blob: 0f37c5fb7e64728c4e463e5728bd89d39760991b [file] [log] [blame]
Chris Lattner369bbeb2001-07-20 19:17:55 +00001//===- Expressions.cpp - Expression Analysis Utilities ----------------------=//
2//
3// This file defines a package of expression analysis utilties:
4//
5// ClassifyExpression: Analyze an expression to determine the complexity of the
6// expression, and which other variables it depends on.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Analysis/Expressions.h"
Chris Lattner968ddc92002-04-08 20:18:09 +000011#include "llvm/ConstantHandling.h"
Chris Lattnere590ff22002-03-26 17:55:33 +000012#include "llvm/Function.h"
Chris Lattner369bbeb2001-07-20 19:17:55 +000013#include "llvm/BasicBlock.h"
Chris Lattner697954c2002-01-20 22:54:45 +000014#include <iostream>
Chris Lattner369bbeb2001-07-20 19:17:55 +000015
Chris Lattner19f31f22001-07-21 19:07:19 +000016using namespace analysis;
17
Chris Lattner69f8ce02001-09-11 04:27:34 +000018ExprType::ExprType(Value *Val) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000019 if (Val)
Chris Lattnere9bb2df2001-12-03 22:26:30 +000020 if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000021 Offset = CPI;
22 Var = 0;
23 ExprTy = Constant;
24 Scale = 0;
25 return;
26 }
27
28 Var = Val; Offset = 0;
29 ExprTy = Var ? Linear : Constant;
Chris Lattner69f8ce02001-09-11 04:27:34 +000030 Scale = 0;
31}
32
Chris Lattnere9bb2df2001-12-03 22:26:30 +000033ExprType::ExprType(const ConstantInt *scale, Value *var,
34 const ConstantInt *offset) {
Chris Lattner50020222001-11-26 18:53:07 +000035 Scale = var ? scale : 0; Var = var; Offset = offset;
Chris Lattner69f8ce02001-09-11 04:27:34 +000036 ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant);
37 if (Scale && Scale->equalsInt(0)) { // Simplify 0*Var + const
38 Scale = 0; Var = 0;
39 ExprTy = Constant;
40 }
41}
42
43
44const Type *ExprType::getExprType(const Type *Default) const {
45 if (Offset) return Offset->getType();
46 if (Scale) return Scale->getType();
47 return Var ? Var->getType() : Default;
48}
49
50
51
Chris Lattner19f31f22001-07-21 19:07:19 +000052class DefVal {
Chris Lattnere9bb2df2001-12-03 22:26:30 +000053 const ConstantInt * const Val;
Chris Lattner19f31f22001-07-21 19:07:19 +000054 const Type * const Ty;
55protected:
Chris Lattnere9bb2df2001-12-03 22:26:30 +000056 inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {}
Chris Lattner19f31f22001-07-21 19:07:19 +000057public:
58 inline const Type *getType() const { return Ty; }
Chris Lattnere9bb2df2001-12-03 22:26:30 +000059 inline const ConstantInt *getVal() const { return Val; }
60 inline operator const ConstantInt * () const { return Val; }
61 inline const ConstantInt *operator->() const { return Val; }
Chris Lattner19f31f22001-07-21 19:07:19 +000062};
63
64struct DefZero : public DefVal {
Chris Lattnere9bb2df2001-12-03 22:26:30 +000065 inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
66 inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {}
Chris Lattner19f31f22001-07-21 19:07:19 +000067};
68
69struct DefOne : public DefVal {
Chris Lattnere9bb2df2001-12-03 22:26:30 +000070 inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
Chris Lattner19f31f22001-07-21 19:07:19 +000071};
72
Chris Lattner369bbeb2001-07-20 19:17:55 +000073
Chris Lattner9b534262002-03-14 22:35:50 +000074// getUnsignedConstant - Return a constant value of the specified type. If the
75// constant value is not valid for the specified type, return null. This cannot
76// happen for values in the range of 0 to 127.
77//
Chris Lattnere9bb2df2001-12-03 22:26:30 +000078static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) {
Chris Lattner793d6782001-07-25 22:47:32 +000079 if (Ty->isPointerType()) Ty = Type::ULongTy;
Chris Lattner9b534262002-03-14 22:35:50 +000080 if (Ty->isSigned()) {
81 // If this value is not a valid unsigned value for this type, return null!
82 if (V > 127 && ((int64_t)V < 0 ||
83 !ConstantSInt::isValueValidForType(Ty, (int64_t)V)))
84 return 0;
85 return ConstantSInt::get(Ty, V);
86 } else {
87 // If this value is not a valid unsigned value for this type, return null!
88 if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V))
89 return 0;
90 return ConstantUInt::get(Ty, V);
91 }
Chris Lattner369bbeb2001-07-20 19:17:55 +000092}
93
Chris Lattner369bbeb2001-07-20 19:17:55 +000094// Add - Helper function to make later code simpler. Basically it just adds
95// the two constants together, inserts the result into the constant pool, and
96// returns it. Of course life is not simple, and this is no exception. Factors
97// that complicate matters:
98// 1. Either argument may be null. If this is the case, the null argument is
99// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
100// 2. Types get in the way. We want to do arithmetic operations without
101// regard for the underlying types. It is assumed that the constants are
102// integral constants. The new value takes the type of the left argument.
103// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
104// is false, a null return value indicates a value of 0.
105//
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000106static const ConstantInt *Add(const ConstantInt *Arg1,
107 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000108 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000109 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000110
111 // Actually perform the computation now!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000112 Constant *Result = *Arg1 + *Arg2;
Chris Lattner19f31f22001-07-21 19:07:19 +0000113 assert(Result && Result->getType() == Arg1->getType() &&
114 "Couldn't perform addition!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000115 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000116
117 // Check to see if the result is one of the special cases that we want to
118 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000119 if (ResultI->equalsInt(DefOne ? 1 : 0))
120 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000121
Chris Lattner369bbeb2001-07-20 19:17:55 +0000122 return ResultI;
123}
124
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000125inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000126 if (L == 0) return R;
127 if (R == 0) return L;
Chris Lattner8e195e02001-09-07 16:31:04 +0000128 return Add(L, R, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000129}
Chris Lattner369bbeb2001-07-20 19:17:55 +0000130
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000131inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000132 if (L == 0) {
133 if (R == 0)
Chris Lattner69f8ce02001-09-11 04:27:34 +0000134 return getUnsignedConstant(2, L.getType());
Chris Lattner19f31f22001-07-21 19:07:19 +0000135 else
Chris Lattner69f8ce02001-09-11 04:27:34 +0000136 return Add(getUnsignedConstant(1, L.getType()), R, true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000137 } else if (R == 0) {
Chris Lattner69f8ce02001-09-11 04:27:34 +0000138 return Add(L, getUnsignedConstant(1, L.getType()), true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000139 }
Chris Lattner8e195e02001-09-07 16:31:04 +0000140 return Add(L, R, true);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000141}
142
143
Chris Lattner19f31f22001-07-21 19:07:19 +0000144// Mul - Helper function to make later code simpler. Basically it just
Chris Lattner369bbeb2001-07-20 19:17:55 +0000145// multiplies the two constants together, inserts the result into the constant
146// pool, and returns it. Of course life is not simple, and this is no
147// exception. Factors that complicate matters:
148// 1. Either argument may be null. If this is the case, the null argument is
149// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
150// 2. Types get in the way. We want to do arithmetic operations without
151// regard for the underlying types. It is assumed that the constants are
152// integral constants.
153// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
154// is false, a null return value indicates a value of 0.
155//
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000156inline const ConstantInt *Mul(const ConstantInt *Arg1,
157 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000158 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000159 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000160
161 // Actually perform the computation now!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000162 Constant *Result = *Arg1 * *Arg2;
Chris Lattner19f31f22001-07-21 19:07:19 +0000163 assert(Result && Result->getType() == Arg1->getType() &&
Chris Lattner50020222001-11-26 18:53:07 +0000164 "Couldn't perform multiplication!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000165 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000166
167 // Check to see if the result is one of the special cases that we want to
168 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000169 if (ResultI->equalsInt(DefOne ? 1 : 0))
170 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000171
Chris Lattner369bbeb2001-07-20 19:17:55 +0000172 return ResultI;
173}
174
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000175inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000176 if (L == 0 || R == 0) return 0;
Chris Lattner8e195e02001-09-07 16:31:04 +0000177 return Mul(L, R, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000178}
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000179inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) {
Chris Lattner69f8ce02001-09-11 04:27:34 +0000180 if (R == 0) return getUnsignedConstant(0, L.getType());
Chris Lattner19f31f22001-07-21 19:07:19 +0000181 if (L == 0) return R->equalsInt(1) ? 0 : R.getVal();
Chris Lattner50020222001-11-26 18:53:07 +0000182 return Mul(L, R, true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000183}
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000184inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) {
Chris Lattner50020222001-11-26 18:53:07 +0000185 if (L == 0 || R == 0) return L.getVal();
186 return Mul(R, L, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000187}
188
Chris Lattner69f8ce02001-09-11 04:27:34 +0000189// handleAddition - Add two expressions together, creating a new expression that
190// represents the composite of the two...
191//
192static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) {
193 const Type *Ty = V->getType();
194 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000195 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner69f8ce02001-09-11 04:27:34 +0000196
197 switch (Left.ExprTy) {
198 case ExprType::Constant:
Chris Lattner50020222001-11-26 18:53:07 +0000199 return ExprType(Right.Scale, Right.Var,
200 DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000201 case ExprType::Linear: // RHS side must be linear or scaled
202 case ExprType::ScaledLinear: // RHS must be scaled
203 if (Left.Var != Right.Var) // Are they the same variables?
Chris Lattner50020222001-11-26 18:53:07 +0000204 return V; // if not, we don't know anything!
Chris Lattner69f8ce02001-09-11 04:27:34 +0000205
206 return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty),
Chris Lattner50020222001-11-26 18:53:07 +0000207 Right.Var,
Chris Lattner69f8ce02001-09-11 04:27:34 +0000208 DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty));
209 default:
210 assert(0 && "Dont' know how to handle this case!");
211 return ExprType();
212 }
213}
214
215// negate - Negate the value of the specified expression...
216//
217static inline ExprType negate(const ExprType &E, Value *V) {
218 const Type *Ty = V->getType();
Chris Lattnercb05e782002-03-11 20:50:24 +0000219 ConstantInt *Zero = getUnsignedConstant(0, Ty);
220 ConstantInt *One = getUnsignedConstant(1, Ty);
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000221 ConstantInt *NegOne = cast<ConstantInt>(*Zero - *One);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000222 if (NegOne == 0) return V; // Couldn't subtract values...
223
224 return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var,
225 DefZero(E.Offset, Ty) * NegOne);
226}
Chris Lattner19f31f22001-07-21 19:07:19 +0000227
Chris Lattner369bbeb2001-07-20 19:17:55 +0000228
229// ClassifyExpression: Analyze an expression to determine the complexity of the
230// expression, and which other values it depends on.
231//
232// Note that this analysis cannot get into infinite loops because it treats PHI
233// nodes as being an unknown linear expression.
234//
Chris Lattner19f31f22001-07-21 19:07:19 +0000235ExprType analysis::ClassifyExpression(Value *Expr) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000236 assert(Expr != 0 && "Can't classify a null expression!");
Chris Lattner0da29c82001-12-05 19:38:29 +0000237 if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy)
238 return Expr; // FIXME: Can't handle FP expressions
239
Chris Lattner369bbeb2001-07-20 19:17:55 +0000240 switch (Expr->getValueType()) {
241 case Value::InstructionVal: break; // Instruction... hmmm... investigate.
242 case Value::TypeVal: case Value::BasicBlockVal:
Chris Lattnere590ff22002-03-26 17:55:33 +0000243 case Value::FunctionVal: case Value::ModuleVal: default:
Chris Lattner481fafe2001-12-13 00:45:06 +0000244 //assert(0 && "Unexpected expression type to classify!");
Chris Lattner697954c2002-01-20 22:54:45 +0000245 std::cerr << "Bizarre thing to expr classify: " << Expr << "\n";
Chris Lattner481fafe2001-12-13 00:45:06 +0000246 return Expr;
Chris Lattnere590ff22002-03-26 17:55:33 +0000247 case Value::GlobalVariableVal: // Global Variable & Function argument:
248 case Value::FunctionArgumentVal: // nothing known, return variable itself
Chris Lattner369bbeb2001-07-20 19:17:55 +0000249 return Expr;
250 case Value::ConstantVal: // Constant value, just return constant
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000251 Constant *CPV = cast<Constant>(Expr);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000252 if (CPV->getType()->isIntegral()) { // It's an integral constant!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000253 ConstantInt *CPI = cast<ConstantInt>(Expr);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000254 return ExprType(CPI->equalsInt(0) ? 0 : CPI);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000255 }
256 return Expr;
257 }
258
Chris Lattner9636a912001-10-01 16:18:37 +0000259 Instruction *I = cast<Instruction>(Expr);
Chris Lattner19f31f22001-07-21 19:07:19 +0000260 const Type *Ty = I->getType();
Chris Lattner369bbeb2001-07-20 19:17:55 +0000261
262 switch (I->getOpcode()) { // Handle each instruction type seperately
263 case Instruction::Add: {
Chris Lattner19f31f22001-07-21 19:07:19 +0000264 ExprType Left (ClassifyExpression(I->getOperand(0)));
265 ExprType Right(ClassifyExpression(I->getOperand(1)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000266 return handleAddition(Left, Right, I);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000267 } // end case Instruction::Add
268
Chris Lattner69f8ce02001-09-11 04:27:34 +0000269 case Instruction::Sub: {
270 ExprType Left (ClassifyExpression(I->getOperand(0)));
271 ExprType Right(ClassifyExpression(I->getOperand(1)));
Chris Lattner50020222001-11-26 18:53:07 +0000272 ExprType RightNeg = negate(Right, I);
273 if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale)
274 return I; // Could not negate value...
275 return handleAddition(Left, RightNeg, I);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000276 } // end case Instruction::Sub
277
Chris Lattner369bbeb2001-07-20 19:17:55 +0000278 case Instruction::Shl: {
Chris Lattner19f31f22001-07-21 19:07:19 +0000279 ExprType Right(ClassifyExpression(I->getOperand(1)));
280 if (Right.ExprTy != ExprType::Constant) break;
281 ExprType Left(ClassifyExpression(I->getOperand(0)));
282 if (Right.Offset == 0) return Left; // shl x, 0 = x
283 assert(Right.Offset->getType() == Type::UByteTy &&
Chris Lattner369bbeb2001-07-20 19:17:55 +0000284 "Shift amount must always be a unsigned byte!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000285 uint64_t ShiftAmount = ((ConstantUInt*)Right.Offset)->getValue();
286 ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty);
Chris Lattner9b534262002-03-14 22:35:50 +0000287
288 // We don't know how to classify it if they are shifting by more than what
289 // is reasonable. In most cases, the result will be zero, but there is one
290 // class of cases where it is not, so we cannot optimize without checking
291 // for it. The case is when you are shifting a signed value by 1 less than
292 // the number of bits in the value. For example:
293 // %X = shl sbyte %Y, ubyte 7
294 // will try to form an sbyte multiplier of 128, which will give a null
295 // multiplier, even though the result is not 0. Until we can check for this
296 // case, be conservative. TODO.
297 //
298 if (Multiplier == 0)
299 return Expr;
300
Chris Lattner8e195e02001-09-07 16:31:04 +0000301 return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var,
302 DefZero(Left.Offset, Ty) * Multiplier);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000303 } // end case Instruction::Shl
304
Chris Lattner19f31f22001-07-21 19:07:19 +0000305 case Instruction::Mul: {
306 ExprType Left (ClassifyExpression(I->getOperand(0)));
307 ExprType Right(ClassifyExpression(I->getOperand(1)));
308 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000309 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner19f31f22001-07-21 19:07:19 +0000310
311 if (Left.ExprTy != ExprType::Constant) // RHS must be > constant
312 return I; // Quadratic eqn! :(
313
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000314 const ConstantInt *Offs = Left.Offset;
Chris Lattner19f31f22001-07-21 19:07:19 +0000315 if (Offs == 0) return ExprType();
Chris Lattner8e195e02001-09-07 16:31:04 +0000316 return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var,
317 DefZero(Right.Offset, Ty) * Offs);
Chris Lattner19f31f22001-07-21 19:07:19 +0000318 } // end case Instruction::Mul
319
320 case Instruction::Cast: {
321 ExprType Src(ClassifyExpression(I->getOperand(0)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000322 const Type *DestTy = I->getType();
323 if (DestTy->isPointerType())
324 DestTy = Type::ULongTy; // Pointer types are represented as ulong
Chris Lattner19f31f22001-07-21 19:07:19 +0000325
Chris Lattner882572a2001-11-26 16:53:50 +0000326 /*
327 if (!Src.getExprType(0)->isLosslesslyConvertableTo(DestTy)) {
328 if (Src.ExprTy != ExprType::Constant)
329 return I; // Converting cast, and not a constant value...
330 }
331 */
Chris Lattner19f31f22001-07-21 19:07:19 +0000332
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000333 const ConstantInt *Offset = Src.Offset;
334 const ConstantInt *Scale = Src.Scale;
Chris Lattner882572a2001-11-26 16:53:50 +0000335 if (Offset) {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000336 const Constant *CPV = ConstantFoldCastInstruction(Offset, DestTy);
Chris Lattner882572a2001-11-26 16:53:50 +0000337 if (!CPV) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000338 Offset = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000339 }
340 if (Scale) {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000341 const Constant *CPV = ConstantFoldCastInstruction(Scale, DestTy);
Chris Lattner882572a2001-11-26 16:53:50 +0000342 if (!CPV) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000343 Scale = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000344 }
345 return ExprType(Scale, Src.Var, Offset);
Chris Lattner19f31f22001-07-21 19:07:19 +0000346 } // end case Instruction::Cast
Chris Lattner793d6782001-07-25 22:47:32 +0000347 // TODO: Handle SUB, SHR?
Chris Lattner369bbeb2001-07-20 19:17:55 +0000348
349 } // end switch
350
351 // Otherwise, I don't know anything about this value!
Chris Lattner19f31f22001-07-21 19:07:19 +0000352 return I;
Chris Lattner369bbeb2001-07-20 19:17:55 +0000353}