blob: 1ae2fe6910f2588941d4ccf89baba82009d4b62b [file] [log] [blame]
Torok Edwin969f28d2009-07-14 18:44:28 +00001//===- PointerTracking.cpp - Pointer Bounds Tracking ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements tracking of pointer bounds.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/Analysis/ConstantFolding.h"
14#include "llvm/Analysis/Dominators.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/Analysis/PointerTracking.h"
17#include "llvm/Analysis/ScalarEvolution.h"
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/Constants.h"
20#include "llvm/Module.h"
21#include "llvm/Value.h"
22#include "llvm/Support/CallSite.h"
23#include "llvm/Support/InstIterator.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Target/TargetData.h"
26
27namespace llvm {
28char PointerTracking::ID=0;
29PointerTracking::PointerTracking() : FunctionPass(&ID) {}
30
31bool PointerTracking::runOnFunction(Function &F) {
32 predCache.clear();
33 assert(analyzing.empty());
34 FF = &F;
35 TD = getAnalysisIfAvailable<TargetData>();
36 SE = &getAnalysis<ScalarEvolution>();
37 LI = &getAnalysis<LoopInfo>();
38 DT = &getAnalysis<DominatorTree>();
39 return false;
40}
41
42void PointerTracking::getAnalysisUsage(AnalysisUsage &AU) const {
43 AU.addRequiredTransitive<DominatorTree>();
44 AU.addRequiredTransitive<LoopInfo>();
45 AU.addRequiredTransitive<ScalarEvolution>();
46 AU.setPreservesAll();
47}
48
49bool PointerTracking::doInitialization(Module &M) {
50 const Type *PTy = PointerType::getUnqual(Type::Int8Ty);
51
52 // Find calloc(i64, i64) or calloc(i32, i32).
53 callocFunc = M.getFunction("calloc");
54 if (callocFunc) {
55 const FunctionType *Ty = callocFunc->getFunctionType();
56
57 std::vector<const Type*> args, args2;
58 args.push_back(Type::Int64Ty);
59 args.push_back(Type::Int64Ty);
60 args2.push_back(Type::Int32Ty);
61 args2.push_back(Type::Int32Ty);
62 const FunctionType *Calloc1Type =
63 FunctionType::get(PTy, args, false);
64 const FunctionType *Calloc2Type =
65 FunctionType::get(PTy, args2, false);
66 if (Ty != Calloc1Type && Ty != Calloc2Type)
67 callocFunc = 0; // Give up
68 }
69
70 // Find realloc(i8*, i64) or realloc(i8*, i32).
71 reallocFunc = M.getFunction("realloc");
72 if (reallocFunc) {
73 const FunctionType *Ty = reallocFunc->getFunctionType();
74 std::vector<const Type*> args, args2;
75 args.push_back(PTy);
76 args.push_back(Type::Int64Ty);
77 args2.push_back(PTy);
78 args2.push_back(Type::Int32Ty);
79
80 const FunctionType *Realloc1Type =
81 FunctionType::get(PTy, args, false);
82 const FunctionType *Realloc2Type =
83 FunctionType::get(PTy, args2, false);
84 if (Ty != Realloc1Type && Ty != Realloc2Type)
85 reallocFunc = 0; // Give up
86 }
87 return false;
88}
89
90// Calculates the number of elements allocated for pointer P,
91// the type of the element is stored in Ty.
92const SCEV *PointerTracking::computeAllocationCount(Value *P,
93 const Type *&Ty) const {
94 Value *V = P->stripPointerCasts();
95 if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
96 Value *arraySize = AI->getArraySize();
97 Ty = AI->getAllocatedType();
98 // arraySize elements of type Ty.
99 return SE->getSCEV(arraySize);
100 }
101
102 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
103 if (GV->hasDefinitiveInitializer()) {
104 Constant *C = GV->getInitializer();
105 if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
106 Ty = ATy->getElementType();
107 return SE->getConstant(Type::Int32Ty, ATy->getNumElements());
108 }
109 }
110 Ty = GV->getType();
111 return SE->getConstant(Type::Int32Ty, 1);
112 //TODO: implement more tracking for globals
113 }
114
115 if (CallInst *CI = dyn_cast<CallInst>(V)) {
116 CallSite CS(CI);
117 Function *F = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
118 const Loop *L = LI->getLoopFor(CI->getParent());
119 if (F == callocFunc) {
120 Ty = Type::Int8Ty;
121 // calloc allocates arg0*arg1 bytes.
122 return SE->getSCEVAtScope(SE->getMulExpr(SE->getSCEV(CS.getArgument(0)),
123 SE->getSCEV(CS.getArgument(1))),
124 L);
125 } else if (F == reallocFunc) {
126 Ty = Type::Int8Ty;
127 // realloc allocates arg1 bytes.
128 return SE->getSCEVAtScope(CS.getArgument(1), L);
129 }
130 }
131
132 return SE->getCouldNotCompute();
133}
134
135// Calculates the number of elements of type Ty allocated for P.
136const SCEV *PointerTracking::computeAllocationCountForType(Value *P,
137 const Type *Ty)
138 const {
139 const Type *elementTy;
140 const SCEV *Count = computeAllocationCount(P, elementTy);
141 if (isa<SCEVCouldNotCompute>(Count))
142 return Count;
143 if (elementTy == Ty)
144 return Count;
145
146 if (!TD) // need TargetData from this point forward
147 return SE->getCouldNotCompute();
148
149 uint64_t elementSize = TD->getTypeAllocSize(elementTy);
150 uint64_t wantSize = TD->getTypeAllocSize(Ty);
151 if (elementSize == wantSize)
152 return Count;
153 if (elementSize % wantSize) //fractional counts not possible
154 return SE->getCouldNotCompute();
155 return SE->getMulExpr(Count, SE->getConstant(Count->getType(),
156 elementSize/wantSize));
157}
158
159const SCEV *PointerTracking::getAllocationElementCount(Value *V) const {
160 // We only deal with pointers.
161 const PointerType *PTy = cast<PointerType>(V->getType());
162 return computeAllocationCountForType(V, PTy->getElementType());
163}
164
165const SCEV *PointerTracking::getAllocationSizeInBytes(Value *V) const {
166 return computeAllocationCountForType(V, Type::Int8Ty);
167}
168
169// Helper for isLoopGuardedBy that checks the swapped and inverted predicate too
170enum SolverResult PointerTracking::isLoopGuardedBy(const Loop *L,
171 Predicate Pred,
172 const SCEV *A,
173 const SCEV *B) const {
174 if (SE->isLoopGuardedByCond(L, Pred, A, B))
175 return AlwaysTrue;
176 Pred = ICmpInst::getSwappedPredicate(Pred);
177 if (SE->isLoopGuardedByCond(L, Pred, B, A))
178 return AlwaysTrue;
179
180 Pred = ICmpInst::getInversePredicate(Pred);
181 if (SE->isLoopGuardedByCond(L, Pred, B, A))
182 return AlwaysFalse;
183 Pred = ICmpInst::getSwappedPredicate(Pred);
184 if (SE->isLoopGuardedByCond(L, Pred, A, B))
185 return AlwaysTrue;
186 return Unknown;
187}
188
189enum SolverResult PointerTracking::checkLimits(const SCEV *Offset,
190 const SCEV *Limit,
191 BasicBlock *BB)
192{
193 //FIXME: merge implementation
194 return Unknown;
195}
196
197void PointerTracking::getPointerOffset(Value *Pointer, Value *&Base,
198 const SCEV *&Limit,
199 const SCEV *&Offset) const
200{
201 Pointer = Pointer->stripPointerCasts();
202 Base = Pointer->getUnderlyingObject();
203 Limit = getAllocationSizeInBytes(Base);
204 if (isa<SCEVCouldNotCompute>(Limit)) {
205 Base = 0;
206 Offset = Limit;
207 return;
208 }
209
210 Offset = SE->getMinusSCEV(SE->getSCEV(Pointer), SE->getSCEV(Base));
211 if (isa<SCEVCouldNotCompute>(Offset)) {
212 Base = 0;
213 Limit = Offset;
214 }
215}
216
217void PointerTracking::print(raw_ostream &OS, const Module* M) const {
218 // Calling some PT methods may cause caches to be updated, however
219 // this should be safe for the same reason its safe for SCEV.
220 PointerTracking &PT = *const_cast<PointerTracking*>(this);
221 for (inst_iterator I=inst_begin(*FF), E=inst_end(*FF); I != E; ++I) {
222 if (!isa<PointerType>(I->getType()))
223 continue;
224 Value *Base;
225 const SCEV *Limit, *Offset;
226 getPointerOffset(&*I, Base, Limit, Offset);
227 if (!Base)
228 continue;
229
230 if (Base == &*I) {
231 const SCEV *S = getAllocationElementCount(Base);
232 OS << *Base << " ==> " << *S << " elements, ";
233 OS << *Limit << " bytes allocated\n";
234 continue;
235 }
236 OS << &*I << " -- base: " << *Base;
237 OS << " offset: " << *Offset;
238
239 enum SolverResult res = PT.checkLimits(Offset, Limit, I->getParent());
240 switch (res) {
241 case AlwaysTrue:
242 OS << " always safe\n";
243 break;
244 case AlwaysFalse:
245 OS << " always unsafe\n";
246 break;
247 case Unknown:
248 OS << " <<unknown>>\n";
249 break;
250 }
251 }
252}
253
254void PointerTracking::print(std::ostream &o, const Module* M) const {
255 raw_os_ostream OS(o);
256 print(OS, M);
257}
258
259static RegisterPass<PointerTracking> X("pointertracking",
260 "Track pointer bounds", false, true);
261}