blob: b15ea762bfdce652182b01da7f3881f61cd340ec [file] [log] [blame]
Tom Stellardf98f2ce2012-12-11 21:25:42 +00001//===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15
16class InstR600 <bits<11> inst, dag outs, dag ins, string asm, list<dag> pattern,
17 InstrItinClass itin>
18 : AMDGPUInst <outs, ins, asm, pattern> {
19
20 field bits<64> Inst;
21 bit Trig = 0;
22 bit Op3 = 0;
23 bit isVector = 0;
24 bits<2> FlagOperandIdx = 0;
25 bit Op1 = 0;
26 bit Op2 = 0;
27 bit HasNativeOperands = 0;
28
29 bits<11> op_code = inst;
30 //let Inst = inst;
31 let Namespace = "AMDGPU";
32 let OutOperandList = outs;
33 let InOperandList = ins;
34 let AsmString = asm;
35 let Pattern = pattern;
36 let Itinerary = itin;
37
38 let TSFlags{4} = Trig;
39 let TSFlags{5} = Op3;
40
41 // Vector instructions are instructions that must fill all slots in an
42 // instruction group
43 let TSFlags{6} = isVector;
44 let TSFlags{8-7} = FlagOperandIdx;
45 let TSFlags{9} = HasNativeOperands;
46 let TSFlags{10} = Op1;
47 let TSFlags{11} = Op2;
48}
49
50class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
51 AMDGPUInst <outs, ins, asm, pattern> {
52 field bits<64> Inst;
53
54 let Namespace = "AMDGPU";
55}
56
57def MEMxi : Operand<iPTR> {
58 let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
59 let PrintMethod = "printMemOperand";
60}
61
62def MEMrr : Operand<iPTR> {
63 let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
64}
65
66// Operands for non-registers
67
68class InstFlag<string PM = "printOperand", int Default = 0>
69 : OperandWithDefaultOps <i32, (ops (i32 Default))> {
70 let PrintMethod = PM;
71}
72
73def LITERAL : InstFlag<"printLiteral">;
74
75def WRITE : InstFlag <"printWrite", 1>;
76def OMOD : InstFlag <"printOMOD">;
77def REL : InstFlag <"printRel">;
78def CLAMP : InstFlag <"printClamp">;
79def NEG : InstFlag <"printNeg">;
80def ABS : InstFlag <"printAbs">;
81def UEM : InstFlag <"printUpdateExecMask">;
82def UP : InstFlag <"printUpdatePred">;
83
84// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
85// Once we start using the packetizer in this backend we should have this
86// default to 0.
87def LAST : InstFlag<"printLast", 1>;
88
89def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
90def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
91def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
92
93class R600ALU_Word0 {
94 field bits<32> Word0;
95
96 bits<11> src0;
97 bits<1> src0_neg;
98 bits<1> src0_rel;
99 bits<11> src1;
100 bits<1> src1_rel;
101 bits<1> src1_neg;
102 bits<3> index_mode = 0;
103 bits<2> pred_sel;
104 bits<1> last;
105
106 bits<9> src0_sel = src0{8-0};
107 bits<2> src0_chan = src0{10-9};
108 bits<9> src1_sel = src1{8-0};
109 bits<2> src1_chan = src1{10-9};
110
111 let Word0{8-0} = src0_sel;
112 let Word0{9} = src0_rel;
113 let Word0{11-10} = src0_chan;
114 let Word0{12} = src0_neg;
115 let Word0{21-13} = src1_sel;
116 let Word0{22} = src1_rel;
117 let Word0{24-23} = src1_chan;
118 let Word0{25} = src1_neg;
119 let Word0{28-26} = index_mode;
120 let Word0{30-29} = pred_sel;
121 let Word0{31} = last;
122}
123
124class R600ALU_Word1 {
125 field bits<32> Word1;
126
127 bits<11> dst;
128 bits<3> bank_swizzle = 0;
129 bits<1> dst_rel;
130 bits<1> clamp;
131
132 bits<7> dst_sel = dst{6-0};
133 bits<2> dst_chan = dst{10-9};
134
135 let Word1{20-18} = bank_swizzle;
136 let Word1{27-21} = dst_sel;
137 let Word1{28} = dst_rel;
138 let Word1{30-29} = dst_chan;
139 let Word1{31} = clamp;
140}
141
142class R600ALU_Word1_OP2 <bits<11> alu_inst> : R600ALU_Word1{
143
144 bits<1> src0_abs;
145 bits<1> src1_abs;
146 bits<1> update_exec_mask;
147 bits<1> update_pred;
148 bits<1> write;
149 bits<2> omod;
150
151 let Word1{0} = src0_abs;
152 let Word1{1} = src1_abs;
153 let Word1{2} = update_exec_mask;
154 let Word1{3} = update_pred;
155 let Word1{4} = write;
156 let Word1{6-5} = omod;
157 let Word1{17-7} = alu_inst;
158}
159
160class R600ALU_Word1_OP3 <bits<5> alu_inst> : R600ALU_Word1{
161
162 bits<11> src2;
163 bits<1> src2_rel;
164 bits<1> src2_neg;
165
166 bits<9> src2_sel = src2{8-0};
167 bits<2> src2_chan = src2{10-9};
168
169 let Word1{8-0} = src2_sel;
170 let Word1{9} = src2_rel;
171 let Word1{11-10} = src2_chan;
172 let Word1{12} = src2_neg;
173 let Word1{17-13} = alu_inst;
174}
175
176/*
177XXX: R600 subtarget uses a slightly different encoding than the other
178subtargets. We currently handle this in R600MCCodeEmitter, but we may
179want to use these instruction classes in the future.
180
181class R600ALU_Word1_OP2_r600 : R600ALU_Word1_OP2 {
182
183 bits<1> fog_merge;
184 bits<10> alu_inst;
185
186 let Inst{37} = fog_merge;
187 let Inst{39-38} = omod;
188 let Inst{49-40} = alu_inst;
189}
190
191class R600ALU_Word1_OP2_r700 : R600ALU_Word1_OP2 {
192
193 bits<11> alu_inst;
194
195 let Inst{38-37} = omod;
196 let Inst{49-39} = alu_inst;
197}
198*/
199
200def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
201 (ops PRED_SEL_OFF)>;
202
203
204let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
205
206// Class for instructions with only one source register.
207// If you add new ins to this instruction, make sure they are listed before
208// $literal, because the backend currently assumes that the last operand is
209// a literal. Also be sure to update the enum R600Op1OperandIndex::ROI in
210// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
211// and R600InstrInfo::getOperandIdx().
212class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
213 InstrItinClass itin = AnyALU> :
214 InstR600 <0,
215 (outs R600_Reg32:$dst),
216 (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
217 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs,
218 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
219 !strconcat(opName,
220 "$clamp $dst$write$dst_rel$omod, "
221 "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
222 "$literal $pred_sel$last"),
223 pattern,
224 itin>,
225 R600ALU_Word0,
226 R600ALU_Word1_OP2 <inst> {
227
228 let src1 = 0;
229 let src1_rel = 0;
230 let src1_neg = 0;
231 let src1_abs = 0;
232 let update_exec_mask = 0;
233 let update_pred = 0;
234 let HasNativeOperands = 1;
235 let Op1 = 1;
236 let DisableEncoding = "$literal";
237
238 let Inst{31-0} = Word0;
239 let Inst{63-32} = Word1;
240}
241
242class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
243 InstrItinClass itin = AnyALU> :
244 R600_1OP <inst, opName,
245 [(set R600_Reg32:$dst, (node R600_Reg32:$src0))]
246>;
247
248// If you add our change the operands for R600_2OP instructions, you must
249// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
250// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
251class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
252 InstrItinClass itin = AnyALU> :
253 InstR600 <inst,
254 (outs R600_Reg32:$dst),
255 (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
256 OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
257 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs,
258 R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs,
259 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
260 !strconcat(opName,
261 "$clamp $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
262 "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
263 "$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
264 "$literal $pred_sel$last"),
265 pattern,
266 itin>,
267 R600ALU_Word0,
268 R600ALU_Word1_OP2 <inst> {
269
270 let HasNativeOperands = 1;
271 let Op2 = 1;
272 let DisableEncoding = "$literal";
273
274 let Inst{31-0} = Word0;
275 let Inst{63-32} = Word1;
276}
277
278class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
279 InstrItinClass itim = AnyALU> :
280 R600_2OP <inst, opName,
281 [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
282 R600_Reg32:$src1))]
283>;
284
285// If you add our change the operands for R600_3OP instructions, you must
286// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
287// R600InstrInfo::buildDefaultInstruction(), and
288// R600InstrInfo::getOperandIdx().
289class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
290 InstrItinClass itin = AnyALU> :
291 InstR600 <0,
292 (outs R600_Reg32:$dst),
293 (ins REL:$dst_rel, CLAMP:$clamp,
294 R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel,
295 R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel,
296 R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel,
297 LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
298 !strconcat(opName, "$clamp $dst$dst_rel, "
299 "$src0_neg$src0$src0_rel, "
300 "$src1_neg$src1$src1_rel, "
301 "$src2_neg$src2$src2_rel, "
302 "$literal $pred_sel$last"),
303 pattern,
304 itin>,
305 R600ALU_Word0,
306 R600ALU_Word1_OP3<inst>{
307
308 let HasNativeOperands = 1;
309 let DisableEncoding = "$literal";
310 let Op3 = 1;
311
312 let Inst{31-0} = Word0;
313 let Inst{63-32} = Word1;
314}
315
316class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
317 InstrItinClass itin = VecALU> :
318 InstR600 <inst,
319 (outs R600_Reg32:$dst),
320 ins,
321 asm,
322 pattern,
323 itin>;
324
325class R600_TEX <bits<11> inst, string opName, list<dag> pattern,
326 InstrItinClass itin = AnyALU> :
327 InstR600 <inst,
328 (outs R600_Reg128:$dst),
329 (ins R600_Reg128:$src0, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
330 !strconcat(opName, "$dst, $src0, $resourceId, $samplerId, $textureTarget"),
331 pattern,
332 itin>{
333 let Inst {10-0} = inst;
334 }
335
336} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
337
338def TEX_SHADOW : PatLeaf<
339 (imm),
340 [{uint32_t TType = (uint32_t)N->getZExtValue();
Tom Stellardfe13e702012-12-21 20:11:59 +0000341 return (TType >= 6 && TType <= 8) || (TType >= 11 && TType <= 13);
Tom Stellardf98f2ce2012-12-11 21:25:42 +0000342 }]
343>;
344
Tom Stellard97ff6182013-01-21 15:40:48 +0000345def TEX_RECT : PatLeaf<
346 (imm),
347 [{uint32_t TType = (uint32_t)N->getZExtValue();
348 return TType == 5;
349 }]
350>;
351
Tom Stellardf98f2ce2012-12-11 21:25:42 +0000352class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
353 dag ins, string asm, list<dag> pattern> :
354 InstR600ISA <outs, ins, asm, pattern> {
355 bits<7> RW_GPR;
356 bits<7> INDEX_GPR;
357
358 bits<2> RIM;
359 bits<2> TYPE;
360 bits<1> RW_REL;
361 bits<2> ELEM_SIZE;
362
363 bits<12> ARRAY_SIZE;
364 bits<4> COMP_MASK;
365 bits<4> BURST_COUNT;
366 bits<1> VPM;
367 bits<1> eop;
368 bits<1> MARK;
369 bits<1> BARRIER;
370
371 // CF_ALLOC_EXPORT_WORD0_RAT
372 let Inst{3-0} = rat_id;
373 let Inst{9-4} = rat_inst;
374 let Inst{10} = 0; // Reserved
375 let Inst{12-11} = RIM;
376 let Inst{14-13} = TYPE;
377 let Inst{21-15} = RW_GPR;
378 let Inst{22} = RW_REL;
379 let Inst{29-23} = INDEX_GPR;
380 let Inst{31-30} = ELEM_SIZE;
381
382 // CF_ALLOC_EXPORT_WORD1_BUF
383 let Inst{43-32} = ARRAY_SIZE;
384 let Inst{47-44} = COMP_MASK;
385 let Inst{51-48} = BURST_COUNT;
386 let Inst{52} = VPM;
387 let Inst{53} = eop;
388 let Inst{61-54} = cf_inst;
389 let Inst{62} = MARK;
390 let Inst{63} = BARRIER;
391}
392
393class LoadParamFrag <PatFrag load_type> : PatFrag <
394 (ops node:$ptr), (load_type node:$ptr),
395 [{ return isParamLoad(dyn_cast<LoadSDNode>(N)); }]
396>;
397
398def load_param : LoadParamFrag<load>;
399def load_param_zexti8 : LoadParamFrag<zextloadi8>;
400def load_param_zexti16 : LoadParamFrag<zextloadi16>;
401
402def isR600 : Predicate<"Subtarget.device()"
403 "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
404def isR700 : Predicate<"Subtarget.device()"
405 "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
406 "Subtarget.device()->getDeviceFlag()"
407 ">= OCL_DEVICE_RV710">;
408def isEG : Predicate<
409 "Subtarget.device()->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
410 "Subtarget.device()->getGeneration() < AMDGPUDeviceInfo::HD7XXX && "
411 "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
412
413def isCayman : Predicate<"Subtarget.device()"
414 "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
415def isEGorCayman : Predicate<"Subtarget.device()"
416 "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
417 "|| Subtarget.device()->getGeneration() =="
418 "AMDGPUDeviceInfo::HD6XXX">;
419
420def isR600toCayman : Predicate<
421 "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
422
423//===----------------------------------------------------------------------===//
424// Interpolation Instructions
425//===----------------------------------------------------------------------===//
426
427def INTERP: SDNode<"AMDGPUISD::INTERP",
428 SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisInt<1>, SDTCisInt<2>]>
429 >;
430
431def INTERP_P0: SDNode<"AMDGPUISD::INTERP_P0",
432 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisInt<1>]>
433 >;
434
435let usesCustomInserter = 1 in {
436def input_perspective : AMDGPUShaderInst <
437 (outs R600_Reg128:$dst),
438 (ins i32imm:$src0, i32imm:$src1),
439 "input_perspective $src0 $src1 : dst",
440 [(set R600_Reg128:$dst, (INTERP (i32 imm:$src0), (i32 imm:$src1)))]>;
441} // End usesCustomInserter = 1
442
443def input_constant : AMDGPUShaderInst <
444 (outs R600_Reg128:$dst),
445 (ins i32imm:$src),
446 "input_perspective $src : dst",
447 [(set R600_Reg128:$dst, (INTERP_P0 (i32 imm:$src)))]>;
448
449
450
451def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
452 let bank_swizzle = 5;
453}
454
455def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
456 let bank_swizzle = 5;
457}
458
459def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
460
461//===----------------------------------------------------------------------===//
462// Export Instructions
463//===----------------------------------------------------------------------===//
464
465def ExportType : SDTypeProfile<0, 5, [SDTCisFP<0>, SDTCisInt<1>]>;
466
467def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
468 [SDNPHasChain, SDNPSideEffect]>;
469
470class ExportWord0 {
471 field bits<32> Word0;
472
473 bits<13> arraybase;
474 bits<2> type;
475 bits<7> gpr;
476 bits<2> elem_size;
477
478 let Word0{12-0} = arraybase;
479 let Word0{14-13} = type;
480 let Word0{21-15} = gpr;
481 let Word0{22} = 0; // RW_REL
482 let Word0{29-23} = 0; // INDEX_GPR
483 let Word0{31-30} = elem_size;
484}
485
486class ExportSwzWord1 {
487 field bits<32> Word1;
488
489 bits<3> sw_x;
490 bits<3> sw_y;
491 bits<3> sw_z;
492 bits<3> sw_w;
493 bits<1> eop;
494 bits<8> inst;
495
496 let Word1{2-0} = sw_x;
497 let Word1{5-3} = sw_y;
498 let Word1{8-6} = sw_z;
499 let Word1{11-9} = sw_w;
500}
501
502class ExportBufWord1 {
503 field bits<32> Word1;
504
505 bits<12> arraySize;
506 bits<4> compMask;
507 bits<1> eop;
508 bits<8> inst;
509
510 let Word1{11-0} = arraySize;
511 let Word1{15-12} = compMask;
512}
513
514multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
515 def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
516 (ExportInst
517 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sel_x),
518 0, 61, 0, 7, 7, 7, cf_inst, 0)
519 >;
520
521 def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
522 (ExportInst
523 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sel_x),
524 0, 61, 7, 0, 7, 7, cf_inst, 0)
525 >;
526
527 def : Pat<(int_R600_store_pixel_dummy),
528 (ExportInst
529 (v4f32 (IMPLICIT_DEF)), 0, 0, 7, 7, 7, 7, cf_inst, 0)
530 >;
531
532 def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 0),
533 (i32 imm:$type), (i32 imm:$arraybase), (i32 imm)),
534 (ExportInst R600_Reg128:$src, imm:$type, imm:$arraybase,
535 0, 1, 2, 3, cf_inst, 0)
536 >;
537}
538
539multiclass SteamOutputExportPattern<Instruction ExportInst,
540 bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
541// Stream0
542 def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 1),
543 (i32 imm:$type), (i32 imm:$arraybase), (i32 imm:$mask)),
544 (ExportInst R600_Reg128:$src, imm:$type, imm:$arraybase,
545 4095, imm:$mask, buf0inst, 0)>;
546// Stream1
547 def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 2),
548 (i32 imm:$type), (i32 imm:$arraybase), (i32 imm:$mask)),
549 (ExportInst R600_Reg128:$src, imm:$type, imm:$arraybase,
550 4095, imm:$mask, buf1inst, 0)>;
551// Stream2
552 def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 3),
553 (i32 imm:$type), (i32 imm:$arraybase), (i32 imm:$mask)),
554 (ExportInst R600_Reg128:$src, imm:$type, imm:$arraybase,
555 4095, imm:$mask, buf2inst, 0)>;
556// Stream3
557 def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 4),
558 (i32 imm:$type), (i32 imm:$arraybase), (i32 imm:$mask)),
559 (ExportInst R600_Reg128:$src, imm:$type, imm:$arraybase,
560 4095, imm:$mask, buf3inst, 0)>;
561}
562
563let isTerminator = 1, usesCustomInserter = 1 in {
564
565class ExportSwzInst : InstR600ISA<(
566 outs),
567 (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
568 i32imm:$sw_x, i32imm:$sw_y, i32imm:$sw_z, i32imm:$sw_w, i32imm:$inst,
569 i32imm:$eop),
570 !strconcat("EXPORT", " $gpr"),
571 []>, ExportWord0, ExportSwzWord1 {
572 let elem_size = 3;
573 let Inst{31-0} = Word0;
574 let Inst{63-32} = Word1;
575}
576
577} // End isTerminator = 1, usesCustomInserter = 1
578
579class ExportBufInst : InstR600ISA<(
580 outs),
581 (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
582 i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
583 !strconcat("EXPORT", " $gpr"),
584 []>, ExportWord0, ExportBufWord1 {
585 let elem_size = 0;
586 let Inst{31-0} = Word0;
587 let Inst{63-32} = Word1;
588}
589
590let Predicates = [isR600toCayman] in {
591
592//===----------------------------------------------------------------------===//
593// Common Instructions R600, R700, Evergreen, Cayman
594//===----------------------------------------------------------------------===//
595
596def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
597// Non-IEEE MUL: 0 * anything = 0
598def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
599def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
600def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
601def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
602
603// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
604// so some of the instruction names don't match the asm string.
605// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
606def SETE : R600_2OP <
607 0x08, "SETE",
608 [(set R600_Reg32:$dst,
609 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
610 COND_EQ))]
611>;
612
613def SGT : R600_2OP <
614 0x09, "SETGT",
615 [(set R600_Reg32:$dst,
616 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
617 COND_GT))]
618>;
619
620def SGE : R600_2OP <
621 0xA, "SETGE",
622 [(set R600_Reg32:$dst,
623 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
624 COND_GE))]
625>;
626
627def SNE : R600_2OP <
628 0xB, "SETNE",
629 [(set R600_Reg32:$dst,
630 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
631 COND_NE))]
632>;
633
634def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
635def TRUNC : R600_1OP_Helper <0x11, "TRUNC", int_AMDGPU_trunc>;
636def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
637def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
638def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
639
640def MOV : R600_1OP <0x19, "MOV", []>;
641
642let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
643
644class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
645 (outs R600_Reg32:$dst),
646 (ins immType:$imm),
647 "",
648 []
649>;
650
651} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
652
653def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
654def : Pat <
655 (imm:$val),
656 (MOV_IMM_I32 imm:$val)
657>;
658
659def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
660def : Pat <
661 (fpimm:$val),
662 (MOV_IMM_F32 fpimm:$val)
663>;
664
665def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
666def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
667def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
668def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
669
670let hasSideEffects = 1 in {
671
672def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
673
674} // end hasSideEffects
675
676def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
677def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
678def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
679def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
680def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
681def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
682def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>;
683def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>;
Tom Stellardeef0d5a2012-12-21 20:12:01 +0000684def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>;
Tom Stellardf98f2ce2012-12-11 21:25:42 +0000685def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>;
686
687def SETE_INT : R600_2OP <
688 0x3A, "SETE_INT",
689 [(set (i32 R600_Reg32:$dst),
690 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
691>;
692
693def SETGT_INT : R600_2OP <
694 0x3B, "SGT_INT",
695 [(set (i32 R600_Reg32:$dst),
696 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
697>;
698
699def SETGE_INT : R600_2OP <
700 0x3C, "SETGE_INT",
701 [(set (i32 R600_Reg32:$dst),
702 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
703>;
704
705def SETNE_INT : R600_2OP <
706 0x3D, "SETNE_INT",
707 [(set (i32 R600_Reg32:$dst),
708 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
709>;
710
711def SETGT_UINT : R600_2OP <
712 0x3E, "SETGT_UINT",
713 [(set (i32 R600_Reg32:$dst),
714 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
715>;
716
717def SETGE_UINT : R600_2OP <
718 0x3F, "SETGE_UINT",
719 [(set (i32 R600_Reg32:$dst),
720 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
721>;
722
723def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
724def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
725def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
726def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
727
728def CNDE_INT : R600_3OP <
729 0x1C, "CNDE_INT",
730 [(set (i32 R600_Reg32:$dst),
731 (selectcc (i32 R600_Reg32:$src0), 0,
732 (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
733 COND_EQ))]
734>;
735
736def CNDGE_INT : R600_3OP <
737 0x1E, "CNDGE_INT",
738 [(set (i32 R600_Reg32:$dst),
739 (selectcc (i32 R600_Reg32:$src0), 0,
740 (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
741 COND_GE))]
742>;
743
744def CNDGT_INT : R600_3OP <
745 0x1D, "CNDGT_INT",
746 [(set (i32 R600_Reg32:$dst),
747 (selectcc (i32 R600_Reg32:$src0), 0,
748 (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
749 COND_GT))]
750>;
751
752//===----------------------------------------------------------------------===//
753// Texture instructions
754//===----------------------------------------------------------------------===//
755
756def TEX_LD : R600_TEX <
757 0x03, "TEX_LD",
758 [(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
759> {
760let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $resourceId, $samplerId, $textureTarget";
761let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget);
762}
763
764def TEX_GET_TEXTURE_RESINFO : R600_TEX <
765 0x04, "TEX_GET_TEXTURE_RESINFO",
766 [(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
767>;
768
769def TEX_GET_GRADIENTS_H : R600_TEX <
770 0x07, "TEX_GET_GRADIENTS_H",
771 [(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
772>;
773
774def TEX_GET_GRADIENTS_V : R600_TEX <
775 0x08, "TEX_GET_GRADIENTS_V",
776 [(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
777>;
778
779def TEX_SET_GRADIENTS_H : R600_TEX <
780 0x0B, "TEX_SET_GRADIENTS_H",
781 []
782>;
783
784def TEX_SET_GRADIENTS_V : R600_TEX <
785 0x0C, "TEX_SET_GRADIENTS_V",
786 []
787>;
788
789def TEX_SAMPLE : R600_TEX <
790 0x10, "TEX_SAMPLE",
791 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
792>;
793
794def TEX_SAMPLE_C : R600_TEX <
795 0x18, "TEX_SAMPLE_C",
796 [(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
797>;
798
799def TEX_SAMPLE_L : R600_TEX <
800 0x11, "TEX_SAMPLE_L",
801 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
802>;
803
804def TEX_SAMPLE_C_L : R600_TEX <
805 0x19, "TEX_SAMPLE_C_L",
806 [(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
807>;
808
809def TEX_SAMPLE_LB : R600_TEX <
810 0x12, "TEX_SAMPLE_LB",
811 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0,imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
812>;
813
814def TEX_SAMPLE_C_LB : R600_TEX <
815 0x1A, "TEX_SAMPLE_C_LB",
816 [(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
817>;
818
819def TEX_SAMPLE_G : R600_TEX <
820 0x14, "TEX_SAMPLE_G",
821 []
822>;
823
824def TEX_SAMPLE_C_G : R600_TEX <
825 0x1C, "TEX_SAMPLE_C_G",
826 []
827>;
828
829//===----------------------------------------------------------------------===//
830// Helper classes for common instructions
831//===----------------------------------------------------------------------===//
832
833class MUL_LIT_Common <bits<5> inst> : R600_3OP <
834 inst, "MUL_LIT",
835 []
836>;
837
838class MULADD_Common <bits<5> inst> : R600_3OP <
839 inst, "MULADD",
840 [(set (f32 R600_Reg32:$dst),
841 (IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
842>;
843
844class CNDE_Common <bits<5> inst> : R600_3OP <
845 inst, "CNDE",
846 [(set R600_Reg32:$dst,
847 (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
848 (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
849 COND_EQ))]
850>;
851
852class CNDGT_Common <bits<5> inst> : R600_3OP <
853 inst, "CNDGT",
854 [(set R600_Reg32:$dst,
855 (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
856 (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
857 COND_GT))]
858>;
859
860class CNDGE_Common <bits<5> inst> : R600_3OP <
861 inst, "CNDGE",
862 [(set R600_Reg32:$dst,
863 (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
864 (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
865 COND_GE))]
866>;
867
868multiclass DOT4_Common <bits<11> inst> {
869
870 def _pseudo : R600_REDUCTION <inst,
871 (ins R600_Reg128:$src0, R600_Reg128:$src1),
872 "DOT4 $dst $src0, $src1",
873 [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
874 >;
875
876 def _real : R600_2OP <inst, "DOT4", []>;
877}
878
879let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
880multiclass CUBE_Common <bits<11> inst> {
881
882 def _pseudo : InstR600 <
883 inst,
884 (outs R600_Reg128:$dst),
885 (ins R600_Reg128:$src),
886 "CUBE $dst $src",
887 [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
888 VecALU
889 > {
890 let isPseudo = 1;
891 }
892
893 def _real : R600_2OP <inst, "CUBE", []>;
894}
895} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
896
897class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
898 inst, "EXP_IEEE", fexp2
899>;
900
901class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
902 inst, "FLT_TO_INT", fp_to_sint
903>;
904
905class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
906 inst, "INT_TO_FLT", sint_to_fp
907>;
908
909class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
910 inst, "FLT_TO_UINT", fp_to_uint
911>;
912
913class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
914 inst, "UINT_TO_FLT", uint_to_fp
915>;
916
917class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
918 inst, "LOG_CLAMPED", []
919>;
920
921class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
922 inst, "LOG_IEEE", flog2
923>;
924
925class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
926class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
927class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
928class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
929 inst, "MULHI_INT", mulhs
930>;
931class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
932 inst, "MULHI", mulhu
933>;
934class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
935 inst, "MULLO_INT", mul
936>;
937class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []>;
938
939class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
940 inst, "RECIP_CLAMPED", []
941>;
942
943class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
944 inst, "RECIP_IEEE", [(set R600_Reg32:$dst, (fdiv FP_ONE, R600_Reg32:$src0))]
945>;
946
947class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
948 inst, "RECIP_UINT", AMDGPUurecip
949>;
950
951class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
952 inst, "RECIPSQRT_CLAMPED", int_AMDGPU_rsq
953>;
954
955class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP <
956 inst, "RECIPSQRT_IEEE", []
957>;
958
959class SIN_Common <bits<11> inst> : R600_1OP <
960 inst, "SIN", []>{
961 let Trig = 1;
962}
963
964class COS_Common <bits<11> inst> : R600_1OP <
965 inst, "COS", []> {
966 let Trig = 1;
967}
968
969//===----------------------------------------------------------------------===//
970// Helper patterns for complex intrinsics
971//===----------------------------------------------------------------------===//
972
973multiclass DIV_Common <InstR600 recip_ieee> {
974def : Pat<
975 (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
976 (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
977>;
978
979def : Pat<
980 (fdiv R600_Reg32:$src0, R600_Reg32:$src1),
981 (MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
982>;
983}
984
985class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
986 (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
987 (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
988>;
989
990//===----------------------------------------------------------------------===//
991// R600 / R700 Instructions
992//===----------------------------------------------------------------------===//
993
994let Predicates = [isR600] in {
995
996 def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
997 def MULADD_r600 : MULADD_Common<0x10>;
998 def CNDE_r600 : CNDE_Common<0x18>;
999 def CNDGT_r600 : CNDGT_Common<0x19>;
1000 def CNDGE_r600 : CNDGE_Common<0x1A>;
1001 defm DOT4_r600 : DOT4_Common<0x50>;
1002 defm CUBE_r600 : CUBE_Common<0x52>;
1003 def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
1004 def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
1005 def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
1006 def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
1007 def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
1008 def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
1009 def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
1010 def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
1011 def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
1012 def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
1013 def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
1014 def SIN_r600 : SIN_Common<0x6E>;
1015 def COS_r600 : COS_Common<0x6F>;
1016 def ASHR_r600 : ASHR_Common<0x70>;
1017 def LSHR_r600 : LSHR_Common<0x71>;
1018 def LSHL_r600 : LSHL_Common<0x72>;
1019 def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
1020 def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
1021 def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
1022 def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
1023 def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
1024
1025 defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
1026 def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
1027
1028 def : Pat<(fsqrt R600_Reg32:$src),
1029 (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_r600 R600_Reg32:$src))>;
1030
1031 def R600_ExportSwz : ExportSwzInst {
1032 let Word1{20-17} = 1; // BURST_COUNT
1033 let Word1{21} = eop;
1034 let Word1{22} = 1; // VALID_PIXEL_MODE
1035 let Word1{30-23} = inst;
1036 let Word1{31} = 1; // BARRIER
1037 }
1038 defm : ExportPattern<R600_ExportSwz, 39>;
1039
1040 def R600_ExportBuf : ExportBufInst {
1041 let Word1{20-17} = 1; // BURST_COUNT
1042 let Word1{21} = eop;
1043 let Word1{22} = 1; // VALID_PIXEL_MODE
1044 let Word1{30-23} = inst;
1045 let Word1{31} = 1; // BARRIER
1046 }
1047 defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
1048}
1049
1050// Helper pattern for normalizing inputs to triginomic instructions for R700+
1051// cards.
1052class COS_PAT <InstR600 trig> : Pat<
1053 (fcos R600_Reg32:$src),
1054 (trig (MUL (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
1055>;
1056
1057class SIN_PAT <InstR600 trig> : Pat<
1058 (fsin R600_Reg32:$src),
1059 (trig (MUL (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
1060>;
1061
1062//===----------------------------------------------------------------------===//
1063// R700 Only instructions
1064//===----------------------------------------------------------------------===//
1065
1066let Predicates = [isR700] in {
1067 def SIN_r700 : SIN_Common<0x6E>;
1068 def COS_r700 : COS_Common<0x6F>;
1069
1070 // R700 normalizes inputs to SIN/COS the same as EG
1071 def : SIN_PAT <SIN_r700>;
1072 def : COS_PAT <COS_r700>;
1073}
1074
1075//===----------------------------------------------------------------------===//
1076// Evergreen Only instructions
1077//===----------------------------------------------------------------------===//
1078
1079let Predicates = [isEG] in {
1080
1081def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
1082defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
1083
1084def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
1085def MULHI_INT_eg : MULHI_INT_Common<0x90>;
1086def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
1087def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
1088def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
1089def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
1090def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
1091def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
1092def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
1093def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
1094def SIN_eg : SIN_Common<0x8D>;
1095def COS_eg : COS_Common<0x8E>;
1096
1097def : SIN_PAT <SIN_eg>;
1098def : COS_PAT <COS_eg>;
1099def : Pat<(fsqrt R600_Reg32:$src),
1100 (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_eg R600_Reg32:$src))>;
1101} // End Predicates = [isEG]
1102
1103//===----------------------------------------------------------------------===//
1104// Evergreen / Cayman Instructions
1105//===----------------------------------------------------------------------===//
1106
1107let Predicates = [isEGorCayman] in {
1108
1109 // BFE_UINT - bit_extract, an optimization for mask and shift
1110 // Src0 = Input
1111 // Src1 = Offset
1112 // Src2 = Width
1113 //
1114 // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
1115 //
1116 // Example Usage:
1117 // (Offset, Width)
1118 //
1119 // (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
1120 // (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
1121 // (16,8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
1122 // (24,8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
1123 def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
1124 [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
1125 R600_Reg32:$src1,
1126 R600_Reg32:$src2))],
1127 VecALU
1128 >;
1129
1130 def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
1131 [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
1132 R600_Reg32:$src2))],
1133 VecALU
1134 >;
1135
1136 def MULADD_eg : MULADD_Common<0x14>;
1137 def ASHR_eg : ASHR_Common<0x15>;
1138 def LSHR_eg : LSHR_Common<0x16>;
1139 def LSHL_eg : LSHL_Common<0x17>;
1140 def CNDE_eg : CNDE_Common<0x19>;
1141 def CNDGT_eg : CNDGT_Common<0x1A>;
1142 def CNDGE_eg : CNDGE_Common<0x1B>;
1143 def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
1144 def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
1145 defm DOT4_eg : DOT4_Common<0xBE>;
1146 defm CUBE_eg : CUBE_Common<0xC0>;
1147
1148 def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
1149
1150 def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
1151 let Pattern = [];
1152 }
1153
1154 def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
1155
1156 def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
1157 let Pattern = [];
1158 }
1159
1160 def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
1161
1162 // TRUNC is used for the FLT_TO_INT instructions to work around a
1163 // perceived problem where the rounding modes are applied differently
1164 // depending on the instruction and the slot they are in.
1165 // See:
1166 // https://bugs.freedesktop.org/show_bug.cgi?id=50232
1167 // Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
1168 //
1169 // XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
1170 // which do not need to be truncated since the fp values are 0.0f or 1.0f.
1171 // We should look into handling these cases separately.
1172 def : Pat<(fp_to_sint R600_Reg32:$src0),
1173 (FLT_TO_INT_eg (TRUNC R600_Reg32:$src0))>;
1174
1175 def : Pat<(fp_to_uint R600_Reg32:$src0),
1176 (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src0))>;
1177
1178 def EG_ExportSwz : ExportSwzInst {
1179 let Word1{19-16} = 1; // BURST_COUNT
1180 let Word1{20} = 1; // VALID_PIXEL_MODE
1181 let Word1{21} = eop;
1182 let Word1{29-22} = inst;
1183 let Word1{30} = 0; // MARK
1184 let Word1{31} = 1; // BARRIER
1185 }
1186 defm : ExportPattern<EG_ExportSwz, 83>;
1187
1188 def EG_ExportBuf : ExportBufInst {
1189 let Word1{19-16} = 1; // BURST_COUNT
1190 let Word1{20} = 1; // VALID_PIXEL_MODE
1191 let Word1{21} = eop;
1192 let Word1{29-22} = inst;
1193 let Word1{30} = 0; // MARK
1194 let Word1{31} = 1; // BARRIER
1195 }
1196 defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
1197
1198//===----------------------------------------------------------------------===//
1199// Memory read/write instructions
1200//===----------------------------------------------------------------------===//
1201let usesCustomInserter = 1 in {
1202
1203class RAT_WRITE_CACHELESS_eg <dag ins, bits<4> comp_mask, string name,
1204 list<dag> pattern>
1205 : EG_CF_RAT <0x57, 0x2, 0, (outs), ins,
1206 !strconcat(name, " $rw_gpr, $index_gpr, $eop"), pattern> {
1207 let RIM = 0;
1208 // XXX: Have a separate instruction for non-indexed writes.
1209 let TYPE = 1;
1210 let RW_REL = 0;
1211 let ELEM_SIZE = 0;
1212
1213 let ARRAY_SIZE = 0;
1214 let COMP_MASK = comp_mask;
1215 let BURST_COUNT = 0;
1216 let VPM = 0;
1217 let MARK = 0;
1218 let BARRIER = 1;
1219}
1220
1221} // End usesCustomInserter = 1
1222
1223// 32-bit store
1224def RAT_WRITE_CACHELESS_32_eg : RAT_WRITE_CACHELESS_eg <
1225 (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1226 0x1, "RAT_WRITE_CACHELESS_32_eg",
1227 [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]
1228>;
1229
1230//128-bit store
1231def RAT_WRITE_CACHELESS_128_eg : RAT_WRITE_CACHELESS_eg <
1232 (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1233 0xf, "RAT_WRITE_CACHELESS_128",
1234 [(global_store (v4i32 R600_Reg128:$rw_gpr), R600_TReg32_X:$index_gpr)]
1235>;
1236
1237class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
1238 : InstR600ISA <outs, (ins MEMxi:$ptr), name#" $dst, $ptr", pattern> {
1239
1240 // Operands
1241 bits<7> DST_GPR;
1242 bits<7> SRC_GPR;
1243
1244 // Static fields
1245 bits<5> VC_INST = 0;
1246 bits<2> FETCH_TYPE = 2;
1247 bits<1> FETCH_WHOLE_QUAD = 0;
1248 bits<8> BUFFER_ID = buffer_id;
1249 bits<1> SRC_REL = 0;
1250 // XXX: We can infer this field based on the SRC_GPR. This would allow us
1251 // to store vertex addresses in any channel, not just X.
1252 bits<2> SRC_SEL_X = 0;
1253 bits<6> MEGA_FETCH_COUNT;
1254 bits<1> DST_REL = 0;
1255 bits<3> DST_SEL_X;
1256 bits<3> DST_SEL_Y;
1257 bits<3> DST_SEL_Z;
1258 bits<3> DST_SEL_W;
1259 // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
1260 // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
1261 // however, based on my testing if USE_CONST_FIELDS is set, then all
1262 // these fields need to be set to 0.
1263 bits<1> USE_CONST_FIELDS = 0;
1264 bits<6> DATA_FORMAT;
1265 bits<2> NUM_FORMAT_ALL = 1;
1266 bits<1> FORMAT_COMP_ALL = 0;
1267 bits<1> SRF_MODE_ALL = 0;
1268
1269 // LLVM can only encode 64-bit instructions, so these fields are manually
1270 // encoded in R600CodeEmitter
1271 //
1272 // bits<16> OFFSET;
1273 // bits<2> ENDIAN_SWAP = 0;
1274 // bits<1> CONST_BUF_NO_STRIDE = 0;
1275 // bits<1> MEGA_FETCH = 0;
1276 // bits<1> ALT_CONST = 0;
1277 // bits<2> BUFFER_INDEX_MODE = 0;
1278
1279 // VTX_WORD0
1280 let Inst{4-0} = VC_INST;
1281 let Inst{6-5} = FETCH_TYPE;
1282 let Inst{7} = FETCH_WHOLE_QUAD;
1283 let Inst{15-8} = BUFFER_ID;
1284 let Inst{22-16} = SRC_GPR;
1285 let Inst{23} = SRC_REL;
1286 let Inst{25-24} = SRC_SEL_X;
1287 let Inst{31-26} = MEGA_FETCH_COUNT;
1288
1289 // VTX_WORD1_GPR
1290 let Inst{38-32} = DST_GPR;
1291 let Inst{39} = DST_REL;
1292 let Inst{40} = 0; // Reserved
1293 let Inst{43-41} = DST_SEL_X;
1294 let Inst{46-44} = DST_SEL_Y;
1295 let Inst{49-47} = DST_SEL_Z;
1296 let Inst{52-50} = DST_SEL_W;
1297 let Inst{53} = USE_CONST_FIELDS;
1298 let Inst{59-54} = DATA_FORMAT;
1299 let Inst{61-60} = NUM_FORMAT_ALL;
1300 let Inst{62} = FORMAT_COMP_ALL;
1301 let Inst{63} = SRF_MODE_ALL;
1302
1303 // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1304 // is done in R600CodeEmitter
1305 //
1306 // Inst{79-64} = OFFSET;
1307 // Inst{81-80} = ENDIAN_SWAP;
1308 // Inst{82} = CONST_BUF_NO_STRIDE;
1309 // Inst{83} = MEGA_FETCH;
1310 // Inst{84} = ALT_CONST;
1311 // Inst{86-85} = BUFFER_INDEX_MODE;
1312 // Inst{95-86} = 0; Reserved
1313
1314 // VTX_WORD3 (Padding)
1315 //
1316 // Inst{127-96} = 0;
1317}
1318
1319class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
1320 : VTX_READ_eg <"VTX_READ_8", buffer_id, (outs R600_TReg32_X:$dst),
1321 pattern> {
1322
1323 let MEGA_FETCH_COUNT = 1;
1324 let DST_SEL_X = 0;
1325 let DST_SEL_Y = 7; // Masked
1326 let DST_SEL_Z = 7; // Masked
1327 let DST_SEL_W = 7; // Masked
1328 let DATA_FORMAT = 1; // FMT_8
1329}
1330
1331class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
1332 : VTX_READ_eg <"VTX_READ_16", buffer_id, (outs R600_TReg32_X:$dst),
1333 pattern> {
1334 let MEGA_FETCH_COUNT = 2;
1335 let DST_SEL_X = 0;
1336 let DST_SEL_Y = 7; // Masked
1337 let DST_SEL_Z = 7; // Masked
1338 let DST_SEL_W = 7; // Masked
1339 let DATA_FORMAT = 5; // FMT_16
1340
1341}
1342
1343class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1344 : VTX_READ_eg <"VTX_READ_32", buffer_id, (outs R600_TReg32_X:$dst),
1345 pattern> {
1346
1347 let MEGA_FETCH_COUNT = 4;
1348 let DST_SEL_X = 0;
1349 let DST_SEL_Y = 7; // Masked
1350 let DST_SEL_Z = 7; // Masked
1351 let DST_SEL_W = 7; // Masked
1352 let DATA_FORMAT = 0xD; // COLOR_32
1353
1354 // This is not really necessary, but there were some GPU hangs that appeared
1355 // to be caused by ALU instructions in the next instruction group that wrote
1356 // to the $ptr registers of the VTX_READ.
1357 // e.g.
1358 // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
1359 // %T2_X<def> = MOV %ZERO
1360 //Adding this constraint prevents this from happening.
1361 let Constraints = "$ptr.ptr = $dst";
1362}
1363
1364class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1365 : VTX_READ_eg <"VTX_READ_128", buffer_id, (outs R600_Reg128:$dst),
1366 pattern> {
1367
1368 let MEGA_FETCH_COUNT = 16;
1369 let DST_SEL_X = 0;
1370 let DST_SEL_Y = 1;
1371 let DST_SEL_Z = 2;
1372 let DST_SEL_W = 3;
1373 let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
1374
1375 // XXX: Need to force VTX_READ_128 instructions to write to the same register
1376 // that holds its buffer address to avoid potential hangs. We can't use
1377 // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1378 // registers are different sizes.
1379}
1380
1381//===----------------------------------------------------------------------===//
1382// VTX Read from parameter memory space
1383//===----------------------------------------------------------------------===//
1384
1385def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
1386 [(set (i32 R600_TReg32_X:$dst), (load_param_zexti8 ADDRVTX_READ:$ptr))]
1387>;
1388
1389def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
1390 [(set (i32 R600_TReg32_X:$dst), (load_param_zexti16 ADDRVTX_READ:$ptr))]
1391>;
1392
1393def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
1394 [(set (i32 R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1395>;
1396
1397//===----------------------------------------------------------------------===//
1398// VTX Read from global memory space
1399//===----------------------------------------------------------------------===//
1400
1401// 8-bit reads
1402def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
1403 [(set (i32 R600_TReg32_X:$dst), (zextloadi8_global ADDRVTX_READ:$ptr))]
1404>;
1405
1406// 32-bit reads
1407def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
1408 [(set (i32 R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1409>;
1410
1411// 128-bit reads
1412def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
1413 [(set (v4i32 R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1414>;
1415
1416//===----------------------------------------------------------------------===//
1417// Constant Loads
1418// XXX: We are currently storing all constants in the global address space.
1419//===----------------------------------------------------------------------===//
1420
1421def CONSTANT_LOAD_eg : VTX_READ_32_eg <1,
1422 [(set (i32 R600_TReg32_X:$dst), (constant_load ADDRVTX_READ:$ptr))]
1423>;
1424
1425}
1426
1427let Predicates = [isCayman] in {
1428
1429let isVector = 1 in {
1430
1431def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1432
1433def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1434def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1435def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1436def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1437def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>;
1438def EXP_IEEE_cm : EXP_IEEE_Common<0x81>;
1439def LOG_IEEE_ : LOG_IEEE_Common<0x83>;
1440def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>;
1441def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>;
1442def SIN_cm : SIN_Common<0x8D>;
1443def COS_cm : COS_Common<0x8E>;
1444} // End isVector = 1
1445
1446def : SIN_PAT <SIN_cm>;
1447def : COS_PAT <COS_cm>;
1448
1449defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
1450
1451// RECIP_UINT emulation for Cayman
1452def : Pat <
1453 (AMDGPUurecip R600_Reg32:$src0),
1454 (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1455 (MOV_IMM_I32 0x4f800000)))
1456>;
1457
1458
1459def : Pat<(fsqrt R600_Reg32:$src),
1460 (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm R600_Reg32:$src))>;
1461
1462} // End isCayman
1463
1464//===----------------------------------------------------------------------===//
1465// Branch Instructions
1466//===----------------------------------------------------------------------===//
1467
1468
1469def IF_PREDICATE_SET : ILFormat<(outs), (ins GPRI32:$src),
1470 "IF_PREDICATE_SET $src", []>;
1471
1472def PREDICATED_BREAK : ILFormat<(outs), (ins GPRI32:$src),
1473 "PREDICATED_BREAK $src", []>;
1474
1475//===----------------------------------------------------------------------===//
1476// Pseudo instructions
1477//===----------------------------------------------------------------------===//
1478
1479let isPseudo = 1 in {
1480
1481def PRED_X : InstR600 <
1482 0, (outs R600_Predicate_Bit:$dst),
1483 (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
1484 "", [], NullALU> {
1485 let FlagOperandIdx = 3;
1486}
1487
1488let isTerminator = 1, isBranch = 1, isBarrier = 1 in {
1489
1490def JUMP : InstR600 <0x10,
1491 (outs),
1492 (ins brtarget:$target, R600_Pred:$p),
1493 "JUMP $target ($p)",
1494 [], AnyALU
1495 >;
1496
1497} // End isTerminator = 1, isBranch = 1, isBarrier = 1
1498
1499let usesCustomInserter = 1 in {
1500
1501let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
1502
1503def MASK_WRITE : AMDGPUShaderInst <
1504 (outs),
1505 (ins R600_Reg32:$src),
1506 "MASK_WRITE $src",
1507 []
1508>;
1509
1510} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
1511
1512def R600_LOAD_CONST : AMDGPUShaderInst <
1513 (outs R600_Reg32:$dst),
1514 (ins i32imm:$src0),
1515 "R600_LOAD_CONST $dst, $src0",
1516 [(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
1517>;
1518
1519def RESERVE_REG : AMDGPUShaderInst <
1520 (outs),
1521 (ins i32imm:$src),
1522 "RESERVE_REG $src",
1523 [(int_AMDGPU_reserve_reg imm:$src)]
1524>;
1525
1526def TXD: AMDGPUShaderInst <
1527 (outs R600_Reg128:$dst),
1528 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1529 "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
1530 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
1531>;
1532
1533def TXD_SHADOW: AMDGPUShaderInst <
1534 (outs R600_Reg128:$dst),
1535 (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1536 "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
1537 [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
1538>;
1539
1540} // End isPseudo = 1
1541} // End usesCustomInserter = 1
1542
1543def CLAMP_R600 : CLAMP <R600_Reg32>;
1544def FABS_R600 : FABS<R600_Reg32>;
1545def FNEG_R600 : FNEG<R600_Reg32>;
1546
1547//===---------------------------------------------------------------------===//
1548// Return instruction
1549//===---------------------------------------------------------------------===//
1550let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in {
1551 def RETURN : ILFormat<(outs), (ins variable_ops),
1552 "RETURN", [(IL_retflag)]>;
1553}
1554
Tom Stellard6b7d99d2012-12-19 22:10:31 +00001555//===--------------------------------------------------------------------===//
1556// Instructions support
1557//===--------------------------------------------------------------------===//
1558//===---------------------------------------------------------------------===//
1559// Custom Inserter for Branches and returns, this eventually will be a
1560// seperate pass
1561//===---------------------------------------------------------------------===//
1562let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
1563 def BRANCH : ILFormat<(outs), (ins brtarget:$target),
1564 "; Pseudo unconditional branch instruction",
1565 [(br bb:$target)]>;
1566 defm BRANCH_COND : BranchConditional<IL_brcond>;
1567}
1568
1569//===---------------------------------------------------------------------===//
1570// Flow and Program control Instructions
1571//===---------------------------------------------------------------------===//
1572let isTerminator=1 in {
1573 def SWITCH : ILFormat< (outs), (ins GPRI32:$src),
1574 !strconcat("SWITCH", " $src"), []>;
1575 def CASE : ILFormat< (outs), (ins GPRI32:$src),
1576 !strconcat("CASE", " $src"), []>;
1577 def BREAK : ILFormat< (outs), (ins),
1578 "BREAK", []>;
1579 def CONTINUE : ILFormat< (outs), (ins),
1580 "CONTINUE", []>;
1581 def DEFAULT : ILFormat< (outs), (ins),
1582 "DEFAULT", []>;
1583 def ELSE : ILFormat< (outs), (ins),
1584 "ELSE", []>;
1585 def ENDSWITCH : ILFormat< (outs), (ins),
1586 "ENDSWITCH", []>;
1587 def ENDMAIN : ILFormat< (outs), (ins),
1588 "ENDMAIN", []>;
1589 def END : ILFormat< (outs), (ins),
1590 "END", []>;
1591 def ENDFUNC : ILFormat< (outs), (ins),
1592 "ENDFUNC", []>;
1593 def ENDIF : ILFormat< (outs), (ins),
1594 "ENDIF", []>;
1595 def WHILELOOP : ILFormat< (outs), (ins),
1596 "WHILE", []>;
1597 def ENDLOOP : ILFormat< (outs), (ins),
1598 "ENDLOOP", []>;
1599 def FUNC : ILFormat< (outs), (ins),
1600 "FUNC", []>;
1601 def RETDYN : ILFormat< (outs), (ins),
1602 "RET_DYN", []>;
1603 // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1604 defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">;
1605 // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1606 defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">;
1607 // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1608 defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
1609 // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1610 defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
1611 // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1612 defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
1613 // This opcode has custom swizzle pattern encoded in Swizzle Encoder
1614 defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
1615 defm IFC : BranchInstr2<"IFC">;
1616 defm BREAKC : BranchInstr2<"BREAKC">;
1617 defm CONTINUEC : BranchInstr2<"CONTINUEC">;
1618}
1619
Tom Stellardf98f2ce2012-12-11 21:25:42 +00001620//===----------------------------------------------------------------------===//
1621// ISel Patterns
1622//===----------------------------------------------------------------------===//
1623
1624//CNDGE_INT extra pattern
1625def : Pat <
1626 (selectcc (i32 R600_Reg32:$src0), -1, (i32 R600_Reg32:$src1),
1627 (i32 R600_Reg32:$src2), COND_GT),
1628 (CNDGE_INT R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2)
1629>;
1630
1631// KIL Patterns
1632def KILP : Pat <
1633 (int_AMDGPU_kilp),
1634 (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
1635>;
1636
1637def KIL : Pat <
1638 (int_AMDGPU_kill R600_Reg32:$src0),
1639 (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
1640>;
1641
1642// SGT Reverse args
1643def : Pat <
1644 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
1645 (SGT R600_Reg32:$src1, R600_Reg32:$src0)
1646>;
1647
1648// SGE Reverse args
1649def : Pat <
1650 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
1651 (SGE R600_Reg32:$src1, R600_Reg32:$src0)
1652>;
1653
1654// SETGT_INT reverse args
1655def : Pat <
1656 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
1657 (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
1658>;
1659
1660// SETGE_INT reverse args
1661def : Pat <
1662 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
1663 (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
1664>;
1665
1666// SETGT_UINT reverse args
1667def : Pat <
1668 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
1669 (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1670>;
1671
1672// SETGE_UINT reverse args
1673def : Pat <
1674 (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
1675 (SETGE_UINT R600_Reg32:$src1, R600_Reg32:$src0)
1676>;
1677
1678// The next two patterns are special cases for handling 'true if ordered' and
1679// 'true if unordered' conditionals. The assumption here is that the behavior of
1680// SETE and SNE conforms to the Direct3D 10 rules for floating point values
1681// described here:
1682// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
1683// We assume that SETE returns false when one of the operands is NAN and
1684// SNE returns true when on of the operands is NAN
1685
1686//SETE - 'true if ordered'
1687def : Pat <
1688 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
1689 (SETE R600_Reg32:$src0, R600_Reg32:$src1)
1690>;
1691
1692//SNE - 'true if unordered'
1693def : Pat <
1694 (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
1695 (SNE R600_Reg32:$src0, R600_Reg32:$src1)
1696>;
1697
1698def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
1699def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
1700def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
1701def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
1702
1703def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 0, sel_x>;
1704def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 1, sel_y>;
1705def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 2, sel_z>;
1706def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 3, sel_w>;
1707
1708def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
1709def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
1710def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
1711def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
1712
1713def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 0, sel_x>;
1714def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 1, sel_y>;
1715def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 2, sel_z>;
1716def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 3, sel_w>;
1717
1718def : Vector_Build <v4f32, R600_Reg128, f32, R600_Reg32>;
1719def : Vector_Build <v4i32, R600_Reg128, i32, R600_Reg32>;
1720
1721// bitconvert patterns
1722
1723def : BitConvert <i32, f32, R600_Reg32>;
1724def : BitConvert <f32, i32, R600_Reg32>;
1725def : BitConvert <v4f32, v4i32, R600_Reg128>;
1726def : BitConvert <v4i32, v4f32, R600_Reg128>;
1727
1728// DWORDADDR pattern
1729def : DwordAddrPat <i32, R600_Reg32>;
1730
1731} // End isR600toCayman Predicate