blob: 54cb350552d9abb6d99dafa256dcb5ff4d254632 [file] [log] [blame]
Eli Benderskya66a1852012-01-16 08:56:09 +00001//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of ELF support for the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/IntervalMap.h"
19#include "RuntimeDyldImpl.h"
20#include "llvm/Object/ObjectFile.h"
21#include "llvm/Support/ELF.h"
22#include "llvm/ADT/Triple.h"
23using namespace llvm;
24using namespace llvm::object;
25
26namespace llvm {
27
28namespace {
29
30// FIXME: this function should probably not live here...
31//
32// Returns the name and address of an unrelocated symbol in an ELF section
33void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
34 //FIXME: error checking here required to catch corrupt ELF objects...
35 error_code Err = Sym->getName(Name);
36
37 uint64_t AddrInSection;
38 Err = Sym->getAddress(AddrInSection);
39
40 SectionRef empty_section;
41 section_iterator Section(empty_section);
42 Err = Sym->getSection(Section);
43
44 StringRef SectionContents;
45 Section->getContents(SectionContents);
46
47 Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
48}
49
50}
51
52bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
53 if (!isCompatibleFormat(InputBuffer))
54 return true;
55
56 OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
57
58 Arch = Obj->getArch();
59
60 // Map address in the Object file image to function names
61 IntervalMap<uint64_t, StringRef>::Allocator A;
62 IntervalMap<uint64_t, StringRef> FuncMap(A);
63
64 // This is a bit of a hack. The ObjectFile we've just loaded reports
65 // section addresses as 0 and doesn't provide access to the section
66 // offset (from which we could calculate the address. Instead,
67 // we're storing the address when it comes up in the ST_Debug case
68 // below.
69 //
70 StringMap<uint64_t> DebugSymbolMap;
71
72 symbol_iterator SymEnd = Obj->end_symbols();
73 error_code Err;
74 for (symbol_iterator Sym = Obj->begin_symbols();
75 Sym != SymEnd; Sym.increment(Err)) {
76 SymbolRef::Type Type;
77 Sym->getType(Type);
78 if (Type == SymbolRef::ST_Function) {
79 StringRef Name;
80 uint64_t Addr;
81 getSymbolInfo(Sym, Addr, Name);
82
83 uint64_t Size;
84 Err = Sym->getSize(Size);
85
86 uint8_t *Start;
87 uint8_t *End;
88 Start = reinterpret_cast<uint8_t*>(Addr);
89 End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
90
91 extractFunction(Name, Start, End);
92 FuncMap.insert(Addr, Addr + Size - 1, Name);
93 } else if (Type == SymbolRef::ST_Debug) {
94 // This case helps us find section addresses
95 StringRef Name;
96 uint64_t Addr;
97 getSymbolInfo(Sym, Addr, Name);
98 DebugSymbolMap[Name] = Addr;
99 }
100 }
101
102 // Iterate through the relocations for this object
103 section_iterator SecEnd = Obj->end_sections();
104 for (section_iterator Sec = Obj->begin_sections();
105 Sec != SecEnd; Sec.increment(Err)) {
106 StringRef SecName;
107 uint64_t SecAddr;
108 Sec->getName(SecName);
109 // Ignore sections that aren't in our map
110 if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
111 continue;
112 }
113 SecAddr = DebugSymbolMap[SecName];
114 relocation_iterator RelEnd = Sec->end_relocations();
115 for (relocation_iterator Rel = Sec->begin_relocations();
116 Rel != RelEnd; Rel.increment(Err)) {
117 uint64_t RelOffset;
118 uint64_t RelType;
119 int64_t RelAddend;
120 SymbolRef RelSym;
121 StringRef SymName;
122 uint64_t SymAddr;
123 uint64_t SymOffset;
124
125 Rel->getAddress(RelOffset);
126 Rel->getType(RelType);
127 Rel->getAdditionalInfo(RelAddend);
128 Rel->getSymbol(RelSym);
129 RelSym.getName(SymName);
130 RelSym.getAddress(SymAddr);
131 RelSym.getFileOffset(SymOffset);
132
133 // If this relocation is inside a function, we want to store the
134 // function name and a function-relative offset
135 IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
136 = FuncMap.find(SecAddr + RelOffset);
137 if (ContainingFunc.valid()) {
138 // Re-base the relocation to make it relative to the target function
139 RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
140 Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
141 RelOffset,
142 RelType,
143 RelAddend,
144 true));
145 } else {
146 Relocations[SymName].push_back(RelocationEntry(SecName,
147 RelOffset,
148 RelType,
149 RelAddend,
150 false));
151 }
152 }
153 }
154 return false;
155}
156
157void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
158 uint8_t *Addr,
159 const RelocationEntry &RE) {
160 uint8_t *TargetAddr;
161 if (RE.IsFunctionRelative) {
162 StringMap<sys::MemoryBlock>::iterator ContainingFunc
163 = Functions.find(RE.Target);
164 assert(ContainingFunc != Functions.end()
165 && "Function for relocation not found");
166 TargetAddr = reinterpret_cast<uint8_t*>(ContainingFunc->getValue().base()) +
167 RE.Offset;
168 } else {
169 // FIXME: Get the address of the target section and add that to RE.Offset
170 assert(0 && ("Non-function relocation not implemented yet!"));
171 }
172
173 switch (RE.Type) {
174 default:
175 assert(0 && ("Relocation type not implemented yet!"));
176 break;
177 case ELF::R_X86_64_64: {
178 uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
179 *Target = Addr + RE.Addend;
180 break;
181 }
182 case ELF::R_X86_64_32:
183 case ELF::R_X86_64_32S: {
184 uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
185 // FIXME: Handle the possibility of this assertion failing
Eli Bendersky92238222012-01-16 09:31:10 +0000186 assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
Eli Benderskya66a1852012-01-16 08:56:09 +0000187 (RE.Type == ELF::R_X86_64_32S &&
Eli Bendersky92238222012-01-16 09:31:10 +0000188 (Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
Eli Benderskya66a1852012-01-16 08:56:09 +0000189 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
190 uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
191 *Target = TruncatedAddr;
192 break;
193 }
194 case ELF::R_X86_64_PC32: {
195 uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
196 uint64_t RealOffset = *Placeholder +
197 reinterpret_cast<uint64_t>(Addr) +
198 RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
199 assert((RealOffset & 0xFFFFFFFF) == RealOffset);
200 uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
201 *Placeholder = TruncOffset;
202 break;
203 }
204 }
205}
206
207void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
208 uint8_t *Addr,
209 const RelocationEntry &RE) {
210 uint8_t *TargetAddr;
211 if (RE.IsFunctionRelative) {
212 StringMap<sys::MemoryBlock>::iterator ContainingFunc
213 = Functions.find(RE.Target);
214 assert(ContainingFunc != Functions.end()
215 && "Function for relocation not found");
216 TargetAddr = reinterpret_cast<uint8_t*>(
217 ContainingFunc->getValue().base()) + RE.Offset;
218 } else {
219 // FIXME: Get the address of the target section and add that to RE.Offset
220 assert(0 && ("Non-function relocation not implemented yet!"));
221 }
222
223 switch (RE.Type) {
224 case ELF::R_386_32: {
225 uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
226 *Target = Addr + RE.Addend;
227 break;
228 }
229 case ELF::R_386_PC32: {
230 uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
231 uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
232 RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
233 *Placeholder = RealOffset;
234 break;
235 }
236 default:
237 // There are other relocation types, but it appears these are the
238 // only ones currently used by the LLVM ELF object writer
239 assert(0 && ("Relocation type not implemented yet!"));
240 break;
241 }
242}
243
244void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
245 uint8_t *Addr,
246 const RelocationEntry &RE) {
247}
248
249void RuntimeDyldELF::resolveRelocation(StringRef Name,
250 uint8_t *Addr,
251 const RelocationEntry &RE) {
252 switch (Arch) {
253 case Triple::x86_64:
254 resolveX86_64Relocation(Name, Addr, RE);
255 break;
256 case Triple::x86:
257 resolveX86Relocation(Name, Addr, RE);
258 break;
259 case Triple::arm:
260 resolveArmRelocation(Name, Addr, RE);
261 break;
262 default:
263 assert(0 && "Unsupported CPU type!");
264 break;
265 }
266}
267
268void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
269 SymbolTable[Name] = Addr;
270
271 RelocationList &Relocs = Relocations[Name];
272 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
273 RelocationEntry &RE = Relocs[i];
274 resolveRelocation(Name, Addr, RE);
275 }
276}
277
278bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
279 StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
280 return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
281}
282} // namespace llvm