blob: 91d8533ae8559327674625e3391ae00d0ab27f59 [file] [log] [blame]
Alkis Evlogimenosff0cbe12003-11-20 03:32:25 +00001//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a linear scan register allocator.
11//
12//===----------------------------------------------------------------------===//
13#define DEBUG_TYPE "regalloc"
14#include "llvm/Function.h"
15#include "llvm/CodeGen/LiveIntervals.h"
16#include "llvm/CodeGen/LiveVariables.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetRegInfo.h"
26#include "llvm/Support/CFG.h"
27#include "Support/Debug.h"
28#include "Support/DepthFirstIterator.h"
29#include "Support/Statistic.h"
30#include "Support/STLExtras.h"
31#include <iostream>
32
33using namespace llvm;
34
35namespace {
36 Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
Alkis Evlogimenosff0cbe12003-11-20 03:32:25 +000037
38 class RA : public MachineFunctionPass {
39 public:
40 typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
41
42 private:
43 MachineFunction* mf_;
44 const TargetMachine* tm_;
45 const MRegisterInfo* mri_;
46 MachineBasicBlock* currentMbb_;
47 MachineBasicBlock::iterator currentInstr_;
48 typedef LiveIntervals::Intervals Intervals;
49 const Intervals* li_;
50 IntervalPtrs active_, inactive_;
51
52 typedef std::vector<unsigned> Regs;
53 Regs tempUseOperands_;
54 Regs tempDefOperands_;
55
56 Regs reserved_;
57
58 typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
59 MachineBasicBlockPtrs mbbs_;
60
61 typedef std::vector<unsigned> Phys2VirtMap;
62 Phys2VirtMap p2vMap_;
63
64 typedef std::map<unsigned, unsigned> Virt2PhysMap;
65 Virt2PhysMap v2pMap_;
66
67 typedef std::map<unsigned, int> Virt2StackSlotMap;
68 Virt2StackSlotMap v2ssMap_;
69
70 int instrAdded_;
71
72 public:
73 virtual const char* getPassName() const {
74 return "Linear Scan Register Allocator";
75 }
76
77 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.addRequired<LiveVariables>();
79 AU.addRequired<LiveIntervals>();
80 MachineFunctionPass::getAnalysisUsage(AU);
81 }
82
83 private:
84 /// runOnMachineFunction - register allocate the whole function
85 bool runOnMachineFunction(MachineFunction&);
86
87 /// processActiveIntervals - expire old intervals and move
88 /// non-overlapping ones to the incative list
89 void processActiveIntervals(Intervals::const_iterator cur);
90
91 /// processInactiveIntervals - expire old intervals and move
92 /// overlapping ones to the active list
93 void processInactiveIntervals(Intervals::const_iterator cur);
94
95 /// assignStackSlotAtInterval - choose and spill
96 /// interval. Currently we spill the interval with the last
97 /// end point in the active and inactive lists and the current
98 /// interval
99 void assignStackSlotAtInterval(Intervals::const_iterator cur);
100
101 ///
102 /// register handling helpers
103 ///
104
105 /// reservePhysReg - reserves a physical register and spills
106 /// any value assigned to it if any
107 void reservePhysReg(unsigned reg);
108
109 /// clearReservedPhysReg - marks pysical register as free for
110 /// use
111 void clearReservedPhysReg(unsigned reg);
112
113 /// physRegAvailable - returns true if the specifed physical
114 /// register is available
115 bool physRegAvailable(unsigned physReg);
116
117 /// getFreePhysReg - return a free physical register for this
118 /// virtual register if we have one, otherwise return 0
119 unsigned getFreePhysReg(unsigned virtReg);
120
121
122 /// tempPhysRegAvailable - returns true if the specifed
123 /// temporary physical register is available
124 bool tempPhysRegAvailable(unsigned physReg);
125
126 /// getFreeTempPhysReg - return a free temprorary physical
127 /// register for this register class if we have one (should
128 /// never return 0)
129 unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
130
131 /// getFreeTempPhysReg - return a free temprorary physical
132 /// register for this virtual register if we have one (should
133 /// never return 0)
134 unsigned getFreeTempPhysReg(unsigned virtReg) {
135 const TargetRegisterClass* rc =
136 mf_->getSSARegMap()->getRegClass(virtReg);
137 return getFreeTempPhysReg(rc);
138 }
139
140 /// assignVirt2PhysReg - assigns the free physical register to
141 /// the virtual register passed as arguments
142 void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
143
144 /// clearVirtReg - free the physical register associated with this
145 /// virtual register and disassociate virtual->physical and
146 /// physical->virtual mappings
147 void clearVirtReg(unsigned virtReg);
148
149 /// assignVirt2StackSlot - assigns this virtual register to a
150 /// stack slot
151 void assignVirt2StackSlot(unsigned virtReg);
152
153 /// findOrCreateStackSlot - returns the offset of the
154 /// specified register on the stack allocating space if
155 /// necessary
156 int findOrCreateStackSlot(unsigned virtReg);
157
158 /// spillVirtReg - spills the virtual register
159 void spillVirtReg(unsigned virtReg);
160
161 /// loadPhysReg - loads to the physical register the value of
162 /// the virtual register specifed. Virtual register must have
163 /// an assigned stack slot
164 void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
165
166 void printVirt2PhysMap() const {
167 std::cerr << "allocated registers:\n";
168 for (Virt2PhysMap::const_iterator
169 i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
170 std::cerr << '[' << i->first << ','
171 << mri_->getName(i->second) << "]\n";
172 }
173 std::cerr << '\n';
174 }
175 void printIntervals(const char* const str,
176 RA::IntervalPtrs::const_iterator i,
177 RA::IntervalPtrs::const_iterator e) const {
178 if (str) std::cerr << str << " intervals:\n";
179 for (; i != e; ++i) {
180 std::cerr << "\t\t" << **i << " -> ";
181 if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
182 std::cerr << mri_->getName((*i)->reg);
183 }
184 else {
185 std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
186 }
187 std::cerr << '\n';
188 }
189 }
190 };
191}
192
193bool RA::runOnMachineFunction(MachineFunction &fn) {
194 mf_ = &fn;
195 tm_ = &fn.getTarget();
196 mri_ = tm_->getRegisterInfo();
197 li_ = &getAnalysis<LiveIntervals>().getIntervals();
198 active_.clear();
199 inactive_.clear();
200 mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
201 p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
202 p2vMap_.clear();
203 v2pMap_.clear();
204 v2ssMap_.clear();
205
206 // FIXME: this will work only for the X86 backend. I need to
207 // device an algorthm to select the minimal (considering register
208 // aliasing) number of temp registers to reserve so that we have 2
209 // registers for each register class available.
210
211 // reserve R32: EDI, EBX,
212 // R16: DI, BX,
213 // R8: DH, BH,
214 // RFP: FP5, FP6
215 reserved_.push_back(19); /* EDI */
216 reserved_.push_back(17); /* EBX */
217 reserved_.push_back(12); /* DI */
218 reserved_.push_back( 7); /* BX */
219 reserved_.push_back(11); /* DH */
220 reserved_.push_back( 4); /* BH */
221 reserved_.push_back(28); /* FP5 */
222 reserved_.push_back(29); /* FP6 */
223
224 // liner scan algorithm
225 for (Intervals::const_iterator
226 i = li_->begin(), e = li_->end(); i != e; ++i) {
227 DEBUG(std::cerr << "processing current interval: " << *i << '\n');
228
229 DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
230 DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
231
232 processActiveIntervals(i);
233 // processInactiveIntervals(i);
234
235 // if this register is preallocated, look for an interval that
236 // overlaps with it and assign it to a memory location
237 if (i->reg < MRegisterInfo::FirstVirtualRegister) {
238 for (IntervalPtrs::iterator
239 ai = active_.begin(), ae = active_.end(); ai != ae; ++ai) {
240 unsigned virtReg = (*ai)->reg;
241 Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
242 if (it != v2pMap_.end() && it->second == i->reg) {
243 active_.erase(ai);
244 clearVirtReg(virtReg);
245 break;
246 }
247 }
248 reservePhysReg(i->reg);
249 active_.push_back(&*i);
250 }
251 // otherwise we are allocating a virtual register. try to find
252 // a free physical register or spill an interval in order to
253 // assign it one (we could spill the current though).
254 else {
255 unsigned physReg = getFreePhysReg(i->reg);
256 if (!physReg) {
257 assignStackSlotAtInterval(i);
258 }
259 else {
260 assignVirt2PhysReg(i->reg, physReg);
261 active_.push_back(&*i);
262 }
263 }
264 }
265 DEBUG(std::cerr << "finished register allocation\n");
266 DEBUG(printVirt2PhysMap());
267
268 DEBUG(std::cerr << "Rewrite machine code:\n");
269 for (MachineBasicBlockPtrs::iterator
270 mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
271 instrAdded_ = 0;
272 currentMbb_ = *mbbi;
273
274 for (currentInstr_ = currentMbb_->begin();
275 currentInstr_ != currentMbb_->end(); ++currentInstr_) {
276
277 DEBUG(std::cerr << "\tinstruction: ";
278 (*currentInstr_)->print(std::cerr, *tm_););
279 DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
280 "of previous instruction:\n");
281 for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
282 spillVirtReg(tempDefOperands_[i]);
283 }
284 tempDefOperands_.clear();
285
286 // use our current mapping and actually replace and
287 // virtual register with its allocated physical registers
288 DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
289 "physical registers:\n");
290 for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
291 i != e; ++i) {
292 MachineOperand& op = (*currentInstr_)->getOperand(i);
293 if (op.isVirtualRegister()) {
294 unsigned virtReg = op.getAllocatedRegNum();
295 unsigned physReg = v2pMap_[virtReg];
296 // if this virtual registers lives on the stack,
297 // load it to a temporary physical register
298 if (physReg) {
299 DEBUG(std::cerr << "\t\t\t%reg" << virtReg
300 << " -> " << mri_->getName(physReg) << '\n');
301 (*currentInstr_)->SetMachineOperandReg(i, physReg);
302 }
303 }
304 }
305
306 DEBUG(std::cerr << "\t\tloading temporarily used operands to "
307 "registers:\n");
308 for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
309 i != e; ++i) {
310 MachineOperand& op = (*currentInstr_)->getOperand(i);
311 if (op.isVirtualRegister() && op.opIsUse()) {
312 unsigned virtReg = op.getAllocatedRegNum();
313 unsigned physReg = v2pMap_[virtReg];
314 if (!physReg) {
315 physReg = getFreeTempPhysReg(virtReg);
316 }
317 loadVirt2PhysReg(virtReg, physReg);
318 tempUseOperands_.push_back(virtReg);
319 (*currentInstr_)->SetMachineOperandReg(i, physReg);
320 }
321 }
322
323 DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
324 for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
325 clearVirtReg(tempUseOperands_[i]);
326 }
327 tempUseOperands_.clear();
328
329 DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
330 "registers:\n");
331 for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
332 i != e; ++i) {
333 MachineOperand& op = (*currentInstr_)->getOperand(i);
334 if (op.isVirtualRegister() && !op.opIsUse()) {
335 unsigned virtReg = op.getAllocatedRegNum();
336 unsigned physReg = v2pMap_[virtReg];
337 if (!physReg) {
338 physReg = getFreeTempPhysReg(virtReg);
339 }
340 if (op.opIsDefAndUse()) {
341 loadVirt2PhysReg(virtReg, physReg);
342 }
343 else {
344 assignVirt2PhysReg(virtReg, physReg);
345 }
346 tempDefOperands_.push_back(virtReg);
347 (*currentInstr_)->SetMachineOperandReg(i, physReg);
348 }
349 }
350
351
352 // if the instruction is a two address instruction and the
353 // source operands are not identical we need to insert
354 // extra instructions.
355
356 unsigned opcode = (*currentInstr_)->getOpcode();
357 if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
358 (*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
359 (*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
360 assert((*currentInstr_)->getOperand(1).isRegister() &&
361 (*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
362 (*currentInstr_)->getOperand(1).opIsUse() &&
363 "Two address instruction invalid");
364
365 unsigned regA =
366 (*currentInstr_)->getOperand(0).getAllocatedRegNum();
367 unsigned regB =
368 (*currentInstr_)->getOperand(1).getAllocatedRegNum();
369 unsigned regC =
370 ((*currentInstr_)->getNumOperands() > 2 &&
371 (*currentInstr_)->getOperand(2).isRegister()) ?
372 (*currentInstr_)->getOperand(2).getAllocatedRegNum() :
373 0;
374
375 const TargetRegisterClass* rc = mri_->getRegClass(regA);
376
377 // special case: "a = b op a". If b is a temporary
378 // reserved register rewrite as: "b = b op a; a = b"
379 // otherwise use a temporary reserved register t and
380 // rewrite as: "t = b; t = t op a; a = t"
381 if (regC && regA == regC) {
382 // b is a temp reserved register
383 if (find(reserved_.begin(), reserved_.end(),
384 regB) != reserved_.end()) {
385 (*currentInstr_)->SetMachineOperandReg(0, regB);
386 ++currentInstr_;
387 instrAdded_ += mri_->copyRegToReg(*currentMbb_,
388 currentInstr_,
389 regA,
390 regB,
391 rc);
392 --currentInstr_;
393 }
394 // b is just a normal register
395 else {
396 unsigned tempReg = getFreeTempPhysReg(rc);
397 assert (tempReg &&
398 "no free temp reserved physical register?");
399 instrAdded_ += mri_->copyRegToReg(*currentMbb_,
400 currentInstr_,
401 tempReg,
402 regB,
403 rc);
404 (*currentInstr_)->SetMachineOperandReg(0, tempReg);
405 (*currentInstr_)->SetMachineOperandReg(1, tempReg);
406 ++currentInstr_;
407 instrAdded_ += mri_->copyRegToReg(*currentMbb_,
408 currentInstr_,
409 regA,
410 tempReg,
411 rc);
412 --currentInstr_;
413 }
414 }
415 // "a = b op c" gets rewritten to "a = b; a = a op c"
416 else {
417 instrAdded_ += mri_->copyRegToReg(*currentMbb_,
418 currentInstr_,
419 regA,
420 regB,
421 rc);
422 (*currentInstr_)->SetMachineOperandReg(1, regA);
423 }
424 }
425 }
426
427 for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
428 assert(p2vMap_[i] != i &&
429 "reserved physical registers at end of basic block?");
430 }
431 }
432
433 return true;
434}
435
436void RA::processActiveIntervals(Intervals::const_iterator cur)
437{
438 DEBUG(std::cerr << "\tprocessing active intervals:\n");
439 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
440 unsigned reg = (*i)->reg;
441 // remove expired intervals. we expire earlier because this if
442 // an interval expires this is going to be the last use. in
443 // this case we can reuse the register for a def in the same
444 // instruction
445 if ((*i)->expired(cur->start() + 1)) {
446 DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
447 if (reg < MRegisterInfo::FirstVirtualRegister) {
448 clearReservedPhysReg(reg);
449 }
450 else {
451 p2vMap_[v2pMap_[reg]] = 0;
452 }
453 // remove interval from active
454 i = active_.erase(i);
455 }
456 // move not active intervals to inactive list
457// else if (!(*i)->overlaps(curIndex)) {
458// DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
459// unmarkReg(virtReg);
460// // add interval to inactive
461// inactive_.push_back(*i);
462// // remove interval from active
463// i = active_.erase(i);
464// }
465 else {
466 ++i;
467 }
468 }
469}
470
471void RA::processInactiveIntervals(Intervals::const_iterator cur)
472{
473// DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
474// for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
475// unsigned virtReg = (*i)->reg;
476// // remove expired intervals
477// if ((*i)->expired(curIndex)) {
478// DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
479// freePhysReg(virtReg);
480// // remove from inactive
481// i = inactive_.erase(i);
482// }
483// // move re-activated intervals in active list
484// else if ((*i)->overlaps(curIndex)) {
485// DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
486// markReg(virtReg);
487// // add to active
488// active_.push_back(*i);
489// // remove from inactive
490// i = inactive_.erase(i);
491// }
492// else {
493// ++i;
494// }
495// }
496}
497
498void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
499{
500 DEBUG(std::cerr << "\t\tassigning stack slot at interval "
501 << *cur << ":\n");
502 assert(!active_.empty() &&
503 "active set cannot be empty when choosing a register to spill");
504 const TargetRegisterClass* rcCur =
505 mf_->getSSARegMap()->getRegClass(cur->reg);
506
507 // find the interval for a virtual register that ends last in
508 // active and belongs to the same register class as the current
509 // interval
510 IntervalPtrs::iterator lastEndActive = active_.begin();
511 for (IntervalPtrs::iterator e = active_.end();
512 lastEndActive != e; ++lastEndActive) {
513 if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
514 const TargetRegisterClass* rc =
515 mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
516 if (rcCur == rc) {
517 break;
518 }
519 }
520 }
521 for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
522 i != e; ++i) {
523 if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
524 const TargetRegisterClass* rc =
525 mri_->getRegClass(v2pMap_[(*i)->reg]);
526 if (rcCur == rc &&
527 (*lastEndActive)->end() < (*i)->end()) {
528 lastEndActive = i;
529 }
530 }
531 }
532
533 // find the interval for a virtual register that ends last in
534 // inactive and belongs to the same register class as the current
535 // interval
536 IntervalPtrs::iterator lastEndInactive = inactive_.begin();
537 for (IntervalPtrs::iterator e = inactive_.end();
538 lastEndInactive != e; ++lastEndInactive) {
539 if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
540 const TargetRegisterClass* rc =
541 mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
542 if (rcCur == rc) {
543 break;
544 }
545 }
546 }
547 for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
548 i != e; ++i) {
549 if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
550 const TargetRegisterClass* rc =
551 mri_->getRegClass(v2pMap_[(*i)->reg]);
552 if (rcCur == rc &&
553 (*lastEndInactive)->end() < (*i)->end()) {
554 lastEndInactive = i;
555 }
556 }
557 }
558
559 unsigned lastEndActiveInactive = 0;
560 if (lastEndActive != active_.end() &&
561 lastEndActiveInactive < (*lastEndActive)->end()) {
562 lastEndActiveInactive = (*lastEndActive)->end();
563 }
564 if (lastEndInactive != inactive_.end() &&
565 lastEndActiveInactive < (*lastEndInactive)->end()) {
566 lastEndActiveInactive = (*lastEndInactive)->end();
567 }
568
569 if (lastEndActiveInactive > cur->end()) {
570 if (lastEndInactive == inactive_.end() ||
571 (*lastEndActive)->end() > (*lastEndInactive)->end()) {
572 assignVirt2StackSlot((*lastEndActive)->reg);
573 active_.erase(lastEndActive);
574 }
575 else {
576 assignVirt2StackSlot((*lastEndInactive)->reg);
577 inactive_.erase(lastEndInactive);
578 }
579 unsigned physReg = getFreePhysReg(cur->reg);
580 assert(physReg && "no free physical register after spill?");
581 assignVirt2PhysReg(cur->reg, physReg);
582 active_.push_back(&*cur);
583 }
584 else {
585 assignVirt2StackSlot(cur->reg);
586 }
587}
588
589void RA::reservePhysReg(unsigned physReg)
590{
591 DEBUG(std::cerr << "\t\t\treserving physical physical register: "
592 << mri_->getName(physReg) << '\n');
593 // if this register holds a value spill it
594 unsigned virtReg = p2vMap_[physReg];
595 if (virtReg != 0) {
596 assert(virtReg != physReg && "reserving an already reserved phus reg?");
597 // remove interval from active
598 for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
599 i != e; ++i) {
600 if ((*i)->reg == virtReg) {
601 active_.erase(i);
602 break;
603 }
604 }
605 spillVirtReg(virtReg);
606 }
607 p2vMap_[physReg] = physReg; // this denotes a reserved physical register
608}
609
610void RA::clearReservedPhysReg(unsigned physReg)
611{
612 DEBUG(std::cerr << "\t\t\tclearing reserved physical physical register: "
613 << mri_->getName(physReg) << '\n');
614 assert(p2vMap_[physReg] == physReg &&
615 "attempt to clear a non reserved physical register");
616 p2vMap_[physReg] = 0;
617}
618
619bool RA::physRegAvailable(unsigned physReg)
620{
621 if (p2vMap_[physReg]) {
622 return false;
623 }
624
625 // if it aliases other registers it is still not free
626 for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
627 if (p2vMap_[*as]) {
628 return false;
629 }
630 }
631
632 // if it is one of the reserved registers it is still not free
633 if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
634 return false;
635 }
636
637 return true;
638}
639
640unsigned RA::getFreePhysReg(unsigned virtReg)
641{
642 DEBUG(std::cerr << "\t\tgetting free physical register: ");
643 const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
644 TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
645 TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
646
647 for (; reg != regEnd; ++reg) {
648 if (physRegAvailable(*reg)) {
649 assert(*reg != 0 && "Cannot use register!");
650 DEBUG(std::cerr << mri_->getName(*reg) << '\n');
651 return *reg; // Found an unused register!
652 }
653 }
654
655 DEBUG(std::cerr << "no free register\n");
656 return 0;
657}
658
659bool RA::tempPhysRegAvailable(unsigned physReg)
660{
661 assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
662 && "cannot call this method with a non reserved temp register");
663
664 if (p2vMap_[physReg]) {
665 return false;
666 }
667
668 // if it aliases other registers it is still not free
669 for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
670 if (p2vMap_[*as]) {
671 return false;
672 }
673 }
674
675 return true;
676}
677
678unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
679{
680 DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
681
682 for (Regs::const_iterator
683 reg = reserved_.begin(), regEnd = reserved_.end();
684 reg != regEnd; ++reg) {
685 if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
686 assert(*reg != 0 && "Cannot use register!");
687 DEBUG(std::cerr << mri_->getName(*reg) << '\n');
688 return *reg; // Found an unused register!
689 }
690 }
691 assert(0 && "no free temporary physical register?");
692 return 0;
693}
694
695void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
696{
697 assert((physRegAvailable(physReg) ||
698 find(reserved_.begin(),
699 reserved_.end(),
700 physReg) != reserved_.end()) &&
701 "attempt to allocate to a not available physical register");
702 v2pMap_[virtReg] = physReg;
703 p2vMap_[physReg] = virtReg;
704}
705
706void RA::clearVirtReg(unsigned virtReg)
707{
708 Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
709 assert(it != v2pMap_.end() &&
710 "attempting to clear a not allocated virtual register");
711 unsigned physReg = it->second;
712 p2vMap_[physReg] = 0;
713 v2pMap_[virtReg] = 0; // this marks that this virtual register
714 // lives on the stack
715 DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
716 << "\n");
717}
718
719void RA::assignVirt2StackSlot(unsigned virtReg)
720{
721 const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
722 int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
723
724 bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
725 assert(inserted &&
726 "attempt to assign stack slot to already assigned register?");
727 // if the virtual register was previously assigned clear the mapping
728 // and free the virtual register
729 if (v2pMap_.find(virtReg) != v2pMap_.end()) {
730 clearVirtReg(virtReg);
731 }
732}
733
734int RA::findOrCreateStackSlot(unsigned virtReg)
735{
736 // use lower_bound so that we can do a possibly O(1) insert later
737 // if necessary
738 Virt2StackSlotMap::iterator it = v2ssMap_.lower_bound(virtReg);
739 if (it != v2ssMap_.end() && it->first == virtReg) {
740 return it->second;
741 }
742 const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
743 int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
744
745 v2ssMap_.insert(it, std::make_pair(virtReg, frameIndex));
746
747 return frameIndex;
748}
749
750void RA::spillVirtReg(unsigned virtReg)
751{
752 DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
753 const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
754 int frameIndex = findOrCreateStackSlot(virtReg);
755 DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
756 ++numSpilled;
757 instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
758 v2pMap_[virtReg], frameIndex, rc);
759 clearVirtReg(virtReg);
760}
761
762void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
763{
764 DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
765 const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
766 int frameIndex = findOrCreateStackSlot(virtReg);
767 DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
Alkis Evlogimenosff0cbe12003-11-20 03:32:25 +0000768 instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
769 physReg, frameIndex, rc);
770 assignVirt2PhysReg(virtReg, physReg);
771}
772
773FunctionPass* llvm::createLinearScanRegisterAllocator() {
774 return new RA();
775}