blob: 07f4761fd5f2861b830ccdf001e4f6a6e54833d4 [file] [log] [blame]
Owen Anderson8f28c782008-10-10 08:36:25 +00001//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides the implementation of the pointer escape analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "escape-analysis"
15#include "llvm/Analysis/EscapeAnalysis.h"
16#include "llvm/Module.h"
17#include "llvm/Support/InstIterator.h"
18#include "llvm/ADT/SmallPtrSet.h"
19using namespace llvm;
20
21char EscapeAnalysis::ID = 0;
22static RegisterPass<EscapeAnalysis> X("escape-analysis",
23 "Pointer Escape Analysis", true, true);
24
25
26/// runOnFunction - Precomputation for escape analysis. This collects all know
27/// "escape points" in the def-use graph of the function. These are
28/// instructions which allow their inputs to escape from the current function.
29bool EscapeAnalysis::runOnFunction(Function& F) {
30 EscapePoints.clear();
31
32 TargetData& TD = getAnalysis<TargetData>();
33 AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
34 Module* M = F.getParent();
35
36 // Walk through all instructions in the function, identifying those that
37 // may allow their inputs to escape.
38 for(inst_iterator II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
39 Instruction* I = &*II;
40
41 // The most obvious case is stores. Any store that may write to global
42 // memory or to a function argument potentially allows its input to escape.
43 if (StoreInst* S = dyn_cast<StoreInst>(I)) {
44 const Type* StoreType = S->getOperand(0)->getType();
45 unsigned StoreSize = TD.getTypeStoreSize(StoreType);
46 Value* Pointer = S->getPointerOperand();
47
48 bool inserted = false;
49 for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
50 AI != AE; ++AI) {
51 AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, AI, ~0UL);
52 if (R != AliasAnalysis::NoAlias) {
53 EscapePoints.insert(S);
54 inserted = true;
55 break;
56 }
57 }
58
59 if (inserted)
60 continue;
61
62 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
63 GI != GE; ++GI) {
64 AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, GI, ~0UL);
65 if (R != AliasAnalysis::NoAlias) {
66 EscapePoints.insert(S);
67 break;
68 }
69 }
70
71 // Calls and invokes potentially allow their parameters to escape.
72 // FIXME: This can and should be refined. Intrinsics have known escape
73 // behavior, and alias analysis may be able to tell us more about callees.
74 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
75 EscapePoints.insert(I);
76
77 // Returns allow the return value to escape. This is mostly important
78 // for malloc to alloca promotion.
79 } else if (isa<ReturnInst>(I)) {
80 EscapePoints.insert(I);
81 }
82
83 // FIXME: Are there any other possible escape points?
84 }
85
86 return false;
87}
88
89/// escapes - Determines whether the passed allocation can escape from the
90/// current function. It does this by using a simple worklist algorithm to
91/// search for a path in the def-use graph from the allocation to an
92/// escape point.
93/// FIXME: Once we've discovered a path, it would be a good idea to memoize it,
94/// and all of its subpaths, to amortize the cost of future queries.
95bool EscapeAnalysis::escapes(AllocationInst* A) {
96 std::vector<Value*> worklist;
97 worklist.push_back(A);
98
99 SmallPtrSet<Value*, 8> visited;
100 while (!worklist.empty()) {
101 Value* curr = worklist.back();
102 worklist.pop_back();
103
104 visited.insert(curr);
105
106 if (Instruction* CurrInst = dyn_cast<Instruction>(curr))
107 if (EscapePoints.count(CurrInst))
108 return true;
109
110 for (Instruction::use_iterator UI = curr->use_begin(), UE = curr->use_end();
111 UI != UE; ++UI)
112 if (Instruction* U = dyn_cast<Instruction>(UI))
113 if (!visited.count(U))
114 if (StoreInst* S = dyn_cast<StoreInst>(U)) {
115 // We know this must be an instruction, because constant gep's would
116 // have been found to alias a global, so stores to them would have
117 // been in EscapePoints.
118 worklist.push_back(cast<Instruction>(S->getPointerOperand()));
119 } else if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
120 // Because branches on the pointer value can hide data dependencies,
121 // we need to track values that were generated by branching on the
122 // pointer (or some derived value). To do that, we push the block,
123 // whose uses will be the PHINodes that generate information based
124 // one it.
125 worklist.push_back(U->getParent());
126 } else
127 worklist.push_back(U);
128 }
129
130 return false;
131}