blob: 3c83e8a749d90831b393c345bd19a979dfb4ad4f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <limits>
22#include <cstring>
23#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include <iomanip>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025
26using namespace llvm;
27
28/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
30inline static uint64_t* getClearedMemory(uint32_t numWords) {
31 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
35}
36
37/// A utility function for allocating memory and checking for allocation
38/// failure. The content is not zeroed.
39inline static uint64_t* getMemory(uint32_t numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
43}
44
45APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
46 : BitWidth(numBits), VAL(0) {
47 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
48 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
49 if (isSingleWord())
50 VAL = val;
51 else {
52 pVal = getClearedMemory(getNumWords());
53 pVal[0] = val;
54 if (isSigned && int64_t(val) < 0)
55 for (unsigned i = 1; i < getNumWords(); ++i)
56 pVal[i] = -1ULL;
57 }
58 clearUnusedBits();
59}
60
Dale Johannesena6f79742007-09-21 22:09:37 +000061APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 : BitWidth(numBits), VAL(0) {
63 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
64 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
65 assert(bigVal && "Null pointer detected!");
66 if (isSingleWord())
67 VAL = bigVal[0];
68 else {
69 // Get memory, cleared to 0
70 pVal = getClearedMemory(getNumWords());
71 // Calculate the number of words to copy
72 uint32_t words = std::min<uint32_t>(numWords, getNumWords());
73 // Copy the words from bigVal to pVal
74 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
75 }
76 // Make sure unused high bits are cleared
77 clearUnusedBits();
78}
79
80APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
81 uint8_t radix)
82 : BitWidth(numbits), VAL(0) {
83 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
84 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
85 fromString(numbits, StrStart, slen, radix);
86}
87
88APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
89 : BitWidth(numbits), VAL(0) {
90 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
91 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
92 assert(!Val.empty() && "String empty?");
93 fromString(numbits, Val.c_str(), Val.size(), radix);
94}
95
96APInt::APInt(const APInt& that)
97 : BitWidth(that.BitWidth), VAL(0) {
98 assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
99 assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
100 if (isSingleWord())
101 VAL = that.VAL;
102 else {
103 pVal = getMemory(getNumWords());
104 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
105 }
106}
107
108APInt::~APInt() {
109 if (!isSingleWord() && pVal)
110 delete [] pVal;
111}
112
113APInt& APInt::operator=(const APInt& RHS) {
114 // Don't do anything for X = X
115 if (this == &RHS)
116 return *this;
117
118 // If the bitwidths are the same, we can avoid mucking with memory
119 if (BitWidth == RHS.getBitWidth()) {
120 if (isSingleWord())
121 VAL = RHS.VAL;
122 else
123 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
124 return *this;
125 }
126
127 if (isSingleWord())
128 if (RHS.isSingleWord())
129 VAL = RHS.VAL;
130 else {
131 VAL = 0;
132 pVal = getMemory(RHS.getNumWords());
133 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
134 }
135 else if (getNumWords() == RHS.getNumWords())
136 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
137 else if (RHS.isSingleWord()) {
138 delete [] pVal;
139 VAL = RHS.VAL;
140 } else {
141 delete [] pVal;
142 pVal = getMemory(RHS.getNumWords());
143 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
144 }
145 BitWidth = RHS.BitWidth;
146 return clearUnusedBits();
147}
148
149APInt& APInt::operator=(uint64_t RHS) {
150 if (isSingleWord())
151 VAL = RHS;
152 else {
153 pVal[0] = RHS;
154 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
155 }
156 return clearUnusedBits();
157}
158
159/// add_1 - This function adds a single "digit" integer, y, to the multiple
160/// "digit" integer array, x[]. x[] is modified to reflect the addition and
161/// 1 is returned if there is a carry out, otherwise 0 is returned.
162/// @returns the carry of the addition.
163static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
164 for (uint32_t i = 0; i < len; ++i) {
165 dest[i] = y + x[i];
166 if (dest[i] < y)
167 y = 1; // Carry one to next digit.
168 else {
169 y = 0; // No need to carry so exit early
170 break;
171 }
172 }
173 return y;
174}
175
176/// @brief Prefix increment operator. Increments the APInt by one.
177APInt& APInt::operator++() {
178 if (isSingleWord())
179 ++VAL;
180 else
181 add_1(pVal, pVal, getNumWords(), 1);
182 return clearUnusedBits();
183}
184
185/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
186/// the multi-digit integer array, x[], propagating the borrowed 1 value until
187/// no further borrowing is neeeded or it runs out of "digits" in x. The result
188/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
189/// In other words, if y > x then this function returns 1, otherwise 0.
190/// @returns the borrow out of the subtraction
191static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
192 for (uint32_t i = 0; i < len; ++i) {
193 uint64_t X = x[i];
194 x[i] -= y;
195 if (y > X)
196 y = 1; // We have to "borrow 1" from next "digit"
197 else {
198 y = 0; // No need to borrow
199 break; // Remaining digits are unchanged so exit early
200 }
201 }
202 return bool(y);
203}
204
205/// @brief Prefix decrement operator. Decrements the APInt by one.
206APInt& APInt::operator--() {
207 if (isSingleWord())
208 --VAL;
209 else
210 sub_1(pVal, getNumWords(), 1);
211 return clearUnusedBits();
212}
213
214/// add - This function adds the integer array x to the integer array Y and
215/// places the result in dest.
216/// @returns the carry out from the addition
217/// @brief General addition of 64-bit integer arrays
218static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
219 uint32_t len) {
220 bool carry = false;
221 for (uint32_t i = 0; i< len; ++i) {
222 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
223 dest[i] = x[i] + y[i] + carry;
224 carry = dest[i] < limit || (carry && dest[i] == limit);
225 }
226 return carry;
227}
228
229/// Adds the RHS APint to this APInt.
230/// @returns this, after addition of RHS.
231/// @brief Addition assignment operator.
232APInt& APInt::operator+=(const APInt& RHS) {
233 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
234 if (isSingleWord())
235 VAL += RHS.VAL;
236 else {
237 add(pVal, pVal, RHS.pVal, getNumWords());
238 }
239 return clearUnusedBits();
240}
241
242/// Subtracts the integer array y from the integer array x
243/// @returns returns the borrow out.
244/// @brief Generalized subtraction of 64-bit integer arrays.
245static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
246 uint32_t len) {
247 bool borrow = false;
248 for (uint32_t i = 0; i < len; ++i) {
249 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
250 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
251 dest[i] = x_tmp - y[i];
252 }
253 return borrow;
254}
255
256/// Subtracts the RHS APInt from this APInt
257/// @returns this, after subtraction
258/// @brief Subtraction assignment operator.
259APInt& APInt::operator-=(const APInt& RHS) {
260 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
261 if (isSingleWord())
262 VAL -= RHS.VAL;
263 else
264 sub(pVal, pVal, RHS.pVal, getNumWords());
265 return clearUnusedBits();
266}
267
268/// Multiplies an integer array, x by a a uint64_t integer and places the result
269/// into dest.
270/// @returns the carry out of the multiplication.
271/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
272static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
273 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
274 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
275 uint64_t carry = 0;
276
277 // For each digit of x.
278 for (uint32_t i = 0; i < len; ++i) {
279 // Split x into high and low words
280 uint64_t lx = x[i] & 0xffffffffULL;
281 uint64_t hx = x[i] >> 32;
282 // hasCarry - A flag to indicate if there is a carry to the next digit.
283 // hasCarry == 0, no carry
284 // hasCarry == 1, has carry
285 // hasCarry == 2, no carry and the calculation result == 0.
286 uint8_t hasCarry = 0;
287 dest[i] = carry + lx * ly;
288 // Determine if the add above introduces carry.
289 hasCarry = (dest[i] < carry) ? 1 : 0;
290 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
291 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
292 // (2^32 - 1) + 2^32 = 2^64.
293 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
294
295 carry += (lx * hy) & 0xffffffffULL;
296 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
297 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
298 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
299 }
300 return carry;
301}
302
303/// Multiplies integer array x by integer array y and stores the result into
304/// the integer array dest. Note that dest's size must be >= xlen + ylen.
305/// @brief Generalized multiplicate of integer arrays.
306static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
307 uint32_t ylen) {
308 dest[xlen] = mul_1(dest, x, xlen, y[0]);
309 for (uint32_t i = 1; i < ylen; ++i) {
310 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
311 uint64_t carry = 0, lx = 0, hx = 0;
312 for (uint32_t j = 0; j < xlen; ++j) {
313 lx = x[j] & 0xffffffffULL;
314 hx = x[j] >> 32;
315 // hasCarry - A flag to indicate if has carry.
316 // hasCarry == 0, no carry
317 // hasCarry == 1, has carry
318 // hasCarry == 2, no carry and the calculation result == 0.
319 uint8_t hasCarry = 0;
320 uint64_t resul = carry + lx * ly;
321 hasCarry = (resul < carry) ? 1 : 0;
322 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
323 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
324
325 carry += (lx * hy) & 0xffffffffULL;
326 resul = (carry << 32) | (resul & 0xffffffffULL);
327 dest[i+j] += resul;
328 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
329 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
330 ((lx * hy) >> 32) + hx * hy;
331 }
332 dest[i+xlen] = carry;
333 }
334}
335
336APInt& APInt::operator*=(const APInt& RHS) {
337 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
338 if (isSingleWord()) {
339 VAL *= RHS.VAL;
340 clearUnusedBits();
341 return *this;
342 }
343
344 // Get some bit facts about LHS and check for zero
345 uint32_t lhsBits = getActiveBits();
346 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
347 if (!lhsWords)
348 // 0 * X ===> 0
349 return *this;
350
351 // Get some bit facts about RHS and check for zero
352 uint32_t rhsBits = RHS.getActiveBits();
353 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
354 if (!rhsWords) {
355 // X * 0 ===> 0
356 clear();
357 return *this;
358 }
359
360 // Allocate space for the result
361 uint32_t destWords = rhsWords + lhsWords;
362 uint64_t *dest = getMemory(destWords);
363
364 // Perform the long multiply
365 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
366
367 // Copy result back into *this
368 clear();
369 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
370 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
371
372 // delete dest array and return
373 delete[] dest;
374 return *this;
375}
376
377APInt& APInt::operator&=(const APInt& RHS) {
378 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
379 if (isSingleWord()) {
380 VAL &= RHS.VAL;
381 return *this;
382 }
383 uint32_t numWords = getNumWords();
384 for (uint32_t i = 0; i < numWords; ++i)
385 pVal[i] &= RHS.pVal[i];
386 return *this;
387}
388
389APInt& APInt::operator|=(const APInt& RHS) {
390 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
391 if (isSingleWord()) {
392 VAL |= RHS.VAL;
393 return *this;
394 }
395 uint32_t numWords = getNumWords();
396 for (uint32_t i = 0; i < numWords; ++i)
397 pVal[i] |= RHS.pVal[i];
398 return *this;
399}
400
401APInt& APInt::operator^=(const APInt& RHS) {
402 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
403 if (isSingleWord()) {
404 VAL ^= RHS.VAL;
405 this->clearUnusedBits();
406 return *this;
407 }
408 uint32_t numWords = getNumWords();
409 for (uint32_t i = 0; i < numWords; ++i)
410 pVal[i] ^= RHS.pVal[i];
411 return clearUnusedBits();
412}
413
414APInt APInt::operator&(const APInt& RHS) const {
415 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
416 if (isSingleWord())
417 return APInt(getBitWidth(), VAL & RHS.VAL);
418
419 uint32_t numWords = getNumWords();
420 uint64_t* val = getMemory(numWords);
421 for (uint32_t i = 0; i < numWords; ++i)
422 val[i] = pVal[i] & RHS.pVal[i];
423 return APInt(val, getBitWidth());
424}
425
426APInt APInt::operator|(const APInt& RHS) const {
427 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
428 if (isSingleWord())
429 return APInt(getBitWidth(), VAL | RHS.VAL);
430
431 uint32_t numWords = getNumWords();
432 uint64_t *val = getMemory(numWords);
433 for (uint32_t i = 0; i < numWords; ++i)
434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
436}
437
438APInt APInt::operator^(const APInt& RHS) const {
439 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
440 if (isSingleWord())
441 return APInt(BitWidth, VAL ^ RHS.VAL);
442
443 uint32_t numWords = getNumWords();
444 uint64_t *val = getMemory(numWords);
445 for (uint32_t i = 0; i < numWords; ++i)
446 val[i] = pVal[i] ^ RHS.pVal[i];
447
448 // 0^0==1 so clear the high bits in case they got set.
449 return APInt(val, getBitWidth()).clearUnusedBits();
450}
451
452bool APInt::operator !() const {
453 if (isSingleWord())
454 return !VAL;
455
456 for (uint32_t i = 0; i < getNumWords(); ++i)
457 if (pVal[i])
458 return false;
459 return true;
460}
461
462APInt APInt::operator*(const APInt& RHS) const {
463 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
464 if (isSingleWord())
465 return APInt(BitWidth, VAL * RHS.VAL);
466 APInt Result(*this);
467 Result *= RHS;
468 return Result.clearUnusedBits();
469}
470
471APInt APInt::operator+(const APInt& RHS) const {
472 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
473 if (isSingleWord())
474 return APInt(BitWidth, VAL + RHS.VAL);
475 APInt Result(BitWidth, 0);
476 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
477 return Result.clearUnusedBits();
478}
479
480APInt APInt::operator-(const APInt& RHS) const {
481 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
482 if (isSingleWord())
483 return APInt(BitWidth, VAL - RHS.VAL);
484 APInt Result(BitWidth, 0);
485 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
486 return Result.clearUnusedBits();
487}
488
489bool APInt::operator[](uint32_t bitPosition) const {
490 return (maskBit(bitPosition) &
491 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
492}
493
494bool APInt::operator==(const APInt& RHS) const {
495 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
496 if (isSingleWord())
497 return VAL == RHS.VAL;
498
499 // Get some facts about the number of bits used in the two operands.
500 uint32_t n1 = getActiveBits();
501 uint32_t n2 = RHS.getActiveBits();
502
503 // If the number of bits isn't the same, they aren't equal
504 if (n1 != n2)
505 return false;
506
507 // If the number of bits fits in a word, we only need to compare the low word.
508 if (n1 <= APINT_BITS_PER_WORD)
509 return pVal[0] == RHS.pVal[0];
510
511 // Otherwise, compare everything
512 for (int i = whichWord(n1 - 1); i >= 0; --i)
513 if (pVal[i] != RHS.pVal[i])
514 return false;
515 return true;
516}
517
518bool APInt::operator==(uint64_t Val) const {
519 if (isSingleWord())
520 return VAL == Val;
521
522 uint32_t n = getActiveBits();
523 if (n <= APINT_BITS_PER_WORD)
524 return pVal[0] == Val;
525 else
526 return false;
527}
528
529bool APInt::ult(const APInt& RHS) const {
530 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
531 if (isSingleWord())
532 return VAL < RHS.VAL;
533
534 // Get active bit length of both operands
535 uint32_t n1 = getActiveBits();
536 uint32_t n2 = RHS.getActiveBits();
537
538 // If magnitude of LHS is less than RHS, return true.
539 if (n1 < n2)
540 return true;
541
542 // If magnitude of RHS is greather than LHS, return false.
543 if (n2 < n1)
544 return false;
545
546 // If they bot fit in a word, just compare the low order word
547 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
548 return pVal[0] < RHS.pVal[0];
549
550 // Otherwise, compare all words
551 uint32_t topWord = whichWord(std::max(n1,n2)-1);
552 for (int i = topWord; i >= 0; --i) {
553 if (pVal[i] > RHS.pVal[i])
554 return false;
555 if (pVal[i] < RHS.pVal[i])
556 return true;
557 }
558 return false;
559}
560
561bool APInt::slt(const APInt& RHS) const {
562 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
563 if (isSingleWord()) {
564 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
565 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
566 return lhsSext < rhsSext;
567 }
568
569 APInt lhs(*this);
570 APInt rhs(RHS);
571 bool lhsNeg = isNegative();
572 bool rhsNeg = rhs.isNegative();
573 if (lhsNeg) {
574 // Sign bit is set so perform two's complement to make it positive
575 lhs.flip();
576 lhs++;
577 }
578 if (rhsNeg) {
579 // Sign bit is set so perform two's complement to make it positive
580 rhs.flip();
581 rhs++;
582 }
583
584 // Now we have unsigned values to compare so do the comparison if necessary
585 // based on the negativeness of the values.
586 if (lhsNeg)
587 if (rhsNeg)
588 return lhs.ugt(rhs);
589 else
590 return true;
591 else if (rhsNeg)
592 return false;
593 else
594 return lhs.ult(rhs);
595}
596
597APInt& APInt::set(uint32_t bitPosition) {
598 if (isSingleWord())
599 VAL |= maskBit(bitPosition);
600 else
601 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
602 return *this;
603}
604
605APInt& APInt::set() {
606 if (isSingleWord()) {
607 VAL = -1ULL;
608 return clearUnusedBits();
609 }
610
611 // Set all the bits in all the words.
612 for (uint32_t i = 0; i < getNumWords(); ++i)
613 pVal[i] = -1ULL;
614 // Clear the unused ones
615 return clearUnusedBits();
616}
617
618/// Set the given bit to 0 whose position is given as "bitPosition".
619/// @brief Set a given bit to 0.
620APInt& APInt::clear(uint32_t bitPosition) {
621 if (isSingleWord())
622 VAL &= ~maskBit(bitPosition);
623 else
624 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
625 return *this;
626}
627
628/// @brief Set every bit to 0.
629APInt& APInt::clear() {
630 if (isSingleWord())
631 VAL = 0;
632 else
633 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
634 return *this;
635}
636
637/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
638/// this APInt.
639APInt APInt::operator~() const {
640 APInt Result(*this);
641 Result.flip();
642 return Result;
643}
644
645/// @brief Toggle every bit to its opposite value.
646APInt& APInt::flip() {
647 if (isSingleWord()) {
648 VAL ^= -1ULL;
649 return clearUnusedBits();
650 }
651 for (uint32_t i = 0; i < getNumWords(); ++i)
652 pVal[i] ^= -1ULL;
653 return clearUnusedBits();
654}
655
656/// Toggle a given bit to its opposite value whose position is given
657/// as "bitPosition".
658/// @brief Toggles a given bit to its opposite value.
659APInt& APInt::flip(uint32_t bitPosition) {
660 assert(bitPosition < BitWidth && "Out of the bit-width range!");
661 if ((*this)[bitPosition]) clear(bitPosition);
662 else set(bitPosition);
663 return *this;
664}
665
666uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
667 assert(str != 0 && "Invalid value string");
668 assert(slen > 0 && "Invalid string length");
669
670 // Each computation below needs to know if its negative
671 uint32_t isNegative = str[0] == '-';
672 if (isNegative) {
673 slen--;
674 str++;
675 }
676 // For radixes of power-of-two values, the bits required is accurately and
677 // easily computed
678 if (radix == 2)
679 return slen + isNegative;
680 if (radix == 8)
681 return slen * 3 + isNegative;
682 if (radix == 16)
683 return slen * 4 + isNegative;
684
685 // Otherwise it must be radix == 10, the hard case
686 assert(radix == 10 && "Invalid radix");
687
688 // This is grossly inefficient but accurate. We could probably do something
689 // with a computation of roughly slen*64/20 and then adjust by the value of
690 // the first few digits. But, I'm not sure how accurate that could be.
691
692 // Compute a sufficient number of bits that is always large enough but might
693 // be too large. This avoids the assertion in the constructor.
694 uint32_t sufficient = slen*64/18;
695
696 // Convert to the actual binary value.
697 APInt tmp(sufficient, str, slen, radix);
698
699 // Compute how many bits are required.
700 return isNegative + tmp.logBase2() + 1;
701}
702
703uint64_t APInt::getHashValue() const {
704 // Put the bit width into the low order bits.
705 uint64_t hash = BitWidth;
706
707 // Add the sum of the words to the hash.
708 if (isSingleWord())
709 hash += VAL << 6; // clear separation of up to 64 bits
710 else
711 for (uint32_t i = 0; i < getNumWords(); ++i)
712 hash += pVal[i] << 6; // clear sepration of up to 64 bits
713 return hash;
714}
715
716/// HiBits - This function returns the high "numBits" bits of this APInt.
717APInt APInt::getHiBits(uint32_t numBits) const {
718 return APIntOps::lshr(*this, BitWidth - numBits);
719}
720
721/// LoBits - This function returns the low "numBits" bits of this APInt.
722APInt APInt::getLoBits(uint32_t numBits) const {
723 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
724 BitWidth - numBits);
725}
726
727bool APInt::isPowerOf2() const {
728 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
729}
730
731uint32_t APInt::countLeadingZeros() const {
732 uint32_t Count = 0;
733 if (isSingleWord())
734 Count = CountLeadingZeros_64(VAL);
735 else {
736 for (uint32_t i = getNumWords(); i > 0u; --i) {
737 if (pVal[i-1] == 0)
738 Count += APINT_BITS_PER_WORD;
739 else {
740 Count += CountLeadingZeros_64(pVal[i-1]);
741 break;
742 }
743 }
744 }
745 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
746 if (remainder)
747 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000748 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749}
750
751static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
752 uint32_t Count = 0;
753 if (skip)
754 V <<= skip;
755 while (V && (V & (1ULL << 63))) {
756 Count++;
757 V <<= 1;
758 }
759 return Count;
760}
761
762uint32_t APInt::countLeadingOnes() const {
763 if (isSingleWord())
764 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
765
766 uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
767 uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
768 int i = getNumWords() - 1;
769 uint32_t Count = countLeadingOnes_64(pVal[i], shift);
770 if (Count == highWordBits) {
771 for (i--; i >= 0; --i) {
772 if (pVal[i] == -1ULL)
773 Count += APINT_BITS_PER_WORD;
774 else {
775 Count += countLeadingOnes_64(pVal[i], 0);
776 break;
777 }
778 }
779 }
780 return Count;
781}
782
783uint32_t APInt::countTrailingZeros() const {
784 if (isSingleWord())
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000785 return std::min(CountTrailingZeros_64(VAL), BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000786 uint32_t Count = 0;
787 uint32_t i = 0;
788 for (; i < getNumWords() && pVal[i] == 0; ++i)
789 Count += APINT_BITS_PER_WORD;
790 if (i < getNumWords())
791 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000792 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793}
794
795uint32_t APInt::countPopulation() const {
796 if (isSingleWord())
797 return CountPopulation_64(VAL);
798 uint32_t Count = 0;
799 for (uint32_t i = 0; i < getNumWords(); ++i)
800 Count += CountPopulation_64(pVal[i]);
801 return Count;
802}
803
804APInt APInt::byteSwap() const {
805 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
806 if (BitWidth == 16)
807 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
808 else if (BitWidth == 32)
809 return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
810 else if (BitWidth == 48) {
811 uint32_t Tmp1 = uint32_t(VAL >> 16);
812 Tmp1 = ByteSwap_32(Tmp1);
813 uint16_t Tmp2 = uint16_t(VAL);
814 Tmp2 = ByteSwap_16(Tmp2);
815 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
816 } else if (BitWidth == 64)
817 return APInt(BitWidth, ByteSwap_64(VAL));
818 else {
819 APInt Result(BitWidth, 0);
820 char *pByte = (char*)Result.pVal;
821 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
822 char Tmp = pByte[i];
823 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
824 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
825 }
826 return Result;
827 }
828}
829
830APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
831 const APInt& API2) {
832 APInt A = API1, B = API2;
833 while (!!B) {
834 APInt T = B;
835 B = APIntOps::urem(A, B);
836 A = T;
837 }
838 return A;
839}
840
841APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
842 union {
843 double D;
844 uint64_t I;
845 } T;
846 T.D = Double;
847
848 // Get the sign bit from the highest order bit
849 bool isNeg = T.I >> 63;
850
851 // Get the 11-bit exponent and adjust for the 1023 bit bias
852 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
853
854 // If the exponent is negative, the value is < 0 so just return 0.
855 if (exp < 0)
856 return APInt(width, 0u);
857
858 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
859 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
860
861 // If the exponent doesn't shift all bits out of the mantissa
862 if (exp < 52)
863 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
864 APInt(width, mantissa >> (52 - exp));
865
866 // If the client didn't provide enough bits for us to shift the mantissa into
867 // then the result is undefined, just return 0
868 if (width <= exp - 52)
869 return APInt(width, 0);
870
871 // Otherwise, we have to shift the mantissa bits up to the right location
872 APInt Tmp(width, mantissa);
873 Tmp = Tmp.shl(exp - 52);
874 return isNeg ? -Tmp : Tmp;
875}
876
877/// RoundToDouble - This function convert this APInt to a double.
878/// The layout for double is as following (IEEE Standard 754):
879/// --------------------------------------
880/// | Sign Exponent Fraction Bias |
881/// |-------------------------------------- |
882/// | 1[63] 11[62-52] 52[51-00] 1023 |
883/// --------------------------------------
884double APInt::roundToDouble(bool isSigned) const {
885
886 // Handle the simple case where the value is contained in one uint64_t.
887 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
888 if (isSigned) {
889 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
890 return double(sext);
891 } else
892 return double(VAL);
893 }
894
895 // Determine if the value is negative.
896 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
897
898 // Construct the absolute value if we're negative.
899 APInt Tmp(isNeg ? -(*this) : (*this));
900
901 // Figure out how many bits we're using.
902 uint32_t n = Tmp.getActiveBits();
903
904 // The exponent (without bias normalization) is just the number of bits
905 // we are using. Note that the sign bit is gone since we constructed the
906 // absolute value.
907 uint64_t exp = n;
908
909 // Return infinity for exponent overflow
910 if (exp > 1023) {
911 if (!isSigned || !isNeg)
912 return std::numeric_limits<double>::infinity();
913 else
914 return -std::numeric_limits<double>::infinity();
915 }
916 exp += 1023; // Increment for 1023 bias
917
918 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
919 // extract the high 52 bits from the correct words in pVal.
920 uint64_t mantissa;
921 unsigned hiWord = whichWord(n-1);
922 if (hiWord == 0) {
923 mantissa = Tmp.pVal[0];
924 if (n > 52)
925 mantissa >>= n - 52; // shift down, we want the top 52 bits.
926 } else {
927 assert(hiWord > 0 && "huh?");
928 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
929 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
930 mantissa = hibits | lobits;
931 }
932
933 // The leading bit of mantissa is implicit, so get rid of it.
934 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
935 union {
936 double D;
937 uint64_t I;
938 } T;
939 T.I = sign | (exp << 52) | mantissa;
940 return T.D;
941}
942
943// Truncate to new width.
944APInt &APInt::trunc(uint32_t width) {
945 assert(width < BitWidth && "Invalid APInt Truncate request");
946 assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
947 uint32_t wordsBefore = getNumWords();
948 BitWidth = width;
949 uint32_t wordsAfter = getNumWords();
950 if (wordsBefore != wordsAfter) {
951 if (wordsAfter == 1) {
952 uint64_t *tmp = pVal;
953 VAL = pVal[0];
954 delete [] tmp;
955 } else {
956 uint64_t *newVal = getClearedMemory(wordsAfter);
957 for (uint32_t i = 0; i < wordsAfter; ++i)
958 newVal[i] = pVal[i];
959 delete [] pVal;
960 pVal = newVal;
961 }
962 }
963 return clearUnusedBits();
964}
965
966// Sign extend to a new width.
967APInt &APInt::sext(uint32_t width) {
968 assert(width > BitWidth && "Invalid APInt SignExtend request");
969 assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
970 // If the sign bit isn't set, this is the same as zext.
971 if (!isNegative()) {
972 zext(width);
973 return *this;
974 }
975
976 // The sign bit is set. First, get some facts
977 uint32_t wordsBefore = getNumWords();
978 uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
979 BitWidth = width;
980 uint32_t wordsAfter = getNumWords();
981
982 // Mask the high order word appropriately
983 if (wordsBefore == wordsAfter) {
984 uint32_t newWordBits = width % APINT_BITS_PER_WORD;
985 // The extension is contained to the wordsBefore-1th word.
986 uint64_t mask = ~0ULL;
987 if (newWordBits)
988 mask >>= APINT_BITS_PER_WORD - newWordBits;
989 mask <<= wordBits;
990 if (wordsBefore == 1)
991 VAL |= mask;
992 else
993 pVal[wordsBefore-1] |= mask;
994 return clearUnusedBits();
995 }
996
997 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
998 uint64_t *newVal = getMemory(wordsAfter);
999 if (wordsBefore == 1)
1000 newVal[0] = VAL | mask;
1001 else {
1002 for (uint32_t i = 0; i < wordsBefore; ++i)
1003 newVal[i] = pVal[i];
1004 newVal[wordsBefore-1] |= mask;
1005 }
1006 for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1007 newVal[i] = -1ULL;
1008 if (wordsBefore != 1)
1009 delete [] pVal;
1010 pVal = newVal;
1011 return clearUnusedBits();
1012}
1013
1014// Zero extend to a new width.
1015APInt &APInt::zext(uint32_t width) {
1016 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1017 assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
1018 uint32_t wordsBefore = getNumWords();
1019 BitWidth = width;
1020 uint32_t wordsAfter = getNumWords();
1021 if (wordsBefore != wordsAfter) {
1022 uint64_t *newVal = getClearedMemory(wordsAfter);
1023 if (wordsBefore == 1)
1024 newVal[0] = VAL;
1025 else
1026 for (uint32_t i = 0; i < wordsBefore; ++i)
1027 newVal[i] = pVal[i];
1028 if (wordsBefore != 1)
1029 delete [] pVal;
1030 pVal = newVal;
1031 }
1032 return *this;
1033}
1034
1035APInt &APInt::zextOrTrunc(uint32_t width) {
1036 if (BitWidth < width)
1037 return zext(width);
1038 if (BitWidth > width)
1039 return trunc(width);
1040 return *this;
1041}
1042
1043APInt &APInt::sextOrTrunc(uint32_t width) {
1044 if (BitWidth < width)
1045 return sext(width);
1046 if (BitWidth > width)
1047 return trunc(width);
1048 return *this;
1049}
1050
1051/// Arithmetic right-shift this APInt by shiftAmt.
1052/// @brief Arithmetic right-shift function.
1053APInt APInt::ashr(uint32_t shiftAmt) const {
1054 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1055 // Handle a degenerate case
1056 if (shiftAmt == 0)
1057 return *this;
1058
1059 // Handle single word shifts with built-in ashr
1060 if (isSingleWord()) {
1061 if (shiftAmt == BitWidth)
1062 return APInt(BitWidth, 0); // undefined
1063 else {
1064 uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1065 return APInt(BitWidth,
1066 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1067 }
1068 }
1069
1070 // If all the bits were shifted out, the result is, technically, undefined.
1071 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1072 // issues in the algorithm below.
1073 if (shiftAmt == BitWidth) {
1074 if (isNegative())
1075 return APInt(BitWidth, -1ULL);
1076 else
1077 return APInt(BitWidth, 0);
1078 }
1079
1080 // Create some space for the result.
1081 uint64_t * val = new uint64_t[getNumWords()];
1082
1083 // Compute some values needed by the following shift algorithms
1084 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1085 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1086 uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1087 uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1088 if (bitsInWord == 0)
1089 bitsInWord = APINT_BITS_PER_WORD;
1090
1091 // If we are shifting whole words, just move whole words
1092 if (wordShift == 0) {
1093 // Move the words containing significant bits
1094 for (uint32_t i = 0; i <= breakWord; ++i)
1095 val[i] = pVal[i+offset]; // move whole word
1096
1097 // Adjust the top significant word for sign bit fill, if negative
1098 if (isNegative())
1099 if (bitsInWord < APINT_BITS_PER_WORD)
1100 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1101 } else {
1102 // Shift the low order words
1103 for (uint32_t i = 0; i < breakWord; ++i) {
1104 // This combines the shifted corresponding word with the low bits from
1105 // the next word (shifted into this word's high bits).
1106 val[i] = (pVal[i+offset] >> wordShift) |
1107 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1108 }
1109
1110 // Shift the break word. In this case there are no bits from the next word
1111 // to include in this word.
1112 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1113
1114 // Deal with sign extenstion in the break word, and possibly the word before
1115 // it.
1116 if (isNegative()) {
1117 if (wordShift > bitsInWord) {
1118 if (breakWord > 0)
1119 val[breakWord-1] |=
1120 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1121 val[breakWord] |= ~0ULL;
1122 } else
1123 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1124 }
1125 }
1126
1127 // Remaining words are 0 or -1, just assign them.
1128 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1129 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1130 val[i] = fillValue;
1131 return APInt(val, BitWidth).clearUnusedBits();
1132}
1133
1134/// Logical right-shift this APInt by shiftAmt.
1135/// @brief Logical right-shift function.
1136APInt APInt::lshr(uint32_t shiftAmt) const {
1137 if (isSingleWord()) {
1138 if (shiftAmt == BitWidth)
1139 return APInt(BitWidth, 0);
1140 else
1141 return APInt(BitWidth, this->VAL >> shiftAmt);
1142 }
1143
1144 // If all the bits were shifted out, the result is 0. This avoids issues
1145 // with shifting by the size of the integer type, which produces undefined
1146 // results. We define these "undefined results" to always be 0.
1147 if (shiftAmt == BitWidth)
1148 return APInt(BitWidth, 0);
1149
1150 // If none of the bits are shifted out, the result is *this. This avoids
1151 // issues with shifting byt he size of the integer type, which produces
1152 // undefined results in the code below. This is also an optimization.
1153 if (shiftAmt == 0)
1154 return *this;
1155
1156 // Create some space for the result.
1157 uint64_t * val = new uint64_t[getNumWords()];
1158
1159 // If we are shifting less than a word, compute the shift with a simple carry
1160 if (shiftAmt < APINT_BITS_PER_WORD) {
1161 uint64_t carry = 0;
1162 for (int i = getNumWords()-1; i >= 0; --i) {
1163 val[i] = (pVal[i] >> shiftAmt) | carry;
1164 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1165 }
1166 return APInt(val, BitWidth).clearUnusedBits();
1167 }
1168
1169 // Compute some values needed by the remaining shift algorithms
1170 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1171 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1172
1173 // If we are shifting whole words, just move whole words
1174 if (wordShift == 0) {
1175 for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1176 val[i] = pVal[i+offset];
1177 for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1178 val[i] = 0;
1179 return APInt(val,BitWidth).clearUnusedBits();
1180 }
1181
1182 // Shift the low order words
1183 uint32_t breakWord = getNumWords() - offset -1;
1184 for (uint32_t i = 0; i < breakWord; ++i)
1185 val[i] = (pVal[i+offset] >> wordShift) |
1186 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1187 // Shift the break word.
1188 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1189
1190 // Remaining words are 0
1191 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1192 val[i] = 0;
1193 return APInt(val, BitWidth).clearUnusedBits();
1194}
1195
1196/// Left-shift this APInt by shiftAmt.
1197/// @brief Left-shift function.
1198APInt APInt::shl(uint32_t shiftAmt) const {
1199 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1200 if (isSingleWord()) {
1201 if (shiftAmt == BitWidth)
1202 return APInt(BitWidth, 0); // avoid undefined shift results
1203 return APInt(BitWidth, VAL << shiftAmt);
1204 }
1205
1206 // If all the bits were shifted out, the result is 0. This avoids issues
1207 // with shifting by the size of the integer type, which produces undefined
1208 // results. We define these "undefined results" to always be 0.
1209 if (shiftAmt == BitWidth)
1210 return APInt(BitWidth, 0);
1211
1212 // If none of the bits are shifted out, the result is *this. This avoids a
1213 // lshr by the words size in the loop below which can produce incorrect
1214 // results. It also avoids the expensive computation below for a common case.
1215 if (shiftAmt == 0)
1216 return *this;
1217
1218 // Create some space for the result.
1219 uint64_t * val = new uint64_t[getNumWords()];
1220
1221 // If we are shifting less than a word, do it the easy way
1222 if (shiftAmt < APINT_BITS_PER_WORD) {
1223 uint64_t carry = 0;
1224 for (uint32_t i = 0; i < getNumWords(); i++) {
1225 val[i] = pVal[i] << shiftAmt | carry;
1226 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1227 }
1228 return APInt(val, BitWidth).clearUnusedBits();
1229 }
1230
1231 // Compute some values needed by the remaining shift algorithms
1232 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1233 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1234
1235 // If we are shifting whole words, just move whole words
1236 if (wordShift == 0) {
1237 for (uint32_t i = 0; i < offset; i++)
1238 val[i] = 0;
1239 for (uint32_t i = offset; i < getNumWords(); i++)
1240 val[i] = pVal[i-offset];
1241 return APInt(val,BitWidth).clearUnusedBits();
1242 }
1243
1244 // Copy whole words from this to Result.
1245 uint32_t i = getNumWords() - 1;
1246 for (; i > offset; --i)
1247 val[i] = pVal[i-offset] << wordShift |
1248 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1249 val[offset] = pVal[0] << wordShift;
1250 for (i = 0; i < offset; ++i)
1251 val[i] = 0;
1252 return APInt(val, BitWidth).clearUnusedBits();
1253}
1254
1255APInt APInt::rotl(uint32_t rotateAmt) const {
1256 if (rotateAmt == 0)
1257 return *this;
1258 // Don't get too fancy, just use existing shift/or facilities
1259 APInt hi(*this);
1260 APInt lo(*this);
1261 hi.shl(rotateAmt);
1262 lo.lshr(BitWidth - rotateAmt);
1263 return hi | lo;
1264}
1265
1266APInt APInt::rotr(uint32_t rotateAmt) const {
1267 if (rotateAmt == 0)
1268 return *this;
1269 // Don't get too fancy, just use existing shift/or facilities
1270 APInt hi(*this);
1271 APInt lo(*this);
1272 lo.lshr(rotateAmt);
1273 hi.shl(BitWidth - rotateAmt);
1274 return hi | lo;
1275}
1276
1277// Square Root - this method computes and returns the square root of "this".
1278// Three mechanisms are used for computation. For small values (<= 5 bits),
1279// a table lookup is done. This gets some performance for common cases. For
1280// values using less than 52 bits, the value is converted to double and then
1281// the libc sqrt function is called. The result is rounded and then converted
1282// back to a uint64_t which is then used to construct the result. Finally,
1283// the Babylonian method for computing square roots is used.
1284APInt APInt::sqrt() const {
1285
1286 // Determine the magnitude of the value.
1287 uint32_t magnitude = getActiveBits();
1288
1289 // Use a fast table for some small values. This also gets rid of some
1290 // rounding errors in libc sqrt for small values.
1291 if (magnitude <= 5) {
1292 static const uint8_t results[32] = {
1293 /* 0 */ 0,
1294 /* 1- 2 */ 1, 1,
1295 /* 3- 6 */ 2, 2, 2, 2,
1296 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1297 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1298 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1299 /* 31 */ 6
1300 };
1301 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1302 }
1303
1304 // If the magnitude of the value fits in less than 52 bits (the precision of
1305 // an IEEE double precision floating point value), then we can use the
1306 // libc sqrt function which will probably use a hardware sqrt computation.
1307 // This should be faster than the algorithm below.
1308 if (magnitude < 52) {
1309#ifdef _MSC_VER
1310 // Amazingly, VC++ doesn't have round().
1311 return APInt(BitWidth,
1312 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1313#else
1314 return APInt(BitWidth,
1315 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1316#endif
1317 }
1318
1319 // Okay, all the short cuts are exhausted. We must compute it. The following
1320 // is a classical Babylonian method for computing the square root. This code
1321 // was adapted to APINt from a wikipedia article on such computations.
1322 // See http://www.wikipedia.org/ and go to the page named
1323 // Calculate_an_integer_square_root.
1324 uint32_t nbits = BitWidth, i = 4;
1325 APInt testy(BitWidth, 16);
1326 APInt x_old(BitWidth, 1);
1327 APInt x_new(BitWidth, 0);
1328 APInt two(BitWidth, 2);
1329
1330 // Select a good starting value using binary logarithms.
1331 for (;; i += 2, testy = testy.shl(2))
1332 if (i >= nbits || this->ule(testy)) {
1333 x_old = x_old.shl(i / 2);
1334 break;
1335 }
1336
1337 // Use the Babylonian method to arrive at the integer square root:
1338 for (;;) {
1339 x_new = (this->udiv(x_old) + x_old).udiv(two);
1340 if (x_old.ule(x_new))
1341 break;
1342 x_old = x_new;
1343 }
1344
1345 // Make sure we return the closest approximation
1346 // NOTE: The rounding calculation below is correct. It will produce an
1347 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1348 // determined to be a rounding issue with pari/gp as it begins to use a
1349 // floating point representation after 192 bits. There are no discrepancies
1350 // between this algorithm and pari/gp for bit widths < 192 bits.
1351 APInt square(x_old * x_old);
1352 APInt nextSquare((x_old + 1) * (x_old +1));
1353 if (this->ult(square))
1354 return x_old;
1355 else if (this->ule(nextSquare)) {
1356 APInt midpoint((nextSquare - square).udiv(two));
1357 APInt offset(*this - square);
1358 if (offset.ult(midpoint))
1359 return x_old;
1360 else
1361 return x_old + 1;
1362 } else
1363 assert(0 && "Error in APInt::sqrt computation");
1364 return x_old + 1;
1365}
1366
1367/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1368/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1369/// variables here have the same names as in the algorithm. Comments explain
1370/// the algorithm and any deviation from it.
1371static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1372 uint32_t m, uint32_t n) {
1373 assert(u && "Must provide dividend");
1374 assert(v && "Must provide divisor");
1375 assert(q && "Must provide quotient");
1376 assert(u != v && u != q && v != q && "Must us different memory");
1377 assert(n>1 && "n must be > 1");
1378
1379 // Knuth uses the value b as the base of the number system. In our case b
1380 // is 2^31 so we just set it to -1u.
1381 uint64_t b = uint64_t(1) << 32;
1382
1383 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1384 DEBUG(cerr << "KnuthDiv: original:");
1385 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1386 DEBUG(cerr << " by");
1387 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1388 DEBUG(cerr << '\n');
1389 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1390 // u and v by d. Note that we have taken Knuth's advice here to use a power
1391 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1392 // 2 allows us to shift instead of multiply and it is easy to determine the
1393 // shift amount from the leading zeros. We are basically normalizing the u
1394 // and v so that its high bits are shifted to the top of v's range without
1395 // overflow. Note that this can require an extra word in u so that u must
1396 // be of length m+n+1.
1397 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1398 uint32_t v_carry = 0;
1399 uint32_t u_carry = 0;
1400 if (shift) {
1401 for (uint32_t i = 0; i < m+n; ++i) {
1402 uint32_t u_tmp = u[i] >> (32 - shift);
1403 u[i] = (u[i] << shift) | u_carry;
1404 u_carry = u_tmp;
1405 }
1406 for (uint32_t i = 0; i < n; ++i) {
1407 uint32_t v_tmp = v[i] >> (32 - shift);
1408 v[i] = (v[i] << shift) | v_carry;
1409 v_carry = v_tmp;
1410 }
1411 }
1412 u[m+n] = u_carry;
1413 DEBUG(cerr << "KnuthDiv: normal:");
1414 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1415 DEBUG(cerr << " by");
1416 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1417 DEBUG(cerr << '\n');
1418
1419 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1420 int j = m;
1421 do {
1422 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1423 // D3. [Calculate q'.].
1424 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1425 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1426 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1427 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1428 // on v[n-2] determines at high speed most of the cases in which the trial
1429 // value qp is one too large, and it eliminates all cases where qp is two
1430 // too large.
1431 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1432 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1433 uint64_t qp = dividend / v[n-1];
1434 uint64_t rp = dividend % v[n-1];
1435 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1436 qp--;
1437 rp += v[n-1];
1438 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1439 qp--;
1440 }
1441 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1442
1443 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1444 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1445 // consists of a simple multiplication by a one-place number, combined with
1446 // a subtraction.
1447 bool isNeg = false;
1448 for (uint32_t i = 0; i < n; ++i) {
1449 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1450 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1451 bool borrow = subtrahend > u_tmp;
1452 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1453 << ", subtrahend == " << subtrahend
1454 << ", borrow = " << borrow << '\n');
1455
1456 uint64_t result = u_tmp - subtrahend;
1457 uint32_t k = j + i;
1458 u[k++] = result & (b-1); // subtract low word
1459 u[k++] = result >> 32; // subtract high word
1460 while (borrow && k <= m+n) { // deal with borrow to the left
1461 borrow = u[k] == 0;
1462 u[k]--;
1463 k++;
1464 }
1465 isNeg |= borrow;
1466 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1467 u[j+i+1] << '\n');
1468 }
1469 DEBUG(cerr << "KnuthDiv: after subtraction:");
1470 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1471 DEBUG(cerr << '\n');
1472 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1473 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1474 // true value plus b**(n+1), namely as the b's complement of
1475 // the true value, and a "borrow" to the left should be remembered.
1476 //
1477 if (isNeg) {
1478 bool carry = true; // true because b's complement is "complement + 1"
1479 for (uint32_t i = 0; i <= m+n; ++i) {
1480 u[i] = ~u[i] + carry; // b's complement
1481 carry = carry && u[i] == 0;
1482 }
1483 }
1484 DEBUG(cerr << "KnuthDiv: after complement:");
1485 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1486 DEBUG(cerr << '\n');
1487
1488 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1489 // negative, go to step D6; otherwise go on to step D7.
1490 q[j] = qp;
1491 if (isNeg) {
1492 // D6. [Add back]. The probability that this step is necessary is very
1493 // small, on the order of only 2/b. Make sure that test data accounts for
1494 // this possibility. Decrease q[j] by 1
1495 q[j]--;
1496 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1497 // A carry will occur to the left of u[j+n], and it should be ignored
1498 // since it cancels with the borrow that occurred in D4.
1499 bool carry = false;
1500 for (uint32_t i = 0; i < n; i++) {
1501 uint32_t limit = std::min(u[j+i],v[i]);
1502 u[j+i] += v[i] + carry;
1503 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1504 }
1505 u[j+n] += carry;
1506 }
1507 DEBUG(cerr << "KnuthDiv: after correction:");
1508 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1509 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1510
1511 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1512 } while (--j >= 0);
1513
1514 DEBUG(cerr << "KnuthDiv: quotient:");
1515 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1516 DEBUG(cerr << '\n');
1517
1518 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1519 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1520 // compute the remainder (urem uses this).
1521 if (r) {
1522 // The value d is expressed by the "shift" value above since we avoided
1523 // multiplication by d by using a shift left. So, all we have to do is
1524 // shift right here. In order to mak
1525 if (shift) {
1526 uint32_t carry = 0;
1527 DEBUG(cerr << "KnuthDiv: remainder:");
1528 for (int i = n-1; i >= 0; i--) {
1529 r[i] = (u[i] >> shift) | carry;
1530 carry = u[i] << (32 - shift);
1531 DEBUG(cerr << " " << r[i]);
1532 }
1533 } else {
1534 for (int i = n-1; i >= 0; i--) {
1535 r[i] = u[i];
1536 DEBUG(cerr << " " << r[i]);
1537 }
1538 }
1539 DEBUG(cerr << '\n');
1540 }
1541 DEBUG(cerr << std::setbase(10) << '\n');
1542}
1543
1544void APInt::divide(const APInt LHS, uint32_t lhsWords,
1545 const APInt &RHS, uint32_t rhsWords,
1546 APInt *Quotient, APInt *Remainder)
1547{
1548 assert(lhsWords >= rhsWords && "Fractional result");
1549
1550 // First, compose the values into an array of 32-bit words instead of
1551 // 64-bit words. This is a necessity of both the "short division" algorithm
1552 // and the the Knuth "classical algorithm" which requires there to be native
1553 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1554 // can't use 64-bit operands here because we don't have native results of
1555 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1556 // work on large-endian machines.
1557 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1558 uint32_t n = rhsWords * 2;
1559 uint32_t m = (lhsWords * 2) - n;
1560
1561 // Allocate space for the temporary values we need either on the stack, if
1562 // it will fit, or on the heap if it won't.
1563 uint32_t SPACE[128];
1564 uint32_t *U = 0;
1565 uint32_t *V = 0;
1566 uint32_t *Q = 0;
1567 uint32_t *R = 0;
1568 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1569 U = &SPACE[0];
1570 V = &SPACE[m+n+1];
1571 Q = &SPACE[(m+n+1) + n];
1572 if (Remainder)
1573 R = &SPACE[(m+n+1) + n + (m+n)];
1574 } else {
1575 U = new uint32_t[m + n + 1];
1576 V = new uint32_t[n];
1577 Q = new uint32_t[m+n];
1578 if (Remainder)
1579 R = new uint32_t[n];
1580 }
1581
1582 // Initialize the dividend
1583 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1584 for (unsigned i = 0; i < lhsWords; ++i) {
1585 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1586 U[i * 2] = tmp & mask;
1587 U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1588 }
1589 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1590
1591 // Initialize the divisor
1592 memset(V, 0, (n)*sizeof(uint32_t));
1593 for (unsigned i = 0; i < rhsWords; ++i) {
1594 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1595 V[i * 2] = tmp & mask;
1596 V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1597 }
1598
1599 // initialize the quotient and remainder
1600 memset(Q, 0, (m+n) * sizeof(uint32_t));
1601 if (Remainder)
1602 memset(R, 0, n * sizeof(uint32_t));
1603
1604 // Now, adjust m and n for the Knuth division. n is the number of words in
1605 // the divisor. m is the number of words by which the dividend exceeds the
1606 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1607 // contain any zero words or the Knuth algorithm fails.
1608 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1609 n--;
1610 m++;
1611 }
1612 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1613 m--;
1614
1615 // If we're left with only a single word for the divisor, Knuth doesn't work
1616 // so we implement the short division algorithm here. This is much simpler
1617 // and faster because we are certain that we can divide a 64-bit quantity
1618 // by a 32-bit quantity at hardware speed and short division is simply a
1619 // series of such operations. This is just like doing short division but we
1620 // are using base 2^32 instead of base 10.
1621 assert(n != 0 && "Divide by zero?");
1622 if (n == 1) {
1623 uint32_t divisor = V[0];
1624 uint32_t remainder = 0;
1625 for (int i = m+n-1; i >= 0; i--) {
1626 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1627 if (partial_dividend == 0) {
1628 Q[i] = 0;
1629 remainder = 0;
1630 } else if (partial_dividend < divisor) {
1631 Q[i] = 0;
1632 remainder = partial_dividend;
1633 } else if (partial_dividend == divisor) {
1634 Q[i] = 1;
1635 remainder = 0;
1636 } else {
1637 Q[i] = partial_dividend / divisor;
1638 remainder = partial_dividend - (Q[i] * divisor);
1639 }
1640 }
1641 if (R)
1642 R[0] = remainder;
1643 } else {
1644 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1645 // case n > 1.
1646 KnuthDiv(U, V, Q, R, m, n);
1647 }
1648
1649 // If the caller wants the quotient
1650 if (Quotient) {
1651 // Set up the Quotient value's memory.
1652 if (Quotient->BitWidth != LHS.BitWidth) {
1653 if (Quotient->isSingleWord())
1654 Quotient->VAL = 0;
1655 else
1656 delete [] Quotient->pVal;
1657 Quotient->BitWidth = LHS.BitWidth;
1658 if (!Quotient->isSingleWord())
1659 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1660 } else
1661 Quotient->clear();
1662
1663 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1664 // order words.
1665 if (lhsWords == 1) {
1666 uint64_t tmp =
1667 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1668 if (Quotient->isSingleWord())
1669 Quotient->VAL = tmp;
1670 else
1671 Quotient->pVal[0] = tmp;
1672 } else {
1673 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1674 for (unsigned i = 0; i < lhsWords; ++i)
1675 Quotient->pVal[i] =
1676 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1677 }
1678 }
1679
1680 // If the caller wants the remainder
1681 if (Remainder) {
1682 // Set up the Remainder value's memory.
1683 if (Remainder->BitWidth != RHS.BitWidth) {
1684 if (Remainder->isSingleWord())
1685 Remainder->VAL = 0;
1686 else
1687 delete [] Remainder->pVal;
1688 Remainder->BitWidth = RHS.BitWidth;
1689 if (!Remainder->isSingleWord())
1690 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1691 } else
1692 Remainder->clear();
1693
1694 // The remainder is in R. Reconstitute the remainder into Remainder's low
1695 // order words.
1696 if (rhsWords == 1) {
1697 uint64_t tmp =
1698 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1699 if (Remainder->isSingleWord())
1700 Remainder->VAL = tmp;
1701 else
1702 Remainder->pVal[0] = tmp;
1703 } else {
1704 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1705 for (unsigned i = 0; i < rhsWords; ++i)
1706 Remainder->pVal[i] =
1707 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1708 }
1709 }
1710
1711 // Clean up the memory we allocated.
1712 if (U != &SPACE[0]) {
1713 delete [] U;
1714 delete [] V;
1715 delete [] Q;
1716 delete [] R;
1717 }
1718}
1719
1720APInt APInt::udiv(const APInt& RHS) const {
1721 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1722
1723 // First, deal with the easy case
1724 if (isSingleWord()) {
1725 assert(RHS.VAL != 0 && "Divide by zero?");
1726 return APInt(BitWidth, VAL / RHS.VAL);
1727 }
1728
1729 // Get some facts about the LHS and RHS number of bits and words
1730 uint32_t rhsBits = RHS.getActiveBits();
1731 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1732 assert(rhsWords && "Divided by zero???");
1733 uint32_t lhsBits = this->getActiveBits();
1734 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1735
1736 // Deal with some degenerate cases
1737 if (!lhsWords)
1738 // 0 / X ===> 0
1739 return APInt(BitWidth, 0);
1740 else if (lhsWords < rhsWords || this->ult(RHS)) {
1741 // X / Y ===> 0, iff X < Y
1742 return APInt(BitWidth, 0);
1743 } else if (*this == RHS) {
1744 // X / X ===> 1
1745 return APInt(BitWidth, 1);
1746 } else if (lhsWords == 1 && rhsWords == 1) {
1747 // All high words are zero, just use native divide
1748 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1749 }
1750
1751 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1752 APInt Quotient(1,0); // to hold result.
1753 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1754 return Quotient;
1755}
1756
1757APInt APInt::urem(const APInt& RHS) const {
1758 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1759 if (isSingleWord()) {
1760 assert(RHS.VAL != 0 && "Remainder by zero?");
1761 return APInt(BitWidth, VAL % RHS.VAL);
1762 }
1763
1764 // Get some facts about the LHS
1765 uint32_t lhsBits = getActiveBits();
1766 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1767
1768 // Get some facts about the RHS
1769 uint32_t rhsBits = RHS.getActiveBits();
1770 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1771 assert(rhsWords && "Performing remainder operation by zero ???");
1772
1773 // Check the degenerate cases
1774 if (lhsWords == 0) {
1775 // 0 % Y ===> 0
1776 return APInt(BitWidth, 0);
1777 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1778 // X % Y ===> X, iff X < Y
1779 return *this;
1780 } else if (*this == RHS) {
1781 // X % X == 0;
1782 return APInt(BitWidth, 0);
1783 } else if (lhsWords == 1) {
1784 // All high words are zero, just use native remainder
1785 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1786 }
1787
1788 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1789 APInt Remainder(1,0);
1790 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1791 return Remainder;
1792}
1793
1794void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1795 APInt &Quotient, APInt &Remainder) {
1796 // Get some size facts about the dividend and divisor
1797 uint32_t lhsBits = LHS.getActiveBits();
1798 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1799 uint32_t rhsBits = RHS.getActiveBits();
1800 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1801
1802 // Check the degenerate cases
1803 if (lhsWords == 0) {
1804 Quotient = 0; // 0 / Y ===> 0
1805 Remainder = 0; // 0 % Y ===> 0
1806 return;
1807 }
1808
1809 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1810 Quotient = 0; // X / Y ===> 0, iff X < Y
1811 Remainder = LHS; // X % Y ===> X, iff X < Y
1812 return;
1813 }
1814
1815 if (LHS == RHS) {
1816 Quotient = 1; // X / X ===> 1
1817 Remainder = 0; // X % X ===> 0;
1818 return;
1819 }
1820
1821 if (lhsWords == 1 && rhsWords == 1) {
1822 // There is only one word to consider so use the native versions.
1823 if (LHS.isSingleWord()) {
1824 Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
1825 Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
1826 } else {
1827 Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
1828 Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
1829 }
1830 return;
1831 }
1832
1833 // Okay, lets do it the long way
1834 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1835}
1836
1837void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1838 uint8_t radix) {
1839 // Check our assumptions here
1840 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1841 "Radix should be 2, 8, 10, or 16!");
1842 assert(str && "String is null?");
1843 bool isNeg = str[0] == '-';
1844 if (isNeg)
1845 str++, slen--;
1846 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1847 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1848 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1849 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1850
1851 // Allocate memory
1852 if (!isSingleWord())
1853 pVal = getClearedMemory(getNumWords());
1854
1855 // Figure out if we can shift instead of multiply
1856 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1857
1858 // Set up an APInt for the digit to add outside the loop so we don't
1859 // constantly construct/destruct it.
1860 APInt apdigit(getBitWidth(), 0);
1861 APInt apradix(getBitWidth(), radix);
1862
1863 // Enter digit traversal loop
1864 for (unsigned i = 0; i < slen; i++) {
1865 // Get a digit
1866 uint32_t digit = 0;
1867 char cdigit = str[i];
1868 if (radix == 16) {
1869 if (!isxdigit(cdigit))
1870 assert(0 && "Invalid hex digit in string");
1871 if (isdigit(cdigit))
1872 digit = cdigit - '0';
1873 else if (cdigit >= 'a')
1874 digit = cdigit - 'a' + 10;
1875 else if (cdigit >= 'A')
1876 digit = cdigit - 'A' + 10;
1877 else
1878 assert(0 && "huh? we shouldn't get here");
1879 } else if (isdigit(cdigit)) {
1880 digit = cdigit - '0';
1881 } else {
1882 assert(0 && "Invalid character in digit string");
1883 }
1884
1885 // Shift or multiply the value by the radix
1886 if (shift)
1887 *this <<= shift;
1888 else
1889 *this *= apradix;
1890
1891 // Add in the digit we just interpreted
1892 if (apdigit.isSingleWord())
1893 apdigit.VAL = digit;
1894 else
1895 apdigit.pVal[0] = digit;
1896 *this += apdigit;
1897 }
1898 // If its negative, put it in two's complement form
1899 if (isNeg) {
1900 (*this)--;
1901 this->flip();
1902 }
1903}
1904
1905std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1906 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1907 "Radix should be 2, 8, 10, or 16!");
1908 static const char *digits[] = {
1909 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1910 };
1911 std::string result;
1912 uint32_t bits_used = getActiveBits();
1913 if (isSingleWord()) {
1914 char buf[65];
1915 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1916 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1917 if (format) {
1918 if (wantSigned) {
1919 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1920 (APINT_BITS_PER_WORD-BitWidth);
1921 sprintf(buf, format, sextVal);
1922 } else
1923 sprintf(buf, format, VAL);
1924 } else {
1925 memset(buf, 0, 65);
1926 uint64_t v = VAL;
1927 while (bits_used) {
1928 uint32_t bit = v & 1;
1929 bits_used--;
1930 buf[bits_used] = digits[bit][0];
1931 v >>=1;
1932 }
1933 }
1934 result = buf;
1935 return result;
1936 }
1937
1938 if (radix != 10) {
1939 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
1940 // because the number of bits per digit (1,3 and 4 respectively) divides
1941 // equaly. We just shift until there value is zero.
1942
1943 // First, check for a zero value and just short circuit the logic below.
1944 if (*this == 0)
1945 result = "0";
1946 else {
1947 APInt tmp(*this);
1948 size_t insert_at = 0;
1949 if (wantSigned && this->isNegative()) {
1950 // They want to print the signed version and it is a negative value
1951 // Flip the bits and add one to turn it into the equivalent positive
1952 // value and put a '-' in the result.
1953 tmp.flip();
1954 tmp++;
1955 result = "-";
1956 insert_at = 1;
1957 }
1958 // Just shift tmp right for each digit width until it becomes zero
1959 uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
1960 uint64_t mask = radix - 1;
1961 APInt zero(tmp.getBitWidth(), 0);
1962 while (tmp.ne(zero)) {
1963 unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
1964 result.insert(insert_at, digits[digit]);
1965 tmp = tmp.lshr(shift);
1966 }
1967 }
1968 return result;
1969 }
1970
1971 APInt tmp(*this);
1972 APInt divisor(4, radix);
1973 APInt zero(tmp.getBitWidth(), 0);
1974 size_t insert_at = 0;
1975 if (wantSigned && tmp[BitWidth-1]) {
1976 // They want to print the signed version and it is a negative value
1977 // Flip the bits and add one to turn it into the equivalent positive
1978 // value and put a '-' in the result.
1979 tmp.flip();
1980 tmp++;
1981 result = "-";
1982 insert_at = 1;
1983 }
1984 if (tmp == APInt(tmp.getBitWidth(), 0))
1985 result = "0";
1986 else while (tmp.ne(zero)) {
1987 APInt APdigit(1,0);
1988 APInt tmp2(tmp.getBitWidth(), 0);
1989 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1990 &APdigit);
1991 uint32_t digit = APdigit.getZExtValue();
1992 assert(digit < radix && "divide failed");
1993 result.insert(insert_at,digits[digit]);
1994 tmp = tmp2;
1995 }
1996
1997 return result;
1998}
1999
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000void APInt::dump() const
2001{
2002 cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
2003 if (isSingleWord())
2004 cerr << VAL;
2005 else for (unsigned i = getNumWords(); i > 0; i--) {
2006 cerr << pVal[i-1] << " ";
2007 }
Chris Lattner9b502d42007-08-23 05:15:32 +00002008 cerr << " U(" << this->toStringUnsigned(10) << ") S("
Dale Johannesen2fc20782007-09-14 22:26:36 +00002009 << this->toStringSigned(10) << ")" << std::setbase(10);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002010}
Chris Lattner73cde982007-08-16 15:56:55 +00002011
2012// This implements a variety of operations on a representation of
2013// arbitrary precision, two's-complement, bignum integer values.
2014
2015/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2016 and unrestricting assumption. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002017COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002018
2019/* Some handy functions local to this file. */
2020namespace {
2021
Chris Lattnerdb80e212007-08-20 22:49:32 +00002022 /* Returns the integer part with the least significant BITS set.
2023 BITS cannot be zero. */
2024 inline integerPart
2025 lowBitMask(unsigned int bits)
2026 {
2027 assert (bits != 0 && bits <= integerPartWidth);
2028
2029 return ~(integerPart) 0 >> (integerPartWidth - bits);
2030 }
2031
Neil Booth58ffb232007-10-06 00:43:45 +00002032 /* Returns the value of the lower half of PART. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002033 inline integerPart
2034 lowHalf(integerPart part)
2035 {
2036 return part & lowBitMask(integerPartWidth / 2);
2037 }
2038
Neil Booth58ffb232007-10-06 00:43:45 +00002039 /* Returns the value of the upper half of PART. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002040 inline integerPart
2041 highHalf(integerPart part)
2042 {
2043 return part >> (integerPartWidth / 2);
2044 }
2045
Neil Booth58ffb232007-10-06 00:43:45 +00002046 /* Returns the bit number of the most significant set bit of a part.
2047 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002048 unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002049 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002050 {
2051 unsigned int n, msb;
2052
2053 if (value == 0)
2054 return -1U;
2055
2056 n = integerPartWidth / 2;
2057
2058 msb = 0;
2059 do {
2060 if (value >> n) {
2061 value >>= n;
2062 msb += n;
2063 }
2064
2065 n >>= 1;
2066 } while (n);
2067
2068 return msb;
2069 }
2070
Neil Booth58ffb232007-10-06 00:43:45 +00002071 /* Returns the bit number of the least significant set bit of a
2072 part. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002073 unsigned int
2074 partLSB(integerPart value)
2075 {
2076 unsigned int n, lsb;
2077
2078 if (value == 0)
2079 return -1U;
2080
2081 lsb = integerPartWidth - 1;
2082 n = integerPartWidth / 2;
2083
2084 do {
2085 if (value << n) {
2086 value <<= n;
2087 lsb -= n;
2088 }
2089
2090 n >>= 1;
2091 } while (n);
2092
2093 return lsb;
2094 }
2095}
2096
2097/* Sets the least significant part of a bignum to the input value, and
2098 zeroes out higher parts. */
2099void
2100APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2101{
2102 unsigned int i;
2103
Neil Bootha0f524a2007-10-08 13:47:12 +00002104 assert (parts > 0);
2105
Chris Lattner73cde982007-08-16 15:56:55 +00002106 dst[0] = part;
2107 for(i = 1; i < parts; i++)
2108 dst[i] = 0;
2109}
2110
2111/* Assign one bignum to another. */
2112void
2113APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2114{
2115 unsigned int i;
2116
2117 for(i = 0; i < parts; i++)
2118 dst[i] = src[i];
2119}
2120
2121/* Returns true if a bignum is zero, false otherwise. */
2122bool
2123APInt::tcIsZero(const integerPart *src, unsigned int parts)
2124{
2125 unsigned int i;
2126
2127 for(i = 0; i < parts; i++)
2128 if (src[i])
2129 return false;
2130
2131 return true;
2132}
2133
2134/* Extract the given bit of a bignum; returns 0 or 1. */
2135int
2136APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2137{
2138 return(parts[bit / integerPartWidth]
2139 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2140}
2141
2142/* Set the given bit of a bignum. */
2143void
2144APInt::tcSetBit(integerPart *parts, unsigned int bit)
2145{
2146 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2147}
2148
Neil Booth58ffb232007-10-06 00:43:45 +00002149/* Returns the bit number of the least significant set bit of a
2150 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002151unsigned int
2152APInt::tcLSB(const integerPart *parts, unsigned int n)
2153{
2154 unsigned int i, lsb;
2155
2156 for(i = 0; i < n; i++) {
2157 if (parts[i] != 0) {
2158 lsb = partLSB(parts[i]);
2159
2160 return lsb + i * integerPartWidth;
2161 }
2162 }
2163
2164 return -1U;
2165}
2166
Neil Booth58ffb232007-10-06 00:43:45 +00002167/* Returns the bit number of the most significant set bit of a number.
2168 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002169unsigned int
2170APInt::tcMSB(const integerPart *parts, unsigned int n)
2171{
2172 unsigned int msb;
2173
2174 do {
2175 --n;
2176
2177 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002178 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002179
2180 return msb + n * integerPartWidth;
2181 }
2182 } while (n);
2183
2184 return -1U;
2185}
2186
Neil Bootha0f524a2007-10-08 13:47:12 +00002187/* Copy the bit vector of width srcBITS from SRC, starting at bit
2188 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2189 the least significant bit of DST. All high bits above srcBITS in
2190 DST are zero-filled. */
2191void
2192APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2193 unsigned int srcBits, unsigned int srcLSB)
2194{
2195 unsigned int firstSrcPart, dstParts, shift, n;
2196
2197 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2198 assert (dstParts <= dstCount);
2199
2200 firstSrcPart = srcLSB / integerPartWidth;
2201 tcAssign (dst, src + firstSrcPart, dstParts);
2202
2203 shift = srcLSB % integerPartWidth;
2204 tcShiftRight (dst, dstParts, shift);
2205
2206 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2207 in DST. If this is less that srcBits, append the rest, else
2208 clear the high bits. */
2209 n = dstParts * integerPartWidth - shift;
2210 if (n < srcBits) {
2211 integerPart mask = lowBitMask (srcBits - n);
2212 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2213 << n % integerPartWidth);
2214 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002215 if (srcBits % integerPartWidth)
2216 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002217 }
2218
2219 /* Clear high parts. */
2220 while (dstParts < dstCount)
2221 dst[dstParts++] = 0;
2222}
2223
Chris Lattner73cde982007-08-16 15:56:55 +00002224/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2225integerPart
2226APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2227 integerPart c, unsigned int parts)
2228{
2229 unsigned int i;
2230
2231 assert(c <= 1);
2232
2233 for(i = 0; i < parts; i++) {
2234 integerPart l;
2235
2236 l = dst[i];
2237 if (c) {
2238 dst[i] += rhs[i] + 1;
2239 c = (dst[i] <= l);
2240 } else {
2241 dst[i] += rhs[i];
2242 c = (dst[i] < l);
2243 }
2244 }
2245
2246 return c;
2247}
2248
2249/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2250integerPart
2251APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2252 integerPart c, unsigned int parts)
2253{
2254 unsigned int i;
2255
2256 assert(c <= 1);
2257
2258 for(i = 0; i < parts; i++) {
2259 integerPart l;
2260
2261 l = dst[i];
2262 if (c) {
2263 dst[i] -= rhs[i] + 1;
2264 c = (dst[i] >= l);
2265 } else {
2266 dst[i] -= rhs[i];
2267 c = (dst[i] > l);
2268 }
2269 }
2270
2271 return c;
2272}
2273
2274/* Negate a bignum in-place. */
2275void
2276APInt::tcNegate(integerPart *dst, unsigned int parts)
2277{
2278 tcComplement(dst, parts);
2279 tcIncrement(dst, parts);
2280}
2281
Neil Booth58ffb232007-10-06 00:43:45 +00002282/* DST += SRC * MULTIPLIER + CARRY if add is true
2283 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002284
2285 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2286 they must start at the same point, i.e. DST == SRC.
2287
2288 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2289 returned. Otherwise DST is filled with the least significant
2290 DSTPARTS parts of the result, and if all of the omitted higher
2291 parts were zero return zero, otherwise overflow occurred and
2292 return one. */
2293int
2294APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2295 integerPart multiplier, integerPart carry,
2296 unsigned int srcParts, unsigned int dstParts,
2297 bool add)
2298{
2299 unsigned int i, n;
2300
2301 /* Otherwise our writes of DST kill our later reads of SRC. */
2302 assert(dst <= src || dst >= src + srcParts);
2303 assert(dstParts <= srcParts + 1);
2304
2305 /* N loops; minimum of dstParts and srcParts. */
2306 n = dstParts < srcParts ? dstParts: srcParts;
2307
2308 for(i = 0; i < n; i++) {
2309 integerPart low, mid, high, srcPart;
2310
2311 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2312
2313 This cannot overflow, because
2314
2315 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2316
2317 which is less than n^2. */
2318
2319 srcPart = src[i];
2320
2321 if (multiplier == 0 || srcPart == 0) {
2322 low = carry;
2323 high = 0;
2324 } else {
2325 low = lowHalf(srcPart) * lowHalf(multiplier);
2326 high = highHalf(srcPart) * highHalf(multiplier);
2327
2328 mid = lowHalf(srcPart) * highHalf(multiplier);
2329 high += highHalf(mid);
2330 mid <<= integerPartWidth / 2;
2331 if (low + mid < low)
2332 high++;
2333 low += mid;
2334
2335 mid = highHalf(srcPart) * lowHalf(multiplier);
2336 high += highHalf(mid);
2337 mid <<= integerPartWidth / 2;
2338 if (low + mid < low)
2339 high++;
2340 low += mid;
2341
2342 /* Now add carry. */
2343 if (low + carry < low)
2344 high++;
2345 low += carry;
2346 }
2347
2348 if (add) {
2349 /* And now DST[i], and store the new low part there. */
2350 if (low + dst[i] < low)
2351 high++;
2352 dst[i] += low;
2353 } else
2354 dst[i] = low;
2355
2356 carry = high;
2357 }
2358
2359 if (i < dstParts) {
2360 /* Full multiplication, there is no overflow. */
2361 assert(i + 1 == dstParts);
2362 dst[i] = carry;
2363 return 0;
2364 } else {
2365 /* We overflowed if there is carry. */
2366 if (carry)
2367 return 1;
2368
2369 /* We would overflow if any significant unwritten parts would be
2370 non-zero. This is true if any remaining src parts are non-zero
2371 and the multiplier is non-zero. */
2372 if (multiplier)
2373 for(; i < srcParts; i++)
2374 if (src[i])
2375 return 1;
2376
2377 /* We fitted in the narrow destination. */
2378 return 0;
2379 }
2380}
2381
2382/* DST = LHS * RHS, where DST has the same width as the operands and
2383 is filled with the least significant parts of the result. Returns
2384 one if overflow occurred, otherwise zero. DST must be disjoint
2385 from both operands. */
2386int
2387APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2388 const integerPart *rhs, unsigned int parts)
2389{
2390 unsigned int i;
2391 int overflow;
2392
2393 assert(dst != lhs && dst != rhs);
2394
2395 overflow = 0;
2396 tcSet(dst, 0, parts);
2397
2398 for(i = 0; i < parts; i++)
2399 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2400 parts - i, true);
2401
2402 return overflow;
2403}
2404
Neil Booth004e9f42007-10-06 00:24:48 +00002405/* DST = LHS * RHS, where DST has width the sum of the widths of the
2406 operands. No overflow occurs. DST must be disjoint from both
2407 operands. Returns the number of parts required to hold the
2408 result. */
2409unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002410APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002411 const integerPart *rhs, unsigned int lhsParts,
2412 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002413{
Neil Booth004e9f42007-10-06 00:24:48 +00002414 /* Put the narrower number on the LHS for less loops below. */
2415 if (lhsParts > rhsParts) {
2416 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2417 } else {
2418 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002419
Neil Booth004e9f42007-10-06 00:24:48 +00002420 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002421
Neil Booth004e9f42007-10-06 00:24:48 +00002422 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002423
Neil Booth004e9f42007-10-06 00:24:48 +00002424 for(n = 0; n < lhsParts; n++)
2425 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002426
Neil Booth004e9f42007-10-06 00:24:48 +00002427 n = lhsParts + rhsParts;
2428
2429 return n - (dst[n - 1] == 0);
2430 }
Chris Lattner73cde982007-08-16 15:56:55 +00002431}
2432
2433/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2434 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2435 set REMAINDER to the remainder, return zero. i.e.
2436
2437 OLD_LHS = RHS * LHS + REMAINDER
2438
2439 SCRATCH is a bignum of the same size as the operands and result for
2440 use by the routine; its contents need not be initialized and are
2441 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2442*/
2443int
2444APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2445 integerPart *remainder, integerPart *srhs,
2446 unsigned int parts)
2447{
2448 unsigned int n, shiftCount;
2449 integerPart mask;
2450
2451 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2452
Chris Lattnerdb80e212007-08-20 22:49:32 +00002453 shiftCount = tcMSB(rhs, parts) + 1;
2454 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002455 return true;
2456
Chris Lattnerdb80e212007-08-20 22:49:32 +00002457 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002458 n = shiftCount / integerPartWidth;
2459 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2460
2461 tcAssign(srhs, rhs, parts);
2462 tcShiftLeft(srhs, parts, shiftCount);
2463 tcAssign(remainder, lhs, parts);
2464 tcSet(lhs, 0, parts);
2465
2466 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2467 the total. */
2468 for(;;) {
2469 int compare;
2470
2471 compare = tcCompare(remainder, srhs, parts);
2472 if (compare >= 0) {
2473 tcSubtract(remainder, srhs, 0, parts);
2474 lhs[n] |= mask;
2475 }
2476
2477 if (shiftCount == 0)
2478 break;
2479 shiftCount--;
2480 tcShiftRight(srhs, parts, 1);
2481 if ((mask >>= 1) == 0)
2482 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2483 }
2484
2485 return false;
2486}
2487
2488/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2489 There are no restrictions on COUNT. */
2490void
2491APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2492{
Neil Bootha0f524a2007-10-08 13:47:12 +00002493 if (count) {
2494 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002495
Neil Bootha0f524a2007-10-08 13:47:12 +00002496 /* Jump is the inter-part jump; shift is is intra-part shift. */
2497 jump = count / integerPartWidth;
2498 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002499
Neil Bootha0f524a2007-10-08 13:47:12 +00002500 while (parts > jump) {
2501 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002502
Neil Bootha0f524a2007-10-08 13:47:12 +00002503 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002504
Neil Bootha0f524a2007-10-08 13:47:12 +00002505 /* dst[i] comes from the two parts src[i - jump] and, if we have
2506 an intra-part shift, src[i - jump - 1]. */
2507 part = dst[parts - jump];
2508 if (shift) {
2509 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002510 if (parts >= jump + 1)
2511 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2512 }
2513
Neil Bootha0f524a2007-10-08 13:47:12 +00002514 dst[parts] = part;
2515 }
Chris Lattner73cde982007-08-16 15:56:55 +00002516
Neil Bootha0f524a2007-10-08 13:47:12 +00002517 while (parts > 0)
2518 dst[--parts] = 0;
2519 }
Chris Lattner73cde982007-08-16 15:56:55 +00002520}
2521
2522/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2523 zero. There are no restrictions on COUNT. */
2524void
2525APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2526{
Neil Bootha0f524a2007-10-08 13:47:12 +00002527 if (count) {
2528 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002529
Neil Bootha0f524a2007-10-08 13:47:12 +00002530 /* Jump is the inter-part jump; shift is is intra-part shift. */
2531 jump = count / integerPartWidth;
2532 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002533
Neil Bootha0f524a2007-10-08 13:47:12 +00002534 /* Perform the shift. This leaves the most significant COUNT bits
2535 of the result at zero. */
2536 for(i = 0; i < parts; i++) {
2537 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002538
Neil Bootha0f524a2007-10-08 13:47:12 +00002539 if (i + jump >= parts) {
2540 part = 0;
2541 } else {
2542 part = dst[i + jump];
2543 if (shift) {
2544 part >>= shift;
2545 if (i + jump + 1 < parts)
2546 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2547 }
Chris Lattner73cde982007-08-16 15:56:55 +00002548 }
Chris Lattner73cde982007-08-16 15:56:55 +00002549
Neil Bootha0f524a2007-10-08 13:47:12 +00002550 dst[i] = part;
2551 }
Chris Lattner73cde982007-08-16 15:56:55 +00002552 }
2553}
2554
2555/* Bitwise and of two bignums. */
2556void
2557APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2558{
2559 unsigned int i;
2560
2561 for(i = 0; i < parts; i++)
2562 dst[i] &= rhs[i];
2563}
2564
2565/* Bitwise inclusive or of two bignums. */
2566void
2567APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2568{
2569 unsigned int i;
2570
2571 for(i = 0; i < parts; i++)
2572 dst[i] |= rhs[i];
2573}
2574
2575/* Bitwise exclusive or of two bignums. */
2576void
2577APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2578{
2579 unsigned int i;
2580
2581 for(i = 0; i < parts; i++)
2582 dst[i] ^= rhs[i];
2583}
2584
2585/* Complement a bignum in-place. */
2586void
2587APInt::tcComplement(integerPart *dst, unsigned int parts)
2588{
2589 unsigned int i;
2590
2591 for(i = 0; i < parts; i++)
2592 dst[i] = ~dst[i];
2593}
2594
2595/* Comparison (unsigned) of two bignums. */
2596int
2597APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2598 unsigned int parts)
2599{
2600 while (parts) {
2601 parts--;
2602 if (lhs[parts] == rhs[parts])
2603 continue;
2604
2605 if (lhs[parts] > rhs[parts])
2606 return 1;
2607 else
2608 return -1;
2609 }
2610
2611 return 0;
2612}
2613
2614/* Increment a bignum in-place, return the carry flag. */
2615integerPart
2616APInt::tcIncrement(integerPart *dst, unsigned int parts)
2617{
2618 unsigned int i;
2619
2620 for(i = 0; i < parts; i++)
2621 if (++dst[i] != 0)
2622 break;
2623
2624 return i == parts;
2625}
2626
2627/* Set the least significant BITS bits of a bignum, clear the
2628 rest. */
2629void
2630APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2631 unsigned int bits)
2632{
2633 unsigned int i;
2634
2635 i = 0;
2636 while (bits > integerPartWidth) {
2637 dst[i++] = ~(integerPart) 0;
2638 bits -= integerPartWidth;
2639 }
2640
2641 if (bits)
2642 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2643
2644 while (i < parts)
2645 dst[i++] = 0;
2646}