blob: ea9a8f7c488245534c69c574aec4de7babce1f71 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP , "Number of floating point instructions");
52
53namespace {
54 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55 static char ID;
56 FPS() : MachineFunctionPass((intptr_t)&ID) {}
57
58 virtual bool runOnMachineFunction(MachineFunction &MF);
59
60 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
61
62 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63 AU.addRequired<LiveVariables>();
64 MachineFunctionPass::getAnalysisUsage(AU);
65 }
66 private:
67 const TargetInstrInfo *TII; // Machine instruction info.
68 LiveVariables *LV; // Live variable info for current function...
69 MachineBasicBlock *MBB; // Current basic block
70 unsigned Stack[8]; // FP<n> Registers in each stack slot...
71 unsigned RegMap[8]; // Track which stack slot contains each register
72 unsigned StackTop; // The current top of the FP stack.
73
74 void dumpStack() const {
75 cerr << "Stack contents:";
76 for (unsigned i = 0; i != StackTop; ++i) {
77 cerr << " FP" << Stack[i];
78 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
79 }
80 cerr << "\n";
81 }
82 private:
83 // getSlot - Return the stack slot number a particular register number is
84 // in...
85 unsigned getSlot(unsigned RegNo) const {
86 assert(RegNo < 8 && "Regno out of range!");
87 return RegMap[RegNo];
88 }
89
90 // getStackEntry - Return the X86::FP<n> register in register ST(i)
91 unsigned getStackEntry(unsigned STi) const {
92 assert(STi < StackTop && "Access past stack top!");
93 return Stack[StackTop-1-STi];
94 }
95
96 // getSTReg - Return the X86::ST(i) register which contains the specified
97 // FP<RegNo> register
98 unsigned getSTReg(unsigned RegNo) const {
99 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
100 }
101
102 // pushReg - Push the specified FP<n> register onto the stack
103 void pushReg(unsigned Reg) {
104 assert(Reg < 8 && "Register number out of range!");
105 assert(StackTop < 8 && "Stack overflow!");
106 Stack[StackTop] = Reg;
107 RegMap[Reg] = StackTop++;
108 }
109
110 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
111 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
112 if (!isAtTop(RegNo)) {
113 unsigned STReg = getSTReg(RegNo);
114 unsigned RegOnTop = getStackEntry(0);
115
116 // Swap the slots the regs are in
117 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
118
119 // Swap stack slot contents
120 assert(RegMap[RegOnTop] < StackTop);
121 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
122
123 // Emit an fxch to update the runtime processors version of the state
124 BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
125 NumFXCH++;
126 }
127 }
128
129 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
130 unsigned STReg = getSTReg(RegNo);
131 pushReg(AsReg); // New register on top of stack
132
133 BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
134 }
135
136 // popStackAfter - Pop the current value off of the top of the FP stack
137 // after the specified instruction.
138 void popStackAfter(MachineBasicBlock::iterator &I);
139
140 // freeStackSlotAfter - Free the specified register from the register stack,
141 // so that it is no longer in a register. If the register is currently at
142 // the top of the stack, we just pop the current instruction, otherwise we
143 // store the current top-of-stack into the specified slot, then pop the top
144 // of stack.
145 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
146
147 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
148
149 void handleZeroArgFP(MachineBasicBlock::iterator &I);
150 void handleOneArgFP(MachineBasicBlock::iterator &I);
151 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
152 void handleTwoArgFP(MachineBasicBlock::iterator &I);
153 void handleCompareFP(MachineBasicBlock::iterator &I);
154 void handleCondMovFP(MachineBasicBlock::iterator &I);
155 void handleSpecialFP(MachineBasicBlock::iterator &I);
156 };
157 char FPS::ID = 0;
158}
159
160FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
161
162/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
163/// register references into FP stack references.
164///
165bool FPS::runOnMachineFunction(MachineFunction &MF) {
166 // We only need to run this pass if there are any FP registers used in this
167 // function. If it is all integer, there is nothing for us to do!
168 bool FPIsUsed = false;
169
170 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
171 for (unsigned i = 0; i <= 6; ++i)
172 if (MF.isPhysRegUsed(X86::FP0+i)) {
173 FPIsUsed = true;
174 break;
175 }
176
177 // Early exit.
178 if (!FPIsUsed) return false;
179
180 TII = MF.getTarget().getInstrInfo();
181 LV = &getAnalysis<LiveVariables>();
182 StackTop = 0;
183
184 // Process the function in depth first order so that we process at least one
185 // of the predecessors for every reachable block in the function.
186 std::set<MachineBasicBlock*> Processed;
187 MachineBasicBlock *Entry = MF.begin();
188
189 bool Changed = false;
190 for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
191 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
192 I != E; ++I)
193 Changed |= processBasicBlock(MF, **I);
194
195 return Changed;
196}
197
198/// processBasicBlock - Loop over all of the instructions in the basic block,
199/// transforming FP instructions into their stack form.
200///
201bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
202 bool Changed = false;
203 MBB = &BB;
204
205 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
206 MachineInstr *MI = I;
207 unsigned Flags = MI->getInstrDescriptor()->TSFlags;
208 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
209 continue; // Efficiently ignore non-fp insts!
210
211 MachineInstr *PrevMI = 0;
212 if (I != BB.begin())
213 PrevMI = prior(I);
214
215 ++NumFP; // Keep track of # of pseudo instrs
216 DOUT << "\nFPInst:\t" << *MI;
217
218 // Get dead variables list now because the MI pointer may be deleted as part
219 // of processing!
220 SmallVector<unsigned, 8> DeadRegs;
221 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman38a9a9f2007-09-14 20:33:02 +0000223 if (MO.isRegister() && MO.isDead())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 DeadRegs.push_back(MO.getReg());
225 }
226
227 switch (Flags & X86II::FPTypeMask) {
228 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
229 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
230 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
231 case X86II::TwoArgFP: handleTwoArgFP(I); break;
232 case X86II::CompareFP: handleCompareFP(I); break;
233 case X86II::CondMovFP: handleCondMovFP(I); break;
234 case X86II::SpecialFP: handleSpecialFP(I); break;
235 default: assert(0 && "Unknown FP Type!");
236 }
237
238 // Check to see if any of the values defined by this instruction are dead
239 // after definition. If so, pop them.
240 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
241 unsigned Reg = DeadRegs[i];
242 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
243 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
244 freeStackSlotAfter(I, Reg-X86::FP0);
245 }
246 }
247
248 // Print out all of the instructions expanded to if -debug
249 DEBUG(
250 MachineBasicBlock::iterator PrevI(PrevMI);
251 if (I == PrevI) {
252 cerr << "Just deleted pseudo instruction\n";
253 } else {
254 MachineBasicBlock::iterator Start = I;
255 // Rewind to first instruction newly inserted.
256 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
257 cerr << "Inserted instructions:\n\t";
258 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sandsfe279782007-09-11 12:30:25 +0000259 while (++Start != next(I)) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000260 }
261 dumpStack();
262 );
263
264 Changed = true;
265 }
266
267 assert(StackTop == 0 && "Stack not empty at end of basic block?");
268 return Changed;
269}
270
271//===----------------------------------------------------------------------===//
272// Efficient Lookup Table Support
273//===----------------------------------------------------------------------===//
274
275namespace {
276 struct TableEntry {
277 unsigned from;
278 unsigned to;
279 bool operator<(const TableEntry &TE) const { return from < TE.from; }
280 friend bool operator<(const TableEntry &TE, unsigned V) {
281 return TE.from < V;
282 }
283 friend bool operator<(unsigned V, const TableEntry &TE) {
284 return V < TE.from;
285 }
286 };
287}
288
289static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
290 for (unsigned i = 0; i != NumEntries-1; ++i)
291 if (!(Table[i] < Table[i+1])) return false;
292 return true;
293}
294
295static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
296 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
297 if (I != Table+N && I->from == Opcode)
298 return I->to;
299 return -1;
300}
301
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000302#ifdef NDEBUG
303#define ASSERT_SORTED(TABLE)
304#else
305#define ASSERT_SORTED(TABLE) \
306 { static bool TABLE##Checked = false; \
307 if (!TABLE##Checked) { \
Owen Anderson1636de92007-09-07 04:06:50 +0000308 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309 "All lookup tables must be sorted for efficient access!"); \
310 TABLE##Checked = true; \
311 } \
312 }
313#endif
314
315//===----------------------------------------------------------------------===//
316// Register File -> Register Stack Mapping Methods
317//===----------------------------------------------------------------------===//
318
319// OpcodeTable - Sorted map of register instructions to their stack version.
320// The first element is an register file pseudo instruction, the second is the
321// concrete X86 instruction which uses the register stack.
322//
323static const TableEntry OpcodeTable[] = {
324 { X86::ABS_Fp32 , X86::ABS_F },
325 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000326 { X86::ABS_Fp80 , X86::ABS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327 { X86::ADD_Fp32m , X86::ADD_F32m },
328 { X86::ADD_Fp64m , X86::ADD_F64m },
329 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000330 { X86::ADD_Fp80m32 , X86::ADD_F32m },
331 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
333 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000334 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
336 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000337 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 { X86::CHS_Fp32 , X86::CHS_F },
339 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000340 { X86::CHS_Fp80 , X86::CHS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
342 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000343 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344 { X86::CMOVB_Fp32 , X86::CMOVB_F },
345 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000346 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347 { X86::CMOVE_Fp32 , X86::CMOVE_F },
348 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000349 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000350 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
351 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000352 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000353 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
354 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000355 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
357 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000358 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000359 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
360 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000361 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 { X86::CMOVP_Fp32 , X86::CMOVP_F },
363 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000364 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 { X86::COS_Fp32 , X86::COS_F },
366 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000367 { X86::COS_Fp80 , X86::COS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 { X86::DIVR_Fp32m , X86::DIVR_F32m },
369 { X86::DIVR_Fp64m , X86::DIVR_F64m },
370 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000371 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
372 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
374 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000375 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
377 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000378 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 { X86::DIV_Fp32m , X86::DIV_F32m },
380 { X86::DIV_Fp64m , X86::DIV_F64m },
381 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000382 { X86::DIV_Fp80m32 , X86::DIV_F32m },
383 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
385 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000386 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
388 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000389 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000390 { X86::ILD_Fp16m32 , X86::ILD_F16m },
391 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000392 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 { X86::ILD_Fp32m32 , X86::ILD_F32m },
394 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000395 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000396 { X86::ILD_Fp64m32 , X86::ILD_F64m },
397 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000398 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
400 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000401 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
403 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000404 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
406 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000407 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 { X86::IST_Fp16m32 , X86::IST_F16m },
409 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000410 { X86::IST_Fp16m80 , X86::IST_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411 { X86::IST_Fp32m32 , X86::IST_F32m },
412 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000413 { X86::IST_Fp32m80 , X86::IST_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 { X86::IST_Fp64m32 , X86::IST_FP64m },
415 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000416 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 { X86::LD_Fp032 , X86::LD_F0 },
418 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000419 { X86::LD_Fp080 , X86::LD_F0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000420 { X86::LD_Fp132 , X86::LD_F1 },
421 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000422 { X86::LD_Fp180 , X86::LD_F1 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000424 { X86::LD_Fp32m64 , X86::LD_F32m },
425 { X86::LD_Fp32m80 , X86::LD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000427 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000428 { X86::LD_Fp80m , X86::LD_F80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429 { X86::MUL_Fp32m , X86::MUL_F32m },
430 { X86::MUL_Fp64m , X86::MUL_F64m },
431 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000432 { X86::MUL_Fp80m32 , X86::MUL_F32m },
433 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
435 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000436 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000437 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
438 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000439 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Evan Cheng950aac02007-09-25 01:57:46 +0000440
441 // TEMPORARY
442 { X86::NEW_CMOVBE_Fp32 , X86::CMOVBE_F },
443 { X86::NEW_CMOVBE_Fp64 , X86::CMOVBE_F },
444 { X86::NEW_CMOVBE_Fp80 , X86::CMOVBE_F },
445 { X86::NEW_CMOVB_Fp32 , X86::CMOVB_F },
446 { X86::NEW_CMOVB_Fp64 , X86::CMOVB_F },
447 { X86::NEW_CMOVB_Fp80 , X86::CMOVB_F },
448 { X86::NEW_CMOVE_Fp32 , X86::CMOVE_F },
449 { X86::NEW_CMOVE_Fp64 , X86::CMOVE_F },
450 { X86::NEW_CMOVE_Fp80 , X86::CMOVE_F },
451 { X86::NEW_CMOVNBE_Fp32 , X86::CMOVNBE_F },
452 { X86::NEW_CMOVNBE_Fp64 , X86::CMOVNBE_F },
453 { X86::NEW_CMOVNBE_Fp80 , X86::CMOVNBE_F },
454 { X86::NEW_CMOVNB_Fp32 , X86::CMOVNB_F },
455 { X86::NEW_CMOVNB_Fp64 , X86::CMOVNB_F },
456 { X86::NEW_CMOVNB_Fp80 , X86::CMOVNB_F },
457 { X86::NEW_CMOVNE_Fp32 , X86::CMOVNE_F },
458 { X86::NEW_CMOVNE_Fp64 , X86::CMOVNE_F },
459 { X86::NEW_CMOVNE_Fp80 , X86::CMOVNE_F },
460 { X86::NEW_CMOVNP_Fp32 , X86::CMOVNP_F },
461 { X86::NEW_CMOVNP_Fp64 , X86::CMOVNP_F },
462 { X86::NEW_CMOVNP_Fp80 , X86::CMOVNP_F },
463 { X86::NEW_CMOVP_Fp32 , X86::CMOVP_F },
464 { X86::NEW_CMOVP_Fp64 , X86::CMOVP_F },
465 { X86::NEW_CMOVP_Fp80 , X86::CMOVP_F },
466
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 { X86::SIN_Fp32 , X86::SIN_F },
468 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000469 { X86::SIN_Fp80 , X86::SIN_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000470 { X86::SQRT_Fp32 , X86::SQRT_F },
471 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000472 { X86::SQRT_Fp80 , X86::SQRT_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000473 { X86::ST_Fp32m , X86::ST_F32m },
474 { X86::ST_Fp64m , X86::ST_F64m },
475 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000476 { X86::ST_Fp80m32 , X86::ST_F32m },
477 { X86::ST_Fp80m64 , X86::ST_F64m },
478 { X86::ST_FpP80m , X86::ST_FP80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000479 { X86::SUBR_Fp32m , X86::SUBR_F32m },
480 { X86::SUBR_Fp64m , X86::SUBR_F64m },
481 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000482 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
483 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000484 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
485 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000486 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
488 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000489 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000490 { X86::SUB_Fp32m , X86::SUB_F32m },
491 { X86::SUB_Fp64m , X86::SUB_F64m },
492 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000493 { X86::SUB_Fp80m32 , X86::SUB_F32m },
494 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000495 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
496 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000497 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
499 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000500 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000501 { X86::TST_Fp32 , X86::TST_F },
502 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000503 { X86::TST_Fp80 , X86::TST_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
505 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000506 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
508 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000509 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510};
511
512static unsigned getConcreteOpcode(unsigned Opcode) {
513 ASSERT_SORTED(OpcodeTable);
Owen Anderson1636de92007-09-07 04:06:50 +0000514 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000515 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
516 return Opc;
517}
518
519//===----------------------------------------------------------------------===//
520// Helper Methods
521//===----------------------------------------------------------------------===//
522
523// PopTable - Sorted map of instructions to their popping version. The first
524// element is an instruction, the second is the version which pops.
525//
526static const TableEntry PopTable[] = {
527 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
528
529 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
530 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
531
532 { X86::IST_F16m , X86::IST_FP16m },
533 { X86::IST_F32m , X86::IST_FP32m },
534
535 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
536
537 { X86::ST_F32m , X86::ST_FP32m },
538 { X86::ST_F64m , X86::ST_FP64m },
539 { X86::ST_Frr , X86::ST_FPrr },
540
541 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
542 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
543
544 { X86::UCOM_FIr , X86::UCOM_FIPr },
545
546 { X86::UCOM_FPr , X86::UCOM_FPPr },
547 { X86::UCOM_Fr , X86::UCOM_FPr },
548};
549
550/// popStackAfter - Pop the current value off of the top of the FP stack after
551/// the specified instruction. This attempts to be sneaky and combine the pop
552/// into the instruction itself if possible. The iterator is left pointing to
553/// the last instruction, be it a new pop instruction inserted, or the old
554/// instruction if it was modified in place.
555///
556void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
557 ASSERT_SORTED(PopTable);
558 assert(StackTop > 0 && "Cannot pop empty stack!");
559 RegMap[Stack[--StackTop]] = ~0; // Update state
560
561 // Check to see if there is a popping version of this instruction...
Owen Anderson1636de92007-09-07 04:06:50 +0000562 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 if (Opcode != -1) {
564 I->setInstrDescriptor(TII->get(Opcode));
565 if (Opcode == X86::UCOM_FPPr)
566 I->RemoveOperand(0);
567 } else { // Insert an explicit pop
568 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
569 }
570}
571
572/// freeStackSlotAfter - Free the specified register from the register stack, so
573/// that it is no longer in a register. If the register is currently at the top
574/// of the stack, we just pop the current instruction, otherwise we store the
575/// current top-of-stack into the specified slot, then pop the top of stack.
576void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
577 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
578 popStackAfter(I);
579 return;
580 }
581
582 // Otherwise, store the top of stack into the dead slot, killing the operand
583 // without having to add in an explicit xchg then pop.
584 //
585 unsigned STReg = getSTReg(FPRegNo);
586 unsigned OldSlot = getSlot(FPRegNo);
587 unsigned TopReg = Stack[StackTop-1];
588 Stack[OldSlot] = TopReg;
589 RegMap[TopReg] = OldSlot;
590 RegMap[FPRegNo] = ~0;
591 Stack[--StackTop] = ~0;
592 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
593}
594
595
596static unsigned getFPReg(const MachineOperand &MO) {
597 assert(MO.isRegister() && "Expected an FP register!");
598 unsigned Reg = MO.getReg();
599 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
600 return Reg - X86::FP0;
601}
602
603
604//===----------------------------------------------------------------------===//
605// Instruction transformation implementation
606//===----------------------------------------------------------------------===//
607
608/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
609///
610void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
611 MachineInstr *MI = I;
612 unsigned DestReg = getFPReg(MI->getOperand(0));
613
614 // Change from the pseudo instruction to the concrete instruction.
615 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
616 MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
617
618 // Result gets pushed on the stack.
619 pushReg(DestReg);
620}
621
622/// handleOneArgFP - fst <mem>, ST(0)
623///
624void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
625 MachineInstr *MI = I;
626 unsigned NumOps = MI->getInstrDescriptor()->numOperands;
627 assert((NumOps == 5 || NumOps == 1) &&
628 "Can only handle fst* & ftst instructions!");
629
630 // Is this the last use of the source register?
631 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
632 bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
633
634 // FISTP64m is strange because there isn't a non-popping versions.
635 // If we have one _and_ we don't want to pop the operand, duplicate the value
636 // on the stack instead of moving it. This ensure that popping the value is
637 // always ok.
Dale Johannesenb1064a52007-09-17 20:15:38 +0000638 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639 //
640 if (!KillsSrc &&
641 (MI->getOpcode() == X86::IST_Fp64m32 ||
642 MI->getOpcode() == X86::ISTT_Fp16m32 ||
643 MI->getOpcode() == X86::ISTT_Fp32m32 ||
644 MI->getOpcode() == X86::ISTT_Fp64m32 ||
645 MI->getOpcode() == X86::IST_Fp64m64 ||
646 MI->getOpcode() == X86::ISTT_Fp16m64 ||
647 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000648 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen0a6bdef2007-09-20 01:27:54 +0000649 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000650 MI->getOpcode() == X86::ISTT_Fp16m80 ||
651 MI->getOpcode() == X86::ISTT_Fp32m80 ||
652 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000653 MI->getOpcode() == X86::ST_FpP80m)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 duplicateToTop(Reg, 7 /*temp register*/, I);
655 } else {
656 moveToTop(Reg, I); // Move to the top of the stack...
657 }
658
659 // Convert from the pseudo instruction to the concrete instruction.
660 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
661 MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
662
663 if (MI->getOpcode() == X86::IST_FP64m ||
664 MI->getOpcode() == X86::ISTT_FP16m ||
665 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesenb71720f2007-08-06 19:50:32 +0000666 MI->getOpcode() == X86::ISTT_FP64m ||
667 MI->getOpcode() == X86::ST_FP80m) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000668 assert(StackTop > 0 && "Stack empty??");
669 --StackTop;
670 } else if (KillsSrc) { // Last use of operand?
671 popStackAfter(I);
672 }
673}
674
675
676/// handleOneArgFPRW: Handle instructions that read from the top of stack and
677/// replace the value with a newly computed value. These instructions may have
678/// non-fp operands after their FP operands.
679///
680/// Examples:
681/// R1 = fchs R2
682/// R1 = fadd R2, [mem]
683///
684void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
685 MachineInstr *MI = I;
686 unsigned NumOps = MI->getInstrDescriptor()->numOperands;
687 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
688
689 // Is this the last use of the source register?
690 unsigned Reg = getFPReg(MI->getOperand(1));
691 bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
692
693 if (KillsSrc) {
694 // If this is the last use of the source register, just make sure it's on
695 // the top of the stack.
696 moveToTop(Reg, I);
697 assert(StackTop > 0 && "Stack cannot be empty!");
698 --StackTop;
699 pushReg(getFPReg(MI->getOperand(0)));
700 } else {
701 // If this is not the last use of the source register, _copy_ it to the top
702 // of the stack.
703 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
704 }
705
706 // Change from the pseudo instruction to the concrete instruction.
707 MI->RemoveOperand(1); // Drop the source operand.
708 MI->RemoveOperand(0); // Drop the destination operand.
709 MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
710}
711
712
713//===----------------------------------------------------------------------===//
714// Define tables of various ways to map pseudo instructions
715//
716
717// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
718static const TableEntry ForwardST0Table[] = {
719 { X86::ADD_Fp32 , X86::ADD_FST0r },
720 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000721 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722 { X86::DIV_Fp32 , X86::DIV_FST0r },
723 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000724 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 { X86::MUL_Fp32 , X86::MUL_FST0r },
726 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000727 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000728 { X86::SUB_Fp32 , X86::SUB_FST0r },
729 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000730 { X86::SUB_Fp80 , X86::SUB_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000731};
732
733// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
734static const TableEntry ReverseST0Table[] = {
735 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
736 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000737 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 { X86::DIV_Fp32 , X86::DIVR_FST0r },
739 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000740 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
742 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000743 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 { X86::SUB_Fp32 , X86::SUBR_FST0r },
745 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000746 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747};
748
749// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
750static const TableEntry ForwardSTiTable[] = {
751 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
752 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000753 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
755 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000756 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
758 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000759 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000760 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
761 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000762 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763};
764
765// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
766static const TableEntry ReverseSTiTable[] = {
767 { X86::ADD_Fp32 , X86::ADD_FrST0 },
768 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000769 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770 { X86::DIV_Fp32 , X86::DIV_FrST0 },
771 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000772 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 { X86::MUL_Fp32 , X86::MUL_FrST0 },
774 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000775 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 { X86::SUB_Fp32 , X86::SUB_FrST0 },
777 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000778 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779};
780
781
782/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
783/// instructions which need to be simplified and possibly transformed.
784///
785/// Result: ST(0) = fsub ST(0), ST(i)
786/// ST(i) = fsub ST(0), ST(i)
787/// ST(0) = fsubr ST(0), ST(i)
788/// ST(i) = fsubr ST(0), ST(i)
789///
790void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
791 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
792 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
793 MachineInstr *MI = I;
794
795 unsigned NumOperands = MI->getInstrDescriptor()->numOperands;
796 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
797 unsigned Dest = getFPReg(MI->getOperand(0));
798 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
799 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
800 bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
801 bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
802
803 unsigned TOS = getStackEntry(0);
804
805 // One of our operands must be on the top of the stack. If neither is yet, we
806 // need to move one.
807 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
808 // We can choose to move either operand to the top of the stack. If one of
809 // the operands is killed by this instruction, we want that one so that we
810 // can update right on top of the old version.
811 if (KillsOp0) {
812 moveToTop(Op0, I); // Move dead operand to TOS.
813 TOS = Op0;
814 } else if (KillsOp1) {
815 moveToTop(Op1, I);
816 TOS = Op1;
817 } else {
818 // All of the operands are live after this instruction executes, so we
819 // cannot update on top of any operand. Because of this, we must
820 // duplicate one of the stack elements to the top. It doesn't matter
821 // which one we pick.
822 //
823 duplicateToTop(Op0, Dest, I);
824 Op0 = TOS = Dest;
825 KillsOp0 = true;
826 }
827 } else if (!KillsOp0 && !KillsOp1) {
828 // If we DO have one of our operands at the top of the stack, but we don't
829 // have a dead operand, we must duplicate one of the operands to a new slot
830 // on the stack.
831 duplicateToTop(Op0, Dest, I);
832 Op0 = TOS = Dest;
833 KillsOp0 = true;
834 }
835
836 // Now we know that one of our operands is on the top of the stack, and at
837 // least one of our operands is killed by this instruction.
838 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
839 "Stack conditions not set up right!");
840
841 // We decide which form to use based on what is on the top of the stack, and
842 // which operand is killed by this instruction.
843 const TableEntry *InstTable;
844 bool isForward = TOS == Op0;
845 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
846 if (updateST0) {
847 if (isForward)
848 InstTable = ForwardST0Table;
849 else
850 InstTable = ReverseST0Table;
851 } else {
852 if (isForward)
853 InstTable = ForwardSTiTable;
854 else
855 InstTable = ReverseSTiTable;
856 }
857
Owen Anderson1636de92007-09-07 04:06:50 +0000858 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
859 MI->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
861
862 // NotTOS - The register which is not on the top of stack...
863 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
864
865 // Replace the old instruction with a new instruction
866 MBB->remove(I++);
867 I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
868
869 // If both operands are killed, pop one off of the stack in addition to
870 // overwriting the other one.
871 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
872 assert(!updateST0 && "Should have updated other operand!");
873 popStackAfter(I); // Pop the top of stack
874 }
875
876 // Update stack information so that we know the destination register is now on
877 // the stack.
878 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
879 assert(UpdatedSlot < StackTop && Dest < 7);
880 Stack[UpdatedSlot] = Dest;
881 RegMap[Dest] = UpdatedSlot;
882 delete MI; // Remove the old instruction
883}
884
885/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
886/// register arguments and no explicit destinations.
887///
888void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
889 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
890 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
891 MachineInstr *MI = I;
892
893 unsigned NumOperands = MI->getInstrDescriptor()->numOperands;
894 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
895 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
896 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
897 bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
898 bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
899
900 // Make sure the first operand is on the top of stack, the other one can be
901 // anywhere.
902 moveToTop(Op0, I);
903
904 // Change from the pseudo instruction to the concrete instruction.
905 MI->getOperand(0).setReg(getSTReg(Op1));
906 MI->RemoveOperand(1);
907 MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
908
909 // If any of the operands are killed by this instruction, free them.
910 if (KillsOp0) freeStackSlotAfter(I, Op0);
911 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
912}
913
914/// handleCondMovFP - Handle two address conditional move instructions. These
915/// instructions move a st(i) register to st(0) iff a condition is true. These
916/// instructions require that the first operand is at the top of the stack, but
917/// otherwise don't modify the stack at all.
918void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
919 MachineInstr *MI = I;
920
921 unsigned Op0 = getFPReg(MI->getOperand(0));
922 unsigned Op1 = getFPReg(MI->getOperand(2));
923 bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
924
925 // The first operand *must* be on the top of the stack.
926 moveToTop(Op0, I);
927
928 // Change the second operand to the stack register that the operand is in.
929 // Change from the pseudo instruction to the concrete instruction.
930 MI->RemoveOperand(0);
931 MI->RemoveOperand(1);
932 MI->getOperand(0).setReg(getSTReg(Op1));
933 MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
934
935 // If we kill the second operand, make sure to pop it from the stack.
936 if (Op0 != Op1 && KillsOp1) {
937 // Get this value off of the register stack.
938 freeStackSlotAfter(I, Op1);
939 }
940}
941
942
943/// handleSpecialFP - Handle special instructions which behave unlike other
944/// floating point instructions. This is primarily intended for use by pseudo
945/// instructions.
946///
947void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
948 MachineInstr *MI = I;
949 switch (MI->getOpcode()) {
950 default: assert(0 && "Unknown SpecialFP instruction!");
951 case X86::FpGETRESULT32: // Appears immediately after a call returning FP type!
952 case X86::FpGETRESULT64: // Appears immediately after a call returning FP type!
Dale Johannesen19f781d2007-08-06 21:31:06 +0000953 case X86::FpGETRESULT80:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 assert(StackTop == 0 && "Stack should be empty after a call!");
955 pushReg(getFPReg(MI->getOperand(0)));
956 break;
957 case X86::FpSETRESULT32:
958 case X86::FpSETRESULT64:
Dale Johannesen19f781d2007-08-06 21:31:06 +0000959 case X86::FpSETRESULT80:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000960 assert(StackTop == 1 && "Stack should have one element on it to return!");
961 --StackTop; // "Forget" we have something on the top of stack!
962 break;
963 case X86::MOV_Fp3232:
964 case X86::MOV_Fp3264:
965 case X86::MOV_Fp6432:
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000966 case X86::MOV_Fp6464:
967 case X86::MOV_Fp3280:
968 case X86::MOV_Fp6480:
969 case X86::MOV_Fp8032:
970 case X86::MOV_Fp8064:
971 case X86::MOV_Fp8080: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972 unsigned SrcReg = getFPReg(MI->getOperand(1));
973 unsigned DestReg = getFPReg(MI->getOperand(0));
974
975 if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
976 // If the input operand is killed, we can just change the owner of the
977 // incoming stack slot into the result.
978 unsigned Slot = getSlot(SrcReg);
979 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
980 Stack[Slot] = DestReg;
981 RegMap[DestReg] = Slot;
982
983 } else {
984 // For FMOV we just duplicate the specified value to a new stack slot.
985 // This could be made better, but would require substantial changes.
986 duplicateToTop(SrcReg, DestReg, I);
987 }
988 break;
989 }
990 }
991
992 I = MBB->erase(I); // Remove the pseudo instruction
993 --I;
994}