blob: f7dfa4a4fe1540b286b6a6bcaa0f460a21ceddea [file] [log] [blame]
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
5.. sectionauthor:: Chris Lattner <sabre@nondot.org> and Jim Laskey <jlaskey@mac.com>
6
7.. contents::
8 :local:
9
10Introduction
11============
12
13This document is the central repository for all information pertaining to debug
14information in LLVM. It describes the :ref:`actual format that the LLVM debug
15information takes <format>`, which is useful for those interested in creating
16front-ends or dealing directly with the information. Further, this document
17provides specific examples of what debug information for C/C++ looks like.
18
19Philosophy behind LLVM debugging information
20--------------------------------------------
21
22The idea of the LLVM debugging information is to capture how the important
23pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
24Several design aspects have shaped the solution that appears here. The
25important ones are:
26
27* Debugging information should have very little impact on the rest of the
28 compiler. No transformations, analyses, or code generators should need to
29 be modified because of debugging information.
30
31* LLVM optimizations should interact in :ref:`well-defined and easily described
32 ways <intro_debugopt>` with the debugging information.
33
34* Because LLVM is designed to support arbitrary programming languages,
35 LLVM-to-LLVM tools should not need to know anything about the semantics of
36 the source-level-language.
37
38* Source-level languages are often **widely** different from one another.
39 LLVM should not put any restrictions of the flavor of the source-language,
40 and the debugging information should work with any language.
41
42* With code generator support, it should be possible to use an LLVM compiler
43 to compile a program to native machine code and standard debugging
44 formats. This allows compatibility with traditional machine-code level
45 debuggers, like GDB or DBX.
46
47The approach used by the LLVM implementation is to use a small set of
48:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
49between LLVM program objects and the source-level objects. The description of
50the source-level program is maintained in LLVM metadata in an
51:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
52currently uses working draft 7 of the `DWARF 3 standard
53<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
54
55When a program is being debugged, a debugger interacts with the user and turns
56the stored debug information into source-language specific information. As
57such, a debugger must be aware of the source-language, and is thus tied to a
58specific language or family of languages.
59
60Debug information consumers
61---------------------------
62
63The role of debug information is to provide meta information normally stripped
64away during the compilation process. This meta information provides an LLVM
65user a relationship between generated code and the original program source
66code.
67
68Currently, debug information is consumed by DwarfDebug to produce dwarf
69information used by the gdb debugger. Other targets could use the same
70information to produce stabs or other debug forms.
71
72It would also be reasonable to use debug information to feed profiling tools
73for analysis of generated code, or, tools for reconstructing the original
74source from generated code.
75
76TODO - expound a bit more.
77
78.. _intro_debugopt:
79
80Debugging optimized code
81------------------------
82
83An extremely high priority of LLVM debugging information is to make it interact
84well with optimizations and analysis. In particular, the LLVM debug
85information provides the following guarantees:
86
87* LLVM debug information **always provides information to accurately read
88 the source-level state of the program**, regardless of which LLVM
89 optimizations have been run, and without any modification to the
90 optimizations themselves. However, some optimizations may impact the
91 ability to modify the current state of the program with a debugger, such
92 as setting program variables, or calling functions that have been
93 deleted.
94
95* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
96 debugging information, allowing them to update the debugging information
97 as they perform aggressive optimizations. This means that, with effort,
98 the LLVM optimizers could optimize debug code just as well as non-debug
99 code.
100
101* LLVM debug information does not prevent optimizations from
102 happening (for example inlining, basic block reordering/merging/cleanup,
103 tail duplication, etc).
104
105* LLVM debug information is automatically optimized along with the rest of
106 the program, using existing facilities. For example, duplicate
107 information is automatically merged by the linker, and unused information
108 is automatically removed.
109
110Basically, the debug information allows you to compile a program with
111"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
112the program as it executes from a debugger. Compiling a program with
113"``-O3 -g``" gives you full debug information that is always available and
114accurate for reading (e.g., you get accurate stack traces despite tail call
115elimination and inlining), but you might lose the ability to modify the program
116and call functions where were optimized out of the program, or inlined away
117completely.
118
119:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
120optimizer's handling of debugging information. It can be run like this:
121
122.. code-block:: bash
123
124 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
125 % make TEST=dbgopt
126
127This will test impact of debugging information on optimization passes. If
128debugging information influences optimization passes then it will be reported
129as a failure. See :doc:`TestingGuide` for more information on LLVM test
130infrastructure and how to run various tests.
131
132.. _format:
133
134Debugging information format
135============================
136
137LLVM debugging information has been carefully designed to make it possible for
138the optimizer to optimize the program and debugging information without
139necessarily having to know anything about debugging information. In
140particular, the use of metadata avoids duplicated debugging information from
141the beginning, and the global dead code elimination pass automatically deletes
142debugging information for a function if it decides to delete the function.
143
144To do this, most of the debugging information (descriptors for types,
145variables, functions, source files, etc) is inserted by the language front-end
146in the form of LLVM metadata.
147
148Debug information is designed to be agnostic about the target debugger and
149debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
150pass to decode the information that represents variables, types, functions,
151namespaces, etc: this allows for arbitrary source-language semantics and
152type-systems to be used, as long as there is a module written for the target
153debugger to interpret the information.
154
155To provide basic functionality, the LLVM debugger does have to make some
156assumptions about the source-level language being debugged, though it keeps
157these to a minimum. The only common features that the LLVM debugger assumes
158exist are :ref:`source files <format_files>`, and :ref:`program objects
159<format_global_variables>`. These abstract objects are used by a debugger to
160form stack traces, show information about local variables, etc.
161
162This section of the documentation first describes the representation aspects
163common to any source-language. :ref:`ccxx_frontend` describes the data layout
164conventions used by the C and C++ front-ends.
165
166Debug information descriptors
167-----------------------------
168
169In consideration of the complexity and volume of debug information, LLVM
170provides a specification for well formed debug descriptors.
171
172Consumers of LLVM debug information expect the descriptors for program objects
173to start in a canonical format, but the descriptors can include additional
174information appended at the end that is source-language specific. All LLVM
175debugging information is versioned, allowing backwards compatibility in the
176case that the core structures need to change in some way. Also, all debugging
177information objects start with a tag to indicate what type of object it is.
178The source-language is allowed to define its own objects, by using unreserved
179tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
180(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
181
182The fields of debug descriptors used internally by LLVM are restricted to only
183the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
184``mdnode``.
185
186.. code-block:: llvm
187
188 !1 = metadata !{
189 i32, ;; A tag
190 ...
191 }
192
193<a name="LLVMDebugVersion">The first field of a descriptor is always an
194``i32`` containing a tag value identifying the content of the descriptor.
195The remaining fields are specific to the descriptor. The values of tags are
196loosely bound to the tag values of DWARF information entries. However, that
197does not restrict the use of the information supplied to DWARF targets. To
198facilitate versioning of debug information, the tag is augmented with the
199current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
200524288.)
201
202The details of the various descriptors follow.
203
204Compile unit descriptors
205^^^^^^^^^^^^^^^^^^^^^^^^
206
207.. code-block:: llvm
208
209 !0 = metadata !{
210 i32, ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
211 i32, ;; Unused field.
212 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
213 metadata, ;; Source file name
214 metadata, ;; Source file directory (includes trailing slash)
215 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
216 i1, ;; True if this is a main compile unit.
217 i1, ;; True if this is optimized.
218 metadata, ;; Flags
219 i32 ;; Runtime version
220 metadata ;; List of enums types
221 metadata ;; List of retained types
222 metadata ;; List of subprograms
223 metadata ;; List of global variables
224 }
225
226These descriptors contain a source language ID for the file (we use the DWARF
2273.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
228``DW_LANG_Cobol74``, etc), three strings describing the filename, working
229directory of the compiler, and an identifier string for the compiler that
230produced it.
231
232Compile unit descriptors provide the root context for objects declared in a
233specific compilation unit. File descriptors are defined using this context.
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000234These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
235keep track of subprograms, global variables and type information.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000236
237.. _format_files:
238
239File descriptors
240^^^^^^^^^^^^^^^^
241
242.. code-block:: llvm
243
244 !0 = metadata !{
245 i32, ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
246 metadata, ;; Source file name
247 metadata, ;; Source file directory (includes trailing slash)
248 metadata ;; Unused
249 }
250
251These descriptors contain information for a file. Global variables and top
252level functions would be defined using this context. File descriptors also
253provide context for source line correspondence.
254
255Each input file is encoded as a separate file descriptor in LLVM debugging
256information output.
257
258.. _format_global_variables:
259
260Global variable descriptors
261^^^^^^^^^^^^^^^^^^^^^^^^^^^
262
263.. code-block:: llvm
264
265 !1 = metadata !{
266 i32, ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
267 i32, ;; Unused field.
268 metadata, ;; Reference to context descriptor
269 metadata, ;; Name
270 metadata, ;; Display name (fully qualified C++ name)
271 metadata, ;; MIPS linkage name (for C++)
272 metadata, ;; Reference to file where defined
273 i32, ;; Line number where defined
274 metadata, ;; Reference to type descriptor
275 i1, ;; True if the global is local to compile unit (static)
276 i1, ;; True if the global is defined in the compile unit (not extern)
277 {}* ;; Reference to the global variable
278 }
279
Eli Bendersky00a3e5e2012-11-28 00:27:25 +0000280These descriptors provide debug information about globals variables. They
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000281provide details such as name, type and where the variable is defined. All
282global variables are collected inside the named metadata ``!llvm.dbg.cu``.
283
284.. _format_subprograms:
285
286Subprogram descriptors
287^^^^^^^^^^^^^^^^^^^^^^
288
289.. code-block:: llvm
290
291 !2 = metadata !{
292 i32, ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
293 i32, ;; Unused field.
294 metadata, ;; Reference to context descriptor
295 metadata, ;; Name
296 metadata, ;; Display name (fully qualified C++ name)
297 metadata, ;; MIPS linkage name (for C++)
298 metadata, ;; Reference to file where defined
299 i32, ;; Line number where defined
300 metadata, ;; Reference to type descriptor
301 i1, ;; True if the global is local to compile unit (static)
302 i1, ;; True if the global is defined in the compile unit (not extern)
303 i32, ;; Line number where the scope of the subprogram begins
304 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
305 i32, ;; Index into a virtual function
306 metadata, ;; indicates which base type contains the vtable pointer for the
307 ;; derived class
308 i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
309 i1, ;; isOptimized
310 Function * , ;; Pointer to LLVM function
311 metadata, ;; Lists function template parameters
312 metadata, ;; Function declaration descriptor
313 metadata ;; List of function variables
314 }
315
316These descriptors provide debug information about functions, methods and
317subprograms. They provide details such as name, return types and the source
318location where the subprogram is defined.
319
320Block descriptors
321^^^^^^^^^^^^^^^^^
322
323.. code-block:: llvm
324
325 !3 = metadata !{
326 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
327 metadata,;; Reference to context descriptor
328 i32, ;; Line number
329 i32, ;; Column number
330 metadata,;; Reference to source file
331 i32 ;; Unique ID to identify blocks from a template function
332 }
333
334This descriptor provides debug information about nested blocks within a
335subprogram. The line number and column numbers are used to dinstinguish two
336lexical blocks at same depth.
337
338.. code-block:: llvm
339
340 !3 = metadata !{
341 i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
342 metadata ;; Reference to the scope we're annotating with a file change
343 metadata,;; Reference to the file the scope is enclosed in.
344 }
345
346This descriptor provides a wrapper around a lexical scope to handle file
347changes in the middle of a lexical block.
348
349.. _format_basic_type:
350
351Basic type descriptors
352^^^^^^^^^^^^^^^^^^^^^^
353
354.. code-block:: llvm
355
356 !4 = metadata !{
357 i32, ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
358 metadata, ;; Reference to context
359 metadata, ;; Name (may be "" for anonymous types)
360 metadata, ;; Reference to file where defined (may be NULL)
361 i32, ;; Line number where defined (may be 0)
362 i64, ;; Size in bits
363 i64, ;; Alignment in bits
364 i64, ;; Offset in bits
365 i32, ;; Flags
366 i32 ;; DWARF type encoding
367 }
368
369These descriptors define primitive types used in the code. Example ``int``,
370``bool`` and ``float``. The context provides the scope of the type, which is
371usually the top level. Since basic types are not usually user defined the
372context and line number can be left as NULL and 0. The size, alignment and
373offset are expressed in bits and can be 64 bit values. The alignment is used
374to round the offset when embedded in a :ref:`composite type
375<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
376The offset is the bit offset if embedded in a :ref:`composite type
377<format_composite_type>`.
378
379The type encoding provides the details of the type. The values are typically
380one of the following:
381
382.. code-block:: llvm
383
384 DW_ATE_address = 1
385 DW_ATE_boolean = 2
386 DW_ATE_float = 4
387 DW_ATE_signed = 5
388 DW_ATE_signed_char = 6
389 DW_ATE_unsigned = 7
390 DW_ATE_unsigned_char = 8
391
392.. _format_derived_type:
393
394Derived type descriptors
395^^^^^^^^^^^^^^^^^^^^^^^^
396
397.. code-block:: llvm
398
399 !5 = metadata !{
400 i32, ;; Tag (see below)
401 metadata, ;; Reference to context
402 metadata, ;; Name (may be "" for anonymous types)
403 metadata, ;; Reference to file where defined (may be NULL)
404 i32, ;; Line number where defined (may be 0)
405 i64, ;; Size in bits
406 i64, ;; Alignment in bits
407 i64, ;; Offset in bits
408 i32, ;; Flags to encode attributes, e.g. private
409 metadata, ;; Reference to type derived from
410 metadata, ;; (optional) Name of the Objective C property associated with
David Blaikie92f09172013-01-07 06:02:07 +0000411 ;; Objective-C an ivar, or the type of which this
412 ;; pointer-to-member is pointing to members of.
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000413 metadata, ;; (optional) Name of the Objective C property getter selector.
414 metadata, ;; (optional) Name of the Objective C property setter selector.
415 i32 ;; (optional) Objective C property attributes.
416 }
417
418These descriptors are used to define types derived from other types. The value
419of the tag varies depending on the meaning. The following are possible tag
420values:
421
422.. code-block:: llvm
423
David Blaikie92f09172013-01-07 06:02:07 +0000424 DW_TAG_formal_parameter = 5
425 DW_TAG_member = 13
426 DW_TAG_pointer_type = 15
427 DW_TAG_reference_type = 16
428 DW_TAG_typedef = 22
429 DW_TAG_ptr_to_member_type = 31
430 DW_TAG_const_type = 38
431 DW_TAG_volatile_type = 53
432 DW_TAG_restrict_type = 55
Dmitri Gribenkobbef5ea2012-11-22 11:56:02 +0000433
434``DW_TAG_member`` is used to define a member of a :ref:`composite type
435<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
436of the member is the :ref:`derived type <format_derived_type>`.
437``DW_TAG_formal_parameter`` is used to define a member which is a formal
438argument of a subprogram.
439
440``DW_TAG_typedef`` is used to provide a name for the derived type.
441
442``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
443``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
444:ref:`derived type <format_derived_type>`.
445
446:ref:`Derived type <format_derived_type>` location can be determined from the
447context and line number. The size, alignment and offset are expressed in bits
448and can be 64 bit values. The alignment is used to round the offset when
449embedded in a :ref:`composite type <format_composite_type>` (example to keep
450float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
451in a :ref:`composite type <format_composite_type>`.
452
453Note that the ``void *`` type is expressed as a type derived from NULL.
454
455.. _format_composite_type:
456
457Composite type descriptors
458^^^^^^^^^^^^^^^^^^^^^^^^^^
459
460.. code-block:: llvm
461
462 !6 = metadata !{
463 i32, ;; Tag (see below)
464 metadata, ;; Reference to context
465 metadata, ;; Name (may be "" for anonymous types)
466 metadata, ;; Reference to file where defined (may be NULL)
467 i32, ;; Line number where defined (may be 0)
468 i64, ;; Size in bits
469 i64, ;; Alignment in bits
470 i64, ;; Offset in bits
471 i32, ;; Flags
472 metadata, ;; Reference to type derived from
473 metadata, ;; Reference to array of member descriptors
474 i32 ;; Runtime languages
475 }
476
477These descriptors are used to define types that are composed of 0 or more
478elements. The value of the tag varies depending on the meaning. The following
479are possible tag values:
480
481.. code-block:: llvm
482
483 DW_TAG_array_type = 1
484 DW_TAG_enumeration_type = 4
485 DW_TAG_structure_type = 19
486 DW_TAG_union_type = 23
487 DW_TAG_vector_type = 259
488 DW_TAG_subroutine_type = 21
489 DW_TAG_inheritance = 28
490
491The vector flag indicates that an array type is a native packed vector.
492
493The members of array types (tag = ``DW_TAG_array_type``) or vector types (tag =
494``DW_TAG_vector_type``) are :ref:`subrange descriptors <format_subrange>`, each
495representing the range of subscripts at that level of indexing.
496
497The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
498:ref:`enumerator descriptors <format_enumerator>`, each representing the
499definition of enumeration value for the set. All enumeration type descriptors
500are collected inside the named metadata ``!llvm.dbg.cu``.
501
502The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
503``DW_TAG_union_type``) types are any one of the :ref:`basic
504<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
505<format_composite_type>` type descriptors, each representing a field member of
506the structure or union.
507
508For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
509information about base classes, static members and member functions. If a
510member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
511of ``DW_TAG_inheritance``, then the type represents a base class. If the member
512of is a :ref:`global variable descriptor <format_global_variables>` then it
513represents a static member. And, if the member is a :ref:`subprogram
514descriptor <format_subprograms>` then it represents a member function. For
515static members and member functions, ``getName()`` returns the members link or
516the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
517
518The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
519is the return type for the subroutine. The remaining elements are the formal
520arguments to the subroutine.
521
522:ref:`Composite type <format_composite_type>` location can be determined from
523the context and line number. The size, alignment and offset are expressed in
524bits and can be 64 bit values. The alignment is used to round the offset when
525embedded in a :ref:`composite type <format_composite_type>` (as an example, to
526keep float doubles on 64 bit boundaries). The offset is the bit offset if
527embedded in a :ref:`composite type <format_composite_type>`.
528
529.. _format_subrange:
530
531Subrange descriptors
532^^^^^^^^^^^^^^^^^^^^
533
534.. code-block:: llvm
535
536 !42 = metadata !{
537 i32, ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
538 i64, ;; Low value
539 i64 ;; High value
540 }
541
542These descriptors are used to define ranges of array subscripts for an array
543:ref:`composite type <format_composite_type>`. The low value defines the lower
544bounds typically zero for C/C++. The high value is the upper bounds. Values
545are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
546the array bounds are not included in generated debugging information.
547
548.. _format_enumerator:
549
550Enumerator descriptors
551^^^^^^^^^^^^^^^^^^^^^^
552
553.. code-block:: llvm
554
555 !6 = metadata !{
556 i32, ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
557 metadata, ;; Name
558 i64 ;; Value
559 }
560
561These descriptors are used to define members of an enumeration :ref:`composite
562type <format_composite_type>`, it associates the name to the value.
563
564Local variables
565^^^^^^^^^^^^^^^
566
567.. code-block:: llvm
568
569 !7 = metadata !{
570 i32, ;; Tag (see below)
571 metadata, ;; Context
572 metadata, ;; Name
573 metadata, ;; Reference to file where defined
574 i32, ;; 24 bit - Line number where defined
575 ;; 8 bit - Argument number. 1 indicates 1st argument.
576 metadata, ;; Type descriptor
577 i32, ;; flags
578 metadata ;; (optional) Reference to inline location
579 }
580
581These descriptors are used to define variables local to a sub program. The
582value of the tag depends on the usage of the variable:
583
584.. code-block:: llvm
585
586 DW_TAG_auto_variable = 256
587 DW_TAG_arg_variable = 257
588 DW_TAG_return_variable = 258
589
590An auto variable is any variable declared in the body of the function. An
591argument variable is any variable that appears as a formal argument to the
592function. A return variable is used to track the result of a function and has
593no source correspondent.
594
595The context is either the subprogram or block where the variable is defined.
596Name the source variable name. Context and line indicate where the variable
597was defined. Type descriptor defines the declared type of the variable.
598
599.. _format_common_intrinsics:
600
601Debugger intrinsic functions
602^^^^^^^^^^^^^^^^^^^^^^^^^^^^
603
604LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
605provide debug information at various points in generated code.
606
607``llvm.dbg.declare``
608^^^^^^^^^^^^^^^^^^^^
609
610.. code-block:: llvm
611
612 void %llvm.dbg.declare(metadata, metadata)
613
614This intrinsic provides information about a local element (e.g., variable).
615The first argument is metadata holding the alloca for the variable. The second
616argument is metadata containing a description of the variable.
617
618``llvm.dbg.value``
619^^^^^^^^^^^^^^^^^^
620
621.. code-block:: llvm
622
623 void %llvm.dbg.value(metadata, i64, metadata)
624
625This intrinsic provides information when a user source variable is set to a new
626value. The first argument is the new value (wrapped as metadata). The second
627argument is the offset in the user source variable where the new value is
628written. The third argument is metadata containing a description of the user
629source variable.
630
631Object lifetimes and scoping
632============================
633
634In many languages, the local variables in functions can have their lifetimes or
635scopes limited to a subset of a function. In the C family of languages, for
636example, variables are only live (readable and writable) within the source
637block that they are defined in. In functional languages, values are only
638readable after they have been defined. Though this is a very obvious concept,
639it is non-trivial to model in LLVM, because it has no notion of scoping in this
640sense, and does not want to be tied to a language's scoping rules.
641
642In order to handle this, the LLVM debug format uses the metadata attached to
643llvm instructions to encode line number and scoping information. Consider the
644following C fragment, for example:
645
646.. code-block:: c
647
648 1. void foo() {
649 2. int X = 21;
650 3. int Y = 22;
651 4. {
652 5. int Z = 23;
653 6. Z = X;
654 7. }
655 8. X = Y;
656 9. }
657
658Compiled to LLVM, this function would be represented like this:
659
660.. code-block:: llvm
661
662 define void @foo() nounwind ssp {
663 entry:
664 %X = alloca i32, align 4 ; <i32*> [#uses=4]
665 %Y = alloca i32, align 4 ; <i32*> [#uses=4]
666 %Z = alloca i32, align 4 ; <i32*> [#uses=3]
667 %0 = bitcast i32* %X to {}* ; <{}*> [#uses=1]
668 call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
669 store i32 21, i32* %X, !dbg !8
670 %1 = bitcast i32* %Y to {}* ; <{}*> [#uses=1]
671 call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
672 store i32 22, i32* %Y, !dbg !11
673 %2 = bitcast i32* %Z to {}* ; <{}*> [#uses=1]
674 call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
675 store i32 23, i32* %Z, !dbg !15
676 %tmp = load i32* %X, !dbg !16 ; <i32> [#uses=1]
677 %tmp1 = load i32* %Y, !dbg !16 ; <i32> [#uses=1]
678 %add = add nsw i32 %tmp, %tmp1, !dbg !16 ; <i32> [#uses=1]
679 store i32 %add, i32* %Z, !dbg !16
680 %tmp2 = load i32* %Y, !dbg !17 ; <i32> [#uses=1]
681 store i32 %tmp2, i32* %X, !dbg !17
682 ret void, !dbg !18
683 }
684
685 declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
686
687 !0 = metadata !{i32 459008, metadata !1, metadata !"X",
688 metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
689 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
690 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
691 metadata !"foo", metadata !3, i32 1, metadata !4,
692 i1 false, i1 true}; [DW_TAG_subprogram ]
693 !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
694 metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
695 i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
696 !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
697 i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
698 !5 = metadata !{null}
699 !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
700 i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
701 !7 = metadata !{i32 2, i32 7, metadata !1, null}
702 !8 = metadata !{i32 2, i32 3, metadata !1, null}
703 !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
704 metadata !6}; [ DW_TAG_auto_variable ]
705 !10 = metadata !{i32 3, i32 7, metadata !1, null}
706 !11 = metadata !{i32 3, i32 3, metadata !1, null}
707 !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
708 metadata !6}; [ DW_TAG_auto_variable ]
709 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
710 !14 = metadata !{i32 5, i32 9, metadata !13, null}
711 !15 = metadata !{i32 5, i32 5, metadata !13, null}
712 !16 = metadata !{i32 6, i32 5, metadata !13, null}
713 !17 = metadata !{i32 8, i32 3, metadata !1, null}
714 !18 = metadata !{i32 9, i32 1, metadata !2, null}
715
716This example illustrates a few important details about LLVM debugging
717information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
718location information, which are attached to an instruction, are applied
719together to allow a debugger to analyze the relationship between statements,
720variable definitions, and the code used to implement the function.
721
722.. code-block:: llvm
723
724 call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7
725
726The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
727variable ``X``. The metadata ``!dbg !7`` attached to the intrinsic provides
728scope information for the variable ``X``.
729
730.. code-block:: llvm
731
732 !7 = metadata !{i32 2, i32 7, metadata !1, null}
733 !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
734 !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
735 metadata !"foo", metadata !"foo", metadata !3, i32 1,
736 metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]
737
738Here ``!7`` is metadata providing location information. It has four fields:
739line number, column number, scope, and original scope. The original scope
740represents inline location if this instruction is inlined inside a caller, and
741is null otherwise. In this example, scope is encoded by ``!1``. ``!1``
742represents a lexical block inside the scope ``!2``, where ``!2`` is a
743:ref:`subprogram descriptor <format_subprograms>`. This way the location
744information attached to the intrinsics indicates that the variable ``X`` is
745declared at line number 2 at a function level scope in function ``foo``.
746
747Now lets take another example.
748
749.. code-block:: llvm
750
751 call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14
752
753The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
754variable ``Z``. The metadata ``!dbg !14`` attached to the intrinsic provides
755scope information for the variable ``Z``.
756
757.. code-block:: llvm
758
759 !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
760 !14 = metadata !{i32 5, i32 9, metadata !13, null}
761
762Here ``!14`` indicates that ``Z`` is declared at line number 5 and
763column number 9 inside of lexical scope ``!13``. The lexical scope itself
764resides inside of lexical scope ``!1`` described above.
765
766The scope information attached with each instruction provides a straightforward
767way to find instructions covered by a scope.
768
769.. _ccxx_frontend:
770
771C/C++ front-end specific debug information
772==========================================
773
774The C and C++ front-ends represent information about the program in a format
775that is effectively identical to `DWARF 3.0
776<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
777content. This allows code generators to trivially support native debuggers by
778generating standard dwarf information, and contains enough information for
779non-dwarf targets to translate it as needed.
780
781This section describes the forms used to represent C and C++ programs. Other
782languages could pattern themselves after this (which itself is tuned to
783representing programs in the same way that DWARF 3 does), or they could choose
784to provide completely different forms if they don't fit into the DWARF model.
785As support for debugging information gets added to the various LLVM
786source-language front-ends, the information used should be documented here.
787
788The following sections provide examples of various C/C++ constructs and the
789debug information that would best describe those constructs.
790
791C/C++ source file information
792-----------------------------
793
794Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
795directory ``/Users/mine/sources``, the following code:
796
797.. code-block:: c
798
799 #include "MyHeader.h"
800
801 int main(int argc, char *argv[]) {
802 return 0;
803 }
804
805a C/C++ front-end would generate the following descriptors:
806
807.. code-block:: llvm
808
809 ...
810 ;;
811 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
812 ;;
813 !2 = metadata !{
814 i32 524305, ;; Tag
815 i32 0, ;; Unused
816 i32 4, ;; Language Id
817 metadata !"MySource.cpp",
818 metadata !"/Users/mine/sources",
819 metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
820 i1 true, ;; Main Compile Unit
821 i1 false, ;; Optimized compile unit
822 metadata !"", ;; Compiler flags
823 i32 0} ;; Runtime version
824
825 ;;
826 ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
827 ;;
828 !1 = metadata !{
829 i32 524329, ;; Tag
830 metadata !"MySource.cpp",
831 metadata !"/Users/mine/sources",
832 metadata !2 ;; Compile unit
833 }
834
835 ;;
836 ;; Define the file for the file "/Users/mine/sources/Myheader.h"
837 ;;
838 !3 = metadata !{
839 i32 524329, ;; Tag
840 metadata !"Myheader.h"
841 metadata !"/Users/mine/sources",
842 metadata !2 ;; Compile unit
843 }
844
845 ...
846
847``llvm::Instruction`` provides easy access to metadata attached with an
848instruction. One can extract line number information encoded in LLVM IR using
849``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
850
851.. code-block:: c++
852
853 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
854 DILocation Loc(N); // DILocation is in DebugInfo.h
855 unsigned Line = Loc.getLineNumber();
856 StringRef File = Loc.getFilename();
857 StringRef Dir = Loc.getDirectory();
858 }
859
860C/C++ global variable information
861---------------------------------
862
863Given an integer global variable declared as follows:
864
865.. code-block:: c
866
867 int MyGlobal = 100;
868
869a C/C++ front-end would generate the following descriptors:
870
871.. code-block:: llvm
872
873 ;;
874 ;; Define the global itself.
875 ;;
876 %MyGlobal = global int 100
877 ...
878 ;;
879 ;; List of debug info of globals
880 ;;
881 !llvm.dbg.cu = !{!0}
882
883 ;; Define the compile unit.
884 !0 = metadata !{
885 i32 786449, ;; Tag
886 i32 0, ;; Context
887 i32 4, ;; Language
888 metadata !"foo.cpp", ;; File
889 metadata !"/Volumes/Data/tmp", ;; Directory
890 metadata !"clang version 3.1 ", ;; Producer
891 i1 true, ;; Deprecated field
892 i1 false, ;; "isOptimized"?
893 metadata !"", ;; Flags
894 i32 0, ;; Runtime Version
895 metadata !1, ;; Enum Types
896 metadata !1, ;; Retained Types
897 metadata !1, ;; Subprograms
898 metadata !3 ;; Global Variables
899 } ; [ DW_TAG_compile_unit ]
900
901 ;; The Array of Global Variables
902 !3 = metadata !{
903 metadata !4
904 }
905
906 !4 = metadata !{
907 metadata !5
908 }
909
910 ;;
911 ;; Define the global variable itself.
912 ;;
913 !5 = metadata !{
914 i32 786484, ;; Tag
915 i32 0, ;; Unused
916 null, ;; Unused
917 metadata !"MyGlobal", ;; Name
918 metadata !"MyGlobal", ;; Display Name
919 metadata !"", ;; Linkage Name
920 metadata !6, ;; File
921 i32 1, ;; Line
922 metadata !7, ;; Type
923 i32 0, ;; IsLocalToUnit
924 i32 1, ;; IsDefinition
925 i32* @MyGlobal ;; LLVM-IR Value
926 } ; [ DW_TAG_variable ]
927
928 ;;
929 ;; Define the file
930 ;;
931 !6 = metadata !{
932 i32 786473, ;; Tag
933 metadata !"foo.cpp", ;; File
934 metadata !"/Volumes/Data/tmp", ;; Directory
935 null ;; Unused
936 } ; [ DW_TAG_file_type ]
937
938 ;;
939 ;; Define the type
940 ;;
941 !7 = metadata !{
942 i32 786468, ;; Tag
943 null, ;; Unused
944 metadata !"int", ;; Name
945 null, ;; Unused
946 i32 0, ;; Line
947 i64 32, ;; Size in Bits
948 i64 32, ;; Align in Bits
949 i64 0, ;; Offset
950 i32 0, ;; Flags
951 i32 5 ;; Encoding
952 } ; [ DW_TAG_base_type ]
953
954C/C++ function information
955--------------------------
956
957Given a function declared as follows:
958
959.. code-block:: c
960
961 int main(int argc, char *argv[]) {
962 return 0;
963 }
964
965a C/C++ front-end would generate the following descriptors:
966
967.. code-block:: llvm
968
969 ;;
970 ;; Define the anchor for subprograms. Note that the second field of the
971 ;; anchor is 46, which is the same as the tag for subprograms
972 ;; (46 = DW_TAG_subprogram.)
973 ;;
974 !6 = metadata !{
975 i32 524334, ;; Tag
976 i32 0, ;; Unused
977 metadata !1, ;; Context
978 metadata !"main", ;; Name
979 metadata !"main", ;; Display name
980 metadata !"main", ;; Linkage name
981 metadata !1, ;; File
982 i32 1, ;; Line number
983 metadata !4, ;; Type
984 i1 false, ;; Is local
985 i1 true, ;; Is definition
986 i32 0, ;; Virtuality attribute, e.g. pure virtual function
987 i32 0, ;; Index into virtual table for C++ methods
988 i32 0, ;; Type that holds virtual table.
989 i32 0, ;; Flags
990 i1 false, ;; True if this function is optimized
991 Function *, ;; Pointer to llvm::Function
992 null ;; Function template parameters
993 }
994 ;;
995 ;; Define the subprogram itself.
996 ;;
997 define i32 @main(i32 %argc, i8** %argv) {
998 ...
999 }
1000
1001C/C++ basic types
1002-----------------
1003
1004The following are the basic type descriptors for C/C++ core types:
1005
1006bool
1007^^^^
1008
1009.. code-block:: llvm
1010
1011 !2 = metadata !{
1012 i32 524324, ;; Tag
1013 metadata !1, ;; Context
1014 metadata !"bool", ;; Name
1015 metadata !1, ;; File
1016 i32 0, ;; Line number
1017 i64 8, ;; Size in Bits
1018 i64 8, ;; Align in Bits
1019 i64 0, ;; Offset in Bits
1020 i32 0, ;; Flags
1021 i32 2 ;; Encoding
1022 }
1023
1024char
1025^^^^
1026
1027.. code-block:: llvm
1028
1029 !2 = metadata !{
1030 i32 524324, ;; Tag
1031 metadata !1, ;; Context
1032 metadata !"char", ;; Name
1033 metadata !1, ;; File
1034 i32 0, ;; Line number
1035 i64 8, ;; Size in Bits
1036 i64 8, ;; Align in Bits
1037 i64 0, ;; Offset in Bits
1038 i32 0, ;; Flags
1039 i32 6 ;; Encoding
1040 }
1041
1042unsigned char
1043^^^^^^^^^^^^^
1044
1045.. code-block:: llvm
1046
1047 !2 = metadata !{
1048 i32 524324, ;; Tag
1049 metadata !1, ;; Context
1050 metadata !"unsigned char",
1051 metadata !1, ;; File
1052 i32 0, ;; Line number
1053 i64 8, ;; Size in Bits
1054 i64 8, ;; Align in Bits
1055 i64 0, ;; Offset in Bits
1056 i32 0, ;; Flags
1057 i32 8 ;; Encoding
1058 }
1059
1060short
1061^^^^^
1062
1063.. code-block:: llvm
1064
1065 !2 = metadata !{
1066 i32 524324, ;; Tag
1067 metadata !1, ;; Context
1068 metadata !"short int",
1069 metadata !1, ;; File
1070 i32 0, ;; Line number
1071 i64 16, ;; Size in Bits
1072 i64 16, ;; Align in Bits
1073 i64 0, ;; Offset in Bits
1074 i32 0, ;; Flags
1075 i32 5 ;; Encoding
1076 }
1077
1078unsigned short
1079^^^^^^^^^^^^^^
1080
1081.. code-block:: llvm
1082
1083 !2 = metadata !{
1084 i32 524324, ;; Tag
1085 metadata !1, ;; Context
1086 metadata !"short unsigned int",
1087 metadata !1, ;; File
1088 i32 0, ;; Line number
1089 i64 16, ;; Size in Bits
1090 i64 16, ;; Align in Bits
1091 i64 0, ;; Offset in Bits
1092 i32 0, ;; Flags
1093 i32 7 ;; Encoding
1094 }
1095
1096int
1097^^^
1098
1099.. code-block:: llvm
1100
1101 !2 = metadata !{
1102 i32 524324, ;; Tag
1103 metadata !1, ;; Context
1104 metadata !"int", ;; Name
1105 metadata !1, ;; File
1106 i32 0, ;; Line number
1107 i64 32, ;; Size in Bits
1108 i64 32, ;; Align in Bits
1109 i64 0, ;; Offset in Bits
1110 i32 0, ;; Flags
1111 i32 5 ;; Encoding
1112 }
1113
1114unsigned int
1115^^^^^^^^^^^^
1116
1117.. code-block:: llvm
1118
1119 !2 = metadata !{
1120 i32 524324, ;; Tag
1121 metadata !1, ;; Context
1122 metadata !"unsigned int",
1123 metadata !1, ;; File
1124 i32 0, ;; Line number
1125 i64 32, ;; Size in Bits
1126 i64 32, ;; Align in Bits
1127 i64 0, ;; Offset in Bits
1128 i32 0, ;; Flags
1129 i32 7 ;; Encoding
1130 }
1131
1132long long
1133^^^^^^^^^
1134
1135.. code-block:: llvm
1136
1137 !2 = metadata !{
1138 i32 524324, ;; Tag
1139 metadata !1, ;; Context
1140 metadata !"long long int",
1141 metadata !1, ;; File
1142 i32 0, ;; Line number
1143 i64 64, ;; Size in Bits
1144 i64 64, ;; Align in Bits
1145 i64 0, ;; Offset in Bits
1146 i32 0, ;; Flags
1147 i32 5 ;; Encoding
1148 }
1149
1150unsigned long long
1151^^^^^^^^^^^^^^^^^^
1152
1153.. code-block:: llvm
1154
1155 !2 = metadata !{
1156 i32 524324, ;; Tag
1157 metadata !1, ;; Context
1158 metadata !"long long unsigned int",
1159 metadata !1, ;; File
1160 i32 0, ;; Line number
1161 i64 64, ;; Size in Bits
1162 i64 64, ;; Align in Bits
1163 i64 0, ;; Offset in Bits
1164 i32 0, ;; Flags
1165 i32 7 ;; Encoding
1166 }
1167
1168float
1169^^^^^
1170
1171.. code-block:: llvm
1172
1173 !2 = metadata !{
1174 i32 524324, ;; Tag
1175 metadata !1, ;; Context
1176 metadata !"float",
1177 metadata !1, ;; File
1178 i32 0, ;; Line number
1179 i64 32, ;; Size in Bits
1180 i64 32, ;; Align in Bits
1181 i64 0, ;; Offset in Bits
1182 i32 0, ;; Flags
1183 i32 4 ;; Encoding
1184 }
1185
1186double
1187^^^^^^
1188
1189.. code-block:: llvm
1190
1191 !2 = metadata !{
1192 i32 524324, ;; Tag
1193 metadata !1, ;; Context
1194 metadata !"double",;; Name
1195 metadata !1, ;; File
1196 i32 0, ;; Line number
1197 i64 64, ;; Size in Bits
1198 i64 64, ;; Align in Bits
1199 i64 0, ;; Offset in Bits
1200 i32 0, ;; Flags
1201 i32 4 ;; Encoding
1202 }
1203
1204C/C++ derived types
1205-------------------
1206
1207Given the following as an example of C/C++ derived type:
1208
1209.. code-block:: c
1210
1211 typedef const int *IntPtr;
1212
1213a C/C++ front-end would generate the following descriptors:
1214
1215.. code-block:: llvm
1216
1217 ;;
1218 ;; Define the typedef "IntPtr".
1219 ;;
1220 !2 = metadata !{
1221 i32 524310, ;; Tag
1222 metadata !1, ;; Context
1223 metadata !"IntPtr", ;; Name
1224 metadata !3, ;; File
1225 i32 0, ;; Line number
1226 i64 0, ;; Size in bits
1227 i64 0, ;; Align in bits
1228 i64 0, ;; Offset in bits
1229 i32 0, ;; Flags
1230 metadata !4 ;; Derived From type
1231 }
1232 ;;
1233 ;; Define the pointer type.
1234 ;;
1235 !4 = metadata !{
1236 i32 524303, ;; Tag
1237 metadata !1, ;; Context
1238 metadata !"", ;; Name
1239 metadata !1, ;; File
1240 i32 0, ;; Line number
1241 i64 64, ;; Size in bits
1242 i64 64, ;; Align in bits
1243 i64 0, ;; Offset in bits
1244 i32 0, ;; Flags
1245 metadata !5 ;; Derived From type
1246 }
1247 ;;
1248 ;; Define the const type.
1249 ;;
1250 !5 = metadata !{
1251 i32 524326, ;; Tag
1252 metadata !1, ;; Context
1253 metadata !"", ;; Name
1254 metadata !1, ;; File
1255 i32 0, ;; Line number
1256 i64 32, ;; Size in bits
1257 i64 32, ;; Align in bits
1258 i64 0, ;; Offset in bits
1259 i32 0, ;; Flags
1260 metadata !6 ;; Derived From type
1261 }
1262 ;;
1263 ;; Define the int type.
1264 ;;
1265 !6 = metadata !{
1266 i32 524324, ;; Tag
1267 metadata !1, ;; Context
1268 metadata !"int", ;; Name
1269 metadata !1, ;; File
1270 i32 0, ;; Line number
1271 i64 32, ;; Size in bits
1272 i64 32, ;; Align in bits
1273 i64 0, ;; Offset in bits
1274 i32 0, ;; Flags
1275 5 ;; Encoding
1276 }
1277
1278C/C++ struct/union types
1279------------------------
1280
1281Given the following as an example of C/C++ struct type:
1282
1283.. code-block:: c
1284
1285 struct Color {
1286 unsigned Red;
1287 unsigned Green;
1288 unsigned Blue;
1289 };
1290
1291a C/C++ front-end would generate the following descriptors:
1292
1293.. code-block:: llvm
1294
1295 ;;
1296 ;; Define basic type for unsigned int.
1297 ;;
1298 !5 = metadata !{
1299 i32 524324, ;; Tag
1300 metadata !1, ;; Context
1301 metadata !"unsigned int",
1302 metadata !1, ;; File
1303 i32 0, ;; Line number
1304 i64 32, ;; Size in Bits
1305 i64 32, ;; Align in Bits
1306 i64 0, ;; Offset in Bits
1307 i32 0, ;; Flags
1308 i32 7 ;; Encoding
1309 }
1310 ;;
1311 ;; Define composite type for struct Color.
1312 ;;
1313 !2 = metadata !{
1314 i32 524307, ;; Tag
1315 metadata !1, ;; Context
1316 metadata !"Color", ;; Name
1317 metadata !1, ;; Compile unit
1318 i32 1, ;; Line number
1319 i64 96, ;; Size in bits
1320 i64 32, ;; Align in bits
1321 i64 0, ;; Offset in bits
1322 i32 0, ;; Flags
1323 null, ;; Derived From
1324 metadata !3, ;; Elements
1325 i32 0 ;; Runtime Language
1326 }
1327
1328 ;;
1329 ;; Define the Red field.
1330 ;;
1331 !4 = metadata !{
1332 i32 524301, ;; Tag
1333 metadata !1, ;; Context
1334 metadata !"Red", ;; Name
1335 metadata !1, ;; File
1336 i32 2, ;; Line number
1337 i64 32, ;; Size in bits
1338 i64 32, ;; Align in bits
1339 i64 0, ;; Offset in bits
1340 i32 0, ;; Flags
1341 metadata !5 ;; Derived From type
1342 }
1343
1344 ;;
1345 ;; Define the Green field.
1346 ;;
1347 !6 = metadata !{
1348 i32 524301, ;; Tag
1349 metadata !1, ;; Context
1350 metadata !"Green", ;; Name
1351 metadata !1, ;; File
1352 i32 3, ;; Line number
1353 i64 32, ;; Size in bits
1354 i64 32, ;; Align in bits
1355 i64 32, ;; Offset in bits
1356 i32 0, ;; Flags
1357 metadata !5 ;; Derived From type
1358 }
1359
1360 ;;
1361 ;; Define the Blue field.
1362 ;;
1363 !7 = metadata !{
1364 i32 524301, ;; Tag
1365 metadata !1, ;; Context
1366 metadata !"Blue", ;; Name
1367 metadata !1, ;; File
1368 i32 4, ;; Line number
1369 i64 32, ;; Size in bits
1370 i64 32, ;; Align in bits
1371 i64 64, ;; Offset in bits
1372 i32 0, ;; Flags
1373 metadata !5 ;; Derived From type
1374 }
1375
1376 ;;
1377 ;; Define the array of fields used by the composite type Color.
1378 ;;
1379 !3 = metadata !{metadata !4, metadata !6, metadata !7}
1380
1381C/C++ enumeration types
1382-----------------------
1383
1384Given the following as an example of C/C++ enumeration type:
1385
1386.. code-block:: c
1387
1388 enum Trees {
1389 Spruce = 100,
1390 Oak = 200,
1391 Maple = 300
1392 };
1393
1394a C/C++ front-end would generate the following descriptors:
1395
1396.. code-block:: llvm
1397
1398 ;;
1399 ;; Define composite type for enum Trees
1400 ;;
1401 !2 = metadata !{
1402 i32 524292, ;; Tag
1403 metadata !1, ;; Context
1404 metadata !"Trees", ;; Name
1405 metadata !1, ;; File
1406 i32 1, ;; Line number
1407 i64 32, ;; Size in bits
1408 i64 32, ;; Align in bits
1409 i64 0, ;; Offset in bits
1410 i32 0, ;; Flags
1411 null, ;; Derived From type
1412 metadata !3, ;; Elements
1413 i32 0 ;; Runtime language
1414 }
1415
1416 ;;
1417 ;; Define the array of enumerators used by composite type Trees.
1418 ;;
1419 !3 = metadata !{metadata !4, metadata !5, metadata !6}
1420
1421 ;;
1422 ;; Define Spruce enumerator.
1423 ;;
1424 !4 = metadata !{i32 524328, metadata !"Spruce", i64 100}
1425
1426 ;;
1427 ;; Define Oak enumerator.
1428 ;;
1429 !5 = metadata !{i32 524328, metadata !"Oak", i64 200}
1430
1431 ;;
1432 ;; Define Maple enumerator.
1433 ;;
1434 !6 = metadata !{i32 524328, metadata !"Maple", i64 300}
1435
1436Debugging information format
1437============================
1438
1439Debugging Information Extension for Objective C Properties
1440----------------------------------------------------------
1441
1442Introduction
1443^^^^^^^^^^^^
1444
1445Objective C provides a simpler way to declare and define accessor methods using
1446declared properties. The language provides features to declare a property and
1447to let compiler synthesize accessor methods.
1448
1449The debugger lets developer inspect Objective C interfaces and their instance
1450variables and class variables. However, the debugger does not know anything
1451about the properties defined in Objective C interfaces. The debugger consumes
1452information generated by compiler in DWARF format. The format does not support
1453encoding of Objective C properties. This proposal describes DWARF extensions to
1454encode Objective C properties, which the debugger can use to let developers
1455inspect Objective C properties.
1456
1457Proposal
1458^^^^^^^^
1459
1460Objective C properties exist separately from class members. A property can be
1461defined only by "setter" and "getter" selectors, and be calculated anew on each
1462access. Or a property can just be a direct access to some declared ivar.
1463Finally it can have an ivar "automatically synthesized" for it by the compiler,
1464in which case the property can be referred to in user code directly using the
1465standard C dereference syntax as well as through the property "dot" syntax, but
1466there is no entry in the ``@interface`` declaration corresponding to this ivar.
1467
1468To facilitate debugging, these properties we will add a new DWARF TAG into the
1469``DW_TAG_structure_type`` definition for the class to hold the description of a
1470given property, and a set of DWARF attributes that provide said description.
1471The property tag will also contain the name and declared type of the property.
1472
1473If there is a related ivar, there will also be a DWARF property attribute placed
1474in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
1475for that property. And in the case where the compiler synthesizes the ivar
1476directly, the compiler is expected to generate a ``DW_TAG_member`` for that
1477ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
1478to access this ivar directly in code, and with the property attribute pointing
1479back to the property it is backing.
1480
1481The following examples will serve as illustration for our discussion:
1482
1483.. code-block:: objc
1484
1485 @interface I1 {
1486 int n2;
1487 }
1488
1489 @property int p1;
1490 @property int p2;
1491 @end
1492
1493 @implementation I1
1494 @synthesize p1;
1495 @synthesize p2 = n2;
1496 @end
1497
1498This produces the following DWARF (this is a "pseudo dwarfdump" output):
1499
1500.. code-block:: none
1501
1502 0x00000100: TAG_structure_type [7] *
1503 AT_APPLE_runtime_class( 0x10 )
1504 AT_name( "I1" )
1505 AT_decl_file( "Objc_Property.m" )
1506 AT_decl_line( 3 )
1507
1508 0x00000110 TAG_APPLE_property
1509 AT_name ( "p1" )
1510 AT_type ( {0x00000150} ( int ) )
1511
1512 0x00000120: TAG_APPLE_property
1513 AT_name ( "p2" )
1514 AT_type ( {0x00000150} ( int ) )
1515
1516 0x00000130: TAG_member [8]
1517 AT_name( "_p1" )
1518 AT_APPLE_property ( {0x00000110} "p1" )
1519 AT_type( {0x00000150} ( int ) )
1520 AT_artificial ( 0x1 )
1521
1522 0x00000140: TAG_member [8]
1523 AT_name( "n2" )
1524 AT_APPLE_property ( {0x00000120} "p2" )
1525 AT_type( {0x00000150} ( int ) )
1526
1527 0x00000150: AT_type( ( int ) )
1528
1529Note, the current convention is that the name of the ivar for an
1530auto-synthesized property is the name of the property from which it derives
1531with an underscore prepended, as is shown in the example. But we actually
1532don't need to know this convention, since we are given the name of the ivar
1533directly.
1534
1535Also, it is common practice in ObjC to have different property declarations in
1536the @interface and @implementation - e.g. to provide a read-only property in
1537the interface,and a read-write interface in the implementation. In that case,
1538the compiler should emit whichever property declaration will be in force in the
1539current translation unit.
1540
1541Developers can decorate a property with attributes which are encoded using
1542``DW_AT_APPLE_property_attribute``.
1543
1544.. code-block:: objc
1545
1546 @property (readonly, nonatomic) int pr;
1547
1548.. code-block:: none
1549
1550 TAG_APPLE_property [8]
1551 AT_name( "pr" )
1552 AT_type ( {0x00000147} (int) )
1553 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
1554
1555The setter and getter method names are attached to the property using
1556``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
1557
1558.. code-block:: objc
1559
1560 @interface I1
1561 @property (setter=myOwnP3Setter:) int p3;
1562 -(void)myOwnP3Setter:(int)a;
1563 @end
1564
1565 @implementation I1
1566 @synthesize p3;
1567 -(void)myOwnP3Setter:(int)a{ }
1568 @end
1569
1570The DWARF for this would be:
1571
1572.. code-block:: none
1573
1574 0x000003bd: TAG_structure_type [7] *
1575 AT_APPLE_runtime_class( 0x10 )
1576 AT_name( "I1" )
1577 AT_decl_file( "Objc_Property.m" )
1578 AT_decl_line( 3 )
1579
1580 0x000003cd TAG_APPLE_property
1581 AT_name ( "p3" )
1582 AT_APPLE_property_setter ( "myOwnP3Setter:" )
1583 AT_type( {0x00000147} ( int ) )
1584
1585 0x000003f3: TAG_member [8]
1586 AT_name( "_p3" )
1587 AT_type ( {0x00000147} ( int ) )
1588 AT_APPLE_property ( {0x000003cd} )
1589 AT_artificial ( 0x1 )
1590
1591New DWARF Tags
1592^^^^^^^^^^^^^^
1593
1594+-----------------------+--------+
1595| TAG | Value |
1596+=======================+========+
1597| DW_TAG_APPLE_property | 0x4200 |
1598+-----------------------+--------+
1599
1600New DWARF Attributes
1601^^^^^^^^^^^^^^^^^^^^
1602
1603+--------------------------------+--------+-----------+
1604| Attribute | Value | Classes |
1605+================================+========+===========+
1606| DW_AT_APPLE_property | 0x3fed | Reference |
1607+--------------------------------+--------+-----------+
1608| DW_AT_APPLE_property_getter | 0x3fe9 | String |
1609+--------------------------------+--------+-----------+
1610| DW_AT_APPLE_property_setter | 0x3fea | String |
1611+--------------------------------+--------+-----------+
1612| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
1613+--------------------------------+--------+-----------+
1614
1615New DWARF Constants
1616^^^^^^^^^^^^^^^^^^^
1617
1618+--------------------------------+-------+
1619| Name | Value |
1620+================================+=======+
1621| DW_AT_APPLE_PROPERTY_readonly | 0x1 |
1622+--------------------------------+-------+
1623| DW_AT_APPLE_PROPERTY_readwrite | 0x2 |
1624+--------------------------------+-------+
1625| DW_AT_APPLE_PROPERTY_assign | 0x4 |
1626+--------------------------------+-------+
1627| DW_AT_APPLE_PROPERTY_retain | 0x8 |
1628+--------------------------------+-------+
1629| DW_AT_APPLE_PROPERTY_copy | 0x10 |
1630+--------------------------------+-------+
1631| DW_AT_APPLE_PROPERTY_nonatomic | 0x20 |
1632+--------------------------------+-------+
1633
1634Name Accelerator Tables
1635-----------------------
1636
1637Introduction
1638^^^^^^^^^^^^
1639
1640The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
1641debugger needs. The "``pub``" in the section name indicates that the entries
1642in the table are publicly visible names only. This means no static or hidden
1643functions show up in the "``.debug_pubnames``". No static variables or private
1644class variables are in the "``.debug_pubtypes``". Many compilers add different
1645things to these tables, so we can't rely upon the contents between gcc, icc, or
1646clang.
1647
1648The typical query given by users tends not to match up with the contents of
1649these tables. For example, the DWARF spec states that "In the case of the name
1650of a function member or static data member of a C++ structure, class or union,
1651the name presented in the "``.debug_pubnames``" section is not the simple name
1652given by the ``DW_AT_name attribute`` of the referenced debugging information
1653entry, but rather the fully qualified name of the data or function member."
1654So the only names in these tables for complex C++ entries is a fully
1655qualified name. Debugger users tend not to enter their search strings as
1656"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
1657"``a::b::c``". So the name entered in the name table must be demangled in
1658order to chop it up appropriately and additional names must be manually entered
1659into the table to make it effective as a name lookup table for debuggers to
1660se.
1661
1662All debuggers currently ignore the "``.debug_pubnames``" table as a result of
1663its inconsistent and useless public-only name content making it a waste of
1664space in the object file. These tables, when they are written to disk, are not
1665sorted in any way, leaving every debugger to do its own parsing and sorting.
1666These tables also include an inlined copy of the string values in the table
1667itself making the tables much larger than they need to be on disk, especially
1668for large C++ programs.
1669
1670Can't we just fix the sections by adding all of the names we need to this
1671table? No, because that is not what the tables are defined to contain and we
1672won't know the difference between the old bad tables and the new good tables.
1673At best we could make our own renamed sections that contain all of the data we
1674need.
1675
1676These tables are also insufficient for what a debugger like LLDB needs. LLDB
1677uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
1678often asked to look for type "``foo``" or namespace "``bar``", or list items in
1679namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
1680tables. Since clang asks a lot of questions when it is parsing an expression,
1681we need to be very fast when looking up names, as it happens a lot. Having new
1682accelerator tables that are optimized for very quick lookups will benefit this
1683type of debugging experience greatly.
1684
1685We would like to generate name lookup tables that can be mapped into memory
1686from disk, and used as is, with little or no up-front parsing. We would also
1687be able to control the exact content of these different tables so they contain
1688exactly what we need. The Name Accelerator Tables were designed to fix these
1689issues. In order to solve these issues we need to:
1690
1691* Have a format that can be mapped into memory from disk and used as is
1692* Lookups should be very fast
1693* Extensible table format so these tables can be made by many producers
1694* Contain all of the names needed for typical lookups out of the box
1695* Strict rules for the contents of tables
1696
1697Table size is important and the accelerator table format should allow the reuse
1698of strings from common string tables so the strings for the names are not
1699duplicated. We also want to make sure the table is ready to be used as-is by
1700simply mapping the table into memory with minimal header parsing.
1701
1702The name lookups need to be fast and optimized for the kinds of lookups that
1703debuggers tend to do. Optimally we would like to touch as few parts of the
1704mapped table as possible when doing a name lookup and be able to quickly find
1705the name entry we are looking for, or discover there are no matches. In the
1706case of debuggers we optimized for lookups that fail most of the time.
1707
1708Each table that is defined should have strict rules on exactly what is in the
1709accelerator tables and documented so clients can rely on the content.
1710
1711Hash Tables
1712^^^^^^^^^^^
1713
1714Standard Hash Tables
1715""""""""""""""""""""
1716
1717Typical hash tables have a header, buckets, and each bucket points to the
1718bucket contents:
1719
1720.. code-block:: none
1721
1722 .------------.
1723 | HEADER |
1724 |------------|
1725 | BUCKETS |
1726 |------------|
1727 | DATA |
1728 `------------'
1729
1730The BUCKETS are an array of offsets to DATA for each hash:
1731
1732.. code-block:: none
1733
1734 .------------.
1735 | 0x00001000 | BUCKETS[0]
1736 | 0x00002000 | BUCKETS[1]
1737 | 0x00002200 | BUCKETS[2]
1738 | 0x000034f0 | BUCKETS[3]
1739 | | ...
1740 | 0xXXXXXXXX | BUCKETS[n_buckets]
1741 '------------'
1742
1743So for ``bucket[3]`` in the example above, we have an offset into the table
17440x000034f0 which points to a chain of entries for the bucket. Each bucket must
1745contain a next pointer, full 32 bit hash value, the string itself, and the data
1746for the current string value.
1747
1748.. code-block:: none
1749
1750 .------------.
1751 0x000034f0: | 0x00003500 | next pointer
1752 | 0x12345678 | 32 bit hash
1753 | "erase" | string value
1754 | data[n] | HashData for this bucket
1755 |------------|
1756 0x00003500: | 0x00003550 | next pointer
1757 | 0x29273623 | 32 bit hash
1758 | "dump" | string value
1759 | data[n] | HashData for this bucket
1760 |------------|
1761 0x00003550: | 0x00000000 | next pointer
1762 | 0x82638293 | 32 bit hash
1763 | "main" | string value
1764 | data[n] | HashData for this bucket
1765 `------------'
1766
1767The problem with this layout for debuggers is that we need to optimize for the
1768negative lookup case where the symbol we're searching for is not present. So
1769if we were to lookup "``printf``" in the table above, we would make a 32 hash
1770for "``printf``", it might match ``bucket[3]``. We would need to go to the
1771offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
1772so, we need to read the next pointer, then read the hash, compare it, and skip
1773to the next bucket. Each time we are skipping many bytes in memory and
1774touching new cache pages just to do the compare on the full 32 bit hash. All
1775of these accesses then tell us that we didn't have a match.
1776
1777Name Hash Tables
1778""""""""""""""""
1779
1780To solve the issues mentioned above we have structured the hash tables a bit
1781differently: a header, buckets, an array of all unique 32 bit hash values,
1782followed by an array of hash value data offsets, one for each hash value, then
1783the data for all hash values:
1784
1785.. code-block:: none
1786
1787 .-------------.
1788 | HEADER |
1789 |-------------|
1790 | BUCKETS |
1791 |-------------|
1792 | HASHES |
1793 |-------------|
1794 | OFFSETS |
1795 |-------------|
1796 | DATA |
1797 `-------------'
1798
1799The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
1800making all of the full 32 bit hash values contiguous in memory, we allow
1801ourselves to efficiently check for a match while touching as little memory as
1802possible. Most often checking the 32 bit hash values is as far as the lookup
1803goes. If it does match, it usually is a match with no collisions. So for a
1804table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
1805values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
1806``OFFSETS`` as:
1807
1808.. code-block:: none
1809
1810 .-------------------------.
1811 | HEADER.magic | uint32_t
1812 | HEADER.version | uint16_t
1813 | HEADER.hash_function | uint16_t
1814 | HEADER.bucket_count | uint32_t
1815 | HEADER.hashes_count | uint32_t
1816 | HEADER.header_data_len | uint32_t
1817 | HEADER_DATA | HeaderData
1818 |-------------------------|
1819 | BUCKETS | uint32_t[bucket_count] // 32 bit hash indexes
1820 |-------------------------|
1821 | HASHES | uint32_t[hashes_count] // 32 bit hash values
1822 |-------------------------|
1823 | OFFSETS | uint32_t[hashes_count] // 32 bit offsets to hash value data
1824 |-------------------------|
1825 | ALL HASH DATA |
1826 `-------------------------'
1827
1828So taking the exact same data from the standard hash example above we end up
1829with:
1830
1831.. code-block:: none
1832
1833 .------------.
1834 | HEADER |
1835 |------------|
1836 | 0 | BUCKETS[0]
1837 | 2 | BUCKETS[1]
1838 | 5 | BUCKETS[2]
1839 | 6 | BUCKETS[3]
1840 | | ...
1841 | ... | BUCKETS[n_buckets]
1842 |------------|
1843 | 0x........ | HASHES[0]
1844 | 0x........ | HASHES[1]
1845 | 0x........ | HASHES[2]
1846 | 0x........ | HASHES[3]
1847 | 0x........ | HASHES[4]
1848 | 0x........ | HASHES[5]
1849 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
1850 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
1851 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
1852 | 0x........ | HASHES[9]
1853 | 0x........ | HASHES[10]
1854 | 0x........ | HASHES[11]
1855 | 0x........ | HASHES[12]
1856 | 0x........ | HASHES[13]
1857 | 0x........ | HASHES[n_hashes]
1858 |------------|
1859 | 0x........ | OFFSETS[0]
1860 | 0x........ | OFFSETS[1]
1861 | 0x........ | OFFSETS[2]
1862 | 0x........ | OFFSETS[3]
1863 | 0x........ | OFFSETS[4]
1864 | 0x........ | OFFSETS[5]
1865 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
1866 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
1867 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
1868 | 0x........ | OFFSETS[9]
1869 | 0x........ | OFFSETS[10]
1870 | 0x........ | OFFSETS[11]
1871 | 0x........ | OFFSETS[12]
1872 | 0x........ | OFFSETS[13]
1873 | 0x........ | OFFSETS[n_hashes]
1874 |------------|
1875 | |
1876 | |
1877 | |
1878 | |
1879 | |
1880 |------------|
1881 0x000034f0: | 0x00001203 | .debug_str ("erase")
1882 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
1883 | 0x........ | HashData[0]
1884 | 0x........ | HashData[1]
1885 | 0x........ | HashData[2]
1886 | 0x........ | HashData[3]
1887 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1888 |------------|
1889 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
1890 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
1891 | 0x........ | HashData[0]
1892 | 0x........ | HashData[1]
1893 | 0x00001203 | String offset into .debug_str ("dump")
1894 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
1895 | 0x........ | HashData[0]
1896 | 0x........ | HashData[1]
1897 | 0x........ | HashData[2]
1898 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1899 |------------|
1900 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
1901 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
1902 | 0x........ | HashData[0]
1903 | 0x........ | HashData[1]
1904 | 0x........ | HashData[2]
1905 | 0x........ | HashData[3]
1906 | 0x........ | HashData[4]
1907 | 0x........ | HashData[5]
1908 | 0x........ | HashData[6]
1909 | 0x........ | HashData[7]
1910 | 0x........ | HashData[8]
1911 | 0x00000000 | String offset into .debug_str (terminate data for hash)
1912 `------------'
1913
1914So we still have all of the same data, we just organize it more efficiently for
1915debugger lookup. If we repeat the same "``printf``" lookup from above, we
1916would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
1917hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
1918is the index into the ``HASHES`` table. We would then compare any consecutive
191932 bit hashes values in the ``HASHES`` array as long as the hashes would be in
1920``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
1921``n_buckets`` is still 3. In the case of a failed lookup we would access the
1922memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
1923before we know that we have no match. We don't end up marching through
1924multiple words of memory and we really keep the number of processor data cache
1925lines being accessed as small as possible.
1926
1927The string hash that is used for these lookup tables is the Daniel J.
1928Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
1929very good hash for all kinds of names in programs with very few hash
1930collisions.
1931
1932Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
1933
1934Details
1935^^^^^^^
1936
1937These name hash tables are designed to be generic where specializations of the
1938table get to define additional data that goes into the header ("``HeaderData``"),
1939how the string value is stored ("``KeyType``") and the content of the data for each
1940hash value.
1941
1942Header Layout
1943"""""""""""""
1944
1945The header has a fixed part, and the specialized part. The exact format of the
1946header is:
1947
1948.. code-block:: c
1949
1950 struct Header
1951 {
1952 uint32_t magic; // 'HASH' magic value to allow endian detection
1953 uint16_t version; // Version number
1954 uint16_t hash_function; // The hash function enumeration that was used
1955 uint32_t bucket_count; // The number of buckets in this hash table
1956 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1957 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1958 // Specifically the length of the following HeaderData field - this does not
1959 // include the size of the preceding fields
1960 HeaderData header_data; // Implementation specific header data
1961 };
1962
1963The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1964encoded as an ASCII integer. This allows the detection of the start of the
1965hash table and also allows the table's byte order to be determined so the table
1966can be correctly extracted. The "``magic``" value is followed by a 16 bit
1967``version`` number which allows the table to be revised and modified in the
1968future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1969enumeration that specifies which hash function was used to produce this table.
1970The current values for the hash function enumerations include:
1971
1972.. code-block:: c
1973
1974 enum HashFunctionType
1975 {
1976 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1977 };
1978
1979``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1980are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1981hash values that are in the ``HASHES`` array, and is the same number of offsets
1982are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1983in bytes of the ``HeaderData`` that is filled in by specialized versions of
1984this table.
1985
1986Fixed Lookup
1987""""""""""""
1988
1989The header is followed by the buckets, hashes, offsets, and hash value data.
1990
1991.. code-block:: c
1992
1993 struct FixedTable
1994 {
1995 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1996 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1997 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1998 };
1999
2000``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
2001``hashes`` array contains all of the 32 bit hash values for all names in the
2002hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
2003array that points to the data for the hash value.
2004
2005This table setup makes it very easy to repurpose these tables to contain
2006different data, while keeping the lookup mechanism the same for all tables.
2007This layout also makes it possible to save the table to disk and map it in
2008later and do very efficient name lookups with little or no parsing.
2009
2010DWARF lookup tables can be implemented in a variety of ways and can store a lot
2011of information for each name. We want to make the DWARF tables extensible and
2012able to store the data efficiently so we have used some of the DWARF features
2013that enable efficient data storage to define exactly what kind of data we store
2014for each name.
2015
2016The ``HeaderData`` contains a definition of the contents of each HashData chunk.
2017We might want to store an offset to all of the debug information entries (DIEs)
2018for each name. To keep things extensible, we create a list of items, or
2019Atoms, that are contained in the data for each name. First comes the type of
2020the data in each atom:
2021
2022.. code-block:: c
2023
2024 enum AtomType
2025 {
2026 eAtomTypeNULL = 0u,
2027 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
2028 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
2029 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
2030 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
2031 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
2032 };
2033
2034The enumeration values and their meanings are:
2035
2036.. code-block:: none
2037
2038 eAtomTypeNULL - a termination atom that specifies the end of the atom list
2039 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
2040 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
2041 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
2042 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
2043 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
2044
2045Then we allow each atom type to define the atom type and how the data for each
2046atom type data is encoded:
2047
2048.. code-block:: c
2049
2050 struct Atom
2051 {
2052 uint16_t type; // AtomType enum value
2053 uint16_t form; // DWARF DW_FORM_XXX defines
2054 };
2055
2056The ``form`` type above is from the DWARF specification and defines the exact
2057encoding of the data for the Atom type. See the DWARF specification for the
2058``DW_FORM_`` definitions.
2059
2060.. code-block:: c
2061
2062 struct HeaderData
2063 {
2064 uint32_t die_offset_base;
2065 uint32_t atom_count;
2066 Atoms atoms[atom_count0];
2067 };
2068
2069``HeaderData`` defines the base DIE offset that should be added to any atoms
2070that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
2071``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
2072what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
2073each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
2074should be interpreted.
2075
2076For the current implementations of the "``.apple_names``" (all functions +
2077globals), the "``.apple_types``" (names of all types that are defined), and
2078the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
2079array to be:
2080
2081.. code-block:: c
2082
2083 HeaderData.atom_count = 1;
2084 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
2085 HeaderData.atoms[0].form = DW_FORM_data4;
2086
2087This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
2088 encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
2089 multiple matching DIEs in a single file, which could come up with an inlined
2090 function for instance. Future tables could include more information about the
2091 DIE such as flags indicating if the DIE is a function, method, block,
2092 or inlined.
2093
2094The KeyType for the DWARF table is a 32 bit string table offset into the
2095 ".debug_str" table. The ".debug_str" is the string table for the DWARF which
2096 may already contain copies of all of the strings. This helps make sure, with
2097 help from the compiler, that we reuse the strings between all of the DWARF
2098 sections and keeps the hash table size down. Another benefit to having the
2099 compiler generate all strings as DW_FORM_strp in the debug info, is that
2100 DWARF parsing can be made much faster.
2101
2102After a lookup is made, we get an offset into the hash data. The hash data
2103 needs to be able to deal with 32 bit hash collisions, so the chunk of data
2104 at the offset in the hash data consists of a triple:
2105
2106.. code-block:: c
2107
2108 uint32_t str_offset
2109 uint32_t hash_data_count
2110 HashData[hash_data_count]
2111
2112If "str_offset" is zero, then the bucket contents are done. 99.9% of the
2113 hash data chunks contain a single item (no 32 bit hash collision):
2114
2115.. code-block:: none
2116
2117 .------------.
2118 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2119 | 0x00000004 | uint32_t HashData count
2120 | 0x........ | uint32_t HashData[0] DIE offset
2121 | 0x........ | uint32_t HashData[1] DIE offset
2122 | 0x........ | uint32_t HashData[2] DIE offset
2123 | 0x........ | uint32_t HashData[3] DIE offset
2124 | 0x00000000 | uint32_t KeyType (end of hash chain)
2125 `------------'
2126
2127If there are collisions, you will have multiple valid string offsets:
2128
2129.. code-block:: none
2130
2131 .------------.
2132 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
2133 | 0x00000004 | uint32_t HashData count
2134 | 0x........ | uint32_t HashData[0] DIE offset
2135 | 0x........ | uint32_t HashData[1] DIE offset
2136 | 0x........ | uint32_t HashData[2] DIE offset
2137 | 0x........ | uint32_t HashData[3] DIE offset
2138 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
2139 | 0x00000002 | uint32_t HashData count
2140 | 0x........ | uint32_t HashData[0] DIE offset
2141 | 0x........ | uint32_t HashData[1] DIE offset
2142 | 0x00000000 | uint32_t KeyType (end of hash chain)
2143 `------------'
2144
2145Current testing with real world C++ binaries has shown that there is around 1
214632 bit hash collision per 100,000 name entries.
2147
2148Contents
2149^^^^^^^^
2150
2151As we said, we want to strictly define exactly what is included in the
2152different tables. For DWARF, we have 3 tables: "``.apple_names``",
2153"``.apple_types``", and "``.apple_namespaces``".
2154
2155"``.apple_names``" sections should contain an entry for each DWARF DIE whose
2156``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
2157``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
2158``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
2159``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
2160static variables). All global and static variables should be included,
2161including those scoped within functions and classes. For example using the
2162following code:
2163
2164.. code-block:: c
2165
2166 static int var = 0;
2167
2168 void f ()
2169 {
2170 static int var = 0;
2171 }
2172
2173Both of the static ``var`` variables would be included in the table. All
2174functions should emit both their full names and their basenames. For C or C++,
2175the full name is the mangled name (if available) which is usually in the
2176``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
2177function basename. If global or static variables have a mangled name in a
2178``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
2179simple name found in the ``DW_AT_name`` attribute.
2180
2181"``.apple_types``" sections should contain an entry for each DWARF DIE whose
2182tag is one of:
2183
2184* DW_TAG_array_type
2185* DW_TAG_class_type
2186* DW_TAG_enumeration_type
2187* DW_TAG_pointer_type
2188* DW_TAG_reference_type
2189* DW_TAG_string_type
2190* DW_TAG_structure_type
2191* DW_TAG_subroutine_type
2192* DW_TAG_typedef
2193* DW_TAG_union_type
2194* DW_TAG_ptr_to_member_type
2195* DW_TAG_set_type
2196* DW_TAG_subrange_type
2197* DW_TAG_base_type
2198* DW_TAG_const_type
2199* DW_TAG_constant
2200* DW_TAG_file_type
2201* DW_TAG_namelist
2202* DW_TAG_packed_type
2203* DW_TAG_volatile_type
2204* DW_TAG_restrict_type
2205* DW_TAG_interface_type
2206* DW_TAG_unspecified_type
2207* DW_TAG_shared_type
2208
2209Only entries with a ``DW_AT_name`` attribute are included, and the entry must
2210not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
2211value). For example, using the following code:
2212
2213.. code-block:: c
2214
2215 int main ()
2216 {
2217 int *b = 0;
2218 return *b;
2219 }
2220
2221We get a few type DIEs:
2222
2223.. code-block:: none
2224
2225 0x00000067: TAG_base_type [5]
2226 AT_encoding( DW_ATE_signed )
2227 AT_name( "int" )
2228 AT_byte_size( 0x04 )
2229
2230 0x0000006e: TAG_pointer_type [6]
2231 AT_type( {0x00000067} ( int ) )
2232 AT_byte_size( 0x08 )
2233
2234The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
2235
2236"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
2237If we run into a namespace that has no name this is an anonymous namespace, and
2238the name should be output as "``(anonymous namespace)``" (without the quotes).
2239Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
2240standard C++ library that demangles mangled names.
2241
2242
2243Language Extensions and File Format Changes
2244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2245
2246Objective-C Extensions
2247""""""""""""""""""""""
2248
2249"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
2250Objective-C class. The name used in the hash table is the name of the
2251Objective-C class itself. If the Objective-C class has a category, then an
2252entry is made for both the class name without the category, and for the class
2253name with the category. So if we have a DIE at offset 0x1234 with a name of
2254method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
2255an entry for "``NSString``" that points to DIE 0x1234, and an entry for
2256"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
2257track down all Objective-C methods for an Objective-C class when doing
2258expressions. It is needed because of the dynamic nature of Objective-C where
2259anyone can add methods to a class. The DWARF for Objective-C methods is also
2260emitted differently from C++ classes where the methods are not usually
2261contained in the class definition, they are scattered about across one or more
2262compile units. Categories can also be defined in different shared libraries.
2263So we need to be able to quickly find all of the methods and class functions
2264given the Objective-C class name, or quickly find all methods and class
2265functions for a class + category name. This table does not contain any
2266selector names, it just maps Objective-C class names (or class names +
2267category) to all of the methods and class functions. The selectors are added
2268as function basenames in the "``.debug_names``" section.
2269
2270In the "``.apple_names``" section for Objective-C functions, the full name is
2271the entire function name with the brackets ("``-[NSString
2272stringWithCString:]``") and the basename is the selector only
2273("``stringWithCString:``").
2274
2275Mach-O Changes
2276""""""""""""""
2277
2278The sections names for the apple hash tables are for non mach-o files. For
2279mach-o files, the sections should be contained in the ``__DWARF`` segment with
2280names as follows:
2281
2282* "``.apple_names``" -> "``__apple_names``"
2283* "``.apple_types``" -> "``__apple_types``"
2284* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
2285* "``.apple_objc``" -> "``__apple_objc``"
2286