blob: 1365d684f4d7e1d68d547f992d8e50521011d86a [file] [log] [blame]
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuild.h"
16#include "llvm/ADT/BitVector.h"
Dan Gohman5b229802008-09-04 20:49:27 +000017#include "llvm/ADT/SmallSet.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000018#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000028#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include <algorithm>
49using namespace llvm;
50
Dale Johannesen601d3c02008-09-05 01:48:15 +000051/// LimitFloatPrecision - Generate low-precision inline sequences for
52/// some float libcalls (6, 8 or 12 bits).
53static unsigned LimitFloatPrecision;
54
55static cl::opt<unsigned, true>
56LimitFPPrecision("limit-float-precision",
57 cl::desc("Generate low-precision inline sequences "
58 "for some float libcalls"),
59 cl::location(LimitFloatPrecision),
60 cl::init(0));
61
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000062/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
63/// insertvalue or extractvalue indices that identify a member, return
64/// the linearized index of the start of the member.
65///
66static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
67 const unsigned *Indices,
68 const unsigned *IndicesEnd,
69 unsigned CurIndex = 0) {
70 // Base case: We're done.
71 if (Indices && Indices == IndicesEnd)
72 return CurIndex;
73
74 // Given a struct type, recursively traverse the elements.
75 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
76 for (StructType::element_iterator EB = STy->element_begin(),
77 EI = EB,
78 EE = STy->element_end();
79 EI != EE; ++EI) {
80 if (Indices && *Indices == unsigned(EI - EB))
81 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
82 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
83 }
84 }
85 // Given an array type, recursively traverse the elements.
86 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
87 const Type *EltTy = ATy->getElementType();
88 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
89 if (Indices && *Indices == i)
90 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
91 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
92 }
93 }
94 // We haven't found the type we're looking for, so keep searching.
95 return CurIndex + 1;
96}
97
98/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
99/// MVTs that represent all the individual underlying
100/// non-aggregate types that comprise it.
101///
102/// If Offsets is non-null, it points to a vector to be filled in
103/// with the in-memory offsets of each of the individual values.
104///
105static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
106 SmallVectorImpl<MVT> &ValueVTs,
107 SmallVectorImpl<uint64_t> *Offsets = 0,
108 uint64_t StartingOffset = 0) {
109 // Given a struct type, recursively traverse the elements.
110 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
111 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
112 for (StructType::element_iterator EB = STy->element_begin(),
113 EI = EB,
114 EE = STy->element_end();
115 EI != EE; ++EI)
116 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
117 StartingOffset + SL->getElementOffset(EI - EB));
118 return;
119 }
120 // Given an array type, recursively traverse the elements.
121 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
122 const Type *EltTy = ATy->getElementType();
123 uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
124 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
125 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
126 StartingOffset + i * EltSize);
127 return;
128 }
129 // Base case: we can get an MVT for this LLVM IR type.
130 ValueVTs.push_back(TLI.getValueType(Ty));
131 if (Offsets)
132 Offsets->push_back(StartingOffset);
133}
134
Dan Gohman2a7c6712008-09-03 23:18:39 +0000135namespace llvm {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000136 /// RegsForValue - This struct represents the registers (physical or virtual)
137 /// that a particular set of values is assigned, and the type information about
138 /// the value. The most common situation is to represent one value at a time,
139 /// but struct or array values are handled element-wise as multiple values.
140 /// The splitting of aggregates is performed recursively, so that we never
141 /// have aggregate-typed registers. The values at this point do not necessarily
142 /// have legal types, so each value may require one or more registers of some
143 /// legal type.
144 ///
145 struct VISIBILITY_HIDDEN RegsForValue {
146 /// TLI - The TargetLowering object.
147 ///
148 const TargetLowering *TLI;
149
150 /// ValueVTs - The value types of the values, which may not be legal, and
151 /// may need be promoted or synthesized from one or more registers.
152 ///
153 SmallVector<MVT, 4> ValueVTs;
154
155 /// RegVTs - The value types of the registers. This is the same size as
156 /// ValueVTs and it records, for each value, what the type of the assigned
157 /// register or registers are. (Individual values are never synthesized
158 /// from more than one type of register.)
159 ///
160 /// With virtual registers, the contents of RegVTs is redundant with TLI's
161 /// getRegisterType member function, however when with physical registers
162 /// it is necessary to have a separate record of the types.
163 ///
164 SmallVector<MVT, 4> RegVTs;
165
166 /// Regs - This list holds the registers assigned to the values.
167 /// Each legal or promoted value requires one register, and each
168 /// expanded value requires multiple registers.
169 ///
170 SmallVector<unsigned, 4> Regs;
171
172 RegsForValue() : TLI(0) {}
173
174 RegsForValue(const TargetLowering &tli,
175 const SmallVector<unsigned, 4> &regs,
176 MVT regvt, MVT valuevt)
177 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
178 RegsForValue(const TargetLowering &tli,
179 const SmallVector<unsigned, 4> &regs,
180 const SmallVector<MVT, 4> &regvts,
181 const SmallVector<MVT, 4> &valuevts)
182 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
183 RegsForValue(const TargetLowering &tli,
184 unsigned Reg, const Type *Ty) : TLI(&tli) {
185 ComputeValueVTs(tli, Ty, ValueVTs);
186
187 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
188 MVT ValueVT = ValueVTs[Value];
189 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
190 MVT RegisterVT = TLI->getRegisterType(ValueVT);
191 for (unsigned i = 0; i != NumRegs; ++i)
192 Regs.push_back(Reg + i);
193 RegVTs.push_back(RegisterVT);
194 Reg += NumRegs;
195 }
196 }
197
198 /// append - Add the specified values to this one.
199 void append(const RegsForValue &RHS) {
200 TLI = RHS.TLI;
201 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
202 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
203 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
204 }
205
206
207 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
208 /// this value and returns the result as a ValueVTs value. This uses
209 /// Chain/Flag as the input and updates them for the output Chain/Flag.
210 /// If the Flag pointer is NULL, no flag is used.
211 SDValue getCopyFromRegs(SelectionDAG &DAG,
212 SDValue &Chain, SDValue *Flag) const;
213
214 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
215 /// specified value into the registers specified by this object. This uses
216 /// Chain/Flag as the input and updates them for the output Chain/Flag.
217 /// If the Flag pointer is NULL, no flag is used.
218 void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
219 SDValue &Chain, SDValue *Flag) const;
220
221 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
222 /// operand list. This adds the code marker and includes the number of
223 /// values added into it.
224 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
225 std::vector<SDValue> &Ops) const;
226 };
227}
228
229/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
230/// PHI nodes or outside of the basic block that defines it, or used by a
231/// switch or atomic instruction, which may expand to multiple basic blocks.
232static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
233 if (isa<PHINode>(I)) return true;
234 BasicBlock *BB = I->getParent();
235 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
236 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
237 // FIXME: Remove switchinst special case.
238 isa<SwitchInst>(*UI))
239 return true;
240 return false;
241}
242
243/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
244/// entry block, return true. This includes arguments used by switches, since
245/// the switch may expand into multiple basic blocks.
246static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
247 // With FastISel active, we may be splitting blocks, so force creation
248 // of virtual registers for all non-dead arguments.
249 if (EnableFastISel)
250 return A->use_empty();
251
252 BasicBlock *Entry = A->getParent()->begin();
253 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
254 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
255 return false; // Use not in entry block.
256 return true;
257}
258
259FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
260 : TLI(tli) {
261}
262
263void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
264 bool EnableFastISel) {
265 Fn = &fn;
266 MF = &mf;
267 RegInfo = &MF->getRegInfo();
268
269 // Create a vreg for each argument register that is not dead and is used
270 // outside of the entry block for the function.
271 for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
272 AI != E; ++AI)
273 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
274 InitializeRegForValue(AI);
275
276 // Initialize the mapping of values to registers. This is only set up for
277 // instruction values that are used outside of the block that defines
278 // them.
279 Function::iterator BB = Fn->begin(), EB = Fn->end();
280 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
281 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
282 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
283 const Type *Ty = AI->getAllocatedType();
284 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
285 unsigned Align =
286 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
287 AI->getAlignment());
288
289 TySize *= CUI->getZExtValue(); // Get total allocated size.
290 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
291 StaticAllocaMap[AI] =
292 MF->getFrameInfo()->CreateStackObject(TySize, Align);
293 }
294
295 for (; BB != EB; ++BB)
296 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
297 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
298 if (!isa<AllocaInst>(I) ||
299 !StaticAllocaMap.count(cast<AllocaInst>(I)))
300 InitializeRegForValue(I);
301
302 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
303 // also creates the initial PHI MachineInstrs, though none of the input
304 // operands are populated.
305 for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
306 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
307 MBBMap[BB] = MBB;
308 MF->push_back(MBB);
309
310 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
311 // appropriate.
312 PHINode *PN;
313 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
314 if (PN->use_empty()) continue;
315
316 unsigned PHIReg = ValueMap[PN];
317 assert(PHIReg && "PHI node does not have an assigned virtual register!");
318
319 SmallVector<MVT, 4> ValueVTs;
320 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
321 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
322 MVT VT = ValueVTs[vti];
323 unsigned NumRegisters = TLI.getNumRegisters(VT);
Dan Gohman6448d912008-09-04 15:39:15 +0000324 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000325 for (unsigned i = 0; i != NumRegisters; ++i)
326 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
327 PHIReg += NumRegisters;
328 }
329 }
330 }
331}
332
333unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
334 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
335}
336
337/// CreateRegForValue - Allocate the appropriate number of virtual registers of
338/// the correctly promoted or expanded types. Assign these registers
339/// consecutive vreg numbers and return the first assigned number.
340///
341/// In the case that the given value has struct or array type, this function
342/// will assign registers for each member or element.
343///
344unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
345 SmallVector<MVT, 4> ValueVTs;
346 ComputeValueVTs(TLI, V->getType(), ValueVTs);
347
348 unsigned FirstReg = 0;
349 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
350 MVT ValueVT = ValueVTs[Value];
351 MVT RegisterVT = TLI.getRegisterType(ValueVT);
352
353 unsigned NumRegs = TLI.getNumRegisters(ValueVT);
354 for (unsigned i = 0; i != NumRegs; ++i) {
355 unsigned R = MakeReg(RegisterVT);
356 if (!FirstReg) FirstReg = R;
357 }
358 }
359 return FirstReg;
360}
361
362/// getCopyFromParts - Create a value that contains the specified legal parts
363/// combined into the value they represent. If the parts combine to a type
364/// larger then ValueVT then AssertOp can be used to specify whether the extra
365/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
366/// (ISD::AssertSext).
367static SDValue getCopyFromParts(SelectionDAG &DAG,
368 const SDValue *Parts,
369 unsigned NumParts,
370 MVT PartVT,
371 MVT ValueVT,
372 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
373 assert(NumParts > 0 && "No parts to assemble!");
374 TargetLowering &TLI = DAG.getTargetLoweringInfo();
375 SDValue Val = Parts[0];
376
377 if (NumParts > 1) {
378 // Assemble the value from multiple parts.
379 if (!ValueVT.isVector()) {
380 unsigned PartBits = PartVT.getSizeInBits();
381 unsigned ValueBits = ValueVT.getSizeInBits();
382
383 // Assemble the power of 2 part.
384 unsigned RoundParts = NumParts & (NumParts - 1) ?
385 1 << Log2_32(NumParts) : NumParts;
386 unsigned RoundBits = PartBits * RoundParts;
387 MVT RoundVT = RoundBits == ValueBits ?
388 ValueVT : MVT::getIntegerVT(RoundBits);
389 SDValue Lo, Hi;
390
391 if (RoundParts > 2) {
392 MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
393 Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
394 Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
395 PartVT, HalfVT);
396 } else {
397 Lo = Parts[0];
398 Hi = Parts[1];
399 }
400 if (TLI.isBigEndian())
401 std::swap(Lo, Hi);
402 Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
403
404 if (RoundParts < NumParts) {
405 // Assemble the trailing non-power-of-2 part.
406 unsigned OddParts = NumParts - RoundParts;
407 MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
408 Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
409
410 // Combine the round and odd parts.
411 Lo = Val;
412 if (TLI.isBigEndian())
413 std::swap(Lo, Hi);
414 MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
415 Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
416 Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
417 DAG.getConstant(Lo.getValueType().getSizeInBits(),
418 TLI.getShiftAmountTy()));
419 Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
420 Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
421 }
422 } else {
423 // Handle a multi-element vector.
424 MVT IntermediateVT, RegisterVT;
425 unsigned NumIntermediates;
426 unsigned NumRegs =
427 TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
428 RegisterVT);
429 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
430 NumParts = NumRegs; // Silence a compiler warning.
431 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
432 assert(RegisterVT == Parts[0].getValueType() &&
433 "Part type doesn't match part!");
434
435 // Assemble the parts into intermediate operands.
436 SmallVector<SDValue, 8> Ops(NumIntermediates);
437 if (NumIntermediates == NumParts) {
438 // If the register was not expanded, truncate or copy the value,
439 // as appropriate.
440 for (unsigned i = 0; i != NumParts; ++i)
441 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
442 PartVT, IntermediateVT);
443 } else if (NumParts > 0) {
444 // If the intermediate type was expanded, build the intermediate operands
445 // from the parts.
446 assert(NumParts % NumIntermediates == 0 &&
447 "Must expand into a divisible number of parts!");
448 unsigned Factor = NumParts / NumIntermediates;
449 for (unsigned i = 0; i != NumIntermediates; ++i)
450 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
451 PartVT, IntermediateVT);
452 }
453
454 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
455 // operands.
456 Val = DAG.getNode(IntermediateVT.isVector() ?
457 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
458 ValueVT, &Ops[0], NumIntermediates);
459 }
460 }
461
462 // There is now one part, held in Val. Correct it to match ValueVT.
463 PartVT = Val.getValueType();
464
465 if (PartVT == ValueVT)
466 return Val;
467
468 if (PartVT.isVector()) {
469 assert(ValueVT.isVector() && "Unknown vector conversion!");
470 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
471 }
472
473 if (ValueVT.isVector()) {
474 assert(ValueVT.getVectorElementType() == PartVT &&
475 ValueVT.getVectorNumElements() == 1 &&
476 "Only trivial scalar-to-vector conversions should get here!");
477 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
478 }
479
480 if (PartVT.isInteger() &&
481 ValueVT.isInteger()) {
482 if (ValueVT.bitsLT(PartVT)) {
483 // For a truncate, see if we have any information to
484 // indicate whether the truncated bits will always be
485 // zero or sign-extension.
486 if (AssertOp != ISD::DELETED_NODE)
487 Val = DAG.getNode(AssertOp, PartVT, Val,
488 DAG.getValueType(ValueVT));
489 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
490 } else {
491 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
492 }
493 }
494
495 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
496 if (ValueVT.bitsLT(Val.getValueType()))
497 // FP_ROUND's are always exact here.
498 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
499 DAG.getIntPtrConstant(1));
500 return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
501 }
502
503 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
504 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
505
506 assert(0 && "Unknown mismatch!");
507 return SDValue();
508}
509
510/// getCopyToParts - Create a series of nodes that contain the specified value
511/// split into legal parts. If the parts contain more bits than Val, then, for
512/// integers, ExtendKind can be used to specify how to generate the extra bits.
513static void getCopyToParts(SelectionDAG &DAG,
514 SDValue Val,
515 SDValue *Parts,
516 unsigned NumParts,
517 MVT PartVT,
518 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
519 TargetLowering &TLI = DAG.getTargetLoweringInfo();
520 MVT PtrVT = TLI.getPointerTy();
521 MVT ValueVT = Val.getValueType();
522 unsigned PartBits = PartVT.getSizeInBits();
523 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
524
525 if (!NumParts)
526 return;
527
528 if (!ValueVT.isVector()) {
529 if (PartVT == ValueVT) {
530 assert(NumParts == 1 && "No-op copy with multiple parts!");
531 Parts[0] = Val;
532 return;
533 }
534
535 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536 // If the parts cover more bits than the value has, promote the value.
537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538 assert(NumParts == 1 && "Do not know what to promote to!");
539 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
540 } else if (PartVT.isInteger() && ValueVT.isInteger()) {
541 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
542 Val = DAG.getNode(ExtendKind, ValueVT, Val);
543 } else {
544 assert(0 && "Unknown mismatch!");
545 }
546 } else if (PartBits == ValueVT.getSizeInBits()) {
547 // Different types of the same size.
548 assert(NumParts == 1 && PartVT != ValueVT);
549 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551 // If the parts cover less bits than value has, truncate the value.
552 if (PartVT.isInteger() && ValueVT.isInteger()) {
553 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
554 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
555 } else {
556 assert(0 && "Unknown mismatch!");
557 }
558 }
559
560 // The value may have changed - recompute ValueVT.
561 ValueVT = Val.getValueType();
562 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
563 "Failed to tile the value with PartVT!");
564
565 if (NumParts == 1) {
566 assert(PartVT == ValueVT && "Type conversion failed!");
567 Parts[0] = Val;
568 return;
569 }
570
571 // Expand the value into multiple parts.
572 if (NumParts & (NumParts - 1)) {
573 // The number of parts is not a power of 2. Split off and copy the tail.
574 assert(PartVT.isInteger() && ValueVT.isInteger() &&
575 "Do not know what to expand to!");
576 unsigned RoundParts = 1 << Log2_32(NumParts);
577 unsigned RoundBits = RoundParts * PartBits;
578 unsigned OddParts = NumParts - RoundParts;
579 SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
580 DAG.getConstant(RoundBits,
581 TLI.getShiftAmountTy()));
582 getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
583 if (TLI.isBigEndian())
584 // The odd parts were reversed by getCopyToParts - unreverse them.
585 std::reverse(Parts + RoundParts, Parts + NumParts);
586 NumParts = RoundParts;
587 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
588 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
589 }
590
591 // The number of parts is a power of 2. Repeatedly bisect the value using
592 // EXTRACT_ELEMENT.
593 Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
594 MVT::getIntegerVT(ValueVT.getSizeInBits()),
595 Val);
596 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597 for (unsigned i = 0; i < NumParts; i += StepSize) {
598 unsigned ThisBits = StepSize * PartBits / 2;
599 MVT ThisVT = MVT::getIntegerVT (ThisBits);
600 SDValue &Part0 = Parts[i];
601 SDValue &Part1 = Parts[i+StepSize/2];
602
603 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
604 DAG.getConstant(1, PtrVT));
605 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
606 DAG.getConstant(0, PtrVT));
607
608 if (ThisBits == PartBits && ThisVT != PartVT) {
609 Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
610 Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
611 }
612 }
613 }
614
615 if (TLI.isBigEndian())
616 std::reverse(Parts, Parts + NumParts);
617
618 return;
619 }
620
621 // Vector ValueVT.
622 if (NumParts == 1) {
623 if (PartVT != ValueVT) {
624 if (PartVT.isVector()) {
625 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
626 } else {
627 assert(ValueVT.getVectorElementType() == PartVT &&
628 ValueVT.getVectorNumElements() == 1 &&
629 "Only trivial vector-to-scalar conversions should get here!");
630 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
631 DAG.getConstant(0, PtrVT));
632 }
633 }
634
635 Parts[0] = Val;
636 return;
637 }
638
639 // Handle a multi-element vector.
640 MVT IntermediateVT, RegisterVT;
641 unsigned NumIntermediates;
642 unsigned NumRegs =
643 DAG.getTargetLoweringInfo()
644 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
645 RegisterVT);
646 unsigned NumElements = ValueVT.getVectorNumElements();
647
648 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
649 NumParts = NumRegs; // Silence a compiler warning.
650 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
651
652 // Split the vector into intermediate operands.
653 SmallVector<SDValue, 8> Ops(NumIntermediates);
654 for (unsigned i = 0; i != NumIntermediates; ++i)
655 if (IntermediateVT.isVector())
656 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
657 IntermediateVT, Val,
658 DAG.getConstant(i * (NumElements / NumIntermediates),
659 PtrVT));
660 else
661 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
662 IntermediateVT, Val,
663 DAG.getConstant(i, PtrVT));
664
665 // Split the intermediate operands into legal parts.
666 if (NumParts == NumIntermediates) {
667 // If the register was not expanded, promote or copy the value,
668 // as appropriate.
669 for (unsigned i = 0; i != NumParts; ++i)
670 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
671 } else if (NumParts > 0) {
672 // If the intermediate type was expanded, split each the value into
673 // legal parts.
674 assert(NumParts % NumIntermediates == 0 &&
675 "Must expand into a divisible number of parts!");
676 unsigned Factor = NumParts / NumIntermediates;
677 for (unsigned i = 0; i != NumIntermediates; ++i)
678 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
679 }
680}
681
682
683void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
684 AA = &aa;
685 GFI = gfi;
686 TD = DAG.getTarget().getTargetData();
687}
688
689/// clear - Clear out the curret SelectionDAG and the associated
690/// state and prepare this SelectionDAGLowering object to be used
691/// for a new block. This doesn't clear out information about
692/// additional blocks that are needed to complete switch lowering
693/// or PHI node updating; that information is cleared out as it is
694/// consumed.
695void SelectionDAGLowering::clear() {
696 NodeMap.clear();
697 PendingLoads.clear();
698 PendingExports.clear();
699 DAG.clear();
700}
701
702/// getRoot - Return the current virtual root of the Selection DAG,
703/// flushing any PendingLoad items. This must be done before emitting
704/// a store or any other node that may need to be ordered after any
705/// prior load instructions.
706///
707SDValue SelectionDAGLowering::getRoot() {
708 if (PendingLoads.empty())
709 return DAG.getRoot();
710
711 if (PendingLoads.size() == 1) {
712 SDValue Root = PendingLoads[0];
713 DAG.setRoot(Root);
714 PendingLoads.clear();
715 return Root;
716 }
717
718 // Otherwise, we have to make a token factor node.
719 SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
720 &PendingLoads[0], PendingLoads.size());
721 PendingLoads.clear();
722 DAG.setRoot(Root);
723 return Root;
724}
725
726/// getControlRoot - Similar to getRoot, but instead of flushing all the
727/// PendingLoad items, flush all the PendingExports items. It is necessary
728/// to do this before emitting a terminator instruction.
729///
730SDValue SelectionDAGLowering::getControlRoot() {
731 SDValue Root = DAG.getRoot();
732
733 if (PendingExports.empty())
734 return Root;
735
736 // Turn all of the CopyToReg chains into one factored node.
737 if (Root.getOpcode() != ISD::EntryToken) {
738 unsigned i = 0, e = PendingExports.size();
739 for (; i != e; ++i) {
740 assert(PendingExports[i].getNode()->getNumOperands() > 1);
741 if (PendingExports[i].getNode()->getOperand(0) == Root)
742 break; // Don't add the root if we already indirectly depend on it.
743 }
744
745 if (i == e)
746 PendingExports.push_back(Root);
747 }
748
749 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
750 &PendingExports[0],
751 PendingExports.size());
752 PendingExports.clear();
753 DAG.setRoot(Root);
754 return Root;
755}
756
757void SelectionDAGLowering::visit(Instruction &I) {
758 visit(I.getOpcode(), I);
759}
760
761void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
762 // Note: this doesn't use InstVisitor, because it has to work with
763 // ConstantExpr's in addition to instructions.
764 switch (Opcode) {
765 default: assert(0 && "Unknown instruction type encountered!");
766 abort();
767 // Build the switch statement using the Instruction.def file.
768#define HANDLE_INST(NUM, OPCODE, CLASS) \
769 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
770#include "llvm/Instruction.def"
771 }
772}
773
774void SelectionDAGLowering::visitAdd(User &I) {
775 if (I.getType()->isFPOrFPVector())
776 visitBinary(I, ISD::FADD);
777 else
778 visitBinary(I, ISD::ADD);
779}
780
781void SelectionDAGLowering::visitMul(User &I) {
782 if (I.getType()->isFPOrFPVector())
783 visitBinary(I, ISD::FMUL);
784 else
785 visitBinary(I, ISD::MUL);
786}
787
788SDValue SelectionDAGLowering::getValue(const Value *V) {
789 SDValue &N = NodeMap[V];
790 if (N.getNode()) return N;
791
792 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
793 MVT VT = TLI.getValueType(V->getType(), true);
794
795 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000796 return N = DAG.getConstant(*CI, VT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000797
798 if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
799 return N = DAG.getGlobalAddress(GV, VT);
800
801 if (isa<ConstantPointerNull>(C))
802 return N = DAG.getConstant(0, TLI.getPointerTy());
803
804 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000805 return N = DAG.getConstantFP(*CFP, VT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000806
807 if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
808 !V->getType()->isAggregateType())
809 return N = DAG.getNode(ISD::UNDEF, VT);
810
811 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
812 visit(CE->getOpcode(), *CE);
813 SDValue N1 = NodeMap[V];
814 assert(N1.getNode() && "visit didn't populate the ValueMap!");
815 return N1;
816 }
817
818 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
819 SmallVector<SDValue, 4> Constants;
820 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
821 OI != OE; ++OI) {
822 SDNode *Val = getValue(*OI).getNode();
823 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
824 Constants.push_back(SDValue(Val, i));
825 }
826 return DAG.getMergeValues(&Constants[0], Constants.size());
827 }
828
829 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
830 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
831 "Unknown struct or array constant!");
832
833 SmallVector<MVT, 4> ValueVTs;
834 ComputeValueVTs(TLI, C->getType(), ValueVTs);
835 unsigned NumElts = ValueVTs.size();
836 if (NumElts == 0)
837 return SDValue(); // empty struct
838 SmallVector<SDValue, 4> Constants(NumElts);
839 for (unsigned i = 0; i != NumElts; ++i) {
840 MVT EltVT = ValueVTs[i];
841 if (isa<UndefValue>(C))
842 Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
843 else if (EltVT.isFloatingPoint())
844 Constants[i] = DAG.getConstantFP(0, EltVT);
845 else
846 Constants[i] = DAG.getConstant(0, EltVT);
847 }
848 return DAG.getMergeValues(&Constants[0], NumElts);
849 }
850
851 const VectorType *VecTy = cast<VectorType>(V->getType());
852 unsigned NumElements = VecTy->getNumElements();
853
854 // Now that we know the number and type of the elements, get that number of
855 // elements into the Ops array based on what kind of constant it is.
856 SmallVector<SDValue, 16> Ops;
857 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
858 for (unsigned i = 0; i != NumElements; ++i)
859 Ops.push_back(getValue(CP->getOperand(i)));
860 } else {
861 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
862 "Unknown vector constant!");
863 MVT EltVT = TLI.getValueType(VecTy->getElementType());
864
865 SDValue Op;
866 if (isa<UndefValue>(C))
867 Op = DAG.getNode(ISD::UNDEF, EltVT);
868 else if (EltVT.isFloatingPoint())
869 Op = DAG.getConstantFP(0, EltVT);
870 else
871 Op = DAG.getConstant(0, EltVT);
872 Ops.assign(NumElements, Op);
873 }
874
875 // Create a BUILD_VECTOR node.
876 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
877 }
878
879 // If this is a static alloca, generate it as the frameindex instead of
880 // computation.
881 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
882 DenseMap<const AllocaInst*, int>::iterator SI =
883 FuncInfo.StaticAllocaMap.find(AI);
884 if (SI != FuncInfo.StaticAllocaMap.end())
885 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
886 }
887
888 unsigned InReg = FuncInfo.ValueMap[V];
889 assert(InReg && "Value not in map!");
890
891 RegsForValue RFV(TLI, InReg, V->getType());
892 SDValue Chain = DAG.getEntryNode();
893 return RFV.getCopyFromRegs(DAG, Chain, NULL);
894}
895
896
897void SelectionDAGLowering::visitRet(ReturnInst &I) {
898 if (I.getNumOperands() == 0) {
899 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
900 return;
901 }
902
903 SmallVector<SDValue, 8> NewValues;
904 NewValues.push_back(getControlRoot());
905 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
906 SDValue RetOp = getValue(I.getOperand(i));
907
908 SmallVector<MVT, 4> ValueVTs;
909 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
910 for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
911 MVT VT = ValueVTs[j];
912
913 // FIXME: C calling convention requires the return type to be promoted to
914 // at least 32-bit. But this is not necessary for non-C calling conventions.
915 if (VT.isInteger()) {
916 MVT MinVT = TLI.getRegisterType(MVT::i32);
917 if (VT.bitsLT(MinVT))
918 VT = MinVT;
919 }
920
921 unsigned NumParts = TLI.getNumRegisters(VT);
922 MVT PartVT = TLI.getRegisterType(VT);
923 SmallVector<SDValue, 4> Parts(NumParts);
924 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
925
926 const Function *F = I.getParent()->getParent();
927 if (F->paramHasAttr(0, ParamAttr::SExt))
928 ExtendKind = ISD::SIGN_EXTEND;
929 else if (F->paramHasAttr(0, ParamAttr::ZExt))
930 ExtendKind = ISD::ZERO_EXTEND;
931
932 getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j),
933 &Parts[0], NumParts, PartVT, ExtendKind);
934
935 for (unsigned i = 0; i < NumParts; ++i) {
936 NewValues.push_back(Parts[i]);
937 NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
938 }
939 }
940 }
941 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
942 &NewValues[0], NewValues.size()));
943}
944
945/// ExportFromCurrentBlock - If this condition isn't known to be exported from
946/// the current basic block, add it to ValueMap now so that we'll get a
947/// CopyTo/FromReg.
948void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
949 // No need to export constants.
950 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
951
952 // Already exported?
953 if (FuncInfo.isExportedInst(V)) return;
954
955 unsigned Reg = FuncInfo.InitializeRegForValue(V);
956 CopyValueToVirtualRegister(V, Reg);
957}
958
959bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
960 const BasicBlock *FromBB) {
961 // The operands of the setcc have to be in this block. We don't know
962 // how to export them from some other block.
963 if (Instruction *VI = dyn_cast<Instruction>(V)) {
964 // Can export from current BB.
965 if (VI->getParent() == FromBB)
966 return true;
967
968 // Is already exported, noop.
969 return FuncInfo.isExportedInst(V);
970 }
971
972 // If this is an argument, we can export it if the BB is the entry block or
973 // if it is already exported.
974 if (isa<Argument>(V)) {
975 if (FromBB == &FromBB->getParent()->getEntryBlock())
976 return true;
977
978 // Otherwise, can only export this if it is already exported.
979 return FuncInfo.isExportedInst(V);
980 }
981
982 // Otherwise, constants can always be exported.
983 return true;
984}
985
986static bool InBlock(const Value *V, const BasicBlock *BB) {
987 if (const Instruction *I = dyn_cast<Instruction>(V))
988 return I->getParent() == BB;
989 return true;
990}
991
992/// FindMergedConditions - If Cond is an expression like
993void SelectionDAGLowering::FindMergedConditions(Value *Cond,
994 MachineBasicBlock *TBB,
995 MachineBasicBlock *FBB,
996 MachineBasicBlock *CurBB,
997 unsigned Opc) {
998 // If this node is not part of the or/and tree, emit it as a branch.
999 Instruction *BOp = dyn_cast<Instruction>(Cond);
1000
1001 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1002 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1003 BOp->getParent() != CurBB->getBasicBlock() ||
1004 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1005 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1006 const BasicBlock *BB = CurBB->getBasicBlock();
1007
1008 // If the leaf of the tree is a comparison, merge the condition into
1009 // the caseblock.
1010 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1011 // The operands of the cmp have to be in this block. We don't know
1012 // how to export them from some other block. If this is the first block
1013 // of the sequence, no exporting is needed.
1014 (CurBB == CurMBB ||
1015 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1016 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1017 BOp = cast<Instruction>(Cond);
1018 ISD::CondCode Condition;
1019 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1020 switch (IC->getPredicate()) {
1021 default: assert(0 && "Unknown icmp predicate opcode!");
1022 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1023 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1024 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1025 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1026 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1027 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1028 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1029 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1030 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1031 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1032 }
1033 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1034 ISD::CondCode FPC, FOC;
1035 switch (FC->getPredicate()) {
1036 default: assert(0 && "Unknown fcmp predicate opcode!");
1037 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1038 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1039 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1040 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1041 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1042 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1043 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1044 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
1045 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
1046 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1047 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1048 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1049 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1050 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1051 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1052 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1053 }
1054 if (FiniteOnlyFPMath())
1055 Condition = FOC;
1056 else
1057 Condition = FPC;
1058 } else {
1059 Condition = ISD::SETEQ; // silence warning.
1060 assert(0 && "Unknown compare instruction");
1061 }
1062
1063 CaseBlock CB(Condition, BOp->getOperand(0),
1064 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1065 SwitchCases.push_back(CB);
1066 return;
1067 }
1068
1069 // Create a CaseBlock record representing this branch.
1070 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1071 NULL, TBB, FBB, CurBB);
1072 SwitchCases.push_back(CB);
1073 return;
1074 }
1075
1076
1077 // Create TmpBB after CurBB.
1078 MachineFunction::iterator BBI = CurBB;
1079 MachineFunction &MF = DAG.getMachineFunction();
1080 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1081 CurBB->getParent()->insert(++BBI, TmpBB);
1082
1083 if (Opc == Instruction::Or) {
1084 // Codegen X | Y as:
1085 // jmp_if_X TBB
1086 // jmp TmpBB
1087 // TmpBB:
1088 // jmp_if_Y TBB
1089 // jmp FBB
1090 //
1091
1092 // Emit the LHS condition.
1093 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1094
1095 // Emit the RHS condition into TmpBB.
1096 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1097 } else {
1098 assert(Opc == Instruction::And && "Unknown merge op!");
1099 // Codegen X & Y as:
1100 // jmp_if_X TmpBB
1101 // jmp FBB
1102 // TmpBB:
1103 // jmp_if_Y TBB
1104 // jmp FBB
1105 //
1106 // This requires creation of TmpBB after CurBB.
1107
1108 // Emit the LHS condition.
1109 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1110
1111 // Emit the RHS condition into TmpBB.
1112 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1113 }
1114}
1115
1116/// If the set of cases should be emitted as a series of branches, return true.
1117/// If we should emit this as a bunch of and/or'd together conditions, return
1118/// false.
1119bool
1120SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1121 if (Cases.size() != 2) return true;
1122
1123 // If this is two comparisons of the same values or'd or and'd together, they
1124 // will get folded into a single comparison, so don't emit two blocks.
1125 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1126 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1127 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1128 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1129 return false;
1130 }
1131
1132 return true;
1133}
1134
1135void SelectionDAGLowering::visitBr(BranchInst &I) {
1136 // Update machine-CFG edges.
1137 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1138
1139 // Figure out which block is immediately after the current one.
1140 MachineBasicBlock *NextBlock = 0;
1141 MachineFunction::iterator BBI = CurMBB;
1142 if (++BBI != CurMBB->getParent()->end())
1143 NextBlock = BBI;
1144
1145 if (I.isUnconditional()) {
1146 // Update machine-CFG edges.
1147 CurMBB->addSuccessor(Succ0MBB);
1148
1149 // If this is not a fall-through branch, emit the branch.
1150 if (Succ0MBB != NextBlock)
1151 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1152 DAG.getBasicBlock(Succ0MBB)));
1153 return;
1154 }
1155
1156 // If this condition is one of the special cases we handle, do special stuff
1157 // now.
1158 Value *CondVal = I.getCondition();
1159 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1160
1161 // If this is a series of conditions that are or'd or and'd together, emit
1162 // this as a sequence of branches instead of setcc's with and/or operations.
1163 // For example, instead of something like:
1164 // cmp A, B
1165 // C = seteq
1166 // cmp D, E
1167 // F = setle
1168 // or C, F
1169 // jnz foo
1170 // Emit:
1171 // cmp A, B
1172 // je foo
1173 // cmp D, E
1174 // jle foo
1175 //
1176 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1177 if (BOp->hasOneUse() &&
1178 (BOp->getOpcode() == Instruction::And ||
1179 BOp->getOpcode() == Instruction::Or)) {
1180 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1181 // If the compares in later blocks need to use values not currently
1182 // exported from this block, export them now. This block should always
1183 // be the first entry.
1184 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1185
1186 // Allow some cases to be rejected.
1187 if (ShouldEmitAsBranches(SwitchCases)) {
1188 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1189 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1190 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1191 }
1192
1193 // Emit the branch for this block.
1194 visitSwitchCase(SwitchCases[0]);
1195 SwitchCases.erase(SwitchCases.begin());
1196 return;
1197 }
1198
1199 // Okay, we decided not to do this, remove any inserted MBB's and clear
1200 // SwitchCases.
1201 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1202 CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1203
1204 SwitchCases.clear();
1205 }
1206 }
1207
1208 // Create a CaseBlock record representing this branch.
1209 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1210 NULL, Succ0MBB, Succ1MBB, CurMBB);
1211 // Use visitSwitchCase to actually insert the fast branch sequence for this
1212 // cond branch.
1213 visitSwitchCase(CB);
1214}
1215
1216/// visitSwitchCase - Emits the necessary code to represent a single node in
1217/// the binary search tree resulting from lowering a switch instruction.
1218void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
1219 SDValue Cond;
1220 SDValue CondLHS = getValue(CB.CmpLHS);
1221
1222 // Build the setcc now.
1223 if (CB.CmpMHS == NULL) {
1224 // Fold "(X == true)" to X and "(X == false)" to !X to
1225 // handle common cases produced by branch lowering.
1226 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1227 Cond = CondLHS;
1228 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1229 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1230 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1231 } else
1232 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1233 } else {
1234 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1235
1236 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1237 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1238
1239 SDValue CmpOp = getValue(CB.CmpMHS);
1240 MVT VT = CmpOp.getValueType();
1241
1242 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1243 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1244 } else {
1245 SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1246 Cond = DAG.getSetCC(MVT::i1, SUB,
1247 DAG.getConstant(High-Low, VT), ISD::SETULE);
1248 }
1249 }
1250
1251 // Update successor info
1252 CurMBB->addSuccessor(CB.TrueBB);
1253 CurMBB->addSuccessor(CB.FalseBB);
1254
1255 // Set NextBlock to be the MBB immediately after the current one, if any.
1256 // This is used to avoid emitting unnecessary branches to the next block.
1257 MachineBasicBlock *NextBlock = 0;
1258 MachineFunction::iterator BBI = CurMBB;
1259 if (++BBI != CurMBB->getParent()->end())
1260 NextBlock = BBI;
1261
1262 // If the lhs block is the next block, invert the condition so that we can
1263 // fall through to the lhs instead of the rhs block.
1264 if (CB.TrueBB == NextBlock) {
1265 std::swap(CB.TrueBB, CB.FalseBB);
1266 SDValue True = DAG.getConstant(1, Cond.getValueType());
1267 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1268 }
1269 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1270 DAG.getBasicBlock(CB.TrueBB));
1271
1272 // If the branch was constant folded, fix up the CFG.
1273 if (BrCond.getOpcode() == ISD::BR) {
1274 CurMBB->removeSuccessor(CB.FalseBB);
1275 DAG.setRoot(BrCond);
1276 } else {
1277 // Otherwise, go ahead and insert the false branch.
1278 if (BrCond == getControlRoot())
1279 CurMBB->removeSuccessor(CB.TrueBB);
1280
1281 if (CB.FalseBB == NextBlock)
1282 DAG.setRoot(BrCond);
1283 else
1284 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1285 DAG.getBasicBlock(CB.FalseBB)));
1286 }
1287}
1288
1289/// visitJumpTable - Emit JumpTable node in the current MBB
1290void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
1291 // Emit the code for the jump table
1292 assert(JT.Reg != -1U && "Should lower JT Header first!");
1293 MVT PTy = TLI.getPointerTy();
1294 SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1295 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1296 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1297 Table, Index));
1298 return;
1299}
1300
1301/// visitJumpTableHeader - This function emits necessary code to produce index
1302/// in the JumpTable from switch case.
1303void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
1304 JumpTableHeader &JTH) {
1305 // Subtract the lowest switch case value from the value being switched on
1306 // and conditional branch to default mbb if the result is greater than the
1307 // difference between smallest and largest cases.
1308 SDValue SwitchOp = getValue(JTH.SValue);
1309 MVT VT = SwitchOp.getValueType();
1310 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1311 DAG.getConstant(JTH.First, VT));
1312
1313 // The SDNode we just created, which holds the value being switched on
1314 // minus the the smallest case value, needs to be copied to a virtual
1315 // register so it can be used as an index into the jump table in a
1316 // subsequent basic block. This value may be smaller or larger than the
1317 // target's pointer type, and therefore require extension or truncating.
1318 if (VT.bitsGT(TLI.getPointerTy()))
1319 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1320 else
1321 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1322
1323 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1324 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1325 JT.Reg = JumpTableReg;
1326
1327 // Emit the range check for the jump table, and branch to the default
1328 // block for the switch statement if the value being switched on exceeds
1329 // the largest case in the switch.
1330 SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1331 DAG.getConstant(JTH.Last-JTH.First,VT),
1332 ISD::SETUGT);
1333
1334 // Set NextBlock to be the MBB immediately after the current one, if any.
1335 // This is used to avoid emitting unnecessary branches to the next block.
1336 MachineBasicBlock *NextBlock = 0;
1337 MachineFunction::iterator BBI = CurMBB;
1338 if (++BBI != CurMBB->getParent()->end())
1339 NextBlock = BBI;
1340
1341 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1342 DAG.getBasicBlock(JT.Default));
1343
1344 if (JT.MBB == NextBlock)
1345 DAG.setRoot(BrCond);
1346 else
1347 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1348 DAG.getBasicBlock(JT.MBB)));
1349
1350 return;
1351}
1352
1353/// visitBitTestHeader - This function emits necessary code to produce value
1354/// suitable for "bit tests"
1355void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
1356 // Subtract the minimum value
1357 SDValue SwitchOp = getValue(B.SValue);
1358 MVT VT = SwitchOp.getValueType();
1359 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1360 DAG.getConstant(B.First, VT));
1361
1362 // Check range
1363 SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1364 DAG.getConstant(B.Range, VT),
1365 ISD::SETUGT);
1366
1367 SDValue ShiftOp;
1368 if (VT.bitsGT(TLI.getShiftAmountTy()))
1369 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1370 else
1371 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1372
1373 // Make desired shift
1374 SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1375 DAG.getConstant(1, TLI.getPointerTy()),
1376 ShiftOp);
1377
1378 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1379 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1380 B.Reg = SwitchReg;
1381
1382 // Set NextBlock to be the MBB immediately after the current one, if any.
1383 // This is used to avoid emitting unnecessary branches to the next block.
1384 MachineBasicBlock *NextBlock = 0;
1385 MachineFunction::iterator BBI = CurMBB;
1386 if (++BBI != CurMBB->getParent()->end())
1387 NextBlock = BBI;
1388
1389 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1390
1391 CurMBB->addSuccessor(B.Default);
1392 CurMBB->addSuccessor(MBB);
1393
1394 SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1395 DAG.getBasicBlock(B.Default));
1396
1397 if (MBB == NextBlock)
1398 DAG.setRoot(BrRange);
1399 else
1400 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1401 DAG.getBasicBlock(MBB)));
1402
1403 return;
1404}
1405
1406/// visitBitTestCase - this function produces one "bit test"
1407void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1408 unsigned Reg,
1409 BitTestCase &B) {
1410 // Emit bit tests and jumps
1411 SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1412 TLI.getPointerTy());
1413
1414 SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1415 DAG.getConstant(B.Mask, TLI.getPointerTy()));
1416 SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1417 DAG.getConstant(0, TLI.getPointerTy()),
1418 ISD::SETNE);
1419
1420 CurMBB->addSuccessor(B.TargetBB);
1421 CurMBB->addSuccessor(NextMBB);
1422
1423 SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1424 AndCmp, DAG.getBasicBlock(B.TargetBB));
1425
1426 // Set NextBlock to be the MBB immediately after the current one, if any.
1427 // This is used to avoid emitting unnecessary branches to the next block.
1428 MachineBasicBlock *NextBlock = 0;
1429 MachineFunction::iterator BBI = CurMBB;
1430 if (++BBI != CurMBB->getParent()->end())
1431 NextBlock = BBI;
1432
1433 if (NextMBB == NextBlock)
1434 DAG.setRoot(BrAnd);
1435 else
1436 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1437 DAG.getBasicBlock(NextMBB)));
1438
1439 return;
1440}
1441
1442void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1443 // Retrieve successors.
1444 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1445 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1446
1447 if (isa<InlineAsm>(I.getCalledValue()))
1448 visitInlineAsm(&I);
1449 else
1450 LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1451
1452 // If the value of the invoke is used outside of its defining block, make it
1453 // available as a virtual register.
1454 if (!I.use_empty()) {
1455 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1456 if (VMI != FuncInfo.ValueMap.end())
1457 CopyValueToVirtualRegister(&I, VMI->second);
1458 }
1459
1460 // Update successor info
1461 CurMBB->addSuccessor(Return);
1462 CurMBB->addSuccessor(LandingPad);
1463
1464 // Drop into normal successor.
1465 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1466 DAG.getBasicBlock(Return)));
1467}
1468
1469void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1470}
1471
1472/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1473/// small case ranges).
1474bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1475 CaseRecVector& WorkList,
1476 Value* SV,
1477 MachineBasicBlock* Default) {
1478 Case& BackCase = *(CR.Range.second-1);
1479
1480 // Size is the number of Cases represented by this range.
1481 unsigned Size = CR.Range.second - CR.Range.first;
1482 if (Size > 3)
1483 return false;
1484
1485 // Get the MachineFunction which holds the current MBB. This is used when
1486 // inserting any additional MBBs necessary to represent the switch.
1487 MachineFunction *CurMF = CurMBB->getParent();
1488
1489 // Figure out which block is immediately after the current one.
1490 MachineBasicBlock *NextBlock = 0;
1491 MachineFunction::iterator BBI = CR.CaseBB;
1492
1493 if (++BBI != CurMBB->getParent()->end())
1494 NextBlock = BBI;
1495
1496 // TODO: If any two of the cases has the same destination, and if one value
1497 // is the same as the other, but has one bit unset that the other has set,
1498 // use bit manipulation to do two compares at once. For example:
1499 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1500
1501 // Rearrange the case blocks so that the last one falls through if possible.
1502 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1503 // The last case block won't fall through into 'NextBlock' if we emit the
1504 // branches in this order. See if rearranging a case value would help.
1505 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1506 if (I->BB == NextBlock) {
1507 std::swap(*I, BackCase);
1508 break;
1509 }
1510 }
1511 }
1512
1513 // Create a CaseBlock record representing a conditional branch to
1514 // the Case's target mbb if the value being switched on SV is equal
1515 // to C.
1516 MachineBasicBlock *CurBlock = CR.CaseBB;
1517 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1518 MachineBasicBlock *FallThrough;
1519 if (I != E-1) {
1520 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1521 CurMF->insert(BBI, FallThrough);
1522 } else {
1523 // If the last case doesn't match, go to the default block.
1524 FallThrough = Default;
1525 }
1526
1527 Value *RHS, *LHS, *MHS;
1528 ISD::CondCode CC;
1529 if (I->High == I->Low) {
1530 // This is just small small case range :) containing exactly 1 case
1531 CC = ISD::SETEQ;
1532 LHS = SV; RHS = I->High; MHS = NULL;
1533 } else {
1534 CC = ISD::SETLE;
1535 LHS = I->Low; MHS = SV; RHS = I->High;
1536 }
1537 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1538
1539 // If emitting the first comparison, just call visitSwitchCase to emit the
1540 // code into the current block. Otherwise, push the CaseBlock onto the
1541 // vector to be later processed by SDISel, and insert the node's MBB
1542 // before the next MBB.
1543 if (CurBlock == CurMBB)
1544 visitSwitchCase(CB);
1545 else
1546 SwitchCases.push_back(CB);
1547
1548 CurBlock = FallThrough;
1549 }
1550
1551 return true;
1552}
1553
1554static inline bool areJTsAllowed(const TargetLowering &TLI) {
1555 return !DisableJumpTables &&
1556 (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1557 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1558}
1559
1560/// handleJTSwitchCase - Emit jumptable for current switch case range
1561bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1562 CaseRecVector& WorkList,
1563 Value* SV,
1564 MachineBasicBlock* Default) {
1565 Case& FrontCase = *CR.Range.first;
1566 Case& BackCase = *(CR.Range.second-1);
1567
1568 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1569 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1570
1571 uint64_t TSize = 0;
1572 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1573 I!=E; ++I)
1574 TSize += I->size();
1575
1576 if (!areJTsAllowed(TLI) || TSize <= 3)
1577 return false;
1578
1579 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1580 if (Density < 0.4)
1581 return false;
1582
1583 DOUT << "Lowering jump table\n"
1584 << "First entry: " << First << ". Last entry: " << Last << "\n"
1585 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1586
1587 // Get the MachineFunction which holds the current MBB. This is used when
1588 // inserting any additional MBBs necessary to represent the switch.
1589 MachineFunction *CurMF = CurMBB->getParent();
1590
1591 // Figure out which block is immediately after the current one.
1592 MachineBasicBlock *NextBlock = 0;
1593 MachineFunction::iterator BBI = CR.CaseBB;
1594
1595 if (++BBI != CurMBB->getParent()->end())
1596 NextBlock = BBI;
1597
1598 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1599
1600 // Create a new basic block to hold the code for loading the address
1601 // of the jump table, and jumping to it. Update successor information;
1602 // we will either branch to the default case for the switch, or the jump
1603 // table.
1604 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1605 CurMF->insert(BBI, JumpTableBB);
1606 CR.CaseBB->addSuccessor(Default);
1607 CR.CaseBB->addSuccessor(JumpTableBB);
1608
1609 // Build a vector of destination BBs, corresponding to each target
1610 // of the jump table. If the value of the jump table slot corresponds to
1611 // a case statement, push the case's BB onto the vector, otherwise, push
1612 // the default BB.
1613 std::vector<MachineBasicBlock*> DestBBs;
1614 int64_t TEI = First;
1615 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1616 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1617 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1618
1619 if ((Low <= TEI) && (TEI <= High)) {
1620 DestBBs.push_back(I->BB);
1621 if (TEI==High)
1622 ++I;
1623 } else {
1624 DestBBs.push_back(Default);
1625 }
1626 }
1627
1628 // Update successor info. Add one edge to each unique successor.
1629 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1630 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1631 E = DestBBs.end(); I != E; ++I) {
1632 if (!SuccsHandled[(*I)->getNumber()]) {
1633 SuccsHandled[(*I)->getNumber()] = true;
1634 JumpTableBB->addSuccessor(*I);
1635 }
1636 }
1637
1638 // Create a jump table index for this jump table, or return an existing
1639 // one.
1640 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1641
1642 // Set the jump table information so that we can codegen it as a second
1643 // MachineBasicBlock
1644 JumpTable JT(-1U, JTI, JumpTableBB, Default);
1645 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1646 if (CR.CaseBB == CurMBB)
1647 visitJumpTableHeader(JT, JTH);
1648
1649 JTCases.push_back(JumpTableBlock(JTH, JT));
1650
1651 return true;
1652}
1653
1654/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1655/// 2 subtrees.
1656bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1657 CaseRecVector& WorkList,
1658 Value* SV,
1659 MachineBasicBlock* Default) {
1660 // Get the MachineFunction which holds the current MBB. This is used when
1661 // inserting any additional MBBs necessary to represent the switch.
1662 MachineFunction *CurMF = CurMBB->getParent();
1663
1664 // Figure out which block is immediately after the current one.
1665 MachineBasicBlock *NextBlock = 0;
1666 MachineFunction::iterator BBI = CR.CaseBB;
1667
1668 if (++BBI != CurMBB->getParent()->end())
1669 NextBlock = BBI;
1670
1671 Case& FrontCase = *CR.Range.first;
1672 Case& BackCase = *(CR.Range.second-1);
1673 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1674
1675 // Size is the number of Cases represented by this range.
1676 unsigned Size = CR.Range.second - CR.Range.first;
1677
1678 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1679 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1680 double FMetric = 0;
1681 CaseItr Pivot = CR.Range.first + Size/2;
1682
1683 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1684 // (heuristically) allow us to emit JumpTable's later.
1685 uint64_t TSize = 0;
1686 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1687 I!=E; ++I)
1688 TSize += I->size();
1689
1690 uint64_t LSize = FrontCase.size();
1691 uint64_t RSize = TSize-LSize;
1692 DOUT << "Selecting best pivot: \n"
1693 << "First: " << First << ", Last: " << Last <<"\n"
1694 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1695 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1696 J!=E; ++I, ++J) {
1697 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1698 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1699 assert((RBegin-LEnd>=1) && "Invalid case distance");
1700 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1701 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1702 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1703 // Should always split in some non-trivial place
1704 DOUT <<"=>Step\n"
1705 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1706 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1707 << "Metric: " << Metric << "\n";
1708 if (FMetric < Metric) {
1709 Pivot = J;
1710 FMetric = Metric;
1711 DOUT << "Current metric set to: " << FMetric << "\n";
1712 }
1713
1714 LSize += J->size();
1715 RSize -= J->size();
1716 }
1717 if (areJTsAllowed(TLI)) {
1718 // If our case is dense we *really* should handle it earlier!
1719 assert((FMetric > 0) && "Should handle dense range earlier!");
1720 } else {
1721 Pivot = CR.Range.first + Size/2;
1722 }
1723
1724 CaseRange LHSR(CR.Range.first, Pivot);
1725 CaseRange RHSR(Pivot, CR.Range.second);
1726 Constant *C = Pivot->Low;
1727 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1728
1729 // We know that we branch to the LHS if the Value being switched on is
1730 // less than the Pivot value, C. We use this to optimize our binary
1731 // tree a bit, by recognizing that if SV is greater than or equal to the
1732 // LHS's Case Value, and that Case Value is exactly one less than the
1733 // Pivot's Value, then we can branch directly to the LHS's Target,
1734 // rather than creating a leaf node for it.
1735 if ((LHSR.second - LHSR.first) == 1 &&
1736 LHSR.first->High == CR.GE &&
1737 cast<ConstantInt>(C)->getSExtValue() ==
1738 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1739 TrueBB = LHSR.first->BB;
1740 } else {
1741 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1742 CurMF->insert(BBI, TrueBB);
1743 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1744 }
1745
1746 // Similar to the optimization above, if the Value being switched on is
1747 // known to be less than the Constant CR.LT, and the current Case Value
1748 // is CR.LT - 1, then we can branch directly to the target block for
1749 // the current Case Value, rather than emitting a RHS leaf node for it.
1750 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1751 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1752 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1753 FalseBB = RHSR.first->BB;
1754 } else {
1755 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1756 CurMF->insert(BBI, FalseBB);
1757 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1758 }
1759
1760 // Create a CaseBlock record representing a conditional branch to
1761 // the LHS node if the value being switched on SV is less than C.
1762 // Otherwise, branch to LHS.
1763 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1764
1765 if (CR.CaseBB == CurMBB)
1766 visitSwitchCase(CB);
1767 else
1768 SwitchCases.push_back(CB);
1769
1770 return true;
1771}
1772
1773/// handleBitTestsSwitchCase - if current case range has few destination and
1774/// range span less, than machine word bitwidth, encode case range into series
1775/// of masks and emit bit tests with these masks.
1776bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1777 CaseRecVector& WorkList,
1778 Value* SV,
1779 MachineBasicBlock* Default){
1780 unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
1781
1782 Case& FrontCase = *CR.Range.first;
1783 Case& BackCase = *(CR.Range.second-1);
1784
1785 // Get the MachineFunction which holds the current MBB. This is used when
1786 // inserting any additional MBBs necessary to represent the switch.
1787 MachineFunction *CurMF = CurMBB->getParent();
1788
1789 unsigned numCmps = 0;
1790 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1791 I!=E; ++I) {
1792 // Single case counts one, case range - two.
1793 if (I->Low == I->High)
1794 numCmps +=1;
1795 else
1796 numCmps +=2;
1797 }
1798
1799 // Count unique destinations
1800 SmallSet<MachineBasicBlock*, 4> Dests;
1801 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1802 Dests.insert(I->BB);
1803 if (Dests.size() > 3)
1804 // Don't bother the code below, if there are too much unique destinations
1805 return false;
1806 }
1807 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1808 << "Total number of comparisons: " << numCmps << "\n";
1809
1810 // Compute span of values.
1811 Constant* minValue = FrontCase.Low;
1812 Constant* maxValue = BackCase.High;
1813 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1814 cast<ConstantInt>(minValue)->getSExtValue();
1815 DOUT << "Compare range: " << range << "\n"
1816 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1817 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1818
1819 if (range>=IntPtrBits ||
1820 (!(Dests.size() == 1 && numCmps >= 3) &&
1821 !(Dests.size() == 2 && numCmps >= 5) &&
1822 !(Dests.size() >= 3 && numCmps >= 6)))
1823 return false;
1824
1825 DOUT << "Emitting bit tests\n";
1826 int64_t lowBound = 0;
1827
1828 // Optimize the case where all the case values fit in a
1829 // word without having to subtract minValue. In this case,
1830 // we can optimize away the subtraction.
1831 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1832 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1833 range = cast<ConstantInt>(maxValue)->getSExtValue();
1834 } else {
1835 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1836 }
1837
1838 CaseBitsVector CasesBits;
1839 unsigned i, count = 0;
1840
1841 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1842 MachineBasicBlock* Dest = I->BB;
1843 for (i = 0; i < count; ++i)
1844 if (Dest == CasesBits[i].BB)
1845 break;
1846
1847 if (i == count) {
1848 assert((count < 3) && "Too much destinations to test!");
1849 CasesBits.push_back(CaseBits(0, Dest, 0));
1850 count++;
1851 }
1852
1853 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1854 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1855
1856 for (uint64_t j = lo; j <= hi; j++) {
1857 CasesBits[i].Mask |= 1ULL << j;
1858 CasesBits[i].Bits++;
1859 }
1860
1861 }
1862 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1863
1864 BitTestInfo BTC;
1865
1866 // Figure out which block is immediately after the current one.
1867 MachineFunction::iterator BBI = CR.CaseBB;
1868 ++BBI;
1869
1870 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1871
1872 DOUT << "Cases:\n";
1873 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1874 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1875 << ", BB: " << CasesBits[i].BB << "\n";
1876
1877 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1878 CurMF->insert(BBI, CaseBB);
1879 BTC.push_back(BitTestCase(CasesBits[i].Mask,
1880 CaseBB,
1881 CasesBits[i].BB));
1882 }
1883
1884 BitTestBlock BTB(lowBound, range, SV,
1885 -1U, (CR.CaseBB == CurMBB),
1886 CR.CaseBB, Default, BTC);
1887
1888 if (CR.CaseBB == CurMBB)
1889 visitBitTestHeader(BTB);
1890
1891 BitTestCases.push_back(BTB);
1892
1893 return true;
1894}
1895
1896
1897/// Clusterify - Transform simple list of Cases into list of CaseRange's
1898unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1899 const SwitchInst& SI) {
1900 unsigned numCmps = 0;
1901
1902 // Start with "simple" cases
1903 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1904 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1905 Cases.push_back(Case(SI.getSuccessorValue(i),
1906 SI.getSuccessorValue(i),
1907 SMBB));
1908 }
1909 std::sort(Cases.begin(), Cases.end(), CaseCmp());
1910
1911 // Merge case into clusters
1912 if (Cases.size()>=2)
1913 // Must recompute end() each iteration because it may be
1914 // invalidated by erase if we hold on to it
1915 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1916 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1917 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1918 MachineBasicBlock* nextBB = J->BB;
1919 MachineBasicBlock* currentBB = I->BB;
1920
1921 // If the two neighboring cases go to the same destination, merge them
1922 // into a single case.
1923 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1924 I->High = J->High;
1925 J = Cases.erase(J);
1926 } else {
1927 I = J++;
1928 }
1929 }
1930
1931 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1932 if (I->Low != I->High)
1933 // A range counts double, since it requires two compares.
1934 ++numCmps;
1935 }
1936
1937 return numCmps;
1938}
1939
1940void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1941 // Figure out which block is immediately after the current one.
1942 MachineBasicBlock *NextBlock = 0;
1943 MachineFunction::iterator BBI = CurMBB;
1944
1945 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1946
1947 // If there is only the default destination, branch to it if it is not the
1948 // next basic block. Otherwise, just fall through.
1949 if (SI.getNumOperands() == 2) {
1950 // Update machine-CFG edges.
1951
1952 // If this is not a fall-through branch, emit the branch.
1953 CurMBB->addSuccessor(Default);
1954 if (Default != NextBlock)
1955 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1956 DAG.getBasicBlock(Default)));
1957
1958 return;
1959 }
1960
1961 // If there are any non-default case statements, create a vector of Cases
1962 // representing each one, and sort the vector so that we can efficiently
1963 // create a binary search tree from them.
1964 CaseVector Cases;
1965 unsigned numCmps = Clusterify(Cases, SI);
1966 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1967 << ". Total compares: " << numCmps << "\n";
1968
1969 // Get the Value to be switched on and default basic blocks, which will be
1970 // inserted into CaseBlock records, representing basic blocks in the binary
1971 // search tree.
1972 Value *SV = SI.getOperand(0);
1973
1974 // Push the initial CaseRec onto the worklist
1975 CaseRecVector WorkList;
1976 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1977
1978 while (!WorkList.empty()) {
1979 // Grab a record representing a case range to process off the worklist
1980 CaseRec CR = WorkList.back();
1981 WorkList.pop_back();
1982
1983 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1984 continue;
1985
1986 // If the range has few cases (two or less) emit a series of specific
1987 // tests.
1988 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1989 continue;
1990
1991 // If the switch has more than 5 blocks, and at least 40% dense, and the
1992 // target supports indirect branches, then emit a jump table rather than
1993 // lowering the switch to a binary tree of conditional branches.
1994 if (handleJTSwitchCase(CR, WorkList, SV, Default))
1995 continue;
1996
1997 // Emit binary tree. We need to pick a pivot, and push left and right ranges
1998 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1999 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2000 }
2001}
2002
2003
2004void SelectionDAGLowering::visitSub(User &I) {
2005 // -0.0 - X --> fneg
2006 const Type *Ty = I.getType();
2007 if (isa<VectorType>(Ty)) {
2008 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2009 const VectorType *DestTy = cast<VectorType>(I.getType());
2010 const Type *ElTy = DestTy->getElementType();
2011 if (ElTy->isFloatingPoint()) {
2012 unsigned VL = DestTy->getNumElements();
2013 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2014 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2015 if (CV == CNZ) {
2016 SDValue Op2 = getValue(I.getOperand(1));
2017 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2018 return;
2019 }
2020 }
2021 }
2022 }
2023 if (Ty->isFloatingPoint()) {
2024 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2025 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2026 SDValue Op2 = getValue(I.getOperand(1));
2027 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2028 return;
2029 }
2030 }
2031
2032 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2033}
2034
2035void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2036 SDValue Op1 = getValue(I.getOperand(0));
2037 SDValue Op2 = getValue(I.getOperand(1));
2038
2039 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2040}
2041
2042void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2043 SDValue Op1 = getValue(I.getOperand(0));
2044 SDValue Op2 = getValue(I.getOperand(1));
2045 if (!isa<VectorType>(I.getType())) {
2046 if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2047 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2048 else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2049 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2050 }
2051
2052 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2053}
2054
2055void SelectionDAGLowering::visitICmp(User &I) {
2056 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2057 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2058 predicate = IC->getPredicate();
2059 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2060 predicate = ICmpInst::Predicate(IC->getPredicate());
2061 SDValue Op1 = getValue(I.getOperand(0));
2062 SDValue Op2 = getValue(I.getOperand(1));
2063 ISD::CondCode Opcode;
2064 switch (predicate) {
2065 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2066 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2067 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2068 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2069 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2070 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2071 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2072 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2073 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2074 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2075 default:
2076 assert(!"Invalid ICmp predicate value");
2077 Opcode = ISD::SETEQ;
2078 break;
2079 }
2080 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2081}
2082
2083void SelectionDAGLowering::visitFCmp(User &I) {
2084 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2085 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2086 predicate = FC->getPredicate();
2087 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2088 predicate = FCmpInst::Predicate(FC->getPredicate());
2089 SDValue Op1 = getValue(I.getOperand(0));
2090 SDValue Op2 = getValue(I.getOperand(1));
2091 ISD::CondCode Condition, FOC, FPC;
2092 switch (predicate) {
2093 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2094 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2095 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2096 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2097 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2098 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2099 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2100 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
2101 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
2102 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2103 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2104 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2105 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2106 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2107 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2108 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2109 default:
2110 assert(!"Invalid FCmp predicate value");
2111 FOC = FPC = ISD::SETFALSE;
2112 break;
2113 }
2114 if (FiniteOnlyFPMath())
2115 Condition = FOC;
2116 else
2117 Condition = FPC;
2118 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2119}
2120
2121void SelectionDAGLowering::visitVICmp(User &I) {
2122 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2123 if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2124 predicate = IC->getPredicate();
2125 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2126 predicate = ICmpInst::Predicate(IC->getPredicate());
2127 SDValue Op1 = getValue(I.getOperand(0));
2128 SDValue Op2 = getValue(I.getOperand(1));
2129 ISD::CondCode Opcode;
2130 switch (predicate) {
2131 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2132 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2133 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2134 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2135 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2136 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2137 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2138 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2139 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2140 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2141 default:
2142 assert(!"Invalid ICmp predicate value");
2143 Opcode = ISD::SETEQ;
2144 break;
2145 }
2146 setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2147}
2148
2149void SelectionDAGLowering::visitVFCmp(User &I) {
2150 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2151 if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2152 predicate = FC->getPredicate();
2153 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2154 predicate = FCmpInst::Predicate(FC->getPredicate());
2155 SDValue Op1 = getValue(I.getOperand(0));
2156 SDValue Op2 = getValue(I.getOperand(1));
2157 ISD::CondCode Condition, FOC, FPC;
2158 switch (predicate) {
2159 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2160 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2161 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2162 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2163 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2164 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2165 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2166 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
2167 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
2168 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2169 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2170 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2171 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2172 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2173 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2174 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2175 default:
2176 assert(!"Invalid VFCmp predicate value");
2177 FOC = FPC = ISD::SETFALSE;
2178 break;
2179 }
2180 if (FiniteOnlyFPMath())
2181 Condition = FOC;
2182 else
2183 Condition = FPC;
2184
2185 MVT DestVT = TLI.getValueType(I.getType());
2186
2187 setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2188}
2189
2190void SelectionDAGLowering::visitSelect(User &I) {
2191 SDValue Cond = getValue(I.getOperand(0));
2192 SDValue TrueVal = getValue(I.getOperand(1));
2193 SDValue FalseVal = getValue(I.getOperand(2));
2194 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2195 TrueVal, FalseVal));
2196}
2197
2198
2199void SelectionDAGLowering::visitTrunc(User &I) {
2200 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2201 SDValue N = getValue(I.getOperand(0));
2202 MVT DestVT = TLI.getValueType(I.getType());
2203 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2204}
2205
2206void SelectionDAGLowering::visitZExt(User &I) {
2207 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2208 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2209 SDValue N = getValue(I.getOperand(0));
2210 MVT DestVT = TLI.getValueType(I.getType());
2211 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2212}
2213
2214void SelectionDAGLowering::visitSExt(User &I) {
2215 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2216 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2217 SDValue N = getValue(I.getOperand(0));
2218 MVT DestVT = TLI.getValueType(I.getType());
2219 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2220}
2221
2222void SelectionDAGLowering::visitFPTrunc(User &I) {
2223 // FPTrunc is never a no-op cast, no need to check
2224 SDValue N = getValue(I.getOperand(0));
2225 MVT DestVT = TLI.getValueType(I.getType());
2226 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2227}
2228
2229void SelectionDAGLowering::visitFPExt(User &I){
2230 // FPTrunc is never a no-op cast, no need to check
2231 SDValue N = getValue(I.getOperand(0));
2232 MVT DestVT = TLI.getValueType(I.getType());
2233 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2234}
2235
2236void SelectionDAGLowering::visitFPToUI(User &I) {
2237 // FPToUI is never a no-op cast, no need to check
2238 SDValue N = getValue(I.getOperand(0));
2239 MVT DestVT = TLI.getValueType(I.getType());
2240 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2241}
2242
2243void SelectionDAGLowering::visitFPToSI(User &I) {
2244 // FPToSI is never a no-op cast, no need to check
2245 SDValue N = getValue(I.getOperand(0));
2246 MVT DestVT = TLI.getValueType(I.getType());
2247 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2248}
2249
2250void SelectionDAGLowering::visitUIToFP(User &I) {
2251 // UIToFP is never a no-op cast, no need to check
2252 SDValue N = getValue(I.getOperand(0));
2253 MVT DestVT = TLI.getValueType(I.getType());
2254 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2255}
2256
2257void SelectionDAGLowering::visitSIToFP(User &I){
2258 // UIToFP is never a no-op cast, no need to check
2259 SDValue N = getValue(I.getOperand(0));
2260 MVT DestVT = TLI.getValueType(I.getType());
2261 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2262}
2263
2264void SelectionDAGLowering::visitPtrToInt(User &I) {
2265 // What to do depends on the size of the integer and the size of the pointer.
2266 // We can either truncate, zero extend, or no-op, accordingly.
2267 SDValue N = getValue(I.getOperand(0));
2268 MVT SrcVT = N.getValueType();
2269 MVT DestVT = TLI.getValueType(I.getType());
2270 SDValue Result;
2271 if (DestVT.bitsLT(SrcVT))
2272 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2273 else
2274 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2275 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2276 setValue(&I, Result);
2277}
2278
2279void SelectionDAGLowering::visitIntToPtr(User &I) {
2280 // What to do depends on the size of the integer and the size of the pointer.
2281 // We can either truncate, zero extend, or no-op, accordingly.
2282 SDValue N = getValue(I.getOperand(0));
2283 MVT SrcVT = N.getValueType();
2284 MVT DestVT = TLI.getValueType(I.getType());
2285 if (DestVT.bitsLT(SrcVT))
2286 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2287 else
2288 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2289 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2290}
2291
2292void SelectionDAGLowering::visitBitCast(User &I) {
2293 SDValue N = getValue(I.getOperand(0));
2294 MVT DestVT = TLI.getValueType(I.getType());
2295
2296 // BitCast assures us that source and destination are the same size so this
2297 // is either a BIT_CONVERT or a no-op.
2298 if (DestVT != N.getValueType())
2299 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2300 else
2301 setValue(&I, N); // noop cast.
2302}
2303
2304void SelectionDAGLowering::visitInsertElement(User &I) {
2305 SDValue InVec = getValue(I.getOperand(0));
2306 SDValue InVal = getValue(I.getOperand(1));
2307 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2308 getValue(I.getOperand(2)));
2309
2310 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2311 TLI.getValueType(I.getType()),
2312 InVec, InVal, InIdx));
2313}
2314
2315void SelectionDAGLowering::visitExtractElement(User &I) {
2316 SDValue InVec = getValue(I.getOperand(0));
2317 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2318 getValue(I.getOperand(1)));
2319 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2320 TLI.getValueType(I.getType()), InVec, InIdx));
2321}
2322
2323void SelectionDAGLowering::visitShuffleVector(User &I) {
2324 SDValue V1 = getValue(I.getOperand(0));
2325 SDValue V2 = getValue(I.getOperand(1));
2326 SDValue Mask = getValue(I.getOperand(2));
2327
2328 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2329 TLI.getValueType(I.getType()),
2330 V1, V2, Mask));
2331}
2332
2333void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2334 const Value *Op0 = I.getOperand(0);
2335 const Value *Op1 = I.getOperand(1);
2336 const Type *AggTy = I.getType();
2337 const Type *ValTy = Op1->getType();
2338 bool IntoUndef = isa<UndefValue>(Op0);
2339 bool FromUndef = isa<UndefValue>(Op1);
2340
2341 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2342 I.idx_begin(), I.idx_end());
2343
2344 SmallVector<MVT, 4> AggValueVTs;
2345 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2346 SmallVector<MVT, 4> ValValueVTs;
2347 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2348
2349 unsigned NumAggValues = AggValueVTs.size();
2350 unsigned NumValValues = ValValueVTs.size();
2351 SmallVector<SDValue, 4> Values(NumAggValues);
2352
2353 SDValue Agg = getValue(Op0);
2354 SDValue Val = getValue(Op1);
2355 unsigned i = 0;
2356 // Copy the beginning value(s) from the original aggregate.
2357 for (; i != LinearIndex; ++i)
2358 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2359 SDValue(Agg.getNode(), Agg.getResNo() + i);
2360 // Copy values from the inserted value(s).
2361 for (; i != LinearIndex + NumValValues; ++i)
2362 Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2363 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2364 // Copy remaining value(s) from the original aggregate.
2365 for (; i != NumAggValues; ++i)
2366 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2367 SDValue(Agg.getNode(), Agg.getResNo() + i);
2368
2369 setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2370 &Values[0], NumAggValues));
2371}
2372
2373void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2374 const Value *Op0 = I.getOperand(0);
2375 const Type *AggTy = Op0->getType();
2376 const Type *ValTy = I.getType();
2377 bool OutOfUndef = isa<UndefValue>(Op0);
2378
2379 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2380 I.idx_begin(), I.idx_end());
2381
2382 SmallVector<MVT, 4> ValValueVTs;
2383 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2384
2385 unsigned NumValValues = ValValueVTs.size();
2386 SmallVector<SDValue, 4> Values(NumValValues);
2387
2388 SDValue Agg = getValue(Op0);
2389 // Copy out the selected value(s).
2390 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2391 Values[i - LinearIndex] =
2392 OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2393 SDValue(Agg.getNode(), Agg.getResNo() + i);
2394
2395 setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2396 &Values[0], NumValValues));
2397}
2398
2399
2400void SelectionDAGLowering::visitGetElementPtr(User &I) {
2401 SDValue N = getValue(I.getOperand(0));
2402 const Type *Ty = I.getOperand(0)->getType();
2403
2404 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2405 OI != E; ++OI) {
2406 Value *Idx = *OI;
2407 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2408 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2409 if (Field) {
2410 // N = N + Offset
2411 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2412 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2413 DAG.getIntPtrConstant(Offset));
2414 }
2415 Ty = StTy->getElementType(Field);
2416 } else {
2417 Ty = cast<SequentialType>(Ty)->getElementType();
2418
2419 // If this is a constant subscript, handle it quickly.
2420 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2421 if (CI->getZExtValue() == 0) continue;
2422 uint64_t Offs =
2423 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2424 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2425 DAG.getIntPtrConstant(Offs));
2426 continue;
2427 }
2428
2429 // N = N + Idx * ElementSize;
2430 uint64_t ElementSize = TD->getABITypeSize(Ty);
2431 SDValue IdxN = getValue(Idx);
2432
2433 // If the index is smaller or larger than intptr_t, truncate or extend
2434 // it.
2435 if (IdxN.getValueType().bitsLT(N.getValueType()))
2436 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2437 else if (IdxN.getValueType().bitsGT(N.getValueType()))
2438 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2439
2440 // If this is a multiply by a power of two, turn it into a shl
2441 // immediately. This is a very common case.
2442 if (ElementSize != 1) {
2443 if (isPowerOf2_64(ElementSize)) {
2444 unsigned Amt = Log2_64(ElementSize);
2445 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2446 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2447 } else {
2448 SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2449 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2450 }
2451 }
2452
2453 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2454 }
2455 }
2456 setValue(&I, N);
2457}
2458
2459void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2460 // If this is a fixed sized alloca in the entry block of the function,
2461 // allocate it statically on the stack.
2462 if (FuncInfo.StaticAllocaMap.count(&I))
2463 return; // getValue will auto-populate this.
2464
2465 const Type *Ty = I.getAllocatedType();
2466 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2467 unsigned Align =
2468 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2469 I.getAlignment());
2470
2471 SDValue AllocSize = getValue(I.getArraySize());
2472 MVT IntPtr = TLI.getPointerTy();
2473 if (IntPtr.bitsLT(AllocSize.getValueType()))
2474 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2475 else if (IntPtr.bitsGT(AllocSize.getValueType()))
2476 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2477
2478 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2479 DAG.getIntPtrConstant(TySize));
2480
2481 // Handle alignment. If the requested alignment is less than or equal to
2482 // the stack alignment, ignore it. If the size is greater than or equal to
2483 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2484 unsigned StackAlign =
2485 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2486 if (Align <= StackAlign)
2487 Align = 0;
2488
2489 // Round the size of the allocation up to the stack alignment size
2490 // by add SA-1 to the size.
2491 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2492 DAG.getIntPtrConstant(StackAlign-1));
2493 // Mask out the low bits for alignment purposes.
2494 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2495 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2496
2497 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2498 const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2499 MVT::Other);
2500 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2501 setValue(&I, DSA);
2502 DAG.setRoot(DSA.getValue(1));
2503
2504 // Inform the Frame Information that we have just allocated a variable-sized
2505 // object.
2506 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2507}
2508
2509void SelectionDAGLowering::visitLoad(LoadInst &I) {
2510 const Value *SV = I.getOperand(0);
2511 SDValue Ptr = getValue(SV);
2512
2513 const Type *Ty = I.getType();
2514 bool isVolatile = I.isVolatile();
2515 unsigned Alignment = I.getAlignment();
2516
2517 SmallVector<MVT, 4> ValueVTs;
2518 SmallVector<uint64_t, 4> Offsets;
2519 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2520 unsigned NumValues = ValueVTs.size();
2521 if (NumValues == 0)
2522 return;
2523
2524 SDValue Root;
2525 bool ConstantMemory = false;
2526 if (I.isVolatile())
2527 // Serialize volatile loads with other side effects.
2528 Root = getRoot();
2529 else if (AA->pointsToConstantMemory(SV)) {
2530 // Do not serialize (non-volatile) loads of constant memory with anything.
2531 Root = DAG.getEntryNode();
2532 ConstantMemory = true;
2533 } else {
2534 // Do not serialize non-volatile loads against each other.
2535 Root = DAG.getRoot();
2536 }
2537
2538 SmallVector<SDValue, 4> Values(NumValues);
2539 SmallVector<SDValue, 4> Chains(NumValues);
2540 MVT PtrVT = Ptr.getValueType();
2541 for (unsigned i = 0; i != NumValues; ++i) {
2542 SDValue L = DAG.getLoad(ValueVTs[i], Root,
2543 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2544 DAG.getConstant(Offsets[i], PtrVT)),
2545 SV, Offsets[i],
2546 isVolatile, Alignment);
2547 Values[i] = L;
2548 Chains[i] = L.getValue(1);
2549 }
2550
2551 if (!ConstantMemory) {
2552 SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2553 &Chains[0], NumValues);
2554 if (isVolatile)
2555 DAG.setRoot(Chain);
2556 else
2557 PendingLoads.push_back(Chain);
2558 }
2559
2560 setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2561 &Values[0], NumValues));
2562}
2563
2564
2565void SelectionDAGLowering::visitStore(StoreInst &I) {
2566 Value *SrcV = I.getOperand(0);
2567 Value *PtrV = I.getOperand(1);
2568
2569 SmallVector<MVT, 4> ValueVTs;
2570 SmallVector<uint64_t, 4> Offsets;
2571 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2572 unsigned NumValues = ValueVTs.size();
2573 if (NumValues == 0)
2574 return;
2575
2576 // Get the lowered operands. Note that we do this after
2577 // checking if NumResults is zero, because with zero results
2578 // the operands won't have values in the map.
2579 SDValue Src = getValue(SrcV);
2580 SDValue Ptr = getValue(PtrV);
2581
2582 SDValue Root = getRoot();
2583 SmallVector<SDValue, 4> Chains(NumValues);
2584 MVT PtrVT = Ptr.getValueType();
2585 bool isVolatile = I.isVolatile();
2586 unsigned Alignment = I.getAlignment();
2587 for (unsigned i = 0; i != NumValues; ++i)
2588 Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i),
2589 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2590 DAG.getConstant(Offsets[i], PtrVT)),
2591 PtrV, Offsets[i],
2592 isVolatile, Alignment);
2593
2594 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2595}
2596
2597/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2598/// node.
2599void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2600 unsigned Intrinsic) {
2601 bool HasChain = !I.doesNotAccessMemory();
2602 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2603
2604 // Build the operand list.
2605 SmallVector<SDValue, 8> Ops;
2606 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2607 if (OnlyLoad) {
2608 // We don't need to serialize loads against other loads.
2609 Ops.push_back(DAG.getRoot());
2610 } else {
2611 Ops.push_back(getRoot());
2612 }
2613 }
2614
2615 // Add the intrinsic ID as an integer operand.
2616 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2617
2618 // Add all operands of the call to the operand list.
2619 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2620 SDValue Op = getValue(I.getOperand(i));
2621 assert(TLI.isTypeLegal(Op.getValueType()) &&
2622 "Intrinsic uses a non-legal type?");
2623 Ops.push_back(Op);
2624 }
2625
2626 std::vector<MVT> VTs;
2627 if (I.getType() != Type::VoidTy) {
2628 MVT VT = TLI.getValueType(I.getType());
2629 if (VT.isVector()) {
2630 const VectorType *DestTy = cast<VectorType>(I.getType());
2631 MVT EltVT = TLI.getValueType(DestTy->getElementType());
2632
2633 VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2634 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2635 }
2636
2637 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2638 VTs.push_back(VT);
2639 }
2640 if (HasChain)
2641 VTs.push_back(MVT::Other);
2642
2643 const MVT *VTList = DAG.getNodeValueTypes(VTs);
2644
2645 // Create the node.
2646 SDValue Result;
2647 if (!HasChain)
2648 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2649 &Ops[0], Ops.size());
2650 else if (I.getType() != Type::VoidTy)
2651 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2652 &Ops[0], Ops.size());
2653 else
2654 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2655 &Ops[0], Ops.size());
2656
2657 if (HasChain) {
2658 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2659 if (OnlyLoad)
2660 PendingLoads.push_back(Chain);
2661 else
2662 DAG.setRoot(Chain);
2663 }
2664 if (I.getType() != Type::VoidTy) {
2665 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2666 MVT VT = TLI.getValueType(PTy);
2667 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2668 }
2669 setValue(&I, Result);
2670 }
2671}
2672
2673/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2674static GlobalVariable *ExtractTypeInfo(Value *V) {
2675 V = V->stripPointerCasts();
2676 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2677 assert ((GV || isa<ConstantPointerNull>(V)) &&
2678 "TypeInfo must be a global variable or NULL");
2679 return GV;
2680}
2681
2682namespace llvm {
2683
2684/// AddCatchInfo - Extract the personality and type infos from an eh.selector
2685/// call, and add them to the specified machine basic block.
2686void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2687 MachineBasicBlock *MBB) {
2688 // Inform the MachineModuleInfo of the personality for this landing pad.
2689 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2690 assert(CE->getOpcode() == Instruction::BitCast &&
2691 isa<Function>(CE->getOperand(0)) &&
2692 "Personality should be a function");
2693 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2694
2695 // Gather all the type infos for this landing pad and pass them along to
2696 // MachineModuleInfo.
2697 std::vector<GlobalVariable *> TyInfo;
2698 unsigned N = I.getNumOperands();
2699
2700 for (unsigned i = N - 1; i > 2; --i) {
2701 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2702 unsigned FilterLength = CI->getZExtValue();
2703 unsigned FirstCatch = i + FilterLength + !FilterLength;
2704 assert (FirstCatch <= N && "Invalid filter length");
2705
2706 if (FirstCatch < N) {
2707 TyInfo.reserve(N - FirstCatch);
2708 for (unsigned j = FirstCatch; j < N; ++j)
2709 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2710 MMI->addCatchTypeInfo(MBB, TyInfo);
2711 TyInfo.clear();
2712 }
2713
2714 if (!FilterLength) {
2715 // Cleanup.
2716 MMI->addCleanup(MBB);
2717 } else {
2718 // Filter.
2719 TyInfo.reserve(FilterLength - 1);
2720 for (unsigned j = i + 1; j < FirstCatch; ++j)
2721 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2722 MMI->addFilterTypeInfo(MBB, TyInfo);
2723 TyInfo.clear();
2724 }
2725
2726 N = i;
2727 }
2728 }
2729
2730 if (N > 3) {
2731 TyInfo.reserve(N - 3);
2732 for (unsigned j = 3; j < N; ++j)
2733 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2734 MMI->addCatchTypeInfo(MBB, TyInfo);
2735 }
2736}
2737
2738}
2739
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002740/// GetSignificand - Get the significand and build it into a floating-point
2741/// number with exponent of 1:
2742///
2743/// Op = (Op & 0x007fffff) | 0x3f800000;
2744///
2745/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002746static SDValue
2747GetSignificand(SelectionDAG &DAG, SDValue Op) {
2748 SDValue t1 = DAG.getNode(ISD::AND, MVT::i32, Op,
2749 DAG.getConstant(0x007fffff, MVT::i32));
2750 SDValue t2 = DAG.getNode(ISD::OR, MVT::i32, t1,
2751 DAG.getConstant(0x3f800000, MVT::i32));
2752 return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t2);
2753}
2754
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002755/// GetExponent - Get the exponent:
2756///
2757/// (float)((Op1 >> 23) - 127);
2758///
2759/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002760static SDValue
2761GetExponent(SelectionDAG &DAG, SDValue Op) {
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002762 SDValue t1 = DAG.getNode(ISD::SRL, MVT::i32, Op,
Bill Wendling39150252008-09-09 20:39:27 +00002763 DAG.getConstant(23, MVT::i32));
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002764 SDValue t2 = DAG.getNode(ISD::SUB, MVT::i32, t1,
Bill Wendling39150252008-09-09 20:39:27 +00002765 DAG.getConstant(127, MVT::i32));
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002766 return DAG.getNode(ISD::UINT_TO_FP, MVT::f32, t2);
Bill Wendling39150252008-09-09 20:39:27 +00002767}
2768
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002769/// getF32Constant - Get 32-bit floating point constant.
2770static SDValue
2771getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2772 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2773}
2774
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002775/// Inlined utility function to implement binary input atomic intrinsics for
2776/// visitIntrinsicCall: I is a call instruction
2777/// Op is the associated NodeType for I
2778const char *
2779SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2780 SDValue Root = getRoot();
2781 SDValue L = DAG.getAtomic(Op, Root,
2782 getValue(I.getOperand(1)),
2783 getValue(I.getOperand(2)),
2784 I.getOperand(1));
2785 setValue(&I, L);
2786 DAG.setRoot(L.getValue(1));
2787 return 0;
2788}
2789
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002790/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2791/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00002792void
2793SelectionDAGLowering::visitExp(CallInst &I) {
2794 SDValue result;
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002795
2796 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2797 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2798 SDValue Op = getValue(I.getOperand(1));
2799
2800 // Put the exponent in the right bit position for later addition to the
2801 // final result:
2802 //
2803 // #define LOG2OFe 1.4426950f
2804 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2805 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002806 getF32Constant(DAG, 0x3fb8aa3b));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002807 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
2808
2809 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2810 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
2811 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
2812
2813 // IntegerPartOfX <<= 23;
2814 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
2815 DAG.getConstant(23, MVT::i32));
2816
2817 if (LimitFloatPrecision <= 6) {
2818 // For floating-point precision of 6:
2819 //
2820 // TwoToFractionalPartOfX =
2821 // 0.997535578f +
2822 // (0.735607626f + 0.252464424f * x) * x;
2823 //
2824 // error 0.0144103317, which is 6 bits
2825 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002826 getF32Constant(DAG, 0x3e814304));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002827 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002828 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002829 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
2830 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002831 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002832 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
2833
2834 // Add the exponent into the result in integer domain.
2835 SDValue t6 = DAG.getNode(ISD::ADD, MVT::i32,
2836 TwoToFracPartOfX, IntegerPartOfX);
2837
2838 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t6);
2839 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2840 // For floating-point precision of 12:
2841 //
2842 // TwoToFractionalPartOfX =
2843 // 0.999892986f +
2844 // (0.696457318f +
2845 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
2846 //
2847 // 0.000107046256 error, which is 13 to 14 bits
2848 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002849 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002850 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002851 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002852 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
2853 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002854 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002855 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
2856 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002857 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002858 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
2859
2860 // Add the exponent into the result in integer domain.
2861 SDValue t8 = DAG.getNode(ISD::ADD, MVT::i32,
2862 TwoToFracPartOfX, IntegerPartOfX);
2863
2864 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t8);
2865 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
2866 // For floating-point precision of 18:
2867 //
2868 // TwoToFractionalPartOfX =
2869 // 0.999999982f +
2870 // (0.693148872f +
2871 // (0.240227044f +
2872 // (0.554906021e-1f +
2873 // (0.961591928e-2f +
2874 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
2875 //
2876 // error 2.47208000*10^(-7), which is better than 18 bits
2877 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002878 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002879 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002880 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002881 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
2882 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002883 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002884 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
2885 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002886 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002887 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
2888 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002889 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002890 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
2891 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002892 getF32Constant(DAG, 0x3f317234));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002893 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
2894 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002895 getF32Constant(DAG, 0x3f800000));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002896 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
2897
2898 // Add the exponent into the result in integer domain.
2899 SDValue t14 = DAG.getNode(ISD::ADD, MVT::i32,
2900 TwoToFracPartOfX, IntegerPartOfX);
2901
2902 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t14);
2903 }
2904 } else {
2905 // No special expansion.
2906 result = DAG.getNode(ISD::FEXP,
2907 getValue(I.getOperand(1)).getValueType(),
2908 getValue(I.getOperand(1)));
2909 }
2910
Dale Johannesen59e577f2008-09-05 18:38:42 +00002911 setValue(&I, result);
2912}
2913
Bill Wendling39150252008-09-09 20:39:27 +00002914/// visitLog - Lower a log intrinsic. Handles the special sequences for
2915/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00002916void
2917SelectionDAGLowering::visitLog(CallInst &I) {
2918 SDValue result;
Bill Wendling39150252008-09-09 20:39:27 +00002919
2920 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2921 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2922 SDValue Op = getValue(I.getOperand(1));
2923 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
2924
2925 // Scale the exponent by log(2) [0.69314718f].
2926 SDValue Exp = GetExponent(DAG, Op1);
2927 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002928 getF32Constant(DAG, 0x3f317218));
Bill Wendling39150252008-09-09 20:39:27 +00002929
2930 // Get the significand and build it into a floating-point number with
2931 // exponent of 1.
2932 SDValue X = GetSignificand(DAG, Op1);
2933
2934 if (LimitFloatPrecision <= 6) {
2935 // For floating-point precision of 6:
2936 //
2937 // LogofMantissa =
2938 // -1.1609546f +
2939 // (1.4034025f - 0.23903021f * x) * x;
2940 //
2941 // error 0.0034276066, which is better than 8 bits
2942 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002943 getF32Constant(DAG, 0xbe74c456));
Bill Wendling39150252008-09-09 20:39:27 +00002944 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002945 getF32Constant(DAG, 0x3fb3a2b1));
Bill Wendling39150252008-09-09 20:39:27 +00002946 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
2947 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002948 getF32Constant(DAG, 0x3f949a29));
Bill Wendling39150252008-09-09 20:39:27 +00002949
2950 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
2951 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2952 // For floating-point precision of 12:
2953 //
2954 // LogOfMantissa =
2955 // -1.7417939f +
2956 // (2.8212026f +
2957 // (-1.4699568f +
2958 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
2959 //
2960 // error 0.000061011436, which is 14 bits
2961 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002962 getF32Constant(DAG, 0xbd67b6d6));
Bill Wendling39150252008-09-09 20:39:27 +00002963 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002964 getF32Constant(DAG, 0x3ee4f4b8));
Bill Wendling39150252008-09-09 20:39:27 +00002965 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
2966 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002967 getF32Constant(DAG, 0x3fbc278b));
Bill Wendling39150252008-09-09 20:39:27 +00002968 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
2969 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002970 getF32Constant(DAG, 0x40348e95));
Bill Wendling39150252008-09-09 20:39:27 +00002971 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
2972 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002973 getF32Constant(DAG, 0x3fdef31a));
Bill Wendling39150252008-09-09 20:39:27 +00002974
2975 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
2976 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
2977 // For floating-point precision of 18:
2978 //
2979 // LogOfMantissa =
2980 // -2.1072184f +
2981 // (4.2372794f +
2982 // (-3.7029485f +
2983 // (2.2781945f +
2984 // (-0.87823314f +
2985 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
2986 //
2987 // error 0.0000023660568, which is better than 18 bits
2988 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002989 getF32Constant(DAG, 0xbc91e5ac));
Bill Wendling39150252008-09-09 20:39:27 +00002990 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002991 getF32Constant(DAG, 0x3e4350aa));
Bill Wendling39150252008-09-09 20:39:27 +00002992 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
2993 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002994 getF32Constant(DAG, 0x3f60d3e3));
Bill Wendling39150252008-09-09 20:39:27 +00002995 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
2996 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002997 getF32Constant(DAG, 0x4011cdf0));
Bill Wendling39150252008-09-09 20:39:27 +00002998 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
2999 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003000 getF32Constant(DAG, 0x406cfd1c));
Bill Wendling39150252008-09-09 20:39:27 +00003001 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3002 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003003 getF32Constant(DAG, 0x408797cb));
Bill Wendling39150252008-09-09 20:39:27 +00003004 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3005 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003006 getF32Constant(DAG, 0x4006dcab));
Bill Wendling39150252008-09-09 20:39:27 +00003007
3008 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3009 }
3010 } else {
3011 // No special expansion.
3012 result = DAG.getNode(ISD::FLOG,
3013 getValue(I.getOperand(1)).getValueType(),
3014 getValue(I.getOperand(1)));
3015 }
3016
Dale Johannesen59e577f2008-09-05 18:38:42 +00003017 setValue(&I, result);
3018}
3019
Bill Wendling3eb59402008-09-09 00:28:24 +00003020/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3021/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003022void
3023SelectionDAGLowering::visitLog2(CallInst &I) {
3024 SDValue result;
Bill Wendling3eb59402008-09-09 00:28:24 +00003025
Dale Johannesen853244f2008-09-05 23:49:37 +00003026 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003027 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3028 SDValue Op = getValue(I.getOperand(1));
3029 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3030
Bill Wendling39150252008-09-09 20:39:27 +00003031 // Get the exponent.
3032 SDValue LogOfExponent = GetExponent(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003033
3034 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003035 // exponent of 1.
3036 SDValue X = GetSignificand(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003037
3038 // Different possible minimax approximations of significand in
3039 // floating-point for various degrees of accuracy over [1,2].
3040 if (LimitFloatPrecision <= 6) {
3041 // For floating-point precision of 6:
3042 //
3043 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3044 //
3045 // error 0.0049451742, which is more than 7 bits
Bill Wendling39150252008-09-09 20:39:27 +00003046 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003047 getF32Constant(DAG, 0xbeb08fe0));
Bill Wendling39150252008-09-09 20:39:27 +00003048 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003049 getF32Constant(DAG, 0x40019463));
Bill Wendling39150252008-09-09 20:39:27 +00003050 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3051 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003052 getF32Constant(DAG, 0x3fd6633d));
Bill Wendling3eb59402008-09-09 00:28:24 +00003053
3054 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3055 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3056 // For floating-point precision of 12:
3057 //
3058 // Log2ofMantissa =
3059 // -2.51285454f +
3060 // (4.07009056f +
3061 // (-2.12067489f +
3062 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3063 //
3064 // error 0.0000876136000, which is better than 13 bits
Bill Wendling39150252008-09-09 20:39:27 +00003065 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003066 getF32Constant(DAG, 0xbda7262e));
Bill Wendling39150252008-09-09 20:39:27 +00003067 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003068 getF32Constant(DAG, 0x3f25280b));
Bill Wendling39150252008-09-09 20:39:27 +00003069 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3070 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003071 getF32Constant(DAG, 0x4007b923));
Bill Wendling39150252008-09-09 20:39:27 +00003072 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3073 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003074 getF32Constant(DAG, 0x40823e2f));
Bill Wendling39150252008-09-09 20:39:27 +00003075 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3076 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003077 getF32Constant(DAG, 0x4020d29c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003078
3079 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3080 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3081 // For floating-point precision of 18:
3082 //
3083 // Log2ofMantissa =
3084 // -3.0400495f +
3085 // (6.1129976f +
3086 // (-5.3420409f +
3087 // (3.2865683f +
3088 // (-1.2669343f +
3089 // (0.27515199f -
3090 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3091 //
3092 // error 0.0000018516, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003093 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003094 getF32Constant(DAG, 0xbcd2769e));
Bill Wendling39150252008-09-09 20:39:27 +00003095 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003096 getF32Constant(DAG, 0x3e8ce0b9));
Bill Wendling39150252008-09-09 20:39:27 +00003097 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3098 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003099 getF32Constant(DAG, 0x3fa22ae7));
Bill Wendling39150252008-09-09 20:39:27 +00003100 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3101 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003102 getF32Constant(DAG, 0x40525723));
Bill Wendling39150252008-09-09 20:39:27 +00003103 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3104 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003105 getF32Constant(DAG, 0x40aaf200));
Bill Wendling39150252008-09-09 20:39:27 +00003106 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3107 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003108 getF32Constant(DAG, 0x40c39dad));
Bill Wendling3eb59402008-09-09 00:28:24 +00003109 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
Bill Wendling39150252008-09-09 20:39:27 +00003110 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003111 getF32Constant(DAG, 0x4042902c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003112
3113 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3114 }
Dale Johannesen853244f2008-09-05 23:49:37 +00003115 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003116 // No special expansion.
Dale Johannesen853244f2008-09-05 23:49:37 +00003117 result = DAG.getNode(ISD::FLOG2,
3118 getValue(I.getOperand(1)).getValueType(),
3119 getValue(I.getOperand(1)));
3120 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003121
Dale Johannesen59e577f2008-09-05 18:38:42 +00003122 setValue(&I, result);
3123}
3124
Bill Wendling3eb59402008-09-09 00:28:24 +00003125/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3126/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003127void
3128SelectionDAGLowering::visitLog10(CallInst &I) {
3129 SDValue result;
Dale Johannesen852680a2008-09-05 21:27:19 +00003130 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003131 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3132 SDValue Op = getValue(I.getOperand(1));
3133 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3134
Bill Wendling39150252008-09-09 20:39:27 +00003135 // Scale the exponent by log10(2) [0.30102999f].
3136 SDValue Exp = GetExponent(DAG, Op1);
3137 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003138 getF32Constant(DAG, 0x3e9a209a));
Bill Wendling3eb59402008-09-09 00:28:24 +00003139
3140 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003141 // exponent of 1.
3142 SDValue X = GetSignificand(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003143
3144 if (LimitFloatPrecision <= 6) {
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003145 // For floating-point precision of 6:
3146 //
3147 // Log10ofMantissa =
3148 // -0.50419619f +
3149 // (0.60948995f - 0.10380950f * x) * x;
3150 //
3151 // error 0.0014886165, which is 6 bits
Bill Wendling39150252008-09-09 20:39:27 +00003152 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003153 getF32Constant(DAG, 0xbdd49a13));
Bill Wendling39150252008-09-09 20:39:27 +00003154 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003155 getF32Constant(DAG, 0x3f1c0789));
Bill Wendling39150252008-09-09 20:39:27 +00003156 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3157 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003158 getF32Constant(DAG, 0x3f011300));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003159
3160 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003161 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3162 // For floating-point precision of 12:
3163 //
3164 // Log10ofMantissa =
3165 // -0.64831180f +
3166 // (0.91751397f +
3167 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3168 //
3169 // error 0.00019228036, which is better than 12 bits
Bill Wendling39150252008-09-09 20:39:27 +00003170 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003171 getF32Constant(DAG, 0x3d431f31));
Bill Wendling39150252008-09-09 20:39:27 +00003172 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003173 getF32Constant(DAG, 0x3ea21fb2));
Bill Wendling39150252008-09-09 20:39:27 +00003174 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3175 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003176 getF32Constant(DAG, 0x3f6ae232));
Bill Wendling39150252008-09-09 20:39:27 +00003177 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3178 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003179 getF32Constant(DAG, 0x3f25f7c3));
Bill Wendling3eb59402008-09-09 00:28:24 +00003180
3181 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
3182 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003183 // For floating-point precision of 18:
3184 //
3185 // Log10ofMantissa =
3186 // -0.84299375f +
3187 // (1.5327582f +
3188 // (-1.0688956f +
3189 // (0.49102474f +
3190 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3191 //
3192 // error 0.0000037995730, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003193 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003194 getF32Constant(DAG, 0x3c5d51ce));
Bill Wendling39150252008-09-09 20:39:27 +00003195 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003196 getF32Constant(DAG, 0x3e00685a));
Bill Wendling39150252008-09-09 20:39:27 +00003197 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3198 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003199 getF32Constant(DAG, 0x3efb6798));
Bill Wendling39150252008-09-09 20:39:27 +00003200 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3201 SDValue t5 = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003202 getF32Constant(DAG, 0x3f88d192));
Bill Wendling39150252008-09-09 20:39:27 +00003203 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3204 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003205 getF32Constant(DAG, 0x3fc4316c));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003206 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
Bill Wendling39150252008-09-09 20:39:27 +00003207 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003208 getF32Constant(DAG, 0x3f57ce70));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003209
3210 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003211 }
Dale Johannesen852680a2008-09-05 21:27:19 +00003212 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003213 // No special expansion.
Dale Johannesen852680a2008-09-05 21:27:19 +00003214 result = DAG.getNode(ISD::FLOG10,
3215 getValue(I.getOperand(1)).getValueType(),
3216 getValue(I.getOperand(1)));
3217 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003218
Dale Johannesen59e577f2008-09-05 18:38:42 +00003219 setValue(&I, result);
3220}
3221
Bill Wendlinge10c8142008-09-09 22:39:21 +00003222/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3223/// limited-precision mode.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003224void
3225SelectionDAGLowering::visitExp2(CallInst &I) {
3226 SDValue result;
Bill Wendlinge10c8142008-09-09 22:39:21 +00003227
Dale Johannesen601d3c02008-09-05 01:48:15 +00003228 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendlinge10c8142008-09-09 22:39:21 +00003229 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3230 SDValue Op = getValue(I.getOperand(1));
3231
3232 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, Op);
3233
3234 // FractionalPartOfX = x - (float)IntegerPartOfX;
3235 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3236 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, Op, t1);
3237
3238 // IntegerPartOfX <<= 23;
3239 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
3240 DAG.getConstant(23, MVT::i32));
3241
3242 if (LimitFloatPrecision <= 6) {
3243 // For floating-point precision of 6:
3244 //
3245 // TwoToFractionalPartOfX =
3246 // 0.997535578f +
3247 // (0.735607626f + 0.252464424f * x) * x;
3248 //
3249 // error 0.0144103317, which is 6 bits
3250 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003251 getF32Constant(DAG, 0x3e814304));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003252 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003253 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003254 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3255 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003256 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003257 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3258 SDValue TwoToFractionalPartOfX =
3259 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3260
3261 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3262 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3263 // For floating-point precision of 12:
3264 //
3265 // TwoToFractionalPartOfX =
3266 // 0.999892986f +
3267 // (0.696457318f +
3268 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3269 //
3270 // error 0.000107046256, which is 13 to 14 bits
3271 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003272 getF32Constant(DAG, 0x3da235e3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003273 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003274 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003275 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3276 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003277 getF32Constant(DAG, 0x3f324b07));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003278 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3279 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003280 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003281 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3282 SDValue TwoToFractionalPartOfX =
3283 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3284
3285 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3286 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3287 // For floating-point precision of 18:
3288 //
3289 // TwoToFractionalPartOfX =
3290 // 0.999999982f +
3291 // (0.693148872f +
3292 // (0.240227044f +
3293 // (0.554906021e-1f +
3294 // (0.961591928e-2f +
3295 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3296 // error 2.47208000*10^(-7), which is better than 18 bits
3297 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003298 getF32Constant(DAG, 0x3924b03e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003299 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003300 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003301 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3302 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003303 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003304 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3305 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003306 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003307 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3308 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003309 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003310 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3311 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003312 getF32Constant(DAG, 0x3f317234));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003313 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3314 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003315 getF32Constant(DAG, 0x3f800000));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003316 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3317 SDValue TwoToFractionalPartOfX =
3318 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3319
3320 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3321 }
Dale Johannesen601d3c02008-09-05 01:48:15 +00003322 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003323 // No special expansion.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003324 result = DAG.getNode(ISD::FEXP2,
3325 getValue(I.getOperand(1)).getValueType(),
3326 getValue(I.getOperand(1)));
3327 }
Bill Wendlinge10c8142008-09-09 22:39:21 +00003328
Dale Johannesen601d3c02008-09-05 01:48:15 +00003329 setValue(&I, result);
3330}
3331
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003332/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3333/// limited-precision mode with x == 10.0f.
3334void
3335SelectionDAGLowering::visitPow(CallInst &I) {
3336 SDValue result;
3337 Value *Val = I.getOperand(1);
3338 bool IsExp10 = false;
3339
3340 if (getValue(Val).getValueType() == MVT::f32 &&
Bill Wendling277fc242008-09-10 00:24:59 +00003341 getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003342 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3343 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3344 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3345 APFloat Ten(10.0f);
3346 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3347 }
3348 }
3349 }
3350
3351 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3352 SDValue Op = getValue(I.getOperand(2));
3353
3354 // Put the exponent in the right bit position for later addition to the
3355 // final result:
3356 //
3357 // #define LOG2OF10 3.3219281f
3358 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3359 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003360 getF32Constant(DAG, 0x40549a78));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003361 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
3362
3363 // FractionalPartOfX = x - (float)IntegerPartOfX;
3364 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3365 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
3366
3367 // IntegerPartOfX <<= 23;
3368 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
3369 DAG.getConstant(23, MVT::i32));
3370
3371 if (LimitFloatPrecision <= 6) {
3372 // For floating-point precision of 6:
3373 //
3374 // twoToFractionalPartOfX =
3375 // 0.997535578f +
3376 // (0.735607626f + 0.252464424f * x) * x;
3377 //
3378 // error 0.0144103317, which is 6 bits
3379 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003380 getF32Constant(DAG, 0x3e814304));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003381 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003382 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003383 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3384 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003385 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003386 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3387 SDValue TwoToFractionalPartOfX =
3388 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3389
3390 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3391 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3392 // For floating-point precision of 12:
3393 //
3394 // TwoToFractionalPartOfX =
3395 // 0.999892986f +
3396 // (0.696457318f +
3397 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3398 //
3399 // error 0.000107046256, which is 13 to 14 bits
3400 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003401 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003402 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003403 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003404 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3405 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003406 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003407 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3408 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003409 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003410 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3411 SDValue TwoToFractionalPartOfX =
3412 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3413
3414 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3415 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3416 // For floating-point precision of 18:
3417 //
3418 // TwoToFractionalPartOfX =
3419 // 0.999999982f +
3420 // (0.693148872f +
3421 // (0.240227044f +
3422 // (0.554906021e-1f +
3423 // (0.961591928e-2f +
3424 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3425 // error 2.47208000*10^(-7), which is better than 18 bits
3426 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003427 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003428 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003429 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003430 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3431 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003432 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003433 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3434 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003435 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003436 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3437 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003438 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003439 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3440 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003441 getF32Constant(DAG, 0x3f317234));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003442 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3443 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003444 getF32Constant(DAG, 0x3f800000));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003445 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3446 SDValue TwoToFractionalPartOfX =
3447 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3448
3449 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3450 }
3451 } else {
3452 // No special expansion.
3453 result = DAG.getNode(ISD::FPOW,
3454 getValue(I.getOperand(1)).getValueType(),
3455 getValue(I.getOperand(1)),
3456 getValue(I.getOperand(2)));
3457 }
3458
3459 setValue(&I, result);
3460}
3461
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003462/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
3463/// we want to emit this as a call to a named external function, return the name
3464/// otherwise lower it and return null.
3465const char *
3466SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3467 switch (Intrinsic) {
3468 default:
3469 // By default, turn this into a target intrinsic node.
3470 visitTargetIntrinsic(I, Intrinsic);
3471 return 0;
3472 case Intrinsic::vastart: visitVAStart(I); return 0;
3473 case Intrinsic::vaend: visitVAEnd(I); return 0;
3474 case Intrinsic::vacopy: visitVACopy(I); return 0;
3475 case Intrinsic::returnaddress:
3476 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3477 getValue(I.getOperand(1))));
3478 return 0;
3479 case Intrinsic::frameaddress:
3480 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3481 getValue(I.getOperand(1))));
3482 return 0;
3483 case Intrinsic::setjmp:
3484 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3485 break;
3486 case Intrinsic::longjmp:
3487 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3488 break;
3489 case Intrinsic::memcpy_i32:
3490 case Intrinsic::memcpy_i64: {
3491 SDValue Op1 = getValue(I.getOperand(1));
3492 SDValue Op2 = getValue(I.getOperand(2));
3493 SDValue Op3 = getValue(I.getOperand(3));
3494 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3495 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3496 I.getOperand(1), 0, I.getOperand(2), 0));
3497 return 0;
3498 }
3499 case Intrinsic::memset_i32:
3500 case Intrinsic::memset_i64: {
3501 SDValue Op1 = getValue(I.getOperand(1));
3502 SDValue Op2 = getValue(I.getOperand(2));
3503 SDValue Op3 = getValue(I.getOperand(3));
3504 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3505 DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3506 I.getOperand(1), 0));
3507 return 0;
3508 }
3509 case Intrinsic::memmove_i32:
3510 case Intrinsic::memmove_i64: {
3511 SDValue Op1 = getValue(I.getOperand(1));
3512 SDValue Op2 = getValue(I.getOperand(2));
3513 SDValue Op3 = getValue(I.getOperand(3));
3514 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3515
3516 // If the source and destination are known to not be aliases, we can
3517 // lower memmove as memcpy.
3518 uint64_t Size = -1ULL;
3519 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00003520 Size = C->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003521 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3522 AliasAnalysis::NoAlias) {
3523 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3524 I.getOperand(1), 0, I.getOperand(2), 0));
3525 return 0;
3526 }
3527
3528 DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3529 I.getOperand(1), 0, I.getOperand(2), 0));
3530 return 0;
3531 }
3532 case Intrinsic::dbg_stoppoint: {
3533 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3534 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3535 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3536 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3537 assert(DD && "Not a debug information descriptor");
3538 DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3539 SPI.getLine(),
3540 SPI.getColumn(),
3541 cast<CompileUnitDesc>(DD)));
3542 }
3543
3544 return 0;
3545 }
3546 case Intrinsic::dbg_region_start: {
3547 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3548 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3549 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3550 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3551 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3552 }
3553
3554 return 0;
3555 }
3556 case Intrinsic::dbg_region_end: {
3557 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3558 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3559 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3560 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3561 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3562 }
3563
3564 return 0;
3565 }
3566 case Intrinsic::dbg_func_start: {
3567 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3568 if (!MMI) return 0;
3569 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3570 Value *SP = FSI.getSubprogram();
3571 if (SP && MMI->Verify(SP)) {
3572 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3573 // what (most?) gdb expects.
3574 DebugInfoDesc *DD = MMI->getDescFor(SP);
3575 assert(DD && "Not a debug information descriptor");
3576 SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3577 const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3578 unsigned SrcFile = MMI->RecordSource(CompileUnit);
3579 // Record the source line but does create a label. It will be emitted
3580 // at asm emission time.
3581 MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3582 }
3583
3584 return 0;
3585 }
3586 case Intrinsic::dbg_declare: {
3587 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3588 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3589 Value *Variable = DI.getVariable();
3590 if (MMI && Variable && MMI->Verify(Variable))
3591 DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3592 getValue(DI.getAddress()), getValue(Variable)));
3593 return 0;
3594 }
3595
3596 case Intrinsic::eh_exception: {
3597 if (!CurMBB->isLandingPad()) {
3598 // FIXME: Mark exception register as live in. Hack for PR1508.
3599 unsigned Reg = TLI.getExceptionAddressRegister();
3600 if (Reg) CurMBB->addLiveIn(Reg);
3601 }
3602 // Insert the EXCEPTIONADDR instruction.
3603 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3604 SDValue Ops[1];
3605 Ops[0] = DAG.getRoot();
3606 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3607 setValue(&I, Op);
3608 DAG.setRoot(Op.getValue(1));
3609 return 0;
3610 }
3611
3612 case Intrinsic::eh_selector_i32:
3613 case Intrinsic::eh_selector_i64: {
3614 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3615 MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3616 MVT::i32 : MVT::i64);
3617
3618 if (MMI) {
3619 if (CurMBB->isLandingPad())
3620 AddCatchInfo(I, MMI, CurMBB);
3621 else {
3622#ifndef NDEBUG
3623 FuncInfo.CatchInfoLost.insert(&I);
3624#endif
3625 // FIXME: Mark exception selector register as live in. Hack for PR1508.
3626 unsigned Reg = TLI.getExceptionSelectorRegister();
3627 if (Reg) CurMBB->addLiveIn(Reg);
3628 }
3629
3630 // Insert the EHSELECTION instruction.
3631 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3632 SDValue Ops[2];
3633 Ops[0] = getValue(I.getOperand(1));
3634 Ops[1] = getRoot();
3635 SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3636 setValue(&I, Op);
3637 DAG.setRoot(Op.getValue(1));
3638 } else {
3639 setValue(&I, DAG.getConstant(0, VT));
3640 }
3641
3642 return 0;
3643 }
3644
3645 case Intrinsic::eh_typeid_for_i32:
3646 case Intrinsic::eh_typeid_for_i64: {
3647 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3648 MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3649 MVT::i32 : MVT::i64);
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003650
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003651 if (MMI) {
3652 // Find the type id for the given typeinfo.
3653 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3654
3655 unsigned TypeID = MMI->getTypeIDFor(GV);
3656 setValue(&I, DAG.getConstant(TypeID, VT));
3657 } else {
3658 // Return something different to eh_selector.
3659 setValue(&I, DAG.getConstant(1, VT));
3660 }
3661
3662 return 0;
3663 }
3664
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003665 case Intrinsic::eh_return_i32:
3666 case Intrinsic::eh_return_i64:
3667 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003668 MMI->setCallsEHReturn(true);
3669 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3670 MVT::Other,
3671 getControlRoot(),
3672 getValue(I.getOperand(1)),
3673 getValue(I.getOperand(2))));
3674 } else {
3675 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3676 }
3677
3678 return 0;
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003679 case Intrinsic::eh_unwind_init:
3680 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3681 MMI->setCallsUnwindInit(true);
3682 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003683
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003684 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003685
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003686 case Intrinsic::eh_dwarf_cfa: {
3687 MVT VT = getValue(I.getOperand(1)).getValueType();
3688 SDValue CfaArg;
3689 if (VT.bitsGT(TLI.getPointerTy()))
3690 CfaArg = DAG.getNode(ISD::TRUNCATE,
3691 TLI.getPointerTy(), getValue(I.getOperand(1)));
3692 else
3693 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3694 TLI.getPointerTy(), getValue(I.getOperand(1)));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003695
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003696 SDValue Offset = DAG.getNode(ISD::ADD,
3697 TLI.getPointerTy(),
3698 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3699 TLI.getPointerTy()),
3700 CfaArg);
3701 setValue(&I, DAG.getNode(ISD::ADD,
3702 TLI.getPointerTy(),
3703 DAG.getNode(ISD::FRAMEADDR,
3704 TLI.getPointerTy(),
3705 DAG.getConstant(0,
3706 TLI.getPointerTy())),
3707 Offset));
3708 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003709 }
3710
3711 case Intrinsic::sqrt:
3712 setValue(&I, DAG.getNode(ISD::FSQRT,
3713 getValue(I.getOperand(1)).getValueType(),
3714 getValue(I.getOperand(1))));
3715 return 0;
3716 case Intrinsic::powi:
3717 setValue(&I, DAG.getNode(ISD::FPOWI,
3718 getValue(I.getOperand(1)).getValueType(),
3719 getValue(I.getOperand(1)),
3720 getValue(I.getOperand(2))));
3721 return 0;
3722 case Intrinsic::sin:
3723 setValue(&I, DAG.getNode(ISD::FSIN,
3724 getValue(I.getOperand(1)).getValueType(),
3725 getValue(I.getOperand(1))));
3726 return 0;
3727 case Intrinsic::cos:
3728 setValue(&I, DAG.getNode(ISD::FCOS,
3729 getValue(I.getOperand(1)).getValueType(),
3730 getValue(I.getOperand(1))));
3731 return 0;
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003732 case Intrinsic::log:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003733 visitLog(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003734 return 0;
3735 case Intrinsic::log2:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003736 visitLog2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003737 return 0;
3738 case Intrinsic::log10:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003739 visitLog10(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003740 return 0;
3741 case Intrinsic::exp:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003742 visitExp(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003743 return 0;
3744 case Intrinsic::exp2:
Dale Johannesen601d3c02008-09-05 01:48:15 +00003745 visitExp2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003746 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003747 case Intrinsic::pow:
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003748 visitPow(I);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003749 return 0;
3750 case Intrinsic::pcmarker: {
3751 SDValue Tmp = getValue(I.getOperand(1));
3752 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3753 return 0;
3754 }
3755 case Intrinsic::readcyclecounter: {
3756 SDValue Op = getRoot();
3757 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3758 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3759 &Op, 1);
3760 setValue(&I, Tmp);
3761 DAG.setRoot(Tmp.getValue(1));
3762 return 0;
3763 }
3764 case Intrinsic::part_select: {
3765 // Currently not implemented: just abort
3766 assert(0 && "part_select intrinsic not implemented");
3767 abort();
3768 }
3769 case Intrinsic::part_set: {
3770 // Currently not implemented: just abort
3771 assert(0 && "part_set intrinsic not implemented");
3772 abort();
3773 }
3774 case Intrinsic::bswap:
3775 setValue(&I, DAG.getNode(ISD::BSWAP,
3776 getValue(I.getOperand(1)).getValueType(),
3777 getValue(I.getOperand(1))));
3778 return 0;
3779 case Intrinsic::cttz: {
3780 SDValue Arg = getValue(I.getOperand(1));
3781 MVT Ty = Arg.getValueType();
3782 SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3783 setValue(&I, result);
3784 return 0;
3785 }
3786 case Intrinsic::ctlz: {
3787 SDValue Arg = getValue(I.getOperand(1));
3788 MVT Ty = Arg.getValueType();
3789 SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3790 setValue(&I, result);
3791 return 0;
3792 }
3793 case Intrinsic::ctpop: {
3794 SDValue Arg = getValue(I.getOperand(1));
3795 MVT Ty = Arg.getValueType();
3796 SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3797 setValue(&I, result);
3798 return 0;
3799 }
3800 case Intrinsic::stacksave: {
3801 SDValue Op = getRoot();
3802 SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3803 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3804 setValue(&I, Tmp);
3805 DAG.setRoot(Tmp.getValue(1));
3806 return 0;
3807 }
3808 case Intrinsic::stackrestore: {
3809 SDValue Tmp = getValue(I.getOperand(1));
3810 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3811 return 0;
3812 }
3813 case Intrinsic::var_annotation:
3814 // Discard annotate attributes
3815 return 0;
3816
3817 case Intrinsic::init_trampoline: {
3818 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3819
3820 SDValue Ops[6];
3821 Ops[0] = getRoot();
3822 Ops[1] = getValue(I.getOperand(1));
3823 Ops[2] = getValue(I.getOperand(2));
3824 Ops[3] = getValue(I.getOperand(3));
3825 Ops[4] = DAG.getSrcValue(I.getOperand(1));
3826 Ops[5] = DAG.getSrcValue(F);
3827
3828 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3829 DAG.getNodeValueTypes(TLI.getPointerTy(),
3830 MVT::Other), 2,
3831 Ops, 6);
3832
3833 setValue(&I, Tmp);
3834 DAG.setRoot(Tmp.getValue(1));
3835 return 0;
3836 }
3837
3838 case Intrinsic::gcroot:
3839 if (GFI) {
3840 Value *Alloca = I.getOperand(1);
3841 Constant *TypeMap = cast<Constant>(I.getOperand(2));
3842
3843 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
3844 GFI->addStackRoot(FI->getIndex(), TypeMap);
3845 }
3846 return 0;
3847
3848 case Intrinsic::gcread:
3849 case Intrinsic::gcwrite:
3850 assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
3851 return 0;
3852
3853 case Intrinsic::flt_rounds: {
3854 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3855 return 0;
3856 }
3857
3858 case Intrinsic::trap: {
3859 DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3860 return 0;
3861 }
3862 case Intrinsic::prefetch: {
3863 SDValue Ops[4];
3864 Ops[0] = getRoot();
3865 Ops[1] = getValue(I.getOperand(1));
3866 Ops[2] = getValue(I.getOperand(2));
3867 Ops[3] = getValue(I.getOperand(3));
3868 DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3869 return 0;
3870 }
3871
3872 case Intrinsic::memory_barrier: {
3873 SDValue Ops[6];
3874 Ops[0] = getRoot();
3875 for (int x = 1; x < 6; ++x)
3876 Ops[x] = getValue(I.getOperand(x));
3877
3878 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3879 return 0;
3880 }
3881 case Intrinsic::atomic_cmp_swap: {
3882 SDValue Root = getRoot();
3883 SDValue L;
3884 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3885 case MVT::i8:
3886 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_8, Root,
3887 getValue(I.getOperand(1)),
3888 getValue(I.getOperand(2)),
3889 getValue(I.getOperand(3)),
3890 I.getOperand(1));
3891 break;
3892 case MVT::i16:
3893 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_16, Root,
3894 getValue(I.getOperand(1)),
3895 getValue(I.getOperand(2)),
3896 getValue(I.getOperand(3)),
3897 I.getOperand(1));
3898 break;
3899 case MVT::i32:
3900 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_32, Root,
3901 getValue(I.getOperand(1)),
3902 getValue(I.getOperand(2)),
3903 getValue(I.getOperand(3)),
3904 I.getOperand(1));
3905 break;
3906 case MVT::i64:
3907 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_64, Root,
3908 getValue(I.getOperand(1)),
3909 getValue(I.getOperand(2)),
3910 getValue(I.getOperand(3)),
3911 I.getOperand(1));
3912 break;
3913 default:
3914 assert(0 && "Invalid atomic type");
3915 abort();
3916 }
3917 setValue(&I, L);
3918 DAG.setRoot(L.getValue(1));
3919 return 0;
3920 }
3921 case Intrinsic::atomic_load_add:
3922 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3923 case MVT::i8:
3924 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_8);
3925 case MVT::i16:
3926 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_16);
3927 case MVT::i32:
3928 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_32);
3929 case MVT::i64:
3930 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_64);
3931 default:
3932 assert(0 && "Invalid atomic type");
3933 abort();
3934 }
3935 case Intrinsic::atomic_load_sub:
3936 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3937 case MVT::i8:
3938 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_8);
3939 case MVT::i16:
3940 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_16);
3941 case MVT::i32:
3942 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_32);
3943 case MVT::i64:
3944 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_64);
3945 default:
3946 assert(0 && "Invalid atomic type");
3947 abort();
3948 }
3949 case Intrinsic::atomic_load_or:
3950 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3951 case MVT::i8:
3952 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_8);
3953 case MVT::i16:
3954 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_16);
3955 case MVT::i32:
3956 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_32);
3957 case MVT::i64:
3958 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_64);
3959 default:
3960 assert(0 && "Invalid atomic type");
3961 abort();
3962 }
3963 case Intrinsic::atomic_load_xor:
3964 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3965 case MVT::i8:
3966 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_8);
3967 case MVT::i16:
3968 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_16);
3969 case MVT::i32:
3970 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_32);
3971 case MVT::i64:
3972 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_64);
3973 default:
3974 assert(0 && "Invalid atomic type");
3975 abort();
3976 }
3977 case Intrinsic::atomic_load_and:
3978 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3979 case MVT::i8:
3980 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_8);
3981 case MVT::i16:
3982 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_16);
3983 case MVT::i32:
3984 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_32);
3985 case MVT::i64:
3986 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_64);
3987 default:
3988 assert(0 && "Invalid atomic type");
3989 abort();
3990 }
3991 case Intrinsic::atomic_load_nand:
3992 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3993 case MVT::i8:
3994 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_8);
3995 case MVT::i16:
3996 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_16);
3997 case MVT::i32:
3998 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_32);
3999 case MVT::i64:
4000 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_64);
4001 default:
4002 assert(0 && "Invalid atomic type");
4003 abort();
4004 }
4005 case Intrinsic::atomic_load_max:
4006 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4007 case MVT::i8:
4008 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_8);
4009 case MVT::i16:
4010 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_16);
4011 case MVT::i32:
4012 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_32);
4013 case MVT::i64:
4014 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_64);
4015 default:
4016 assert(0 && "Invalid atomic type");
4017 abort();
4018 }
4019 case Intrinsic::atomic_load_min:
4020 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4021 case MVT::i8:
4022 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_8);
4023 case MVT::i16:
4024 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_16);
4025 case MVT::i32:
4026 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_32);
4027 case MVT::i64:
4028 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_64);
4029 default:
4030 assert(0 && "Invalid atomic type");
4031 abort();
4032 }
4033 case Intrinsic::atomic_load_umin:
4034 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4035 case MVT::i8:
4036 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_8);
4037 case MVT::i16:
4038 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_16);
4039 case MVT::i32:
4040 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_32);
4041 case MVT::i64:
4042 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_64);
4043 default:
4044 assert(0 && "Invalid atomic type");
4045 abort();
4046 }
4047 case Intrinsic::atomic_load_umax:
4048 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4049 case MVT::i8:
4050 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_8);
4051 case MVT::i16:
4052 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_16);
4053 case MVT::i32:
4054 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_32);
4055 case MVT::i64:
4056 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_64);
4057 default:
4058 assert(0 && "Invalid atomic type");
4059 abort();
4060 }
4061 case Intrinsic::atomic_swap:
4062 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4063 case MVT::i8:
4064 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_8);
4065 case MVT::i16:
4066 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_16);
4067 case MVT::i32:
4068 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_32);
4069 case MVT::i64:
4070 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_64);
4071 default:
4072 assert(0 && "Invalid atomic type");
4073 abort();
4074 }
4075 }
4076}
4077
4078
4079void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
4080 bool IsTailCall,
4081 MachineBasicBlock *LandingPad) {
4082 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4083 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4084 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4085 unsigned BeginLabel = 0, EndLabel = 0;
4086
4087 TargetLowering::ArgListTy Args;
4088 TargetLowering::ArgListEntry Entry;
4089 Args.reserve(CS.arg_size());
4090 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4091 i != e; ++i) {
4092 SDValue ArgNode = getValue(*i);
4093 Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4094
4095 unsigned attrInd = i - CS.arg_begin() + 1;
4096 Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt);
4097 Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
4098 Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
4099 Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
4100 Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest);
4101 Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
4102 Entry.Alignment = CS.getParamAlignment(attrInd);
4103 Args.push_back(Entry);
4104 }
4105
4106 if (LandingPad && MMI) {
4107 // Insert a label before the invoke call to mark the try range. This can be
4108 // used to detect deletion of the invoke via the MachineModuleInfo.
4109 BeginLabel = MMI->NextLabelID();
4110 // Both PendingLoads and PendingExports must be flushed here;
4111 // this call might not return.
4112 (void)getRoot();
4113 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
4114 }
4115
4116 std::pair<SDValue,SDValue> Result =
4117 TLI.LowerCallTo(getRoot(), CS.getType(),
4118 CS.paramHasAttr(0, ParamAttr::SExt),
4119 CS.paramHasAttr(0, ParamAttr::ZExt),
Dan Gohman1937e2f2008-09-16 01:42:28 +00004120 FTy->isVarArg(), CS.getCallingConv(),
4121 IsTailCall && PerformTailCallOpt,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004122 Callee, Args, DAG);
4123 if (CS.getType() != Type::VoidTy)
4124 setValue(CS.getInstruction(), Result.first);
4125 DAG.setRoot(Result.second);
4126
4127 if (LandingPad && MMI) {
4128 // Insert a label at the end of the invoke call to mark the try range. This
4129 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4130 EndLabel = MMI->NextLabelID();
4131 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
4132
4133 // Inform MachineModuleInfo of range.
4134 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4135 }
4136}
4137
4138
4139void SelectionDAGLowering::visitCall(CallInst &I) {
4140 const char *RenameFn = 0;
4141 if (Function *F = I.getCalledFunction()) {
4142 if (F->isDeclaration()) {
4143 if (unsigned IID = F->getIntrinsicID()) {
4144 RenameFn = visitIntrinsicCall(I, IID);
4145 if (!RenameFn)
4146 return;
4147 }
4148 }
4149
4150 // Check for well-known libc/libm calls. If the function is internal, it
4151 // can't be a library call.
4152 unsigned NameLen = F->getNameLen();
4153 if (!F->hasInternalLinkage() && NameLen) {
4154 const char *NameStr = F->getNameStart();
4155 if (NameStr[0] == 'c' &&
4156 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
4157 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
4158 if (I.getNumOperands() == 3 && // Basic sanity checks.
4159 I.getOperand(1)->getType()->isFloatingPoint() &&
4160 I.getType() == I.getOperand(1)->getType() &&
4161 I.getType() == I.getOperand(2)->getType()) {
4162 SDValue LHS = getValue(I.getOperand(1));
4163 SDValue RHS = getValue(I.getOperand(2));
4164 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
4165 LHS, RHS));
4166 return;
4167 }
4168 } else if (NameStr[0] == 'f' &&
4169 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
4170 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
4171 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
4172 if (I.getNumOperands() == 2 && // Basic sanity checks.
4173 I.getOperand(1)->getType()->isFloatingPoint() &&
4174 I.getType() == I.getOperand(1)->getType()) {
4175 SDValue Tmp = getValue(I.getOperand(1));
4176 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
4177 return;
4178 }
4179 } else if (NameStr[0] == 's' &&
4180 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
4181 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
4182 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
4183 if (I.getNumOperands() == 2 && // Basic sanity checks.
4184 I.getOperand(1)->getType()->isFloatingPoint() &&
4185 I.getType() == I.getOperand(1)->getType()) {
4186 SDValue Tmp = getValue(I.getOperand(1));
4187 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
4188 return;
4189 }
4190 } else if (NameStr[0] == 'c' &&
4191 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
4192 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
4193 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
4194 if (I.getNumOperands() == 2 && // Basic sanity checks.
4195 I.getOperand(1)->getType()->isFloatingPoint() &&
4196 I.getType() == I.getOperand(1)->getType()) {
4197 SDValue Tmp = getValue(I.getOperand(1));
4198 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
4199 return;
4200 }
4201 }
4202 }
4203 } else if (isa<InlineAsm>(I.getOperand(0))) {
4204 visitInlineAsm(&I);
4205 return;
4206 }
4207
4208 SDValue Callee;
4209 if (!RenameFn)
4210 Callee = getValue(I.getOperand(0));
4211 else
Bill Wendling056292f2008-09-16 21:48:12 +00004212 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004213
4214 LowerCallTo(&I, Callee, I.isTailCall());
4215}
4216
4217
4218/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4219/// this value and returns the result as a ValueVT value. This uses
4220/// Chain/Flag as the input and updates them for the output Chain/Flag.
4221/// If the Flag pointer is NULL, no flag is used.
4222SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
4223 SDValue &Chain,
4224 SDValue *Flag) const {
4225 // Assemble the legal parts into the final values.
4226 SmallVector<SDValue, 4> Values(ValueVTs.size());
4227 SmallVector<SDValue, 8> Parts;
4228 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4229 // Copy the legal parts from the registers.
4230 MVT ValueVT = ValueVTs[Value];
4231 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
4232 MVT RegisterVT = RegVTs[Value];
4233
4234 Parts.resize(NumRegs);
4235 for (unsigned i = 0; i != NumRegs; ++i) {
4236 SDValue P;
4237 if (Flag == 0)
4238 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
4239 else {
4240 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
4241 *Flag = P.getValue(2);
4242 }
4243 Chain = P.getValue(1);
4244
4245 // If the source register was virtual and if we know something about it,
4246 // add an assert node.
4247 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4248 RegisterVT.isInteger() && !RegisterVT.isVector()) {
4249 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4250 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4251 if (FLI.LiveOutRegInfo.size() > SlotNo) {
4252 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4253
4254 unsigned RegSize = RegisterVT.getSizeInBits();
4255 unsigned NumSignBits = LOI.NumSignBits;
4256 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4257
4258 // FIXME: We capture more information than the dag can represent. For
4259 // now, just use the tightest assertzext/assertsext possible.
4260 bool isSExt = true;
4261 MVT FromVT(MVT::Other);
4262 if (NumSignBits == RegSize)
4263 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
4264 else if (NumZeroBits >= RegSize-1)
4265 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
4266 else if (NumSignBits > RegSize-8)
4267 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
4268 else if (NumZeroBits >= RegSize-9)
4269 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
4270 else if (NumSignBits > RegSize-16)
4271 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
4272 else if (NumZeroBits >= RegSize-17)
4273 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4274 else if (NumSignBits > RegSize-32)
4275 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
4276 else if (NumZeroBits >= RegSize-33)
4277 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4278
4279 if (FromVT != MVT::Other) {
4280 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
4281 RegisterVT, P, DAG.getValueType(FromVT));
4282
4283 }
4284 }
4285 }
4286
4287 Parts[i] = P;
4288 }
4289
4290 Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT,
4291 ValueVT);
4292 Part += NumRegs;
4293 Parts.clear();
4294 }
4295
4296 return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4297 &Values[0], ValueVTs.size());
4298}
4299
4300/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4301/// specified value into the registers specified by this object. This uses
4302/// Chain/Flag as the input and updates them for the output Chain/Flag.
4303/// If the Flag pointer is NULL, no flag is used.
4304void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
4305 SDValue &Chain, SDValue *Flag) const {
4306 // Get the list of the values's legal parts.
4307 unsigned NumRegs = Regs.size();
4308 SmallVector<SDValue, 8> Parts(NumRegs);
4309 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4310 MVT ValueVT = ValueVTs[Value];
4311 unsigned NumParts = TLI->getNumRegisters(ValueVT);
4312 MVT RegisterVT = RegVTs[Value];
4313
4314 getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value),
4315 &Parts[Part], NumParts, RegisterVT);
4316 Part += NumParts;
4317 }
4318
4319 // Copy the parts into the registers.
4320 SmallVector<SDValue, 8> Chains(NumRegs);
4321 for (unsigned i = 0; i != NumRegs; ++i) {
4322 SDValue Part;
4323 if (Flag == 0)
4324 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
4325 else {
4326 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
4327 *Flag = Part.getValue(1);
4328 }
4329 Chains[i] = Part.getValue(0);
4330 }
4331
4332 if (NumRegs == 1 || Flag)
4333 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4334 // flagged to it. That is the CopyToReg nodes and the user are considered
4335 // a single scheduling unit. If we create a TokenFactor and return it as
4336 // chain, then the TokenFactor is both a predecessor (operand) of the
4337 // user as well as a successor (the TF operands are flagged to the user).
4338 // c1, f1 = CopyToReg
4339 // c2, f2 = CopyToReg
4340 // c3 = TokenFactor c1, c2
4341 // ...
4342 // = op c3, ..., f2
4343 Chain = Chains[NumRegs-1];
4344 else
4345 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4346}
4347
4348/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4349/// operand list. This adds the code marker and includes the number of
4350/// values added into it.
4351void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
4352 std::vector<SDValue> &Ops) const {
4353 MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4354 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
4355 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4356 unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
4357 MVT RegisterVT = RegVTs[Value];
4358 for (unsigned i = 0; i != NumRegs; ++i)
4359 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4360 }
4361}
4362
4363/// isAllocatableRegister - If the specified register is safe to allocate,
4364/// i.e. it isn't a stack pointer or some other special register, return the
4365/// register class for the register. Otherwise, return null.
4366static const TargetRegisterClass *
4367isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4368 const TargetLowering &TLI,
4369 const TargetRegisterInfo *TRI) {
4370 MVT FoundVT = MVT::Other;
4371 const TargetRegisterClass *FoundRC = 0;
4372 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4373 E = TRI->regclass_end(); RCI != E; ++RCI) {
4374 MVT ThisVT = MVT::Other;
4375
4376 const TargetRegisterClass *RC = *RCI;
4377 // If none of the the value types for this register class are valid, we
4378 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4379 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4380 I != E; ++I) {
4381 if (TLI.isTypeLegal(*I)) {
4382 // If we have already found this register in a different register class,
4383 // choose the one with the largest VT specified. For example, on
4384 // PowerPC, we favor f64 register classes over f32.
4385 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4386 ThisVT = *I;
4387 break;
4388 }
4389 }
4390 }
4391
4392 if (ThisVT == MVT::Other) continue;
4393
4394 // NOTE: This isn't ideal. In particular, this might allocate the
4395 // frame pointer in functions that need it (due to them not being taken
4396 // out of allocation, because a variable sized allocation hasn't been seen
4397 // yet). This is a slight code pessimization, but should still work.
4398 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4399 E = RC->allocation_order_end(MF); I != E; ++I)
4400 if (*I == Reg) {
4401 // We found a matching register class. Keep looking at others in case
4402 // we find one with larger registers that this physreg is also in.
4403 FoundRC = RC;
4404 FoundVT = ThisVT;
4405 break;
4406 }
4407 }
4408 return FoundRC;
4409}
4410
4411
4412namespace llvm {
4413/// AsmOperandInfo - This contains information for each constraint that we are
4414/// lowering.
Daniel Dunbarc0c3b9a2008-09-10 04:16:29 +00004415struct VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4416 public TargetLowering::AsmOperandInfo {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004417 /// CallOperand - If this is the result output operand or a clobber
4418 /// this is null, otherwise it is the incoming operand to the CallInst.
4419 /// This gets modified as the asm is processed.
4420 SDValue CallOperand;
4421
4422 /// AssignedRegs - If this is a register or register class operand, this
4423 /// contains the set of register corresponding to the operand.
4424 RegsForValue AssignedRegs;
4425
4426 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4427 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4428 }
4429
4430 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4431 /// busy in OutputRegs/InputRegs.
4432 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4433 std::set<unsigned> &OutputRegs,
4434 std::set<unsigned> &InputRegs,
4435 const TargetRegisterInfo &TRI) const {
4436 if (isOutReg) {
4437 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4438 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4439 }
4440 if (isInReg) {
4441 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4442 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4443 }
4444 }
4445
4446private:
4447 /// MarkRegAndAliases - Mark the specified register and all aliases in the
4448 /// specified set.
4449 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4450 const TargetRegisterInfo &TRI) {
4451 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4452 Regs.insert(Reg);
4453 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4454 for (; *Aliases; ++Aliases)
4455 Regs.insert(*Aliases);
4456 }
4457};
4458} // end llvm namespace.
4459
4460
4461/// GetRegistersForValue - Assign registers (virtual or physical) for the
4462/// specified operand. We prefer to assign virtual registers, to allow the
4463/// register allocator handle the assignment process. However, if the asm uses
4464/// features that we can't model on machineinstrs, we have SDISel do the
4465/// allocation. This produces generally horrible, but correct, code.
4466///
4467/// OpInfo describes the operand.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004468/// Input and OutputRegs are the set of already allocated physical registers.
4469///
4470void SelectionDAGLowering::
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004471GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004472 std::set<unsigned> &OutputRegs,
4473 std::set<unsigned> &InputRegs) {
4474 // Compute whether this value requires an input register, an output register,
4475 // or both.
4476 bool isOutReg = false;
4477 bool isInReg = false;
4478 switch (OpInfo.Type) {
4479 case InlineAsm::isOutput:
4480 isOutReg = true;
4481
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004482 // If there is an input constraint that matches this, we need to reserve
4483 // the input register so no other inputs allocate to it.
4484 isInReg = OpInfo.hasMatchingInput;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004485 break;
4486 case InlineAsm::isInput:
4487 isInReg = true;
4488 isOutReg = false;
4489 break;
4490 case InlineAsm::isClobber:
4491 isOutReg = true;
4492 isInReg = true;
4493 break;
4494 }
4495
4496
4497 MachineFunction &MF = DAG.getMachineFunction();
4498 SmallVector<unsigned, 4> Regs;
4499
4500 // If this is a constraint for a single physreg, or a constraint for a
4501 // register class, find it.
4502 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4503 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4504 OpInfo.ConstraintVT);
4505
4506 unsigned NumRegs = 1;
4507 if (OpInfo.ConstraintVT != MVT::Other)
4508 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
4509 MVT RegVT;
4510 MVT ValueVT = OpInfo.ConstraintVT;
4511
4512
4513 // If this is a constraint for a specific physical register, like {r17},
4514 // assign it now.
4515 if (PhysReg.first) {
4516 if (OpInfo.ConstraintVT == MVT::Other)
4517 ValueVT = *PhysReg.second->vt_begin();
4518
4519 // Get the actual register value type. This is important, because the user
4520 // may have asked for (e.g.) the AX register in i32 type. We need to
4521 // remember that AX is actually i16 to get the right extension.
4522 RegVT = *PhysReg.second->vt_begin();
4523
4524 // This is a explicit reference to a physical register.
4525 Regs.push_back(PhysReg.first);
4526
4527 // If this is an expanded reference, add the rest of the regs to Regs.
4528 if (NumRegs != 1) {
4529 TargetRegisterClass::iterator I = PhysReg.second->begin();
4530 for (; *I != PhysReg.first; ++I)
4531 assert(I != PhysReg.second->end() && "Didn't find reg!");
4532
4533 // Already added the first reg.
4534 --NumRegs; ++I;
4535 for (; NumRegs; --NumRegs, ++I) {
4536 assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4537 Regs.push_back(*I);
4538 }
4539 }
4540 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4541 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4542 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4543 return;
4544 }
4545
4546 // Otherwise, if this was a reference to an LLVM register class, create vregs
4547 // for this reference.
4548 std::vector<unsigned> RegClassRegs;
4549 const TargetRegisterClass *RC = PhysReg.second;
4550 if (RC) {
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004551 // If this is a tied register, our regalloc doesn't know how to maintain
4552 // the constraint. If it isn't, go ahead and create vreg
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004553 // and let the regalloc do the right thing.
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004554 if (!OpInfo.hasMatchingInput) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004555 RegVT = *PhysReg.second->vt_begin();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004556 if (OpInfo.ConstraintVT == MVT::Other)
4557 ValueVT = RegVT;
4558
4559 // Create the appropriate number of virtual registers.
4560 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4561 for (; NumRegs; --NumRegs)
4562 Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4563
4564 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4565 return;
4566 }
4567
4568 // Otherwise, we can't allocate it. Let the code below figure out how to
4569 // maintain these constraints.
4570 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4571
4572 } else {
4573 // This is a reference to a register class that doesn't directly correspond
4574 // to an LLVM register class. Allocate NumRegs consecutive, available,
4575 // registers from the class.
4576 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4577 OpInfo.ConstraintVT);
4578 }
4579
4580 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4581 unsigned NumAllocated = 0;
4582 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4583 unsigned Reg = RegClassRegs[i];
4584 // See if this register is available.
4585 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
4586 (isInReg && InputRegs.count(Reg))) { // Already used.
4587 // Make sure we find consecutive registers.
4588 NumAllocated = 0;
4589 continue;
4590 }
4591
4592 // Check to see if this register is allocatable (i.e. don't give out the
4593 // stack pointer).
4594 if (RC == 0) {
4595 RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4596 if (!RC) { // Couldn't allocate this register.
4597 // Reset NumAllocated to make sure we return consecutive registers.
4598 NumAllocated = 0;
4599 continue;
4600 }
4601 }
4602
4603 // Okay, this register is good, we can use it.
4604 ++NumAllocated;
4605
4606 // If we allocated enough consecutive registers, succeed.
4607 if (NumAllocated == NumRegs) {
4608 unsigned RegStart = (i-NumAllocated)+1;
4609 unsigned RegEnd = i+1;
4610 // Mark all of the allocated registers used.
4611 for (unsigned i = RegStart; i != RegEnd; ++i)
4612 Regs.push_back(RegClassRegs[i]);
4613
4614 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4615 OpInfo.ConstraintVT);
4616 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4617 return;
4618 }
4619 }
4620
4621 // Otherwise, we couldn't allocate enough registers for this.
4622}
4623
Evan Chengda43bcf2008-09-24 00:05:32 +00004624/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
4625/// processed uses a memory 'm' constraint.
4626static bool
4627hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
4628 TargetLowering &TLI) {
4629 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
4630 InlineAsm::ConstraintInfo &CI = CInfos[i];
4631 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
4632 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
4633 if (CType == TargetLowering::C_Memory)
4634 return true;
4635 }
4636 }
4637
4638 return false;
4639}
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004640
4641/// visitInlineAsm - Handle a call to an InlineAsm object.
4642///
4643void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4644 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4645
4646 /// ConstraintOperands - Information about all of the constraints.
4647 std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4648
4649 SDValue Chain = getRoot();
4650 SDValue Flag;
4651
4652 std::set<unsigned> OutputRegs, InputRegs;
4653
4654 // Do a prepass over the constraints, canonicalizing them, and building up the
4655 // ConstraintOperands list.
4656 std::vector<InlineAsm::ConstraintInfo>
4657 ConstraintInfos = IA->ParseConstraints();
4658
Evan Chengda43bcf2008-09-24 00:05:32 +00004659 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004660
4661 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4662 unsigned ResNo = 0; // ResNo - The result number of the next output.
4663 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4664 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4665 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4666
4667 MVT OpVT = MVT::Other;
4668
4669 // Compute the value type for each operand.
4670 switch (OpInfo.Type) {
4671 case InlineAsm::isOutput:
4672 // Indirect outputs just consume an argument.
4673 if (OpInfo.isIndirect) {
4674 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4675 break;
4676 }
4677 // The return value of the call is this value. As such, there is no
4678 // corresponding argument.
4679 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4680 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4681 OpVT = TLI.getValueType(STy->getElementType(ResNo));
4682 } else {
4683 assert(ResNo == 0 && "Asm only has one result!");
4684 OpVT = TLI.getValueType(CS.getType());
4685 }
4686 ++ResNo;
4687 break;
4688 case InlineAsm::isInput:
4689 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4690 break;
4691 case InlineAsm::isClobber:
4692 // Nothing to do.
4693 break;
4694 }
4695
4696 // If this is an input or an indirect output, process the call argument.
4697 // BasicBlocks are labels, currently appearing only in asm's.
4698 if (OpInfo.CallOperandVal) {
4699 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4700 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4701 else {
4702 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4703 const Type *OpTy = OpInfo.CallOperandVal->getType();
4704 // If this is an indirect operand, the operand is a pointer to the
4705 // accessed type.
4706 if (OpInfo.isIndirect)
4707 OpTy = cast<PointerType>(OpTy)->getElementType();
4708
4709 // If OpTy is not a single value, it may be a struct/union that we
4710 // can tile with integers.
4711 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4712 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4713 switch (BitSize) {
4714 default: break;
4715 case 1:
4716 case 8:
4717 case 16:
4718 case 32:
4719 case 64:
4720 OpTy = IntegerType::get(BitSize);
4721 break;
4722 }
4723 }
4724
4725 OpVT = TLI.getValueType(OpTy, true);
4726 }
4727 }
4728
4729 OpInfo.ConstraintVT = OpVT;
4730
4731 // Compute the constraint code and ConstraintType to use.
Evan Chengda43bcf2008-09-24 00:05:32 +00004732 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004733
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004734 // If this is a memory input, and if the operand is not indirect, do what we
4735 // need to to provide an address for the memory input.
4736 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4737 !OpInfo.isIndirect) {
4738 assert(OpInfo.Type == InlineAsm::isInput &&
4739 "Can only indirectify direct input operands!");
4740
4741 // Memory operands really want the address of the value. If we don't have
4742 // an indirect input, put it in the constpool if we can, otherwise spill
4743 // it to a stack slot.
4744
4745 // If the operand is a float, integer, or vector constant, spill to a
4746 // constant pool entry to get its address.
4747 Value *OpVal = OpInfo.CallOperandVal;
4748 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4749 isa<ConstantVector>(OpVal)) {
4750 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4751 TLI.getPointerTy());
4752 } else {
4753 // Otherwise, create a stack slot and emit a store to it before the
4754 // asm.
4755 const Type *Ty = OpVal->getType();
4756 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4757 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4758 MachineFunction &MF = DAG.getMachineFunction();
4759 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4760 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4761 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4762 OpInfo.CallOperand = StackSlot;
4763 }
4764
4765 // There is no longer a Value* corresponding to this operand.
4766 OpInfo.CallOperandVal = 0;
4767 // It is now an indirect operand.
4768 OpInfo.isIndirect = true;
4769 }
4770
4771 // If this constraint is for a specific register, allocate it before
4772 // anything else.
4773 if (OpInfo.ConstraintType == TargetLowering::C_Register)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004774 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004775 }
4776 ConstraintInfos.clear();
4777
4778
4779 // Second pass - Loop over all of the operands, assigning virtual or physregs
4780 // to registerclass operands.
4781 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4782 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4783
4784 // C_Register operands have already been allocated, Other/Memory don't need
4785 // to be.
4786 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004787 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004788 }
4789
4790 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4791 std::vector<SDValue> AsmNodeOperands;
4792 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
4793 AsmNodeOperands.push_back(
Bill Wendling056292f2008-09-16 21:48:12 +00004794 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004795
4796
4797 // Loop over all of the inputs, copying the operand values into the
4798 // appropriate registers and processing the output regs.
4799 RegsForValue RetValRegs;
4800
4801 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4802 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4803
4804 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4805 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4806
4807 switch (OpInfo.Type) {
4808 case InlineAsm::isOutput: {
4809 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4810 OpInfo.ConstraintType != TargetLowering::C_Register) {
4811 // Memory output, or 'other' output (e.g. 'X' constraint).
4812 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4813
4814 // Add information to the INLINEASM node to know about this output.
Dale Johannesen86b49f82008-09-24 01:07:17 +00004815 unsigned ResOpType = 4/*MEM*/ | (1<<3);
4816 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004817 TLI.getPointerTy()));
4818 AsmNodeOperands.push_back(OpInfo.CallOperand);
4819 break;
4820 }
4821
4822 // Otherwise, this is a register or register class output.
4823
4824 // Copy the output from the appropriate register. Find a register that
4825 // we can use.
4826 if (OpInfo.AssignedRegs.Regs.empty()) {
4827 cerr << "Couldn't allocate output reg for constraint '"
4828 << OpInfo.ConstraintCode << "'!\n";
4829 exit(1);
4830 }
4831
4832 // If this is an indirect operand, store through the pointer after the
4833 // asm.
4834 if (OpInfo.isIndirect) {
4835 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4836 OpInfo.CallOperandVal));
4837 } else {
4838 // This is the result value of the call.
4839 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4840 // Concatenate this output onto the outputs list.
4841 RetValRegs.append(OpInfo.AssignedRegs);
4842 }
4843
4844 // Add information to the INLINEASM node to know that this register is
4845 // set.
Dale Johannesen913d3df2008-09-12 17:49:03 +00004846 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
4847 6 /* EARLYCLOBBER REGDEF */ :
4848 2 /* REGDEF */ ,
4849 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004850 break;
4851 }
4852 case InlineAsm::isInput: {
4853 SDValue InOperandVal = OpInfo.CallOperand;
4854
4855 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
4856 // If this is required to match an output register we have already set,
4857 // just use its register.
4858 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4859
4860 // Scan until we find the definition we already emitted of this operand.
4861 // When we find it, create a RegsForValue operand.
4862 unsigned CurOp = 2; // The first operand.
4863 for (; OperandNo; --OperandNo) {
4864 // Advance to the next operand.
4865 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00004866 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004867 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
Dale Johannesen913d3df2008-09-12 17:49:03 +00004868 (NumOps & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
Dale Johannesen86b49f82008-09-24 01:07:17 +00004869 (NumOps & 7) == 4 /*MEM*/) &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004870 "Skipped past definitions?");
4871 CurOp += (NumOps>>3)+1;
4872 }
4873
4874 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00004875 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Dale Johannesen913d3df2008-09-12 17:49:03 +00004876 if ((NumOps & 7) == 2 /*REGDEF*/
4877 || (NumOps & 7) == 6 /* EARLYCLOBBER REGDEF */) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004878 // Add NumOps>>3 registers to MatchedRegs.
4879 RegsForValue MatchedRegs;
4880 MatchedRegs.TLI = &TLI;
4881 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4882 MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4883 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4884 unsigned Reg =
4885 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4886 MatchedRegs.Regs.push_back(Reg);
4887 }
4888
4889 // Use the produced MatchedRegs object to
4890 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
Dale Johannesen86b49f82008-09-24 01:07:17 +00004891 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004892 break;
4893 } else {
Dale Johannesen86b49f82008-09-24 01:07:17 +00004894 assert(((NumOps & 7) == 4) && "Unknown matching constraint!");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004895 assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4896 // Add information to the INLINEASM node to know about this input.
Dale Johannesen91aac102008-09-17 21:13:11 +00004897 AsmNodeOperands.push_back(DAG.getTargetConstant(NumOps,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004898 TLI.getPointerTy()));
4899 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4900 break;
4901 }
4902 }
4903
4904 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4905 assert(!OpInfo.isIndirect &&
4906 "Don't know how to handle indirect other inputs yet!");
4907
4908 std::vector<SDValue> Ops;
4909 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
Evan Chengda43bcf2008-09-24 00:05:32 +00004910 hasMemory, Ops, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004911 if (Ops.empty()) {
4912 cerr << "Invalid operand for inline asm constraint '"
4913 << OpInfo.ConstraintCode << "'!\n";
4914 exit(1);
4915 }
4916
4917 // Add information to the INLINEASM node to know about this input.
4918 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4919 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4920 TLI.getPointerTy()));
4921 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4922 break;
4923 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4924 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4925 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4926 "Memory operands expect pointer values");
4927
4928 // Add information to the INLINEASM node to know about this input.
Dale Johannesen86b49f82008-09-24 01:07:17 +00004929 unsigned ResOpType = 4/*MEM*/ | (1<<3);
4930 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004931 TLI.getPointerTy()));
4932 AsmNodeOperands.push_back(InOperandVal);
4933 break;
4934 }
4935
4936 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4937 OpInfo.ConstraintType == TargetLowering::C_Register) &&
4938 "Unknown constraint type!");
4939 assert(!OpInfo.isIndirect &&
4940 "Don't know how to handle indirect register inputs yet!");
4941
4942 // Copy the input into the appropriate registers.
4943 assert(!OpInfo.AssignedRegs.Regs.empty() &&
4944 "Couldn't allocate input reg!");
4945
4946 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4947
Dale Johannesen86b49f82008-09-24 01:07:17 +00004948 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/,
4949 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004950 break;
4951 }
4952 case InlineAsm::isClobber: {
4953 // Add the clobbered value to the operand list, so that the register
4954 // allocator is aware that the physreg got clobbered.
4955 if (!OpInfo.AssignedRegs.Regs.empty())
Dale Johannesen91aac102008-09-17 21:13:11 +00004956 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
4957 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004958 break;
4959 }
4960 }
4961 }
4962
4963 // Finish up input operands.
4964 AsmNodeOperands[0] = Chain;
4965 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
4966
4967 Chain = DAG.getNode(ISD::INLINEASM,
4968 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4969 &AsmNodeOperands[0], AsmNodeOperands.size());
4970 Flag = Chain.getValue(1);
4971
4972 // If this asm returns a register value, copy the result from that register
4973 // and set it as the value of the call.
4974 if (!RetValRegs.Regs.empty()) {
4975 SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4976
4977 // If any of the results of the inline asm is a vector, it may have the
4978 // wrong width/num elts. This can happen for register classes that can
4979 // contain multiple different value types. The preg or vreg allocated may
4980 // not have the same VT as was expected. Convert it to the right type with
4981 // bit_convert.
4982 if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4983 for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4984 if (Val.getNode()->getValueType(i).isVector())
4985 Val = DAG.getNode(ISD::BIT_CONVERT,
4986 TLI.getValueType(ResSTy->getElementType(i)), Val);
4987 }
4988 } else {
4989 if (Val.getValueType().isVector())
4990 Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4991 Val);
4992 }
4993
4994 setValue(CS.getInstruction(), Val);
4995 }
4996
4997 std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4998
4999 // Process indirect outputs, first output all of the flagged copies out of
5000 // physregs.
5001 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5002 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5003 Value *Ptr = IndirectStoresToEmit[i].second;
5004 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
5005 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5006 }
5007
5008 // Emit the non-flagged stores from the physregs.
5009 SmallVector<SDValue, 8> OutChains;
5010 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
5011 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
5012 getValue(StoresToEmit[i].second),
5013 StoresToEmit[i].second, 0));
5014 if (!OutChains.empty())
5015 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5016 &OutChains[0], OutChains.size());
5017 DAG.setRoot(Chain);
5018}
5019
5020
5021void SelectionDAGLowering::visitMalloc(MallocInst &I) {
5022 SDValue Src = getValue(I.getOperand(0));
5023
5024 MVT IntPtr = TLI.getPointerTy();
5025
5026 if (IntPtr.bitsLT(Src.getValueType()))
5027 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
5028 else if (IntPtr.bitsGT(Src.getValueType()))
5029 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
5030
5031 // Scale the source by the type size.
5032 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
5033 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
5034 Src, DAG.getIntPtrConstant(ElementSize));
5035
5036 TargetLowering::ArgListTy Args;
5037 TargetLowering::ArgListEntry Entry;
5038 Entry.Node = Src;
5039 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5040 Args.push_back(Entry);
5041
5042 std::pair<SDValue,SDValue> Result =
5043 TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
Bill Wendling056292f2008-09-16 21:48:12 +00005044 PerformTailCallOpt, DAG.getExternalSymbol("malloc", IntPtr),
Dan Gohman1937e2f2008-09-16 01:42:28 +00005045 Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005046 setValue(&I, Result.first); // Pointers always fit in registers
5047 DAG.setRoot(Result.second);
5048}
5049
5050void SelectionDAGLowering::visitFree(FreeInst &I) {
5051 TargetLowering::ArgListTy Args;
5052 TargetLowering::ArgListEntry Entry;
5053 Entry.Node = getValue(I.getOperand(0));
5054 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5055 Args.push_back(Entry);
5056 MVT IntPtr = TLI.getPointerTy();
5057 std::pair<SDValue,SDValue> Result =
5058 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
Dan Gohman1937e2f2008-09-16 01:42:28 +00005059 CallingConv::C, PerformTailCallOpt,
Bill Wendling056292f2008-09-16 21:48:12 +00005060 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005061 DAG.setRoot(Result.second);
5062}
5063
5064void SelectionDAGLowering::visitVAStart(CallInst &I) {
5065 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
5066 getValue(I.getOperand(1)),
5067 DAG.getSrcValue(I.getOperand(1))));
5068}
5069
5070void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
5071 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
5072 getValue(I.getOperand(0)),
5073 DAG.getSrcValue(I.getOperand(0)));
5074 setValue(&I, V);
5075 DAG.setRoot(V.getValue(1));
5076}
5077
5078void SelectionDAGLowering::visitVAEnd(CallInst &I) {
5079 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
5080 getValue(I.getOperand(1)),
5081 DAG.getSrcValue(I.getOperand(1))));
5082}
5083
5084void SelectionDAGLowering::visitVACopy(CallInst &I) {
5085 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
5086 getValue(I.getOperand(1)),
5087 getValue(I.getOperand(2)),
5088 DAG.getSrcValue(I.getOperand(1)),
5089 DAG.getSrcValue(I.getOperand(2))));
5090}
5091
5092/// TargetLowering::LowerArguments - This is the default LowerArguments
5093/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
5094/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
5095/// integrated into SDISel.
5096void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
5097 SmallVectorImpl<SDValue> &ArgValues) {
5098 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
5099 SmallVector<SDValue, 3+16> Ops;
5100 Ops.push_back(DAG.getRoot());
5101 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
5102 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
5103
5104 // Add one result value for each formal argument.
5105 SmallVector<MVT, 16> RetVals;
5106 unsigned j = 1;
5107 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5108 I != E; ++I, ++j) {
5109 SmallVector<MVT, 4> ValueVTs;
5110 ComputeValueVTs(*this, I->getType(), ValueVTs);
5111 for (unsigned Value = 0, NumValues = ValueVTs.size();
5112 Value != NumValues; ++Value) {
5113 MVT VT = ValueVTs[Value];
5114 const Type *ArgTy = VT.getTypeForMVT();
5115 ISD::ArgFlagsTy Flags;
5116 unsigned OriginalAlignment =
5117 getTargetData()->getABITypeAlignment(ArgTy);
5118
5119 if (F.paramHasAttr(j, ParamAttr::ZExt))
5120 Flags.setZExt();
5121 if (F.paramHasAttr(j, ParamAttr::SExt))
5122 Flags.setSExt();
5123 if (F.paramHasAttr(j, ParamAttr::InReg))
5124 Flags.setInReg();
5125 if (F.paramHasAttr(j, ParamAttr::StructRet))
5126 Flags.setSRet();
5127 if (F.paramHasAttr(j, ParamAttr::ByVal)) {
5128 Flags.setByVal();
5129 const PointerType *Ty = cast<PointerType>(I->getType());
5130 const Type *ElementTy = Ty->getElementType();
5131 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5132 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
5133 // For ByVal, alignment should be passed from FE. BE will guess if
5134 // this info is not there but there are cases it cannot get right.
5135 if (F.getParamAlignment(j))
5136 FrameAlign = F.getParamAlignment(j);
5137 Flags.setByValAlign(FrameAlign);
5138 Flags.setByValSize(FrameSize);
5139 }
5140 if (F.paramHasAttr(j, ParamAttr::Nest))
5141 Flags.setNest();
5142 Flags.setOrigAlign(OriginalAlignment);
5143
5144 MVT RegisterVT = getRegisterType(VT);
5145 unsigned NumRegs = getNumRegisters(VT);
5146 for (unsigned i = 0; i != NumRegs; ++i) {
5147 RetVals.push_back(RegisterVT);
5148 ISD::ArgFlagsTy MyFlags = Flags;
5149 if (NumRegs > 1 && i == 0)
5150 MyFlags.setSplit();
5151 // if it isn't first piece, alignment must be 1
5152 else if (i > 0)
5153 MyFlags.setOrigAlign(1);
5154 Ops.push_back(DAG.getArgFlags(MyFlags));
5155 }
5156 }
5157 }
5158
5159 RetVals.push_back(MVT::Other);
5160
5161 // Create the node.
5162 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
5163 DAG.getVTList(&RetVals[0], RetVals.size()),
5164 &Ops[0], Ops.size()).getNode();
5165
5166 // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
5167 // allows exposing the loads that may be part of the argument access to the
5168 // first DAGCombiner pass.
5169 SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
5170
5171 // The number of results should match up, except that the lowered one may have
5172 // an extra flag result.
5173 assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
5174 (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
5175 TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
5176 && "Lowering produced unexpected number of results!");
5177
5178 // The FORMAL_ARGUMENTS node itself is likely no longer needed.
5179 if (Result != TmpRes.getNode() && Result->use_empty()) {
5180 HandleSDNode Dummy(DAG.getRoot());
5181 DAG.RemoveDeadNode(Result);
5182 }
5183
5184 Result = TmpRes.getNode();
5185
5186 unsigned NumArgRegs = Result->getNumValues() - 1;
5187 DAG.setRoot(SDValue(Result, NumArgRegs));
5188
5189 // Set up the return result vector.
5190 unsigned i = 0;
5191 unsigned Idx = 1;
5192 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5193 ++I, ++Idx) {
5194 SmallVector<MVT, 4> ValueVTs;
5195 ComputeValueVTs(*this, I->getType(), ValueVTs);
5196 for (unsigned Value = 0, NumValues = ValueVTs.size();
5197 Value != NumValues; ++Value) {
5198 MVT VT = ValueVTs[Value];
5199 MVT PartVT = getRegisterType(VT);
5200
5201 unsigned NumParts = getNumRegisters(VT);
5202 SmallVector<SDValue, 4> Parts(NumParts);
5203 for (unsigned j = 0; j != NumParts; ++j)
5204 Parts[j] = SDValue(Result, i++);
5205
5206 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5207 if (F.paramHasAttr(Idx, ParamAttr::SExt))
5208 AssertOp = ISD::AssertSext;
5209 else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
5210 AssertOp = ISD::AssertZext;
5211
5212 ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
5213 AssertOp));
5214 }
5215 }
5216 assert(i == NumArgRegs && "Argument register count mismatch!");
5217}
5218
5219
5220/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5221/// implementation, which just inserts an ISD::CALL node, which is later custom
5222/// lowered by the target to something concrete. FIXME: When all targets are
5223/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
5224std::pair<SDValue, SDValue>
5225TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5226 bool RetSExt, bool RetZExt, bool isVarArg,
5227 unsigned CallingConv, bool isTailCall,
5228 SDValue Callee,
5229 ArgListTy &Args, SelectionDAG &DAG) {
Dan Gohman1937e2f2008-09-16 01:42:28 +00005230 assert((!isTailCall || PerformTailCallOpt) &&
5231 "isTailCall set when tail-call optimizations are disabled!");
5232
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005233 SmallVector<SDValue, 32> Ops;
5234 Ops.push_back(Chain); // Op#0 - Chain
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005235 Ops.push_back(Callee);
5236
5237 // Handle all of the outgoing arguments.
5238 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5239 SmallVector<MVT, 4> ValueVTs;
5240 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5241 for (unsigned Value = 0, NumValues = ValueVTs.size();
5242 Value != NumValues; ++Value) {
5243 MVT VT = ValueVTs[Value];
5244 const Type *ArgTy = VT.getTypeForMVT();
5245 SDValue Op = SDValue(Args[i].Node.getNode(), Args[i].Node.getResNo() + Value);
5246 ISD::ArgFlagsTy Flags;
5247 unsigned OriginalAlignment =
5248 getTargetData()->getABITypeAlignment(ArgTy);
5249
5250 if (Args[i].isZExt)
5251 Flags.setZExt();
5252 if (Args[i].isSExt)
5253 Flags.setSExt();
5254 if (Args[i].isInReg)
5255 Flags.setInReg();
5256 if (Args[i].isSRet)
5257 Flags.setSRet();
5258 if (Args[i].isByVal) {
5259 Flags.setByVal();
5260 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5261 const Type *ElementTy = Ty->getElementType();
5262 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5263 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
5264 // For ByVal, alignment should come from FE. BE will guess if this
5265 // info is not there but there are cases it cannot get right.
5266 if (Args[i].Alignment)
5267 FrameAlign = Args[i].Alignment;
5268 Flags.setByValAlign(FrameAlign);
5269 Flags.setByValSize(FrameSize);
5270 }
5271 if (Args[i].isNest)
5272 Flags.setNest();
5273 Flags.setOrigAlign(OriginalAlignment);
5274
5275 MVT PartVT = getRegisterType(VT);
5276 unsigned NumParts = getNumRegisters(VT);
5277 SmallVector<SDValue, 4> Parts(NumParts);
5278 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5279
5280 if (Args[i].isSExt)
5281 ExtendKind = ISD::SIGN_EXTEND;
5282 else if (Args[i].isZExt)
5283 ExtendKind = ISD::ZERO_EXTEND;
5284
5285 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
5286
5287 for (unsigned i = 0; i != NumParts; ++i) {
5288 // if it isn't first piece, alignment must be 1
5289 ISD::ArgFlagsTy MyFlags = Flags;
5290 if (NumParts > 1 && i == 0)
5291 MyFlags.setSplit();
5292 else if (i != 0)
5293 MyFlags.setOrigAlign(1);
5294
5295 Ops.push_back(Parts[i]);
5296 Ops.push_back(DAG.getArgFlags(MyFlags));
5297 }
5298 }
5299 }
5300
5301 // Figure out the result value types. We start by making a list of
5302 // the potentially illegal return value types.
5303 SmallVector<MVT, 4> LoweredRetTys;
5304 SmallVector<MVT, 4> RetTys;
5305 ComputeValueVTs(*this, RetTy, RetTys);
5306
5307 // Then we translate that to a list of legal types.
5308 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5309 MVT VT = RetTys[I];
5310 MVT RegisterVT = getRegisterType(VT);
5311 unsigned NumRegs = getNumRegisters(VT);
5312 for (unsigned i = 0; i != NumRegs; ++i)
5313 LoweredRetTys.push_back(RegisterVT);
5314 }
5315
5316 LoweredRetTys.push_back(MVT::Other); // Always has a chain.
5317
5318 // Create the CALL node.
Dan Gohman095cc292008-09-13 01:54:27 +00005319 SDValue Res = DAG.getCall(CallingConv, isVarArg, isTailCall,
5320 DAG.getVTList(&LoweredRetTys[0],
5321 LoweredRetTys.size()),
5322 &Ops[0], Ops.size());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005323 Chain = Res.getValue(LoweredRetTys.size() - 1);
5324
5325 // Gather up the call result into a single value.
5326 if (RetTy != Type::VoidTy) {
5327 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5328
5329 if (RetSExt)
5330 AssertOp = ISD::AssertSext;
5331 else if (RetZExt)
5332 AssertOp = ISD::AssertZext;
5333
5334 SmallVector<SDValue, 4> ReturnValues;
5335 unsigned RegNo = 0;
5336 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5337 MVT VT = RetTys[I];
5338 MVT RegisterVT = getRegisterType(VT);
5339 unsigned NumRegs = getNumRegisters(VT);
5340 unsigned RegNoEnd = NumRegs + RegNo;
5341 SmallVector<SDValue, 4> Results;
5342 for (; RegNo != RegNoEnd; ++RegNo)
5343 Results.push_back(Res.getValue(RegNo));
5344 SDValue ReturnValue =
5345 getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
5346 AssertOp);
5347 ReturnValues.push_back(ReturnValue);
5348 }
5349 Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
5350 &ReturnValues[0], ReturnValues.size());
5351 }
5352
5353 return std::make_pair(Res, Chain);
5354}
5355
5356SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5357 assert(0 && "LowerOperation not implemented for this target!");
5358 abort();
5359 return SDValue();
5360}
5361
5362
5363void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5364 SDValue Op = getValue(V);
5365 assert((Op.getOpcode() != ISD::CopyFromReg ||
5366 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5367 "Copy from a reg to the same reg!");
5368 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5369
5370 RegsForValue RFV(TLI, Reg, V->getType());
5371 SDValue Chain = DAG.getEntryNode();
5372 RFV.getCopyToRegs(Op, DAG, Chain, 0);
5373 PendingExports.push_back(Chain);
5374}
5375
5376#include "llvm/CodeGen/SelectionDAGISel.h"
5377
5378void SelectionDAGISel::
5379LowerArguments(BasicBlock *LLVMBB) {
5380 // If this is the entry block, emit arguments.
5381 Function &F = *LLVMBB->getParent();
5382 SDValue OldRoot = SDL->DAG.getRoot();
5383 SmallVector<SDValue, 16> Args;
5384 TLI.LowerArguments(F, SDL->DAG, Args);
5385
5386 unsigned a = 0;
5387 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
5388 AI != E; ++AI) {
5389 SmallVector<MVT, 4> ValueVTs;
5390 ComputeValueVTs(TLI, AI->getType(), ValueVTs);
5391 unsigned NumValues = ValueVTs.size();
5392 if (!AI->use_empty()) {
5393 SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues));
5394 // If this argument is live outside of the entry block, insert a copy from
5395 // whereever we got it to the vreg that other BB's will reference it as.
5396 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI);
5397 if (VMI != FuncInfo->ValueMap.end()) {
5398 SDL->CopyValueToVirtualRegister(AI, VMI->second);
5399 }
5400 }
5401 a += NumValues;
5402 }
5403
5404 // Finally, if the target has anything special to do, allow it to do so.
5405 // FIXME: this should insert code into the DAG!
5406 EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
5407}
5408
5409/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
5410/// ensure constants are generated when needed. Remember the virtual registers
5411/// that need to be added to the Machine PHI nodes as input. We cannot just
5412/// directly add them, because expansion might result in multiple MBB's for one
5413/// BB. As such, the start of the BB might correspond to a different MBB than
5414/// the end.
5415///
5416void
5417SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5418 TerminatorInst *TI = LLVMBB->getTerminator();
5419
5420 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5421
5422 // Check successor nodes' PHI nodes that expect a constant to be available
5423 // from this block.
5424 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5425 BasicBlock *SuccBB = TI->getSuccessor(succ);
5426 if (!isa<PHINode>(SuccBB->begin())) continue;
5427 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5428
5429 // If this terminator has multiple identical successors (common for
5430 // switches), only handle each succ once.
5431 if (!SuccsHandled.insert(SuccMBB)) continue;
5432
5433 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5434 PHINode *PN;
5435
5436 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5437 // nodes and Machine PHI nodes, but the incoming operands have not been
5438 // emitted yet.
5439 for (BasicBlock::iterator I = SuccBB->begin();
5440 (PN = dyn_cast<PHINode>(I)); ++I) {
5441 // Ignore dead phi's.
5442 if (PN->use_empty()) continue;
5443
5444 unsigned Reg;
5445 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5446
5447 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5448 unsigned &RegOut = SDL->ConstantsOut[C];
5449 if (RegOut == 0) {
5450 RegOut = FuncInfo->CreateRegForValue(C);
5451 SDL->CopyValueToVirtualRegister(C, RegOut);
5452 }
5453 Reg = RegOut;
5454 } else {
5455 Reg = FuncInfo->ValueMap[PHIOp];
5456 if (Reg == 0) {
5457 assert(isa<AllocaInst>(PHIOp) &&
5458 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5459 "Didn't codegen value into a register!??");
5460 Reg = FuncInfo->CreateRegForValue(PHIOp);
5461 SDL->CopyValueToVirtualRegister(PHIOp, Reg);
5462 }
5463 }
5464
5465 // Remember that this register needs to added to the machine PHI node as
5466 // the input for this MBB.
5467 SmallVector<MVT, 4> ValueVTs;
5468 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5469 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5470 MVT VT = ValueVTs[vti];
5471 unsigned NumRegisters = TLI.getNumRegisters(VT);
5472 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5473 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5474 Reg += NumRegisters;
5475 }
5476 }
5477 }
5478 SDL->ConstantsOut.clear();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005479}
5480
Dan Gohman3df24e62008-09-03 23:12:08 +00005481/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
5482/// supports legal types, and it emits MachineInstrs directly instead of
5483/// creating SelectionDAG nodes.
5484///
5485bool
5486SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
5487 FastISel *F) {
5488 TerminatorInst *TI = LLVMBB->getTerminator();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005489
Dan Gohman3df24e62008-09-03 23:12:08 +00005490 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5491 unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size();
5492
5493 // Check successor nodes' PHI nodes that expect a constant to be available
5494 // from this block.
5495 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5496 BasicBlock *SuccBB = TI->getSuccessor(succ);
5497 if (!isa<PHINode>(SuccBB->begin())) continue;
5498 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5499
5500 // If this terminator has multiple identical successors (common for
5501 // switches), only handle each succ once.
5502 if (!SuccsHandled.insert(SuccMBB)) continue;
5503
5504 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5505 PHINode *PN;
5506
5507 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5508 // nodes and Machine PHI nodes, but the incoming operands have not been
5509 // emitted yet.
5510 for (BasicBlock::iterator I = SuccBB->begin();
5511 (PN = dyn_cast<PHINode>(I)); ++I) {
5512 // Ignore dead phi's.
5513 if (PN->use_empty()) continue;
5514
5515 // Only handle legal types. Two interesting things to note here. First,
5516 // by bailing out early, we may leave behind some dead instructions,
5517 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
5518 // own moves. Second, this check is necessary becuase FastISel doesn't
5519 // use CreateRegForValue to create registers, so it always creates
5520 // exactly one register for each non-void instruction.
5521 MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
5522 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
Dan Gohman74321ab2008-09-10 21:01:31 +00005523 // Promote MVT::i1.
5524 if (VT == MVT::i1)
5525 VT = TLI.getTypeToTransformTo(VT);
5526 else {
5527 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5528 return false;
5529 }
Dan Gohman3df24e62008-09-03 23:12:08 +00005530 }
5531
5532 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5533
5534 unsigned Reg = F->getRegForValue(PHIOp);
5535 if (Reg == 0) {
5536 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5537 return false;
5538 }
5539 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
5540 }
5541 }
5542
5543 return true;
5544}