHNZ (CEQHr16 R16C:$rA, R16C:$rB), bb:$dest)>; |
| 2577 | */ |
| 2578 | |
| 2579 | //===----------------------------------------------------------------------===// |
| 2580 | // Single precision floating point instructions |
| 2581 | //===----------------------------------------------------------------------===// |
| 2582 | |
| 2583 | def FAv4f32: |
| 2584 | RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2585 | "fa\t$rT, $rA, $rB", SPrecFP, |
| 2586 | [(set (v4f32 VECREG:$rT), (fadd (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>; |
| 2587 | |
| 2588 | def FAf32 : |
| 2589 | RRForm<0b00100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2590 | "fa\t$rT, $rA, $rB", SPrecFP, |
| 2591 | [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>; |
| 2592 | |
| 2593 | def FSv4f32: |
| 2594 | RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2595 | "fs\t$rT, $rA, $rB", SPrecFP, |
| 2596 | [(set (v4f32 VECREG:$rT), (fsub (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>; |
| 2597 | |
| 2598 | def FSf32 : |
| 2599 | RRForm<0b10100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2600 | "fs\t$rT, $rA, $rB", SPrecFP, |
| 2601 | [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>; |
| 2602 | |
| 2603 | // Floating point reciprocal estimate |
| 2604 | def FREv4f32 : |
| 2605 | RRForm_1<0b00011101100, (outs VECREG:$rT), (ins VECREG:$rA), |
| 2606 | "frest\t$rT, $rA", SPrecFP, |
| 2607 | [(set (v4f32 VECREG:$rT), (SPUreciprocalEst (v4f32 VECREG:$rA)))]>; |
| 2608 | |
| 2609 | def FREf32 : |
| 2610 | RRForm_1<0b00011101100, (outs R32FP:$rT), (ins R32FP:$rA), |
| 2611 | "frest\t$rT, $rA", SPrecFP, |
| 2612 | [(set R32FP:$rT, (SPUreciprocalEst R32FP:$rA))]>; |
| 2613 | |
| 2614 | // Floating point interpolate (used in conjunction with reciprocal estimate) |
| 2615 | def FIv4f32 : |
| 2616 | RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2617 | "fi\t$rT, $rA, $rB", SPrecFP, |
| 2618 | [(set (v4f32 VECREG:$rT), (SPUinterpolate (v4f32 VECREG:$rA), |
| 2619 | (v4f32 VECREG:$rB)))]>; |
| 2620 | |
| 2621 | def FIf32 : |
| 2622 | RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2623 | "fi\t$rT, $rA, $rB", SPrecFP, |
| 2624 | [(set R32FP:$rT, (SPUinterpolate R32FP:$rA, R32FP:$rB))]>; |
| 2625 | |
| 2626 | // Floating Compare Equal |
| 2627 | def FCEQf32 : |
| 2628 | RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2629 | "fceq\t$rT, $rA, $rB", SPrecFP, |
| 2630 | [(set R32C:$rT, (setoeq R32FP:$rA, R32FP:$rB))]>; |
| 2631 | |
| 2632 | def FCMEQf32 : |
| 2633 | RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2634 | "fcmeq\t$rT, $rA, $rB", SPrecFP, |
| 2635 | [(set R32C:$rT, (setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; |
| 2636 | |
| 2637 | def FCGTf32 : |
| 2638 | RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2639 | "fcgt\t$rT, $rA, $rB", SPrecFP, |
| 2640 | [(set R32C:$rT, (setogt R32FP:$rA, R32FP:$rB))]>; |
| 2641 | |
| 2642 | def FCMGTf32 : |
| 2643 | RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2644 | "fcmgt\t$rT, $rA, $rB", SPrecFP, |
| 2645 | [(set R32C:$rT, (setogt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; |
| 2646 | |
| 2647 | // FP Status and Control Register Write |
| 2648 | // Why isn't rT a don't care in the ISA? |
| 2649 | // Should we create a special RRForm_3 for this guy and zero out the rT? |
| 2650 | def FSCRWf32 : |
| 2651 | RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA), |
| 2652 | "fscrwr\t$rA", SPrecFP, |
| 2653 | [/* This instruction requires an intrinsic. Note: rT is unused. */]>; |
| 2654 | |
| 2655 | // FP Status and Control Register Read |
| 2656 | def FSCRRf32 : |
| 2657 | RRForm_2<0b01011101110, (outs R32FP:$rT), (ins), |
| 2658 | "fscrrd\t$rT", SPrecFP, |
| 2659 | [/* This instruction requires an intrinsic */]>; |
| 2660 | |
| 2661 | // llvm instruction space |
| 2662 | // How do these map onto cell instructions? |
| 2663 | // fdiv rA rB |
| 2664 | // frest rC rB # c = 1/b (both lines) |
| 2665 | // fi rC rB rC |
| 2666 | // fm rD rA rC # d = a * 1/b |
| 2667 | // fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world |
| 2668 | // fma rB rB rC rD # b = b * c + d |
| 2669 | // = -(d *b -a) * c + d |
| 2670 | // = a * c - c ( a *b *c - a) |
| 2671 | |
| 2672 | // fcopysign (???) |
| 2673 | |
| 2674 | // Library calls: |
| 2675 | // These llvm instructions will actually map to library calls. |
| 2676 | // All that's needed, then, is to check that the appropriate library is |
| 2677 | // imported and do a brsl to the proper function name. |
| 2678 | // frem # fmod(x, y): x - (x/y) * y |
| 2679 | // (Note: fmod(double, double), fmodf(float,float) |
| 2680 | // fsqrt? |
| 2681 | // fsin? |
| 2682 | // fcos? |
| 2683 | // Unimplemented SPU instruction space |
| 2684 | // floating reciprocal absolute square root estimate (frsqest) |
| 2685 | |
| 2686 | // The following are probably just intrinsics |
| 2687 | // status and control register write |
| 2688 | // status and control register read |
| 2689 | |
| 2690 | //-------------------------------------- |
| 2691 | // Floating point multiply instructions |
| 2692 | //-------------------------------------- |
| 2693 | |
| 2694 | def FMv4f32: |
| 2695 | RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2696 | "fm\t$rT, $rA, $rB", SPrecFP, |
| 2697 | [(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA), |
| 2698 | (v4f32 VECREG:$rB)))]>; |
| 2699 | |
| 2700 | def FMf32 : |
| 2701 | RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| 2702 | "fm\t$rT, $rA, $rB", SPrecFP, |
| 2703 | [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>; |
| 2704 | |
| 2705 | // Floating point multiply and add |
| 2706 | // e.g. d = c + (a * b) |
| 2707 | def FMAv4f32: |
| 2708 | RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 2709 | "fma\t$rT, $rA, $rB, $rC", SPrecFP, |
| 2710 | [(set (v4f32 VECREG:$rT), |
| 2711 | (fadd (v4f32 VECREG:$rC), |
| 2712 | (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>; |
| 2713 | |
| 2714 | def FMAf32: |
| 2715 | RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), |
| 2716 | "fma\t$rT, $rA, $rB, $rC", SPrecFP, |
| 2717 | [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; |
| 2718 | |
| 2719 | // FP multiply and subtract |
| 2720 | // Subtracts value in rC from product |
| 2721 | // res = a * b - c |
| 2722 | def FMSv4f32 : |
| 2723 | RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 2724 | "fms\t$rT, $rA, $rB, $rC", SPrecFP, |
| 2725 | [(set (v4f32 VECREG:$rT), |
| 2726 | (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)), |
| 2727 | (v4f32 VECREG:$rC)))]>; |
| 2728 | |
| 2729 | def FMSf32 : |
| 2730 | RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), |
| 2731 | "fms\t$rT, $rA, $rB, $rC", SPrecFP, |
| 2732 | [(set R32FP:$rT, |
| 2733 | (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>; |
| 2734 | |
| 2735 | // Floating Negative Mulitply and Subtract |
| 2736 | // Subtracts product from value in rC |
| 2737 | // res = fneg(fms a b c) |
| 2738 | // = - (a * b - c) |
| 2739 | // = c - a * b |
| 2740 | // NOTE: subtraction order |
| 2741 | // fsub a b = a - b |
| 2742 | // fs a b = b - a? |
| 2743 | def FNMSf32 : |
| 2744 | RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), |
| 2745 | "fnms\t$rT, $rA, $rB, $rC", SPrecFP, |
| 2746 | [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; |
| 2747 | |
| 2748 | def FNMSv4f32 : |
| 2749 | RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 2750 | "fnms\t$rT, $rA, $rB, $rC", SPrecFP, |
| 2751 | [(set (v4f32 VECREG:$rT), |
| 2752 | (fsub (v4f32 VECREG:$rC), |
| 2753 | (fmul (v4f32 VECREG:$rA), |
| 2754 | (v4f32 VECREG:$rB))))]>; |
| 2755 | |
| 2756 | //-------------------------------------- |
| 2757 | // Floating Point Conversions |
| 2758 | // Signed conversions: |
| 2759 | def CSiFv4f32: |
| 2760 | CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| 2761 | "csflt\t$rT, $rA, 0", SPrecFP, |
| 2762 | [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>; |
| 2763 | |
| 2764 | // Convert signed integer to floating point |
| 2765 | def CSiFf32 : |
| 2766 | CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA), |
| 2767 | "csflt\t$rT, $rA, 0", SPrecFP, |
| 2768 | [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>; |
| 2769 | |
| 2770 | // Convert unsigned into to float |
| 2771 | def CUiFv4f32 : |
| 2772 | CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| 2773 | "cuflt\t$rT, $rA, 0", SPrecFP, |
| 2774 | [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>; |
| 2775 | |
| 2776 | def CUiFf32 : |
| 2777 | CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA), |
| 2778 | "cuflt\t$rT, $rA, 0", SPrecFP, |
| 2779 | [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>; |
| 2780 | |
| 2781 | // Convert float to unsigned int |
| 2782 | // Assume that scale = 0 |
| 2783 | |
| 2784 | def CFUiv4f32 : |
| 2785 | CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| 2786 | "cfltu\t$rT, $rA, 0", SPrecFP, |
| 2787 | [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>; |
| 2788 | |
| 2789 | def CFUif32 : |
| 2790 | CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), |
| 2791 | "cfltu\t$rT, $rA, 0", SPrecFP, |
| 2792 | [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>; |
| 2793 | |
| 2794 | // Convert float to signed int |
| 2795 | // Assume that scale = 0 |
| 2796 | |
| 2797 | def CFSiv4f32 : |
| 2798 | CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| 2799 | "cflts\t$rT, $rA, 0", SPrecFP, |
| 2800 | [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>; |
| 2801 | |
| 2802 | def CFSif32 : |
| 2803 | CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), |
| 2804 | "cflts\t$rT, $rA, 0", SPrecFP, |
| 2805 | [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>; |
| 2806 | |
| 2807 | //===----------------------------------------------------------------------==// |
| 2808 | // Single<->Double precision conversions |
| 2809 | //===----------------------------------------------------------------------==// |
| 2810 | |
| 2811 | // NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a |
| 2812 | // v4f32, output is v2f64--which goes in the name?) |
| 2813 | |
| 2814 | // Floating point extend single to double |
| 2815 | // NOTE: Not sure if passing in v4f32 to FESDvec is correct since it |
| 2816 | // operates on two double-word slots (i.e. 1st and 3rd fp numbers |
| 2817 | // are ignored). |
| 2818 | def FESDvec : |
| 2819 | RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| 2820 | "fesd\t$rT, $rA", SPrecFP, |
| 2821 | [(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>; |
| 2822 | |
| 2823 | def FESDf32 : |
| 2824 | RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA), |
| 2825 | "fesd\t$rT, $rA", SPrecFP, |
| 2826 | [(set R64FP:$rT, (fextend R32FP:$rA))]>; |
| 2827 | |
| 2828 | // Floating point round double to single |
| 2829 | //def FRDSvec : |
| 2830 | // RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| 2831 | // "frds\t$rT, $rA,", SPrecFP, |
| 2832 | // [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>; |
| 2833 | |
| 2834 | def FRDSf64 : |
| 2835 | RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA), |
| 2836 | "frds\t$rT, $rA", SPrecFP, |
| 2837 | [(set R32FP:$rT, (fround R64FP:$rA))]>; |
| 2838 | |
| 2839 | //ToDo include anyextend? |
| 2840 | |
| 2841 | //===----------------------------------------------------------------------==// |
| 2842 | // Double precision floating point instructions |
| 2843 | //===----------------------------------------------------------------------==// |
| 2844 | def FAf64 : |
| 2845 | RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), |
| 2846 | "dfa\t$rT, $rA, $rB", DPrecFP, |
| 2847 | [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>; |
| 2848 | |
| 2849 | def FAv2f64 : |
| 2850 | RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2851 | "dfa\t$rT, $rA, $rB", DPrecFP, |
| 2852 | [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; |
| 2853 | |
| 2854 | def FSf64 : |
| 2855 | RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), |
| 2856 | "dfs\t$rT, $rA, $rB", DPrecFP, |
| 2857 | [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>; |
| 2858 | |
| 2859 | def FSv2f64 : |
| 2860 | RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2861 | "dfs\t$rT, $rA, $rB", DPrecFP, |
| 2862 | [(set (v2f64 VECREG:$rT), |
| 2863 | (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; |
| 2864 | |
| 2865 | def FMf64 : |
| 2866 | RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), |
| 2867 | "dfm\t$rT, $rA, $rB", DPrecFP, |
| 2868 | [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>; |
| 2869 | |
| 2870 | def FMv2f64: |
| 2871 | RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| 2872 | "dfm\t$rT, $rA, $rB", DPrecFP, |
| 2873 | [(set (v2f64 VECREG:$rT), |
| 2874 | (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; |
| 2875 | |
| 2876 | def FMAf64: |
| 2877 | RRForm<0b00111010110, (outs R64FP:$rT), |
| 2878 | (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| 2879 | "dfma\t$rT, $rA, $rB", DPrecFP, |
| 2880 | [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>, |
| 2881 | RegConstraint<"$rC = $rT">, |
| 2882 | NoEncode<"$rC">; |
| 2883 | |
| 2884 | def FMAv2f64: |
| 2885 | RRForm<0b00111010110, (outs VECREG:$rT), |
| 2886 | (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 2887 | "dfma\t$rT, $rA, $rB", DPrecFP, |
| 2888 | [(set (v2f64 VECREG:$rT), |
| 2889 | (fadd (v2f64 VECREG:$rC), |
| 2890 | (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>, |
| 2891 | RegConstraint<"$rC = $rT">, |
| 2892 | NoEncode<"$rC">; |
| 2893 | |
| 2894 | def FMSf64 : |
| 2895 | RRForm<0b10111010110, (outs R64FP:$rT), |
| 2896 | (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| 2897 | "dfms\t$rT, $rA, $rB", DPrecFP, |
| 2898 | [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>, |
| 2899 | RegConstraint<"$rC = $rT">, |
| 2900 | NoEncode<"$rC">; |
| 2901 | |
| 2902 | def FMSv2f64 : |
| 2903 | RRForm<0b10111010110, (outs VECREG:$rT), |
| 2904 | (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 2905 | "dfms\t$rT, $rA, $rB", DPrecFP, |
| 2906 | [(set (v2f64 VECREG:$rT), |
| 2907 | (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)), |
| 2908 | (v2f64 VECREG:$rC)))]>; |
| 2909 | |
| 2910 | // FNMS: - (a * b - c) |
| 2911 | // - (a * b) + c => c - (a * b) |
| 2912 | def FNMSf64 : |
| 2913 | RRForm<0b01111010110, (outs R64FP:$rT), |
| 2914 | (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| 2915 | "dfnms\t$rT, $rA, $rB", DPrecFP, |
| 2916 | [(set R64FP:$rT, (fsub R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>, |
| 2917 | RegConstraint<"$rC = $rT">, |
| 2918 | NoEncode<"$rC">; |
| 2919 | |
| 2920 | def : Pat<(fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC)), |
| 2921 | (FNMSf64 R64FP:$rA, R64FP:$rB, R64FP:$rC)>; |
| 2922 | |
| 2923 | def FNMSv2f64 : |
| 2924 | RRForm<0b01111010110, (outs VECREG:$rT), |
| 2925 | (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 2926 | "dfnms\t$rT, $rA, $rB", DPrecFP, |
| 2927 | [(set (v2f64 VECREG:$rT), |
| 2928 | (fsub (v2f64 VECREG:$rC), |
| 2929 | (fmul (v2f64 VECREG:$rA), |
| 2930 | (v2f64 VECREG:$rB))))]>, |
| 2931 | RegConstraint<"$rC = $rT">, |
| 2932 | NoEncode<"$rC">; |
| 2933 | |
| 2934 | def : Pat<(fneg (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)), |
| 2935 | (v2f64 VECREG:$rC))), |
| 2936 | (FNMSv2f64 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| 2937 | |
| 2938 | // - (a * b + c) |
| 2939 | // - (a * b) - c |
| 2940 | def FNMAf64 : |
| 2941 | RRForm<0b11111010110, (outs R64FP:$rT), |
| 2942 | (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| 2943 | "dfnma\t$rT, $rA, $rB", DPrecFP, |
| 2944 | [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>, |
| 2945 | RegConstraint<"$rC = $rT">, |
| 2946 | NoEncode<"$rC">; |
| 2947 | |
| 2948 | def FNMAv2f64 : |
| 2949 | RRForm<0b11111010110, (outs VECREG:$rT), |
| 2950 | (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| 2951 | "dfnma\t$rT, $rA, $rB", DPrecFP, |
| 2952 | [(set (v2f64 VECREG:$rT), |
| 2953 | (fneg (fadd (v2f64 VECREG:$rC), |
| 2954 | (fmul (v2f64 VECREG:$rA), |
| 2955 | (v2f64 VECREG:$rB)))))]>, |
| 2956 | RegConstraint<"$rC = $rT">, |
| 2957 | NoEncode<"$rC">; |
| 2958 | |
| 2959 | //===----------------------------------------------------------------------==// |
| 2960 | // Floating point negation and absolute value |
| 2961 | //===----------------------------------------------------------------------==// |
| 2962 | |
| 2963 | def : Pat<(fneg (v4f32 VECREG:$rA)), |
| 2964 | (XORfnegvec (v4f32 VECREG:$rA), |
| 2965 | (v4f32 (ILHUv4i32 0x8000)))>; |
| 2966 | |
| 2967 | def : Pat<(fneg R32FP:$rA), |
| 2968 | (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>; |
| 2969 | |
| 2970 | def : Pat<(fneg (v2f64 VECREG:$rA)), |
| 2971 | (XORfnegvec (v2f64 VECREG:$rA), |
| 2972 | (v2f64 (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80)))>; |
| 2973 | |
| 2974 | def : Pat<(fneg R64FP:$rA), |
| 2975 | (XORfneg64 R64FP:$rA, |
| 2976 | (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80))>; |
| 2977 | |
| 2978 | // Floating point absolute value |
| 2979 | |
| 2980 | def : Pat<(fabs R32FP:$rA), |
| 2981 | (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>; |
| 2982 | |
| 2983 | def : Pat<(fabs (v4f32 VECREG:$rA)), |
| 2984 | (ANDfabsvec (v4f32 VECREG:$rA), |
| 2985 | (v4f32 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>; |
| 2986 | |
| 2987 | def : Pat<(fabs R64FP:$rA), |
| 2988 | (ANDfabs64 R64FP:$rA, (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f))>; |
| 2989 | |
| 2990 | def : Pat<(fabs (v2f64 VECREG:$rA)), |
| 2991 | (ANDfabsvec (v2f64 VECREG:$rA), |
| 2992 | (v2f64 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>; |
| 2993 | |
| 2994 | //===----------------------------------------------------------------------===// |
| 2995 | // Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong |
| 2996 | // in the odd pipeline) |
| 2997 | //===----------------------------------------------------------------------===// |
| 2998 | |
| 2999 | def ENOP : I<(outs), (ins), "enop", ExecNOP> { |
| 3000 | let Pattern = []; |
| 3001 | |
| 3002 | let Inst{0-10} = 0b10000000010; |
| 3003 | let Inst{11-17} = 0; |
| 3004 | let Inst{18-24} = 0; |
| 3005 | let Inst{25-31} = 0; |
| 3006 | } |
| 3007 | |
| 3008 | def LNOP : I<(outs), (ins), "lnop", LoadNOP> { |
| 3009 | let Pattern = []; |
| 3010 | |
| 3011 | let Inst{0-10} = 0b10000000000; |
| 3012 | let Inst{11-17} = 0; |
| 3013 | let Inst{18-24} = 0; |
| 3014 | let Inst{25-31} = 0; |
| 3015 | } |
| 3016 | |
| 3017 | //===----------------------------------------------------------------------===// |
| 3018 | // Bit conversions (type conversions between vector/packed types) |
| 3019 | // NOTE: Promotions are handled using the XS* instructions. Truncation |
| 3020 | // is not handled. |
| 3021 | //===----------------------------------------------------------------------===// |
| 3022 | def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>; |
| 3023 | def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>; |
| 3024 | def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>; |
| 3025 | def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>; |
| 3026 | def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>; |
| 3027 | |
| 3028 | def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>; |
| 3029 | def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>; |
| 3030 | def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>; |
| 3031 | def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>; |
| 3032 | def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>; |
| 3033 | |
| 3034 | def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>; |
| 3035 | def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>; |
| 3036 | def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>; |
| 3037 | def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>; |
| 3038 | def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>; |
| 3039 | |
| 3040 | def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>; |
| 3041 | def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>; |
| 3042 | def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>; |
| 3043 | def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>; |
| 3044 | def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>; |
| 3045 | |
| 3046 | def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>; |
| 3047 | def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>; |
| 3048 | def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>; |
| 3049 | def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>; |
| 3050 | def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>; |
| 3051 | |
| 3052 | def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>; |
| 3053 | def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>; |
| 3054 | def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>; |
| 3055 | def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>; |
| 3056 | def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>; |
| 3057 | |
| 3058 | def : Pat<(f32 (bitconvert (i32 R32C:$src))), (f32 R32FP:$src)>; |
| 3059 | |
| 3060 | //===----------------------------------------------------------------------===// |
| 3061 | // Instruction patterns: |
| 3062 | //===----------------------------------------------------------------------===// |
| 3063 | |
| 3064 | // General 32-bit constants: |
| 3065 | def : Pat<(i32 imm:$imm), |
| 3066 | (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>; |
| 3067 | |
| 3068 | // Single precision float constants: |
| 3069 | def : Pat<(SPUFPconstant (f32 fpimm:$imm)), |
| 3070 | (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>; |
| 3071 | |
| 3072 | // General constant 32-bit vectors |
| 3073 | def : Pat<(v4i32 v4i32Imm:$imm), |
| 3074 | (IOHLvec (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))), |
| 3075 | (LO16_vec v4i32Imm:$imm))>; |
| 3076 | |
| 3077 | //===----------------------------------------------------------------------===// |
| 3078 | // Call instruction patterns: |
| 3079 | //===----------------------------------------------------------------------===// |
| 3080 | // Return void |
| 3081 | def : Pat<(ret), |
| 3082 | (RET)>; |
| 3083 | |
| 3084 | //===----------------------------------------------------------------------===// |
| 3085 | // Zero/Any/Sign extensions |
| 3086 | //===----------------------------------------------------------------------===// |
| 3087 | |
| 3088 | // zext 1->32: Zero extend i1 to i32 |
| 3089 | def : Pat<(SPUextract_i1_zext R32C:$rSrc), |
| 3090 | (ANDIr32 R32C:$rSrc, 0x1)>; |
| 3091 | |
| 3092 | // sext 8->32: Sign extend bytes to words |
| 3093 | def : Pat<(sext_inreg R32C:$rSrc, i8), |
| 3094 | (XSHWr32 (XSBHr32 R32C:$rSrc))>; |
| 3095 | |
| 3096 | def : Pat<(SPUextract_i8_sext VECREG:$rSrc), |
| 3097 | (XSHWr32 (XSBHr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc), |
| 3098 | (v4i32 VECREG:$rSrc))))>; |
| 3099 | |
| 3100 | def : Pat<(SPUextract_i8_zext VECREG:$rSrc), |
| 3101 | (ANDIr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc), (v4i32 VECREG:$rSrc)), |
| 3102 | 0xff)>; |
| 3103 | |
| 3104 | // zext 16->32: Zero extend halfwords to words (note that we have to juggle the |
| 3105 | // 0xffff constant since it will not fit into an immediate.) |
| 3106 | def : Pat<(i32 (zext R16C:$rSrc)), |
| 3107 | (AND2To4 R16C:$rSrc, (ILAr32 0xffff))>; |
| 3108 | |
| 3109 | def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))), |
| 3110 | (ANDI2To4 R16C:$rSrc, 0xf)>; |
| 3111 | |
| 3112 | def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))), |
| 3113 | (ANDI2To4 R16C:$rSrc, 0xff)>; |
| 3114 | |
| 3115 | def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))), |
| 3116 | (ANDI2To4 R16C:$rSrc, 0xfff)>; |
| 3117 | |
| 3118 | // anyext 16->32: Extend 16->32 bits, irrespective of sign |
| 3119 | def : Pat<(i32 (anyext R16C:$rSrc)), |
| 3120 | (ORI2To4 R16C:$rSrc, 0)>; |
| 3121 | |
| 3122 | //===----------------------------------------------------------------------===// |
| 3123 | // Address translation: SPU, like PPC, has to split addresses into high and |
| 3124 | // low parts in order to load them into a register. |
| 3125 | //===----------------------------------------------------------------------===// |
| 3126 | |
| 3127 | def : Pat<(SPUhi tglobaladdr:$in, 0), (ILHUhi tglobaladdr:$in)>; |
| 3128 | def : Pat<(SPUlo tglobaladdr:$in, 0), (ILAlo tglobaladdr:$in)>; |
| 3129 | def : Pat<(SPUdform tglobaladdr:$in, imm:$imm), (ILAlsa tglobaladdr:$in)>; |
| 3130 | def : Pat<(SPUhi tconstpool:$in , 0), (ILHUhi tconstpool:$in)>; |
| 3131 | def : Pat<(SPUlo tconstpool:$in , 0), (ILAlo tconstpool:$in)>; |
| 3132 | def : Pat<(SPUdform tconstpool:$in, imm:$imm), (ILAlsa tconstpool:$in)>; |
| 3133 | def : Pat<(SPUhi tjumptable:$in, 0), (ILHUhi tjumptable:$in)>; |
| 3134 | def : Pat<(SPUlo tjumptable:$in, 0), (ILAlo tjumptable:$in)>; |
| 3135 | def : Pat<(SPUdform tjumptable:$in, imm:$imm), (ILAlsa tjumptable:$in)>; |
| 3136 | |
| 3137 | // Force load of global address to a register. These forms show up in |
| 3138 | // SPUISD::DFormAddr pseudo instructions: |
| 3139 | /* |
| 3140 | def : Pat<(add tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>; |
| 3141 | def : Pat<(add tconstpool:$in, 0), (ILAlsa tglobaladdr:$in)>; |
| 3142 | def : Pat<(add tjumptable:$in, 0), (ILAlsa tglobaladdr:$in)>; |
| 3143 | */ |
| 3144 | // Instrinsics: |
| 3145 | include "CellSDKIntrinsics.td" |