blob: c180c2a32e210f8448ec27a27bb764edad514bda [file] [log] [blame]
Chris Lattner00950542001-06-06 20:29:01 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><title>llvm Assembly Language Reference Manual</title></head>
3<body bgcolor=white>
4
5<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
6<tr><td>&nbsp; <font size=+5 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>llvm Assembly Language Reference Manual</b></font></td>
7</tr></table>
8
9<ol>
10 <li><a href="#abstract">Abstract</a>
11 <li><a href="#introduction">Introduction</a>
12 <li><a href="#identifiers">Identifiers</a>
13 <li><a href="#typesystem">Type System</a>
14 <ol>
15 <li><a href="#t_primitive">Primitive Types</a>
16 <ol>
17 <li><a href="#t_classifications">Type Classifications</a>
18 </ol>
19 <li><a href="#t_derived">Derived Types</a>
20 <ol>
21 <li><a href="#t_array" >Array Type</a>
Chris Lattner7faa8832002-04-14 06:13:44 +000022 <li><a href="#t_function">Function Type</a>
Chris Lattner00950542001-06-06 20:29:01 +000023 <li><a href="#t_pointer">Pointer Type</a>
24 <li><a href="#t_struct" >Structure Type</a>
Chris Lattner690d99b2002-08-29 18:33:48 +000025 <!-- <li><a href="#t_packed" >Packed Type</a> -->
Chris Lattner00950542001-06-06 20:29:01 +000026 </ol>
27 </ol>
28 <li><a href="#highlevel">High Level Structure</a>
29 <ol>
30 <li><a href="#modulestructure">Module Structure</a>
Chris Lattner2b7d3202002-05-06 03:03:22 +000031 <li><a href="#globalvars">Global Variables</a>
Chris Lattner7faa8832002-04-14 06:13:44 +000032 <li><a href="#functionstructure">Function Structure</a>
Chris Lattner00950542001-06-06 20:29:01 +000033 </ol>
34 <li><a href="#instref">Instruction Reference</a>
35 <ol>
36 <li><a href="#terminators">Terminator Instructions</a>
37 <ol>
Chris Lattner7faa8832002-04-14 06:13:44 +000038 <li><a href="#i_ret" >'<tt>ret</tt>' Instruction</a>
39 <li><a href="#i_br" >'<tt>br</tt>' Instruction</a>
40 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a>
41 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000042 </ol>
Chris Lattner00950542001-06-06 20:29:01 +000043 <li><a href="#binaryops">Binary Operations</a>
44 <ol>
45 <li><a href="#i_add" >'<tt>add</tt>' Instruction</a>
46 <li><a href="#i_sub" >'<tt>sub</tt>' Instruction</a>
47 <li><a href="#i_mul" >'<tt>mul</tt>' Instruction</a>
48 <li><a href="#i_div" >'<tt>div</tt>' Instruction</a>
49 <li><a href="#i_rem" >'<tt>rem</tt>' Instruction</a>
50 <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a>
51 </ol>
52 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
53 <ol>
54 <li><a href="#i_and">'<tt>and</tt>' Instruction</a>
55 <li><a href="#i_or" >'<tt>or</tt>' Instruction</a>
56 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a>
57 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a>
58 <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a>
59 </ol>
60 <li><a href="#memoryops">Memory Access Operations</a>
61 <ol>
62 <li><a href="#i_malloc" >'<tt>malloc</tt>' Instruction</a>
63 <li><a href="#i_free" >'<tt>free</tt>' Instruction</a>
64 <li><a href="#i_alloca" >'<tt>alloca</tt>' Instruction</a>
65 <li><a href="#i_load" >'<tt>load</tt>' Instruction</a>
66 <li><a href="#i_store" >'<tt>store</tt>' Instruction</a>
Chris Lattner2b7d3202002-05-06 03:03:22 +000067 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000068 </ol>
69 <li><a href="#otherops">Other Operations</a>
70 <ol>
Chris Lattner6536cfe2002-05-06 22:08:29 +000071 <li><a href="#i_phi" >'<tt>phi</tt>' Instruction</a>
Chris Lattner33ba0d92001-07-09 00:26:23 +000072 <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#i_call" >'<tt>call</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000074 </ol>
Chris Lattner00950542001-06-06 20:29:01 +000075 </ol>
Chris Lattner6536cfe2002-05-06 22:08:29 +000076<!--
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#related">Related Work</a>
Chris Lattner6536cfe2002-05-06 22:08:29 +000078-->
Chris Lattnerd816bcf2002-08-30 21:50:21 +000079
80 <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and <A href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b><p>
81
82
Chris Lattner00950542001-06-06 20:29:01 +000083</ol>
84
85
86<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +000087<p><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
88<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +000089<a name="abstract">Abstract
90</b></font></td></tr></table><ul>
91<!-- *********************************************************************** -->
92
93<blockquote>
Chris Lattner7bae3952002-06-25 18:03:17 +000094 This document is a reference manual for the LLVM assembly language. LLVM is
95 an SSA based representation that provides type safety, low level operations,
96 flexibility, and the capability of representing 'all' high level languages
97 cleanly. It is the common code representation used throughout all phases of
98 the LLVM compilation strategy.
Chris Lattner00950542001-06-06 20:29:01 +000099</blockquote>
100
101
102
103
104<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000105</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
106<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000107<a name="introduction">Introduction
108</b></font></td></tr></table><ul>
109<!-- *********************************************************************** -->
110
Chris Lattner7faa8832002-04-14 06:13:44 +0000111The LLVM code representation is designed to be used in three different forms: as
112an in-memory compiler IR, as an on-disk bytecode representation, suitable for
113fast loading by a dynamic compiler, and as a human readable assembly language
114representation. This allows LLVM to provide a powerful intermediate
115representation for efficient compiler transformations and analysis, while
116providing a natural means to debug and visualize the transformations. The three
117different forms of LLVM are all equivalent. This document describes the human
118readable representation and notation.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000119
Chris Lattner7faa8832002-04-14 06:13:44 +0000120The LLVM representation aims to be a light weight and low level while being
Chris Lattnerb7c6c2a2002-06-25 20:20:08 +0000121expressive, typed, and extensible at the same time. It aims to be a "universal
122IR" of sorts, by being at a low enough level that high level ideas may be
123cleanly mapped to it (similar to how microprocessors are "universal IR's",
124allowing many source languages to be mapped to them). By providing type
125information, LLVM can be used as the target of optimizations: for example,
126through pointer analysis, it can be proven that a C automatic variable is never
127accessed outside of the current function... allowing it to be promoted to a
128simple SSA value instead of a memory location.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000129
130<!-- _______________________________________________________________________ -->
131</ul><a name="wellformed"><h4><hr size=0>Well Formedness</h4><ul>
132
Chris Lattner7faa8832002-04-14 06:13:44 +0000133It is important to note that this document describes 'well formed' llvm assembly
134language. There is a difference between what the parser accepts and what is
135considered 'well formed'. For example, the following instruction is
136syntactically okay, but not well formed:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000137
138<pre>
139 %x = <a href="#i_add">add</a> int 1, %x
140</pre>
141
Chris Lattner7bae3952002-06-25 18:03:17 +0000142...because the definition of %x does not dominate all of its uses. The LLVM
143infrastructure provides a verification pass that may be used to verify that an
144LLVM module is well formed. This pass is automatically run by the parser after
Chris Lattner2b7d3202002-05-06 03:03:22 +0000145parsing input assembly, and by the optimizer before it outputs bytecode. The
Chris Lattner7faa8832002-04-14 06:13:44 +0000146violations pointed out by the verifier pass indicate bugs in transformation
Chris Lattner2b7d3202002-05-06 03:03:22 +0000147passes or input to the parser.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000148
Chris Lattner7bae3952002-06-25 18:03:17 +0000149<!-- Describe the typesetting conventions here. -->
Chris Lattner00950542001-06-06 20:29:01 +0000150
151
152<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000153</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
154<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000155<a name="identifiers">Identifiers
156</b></font></td></tr></table><ul>
157<!-- *********************************************************************** -->
158
159LLVM uses three different forms of identifiers, for different purposes:<p>
160
161<ol>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000162<li>Numeric constants are represented as you would expect: 12, -3 123.421, etc. Floating point constants have an optional hexidecimal notation.
Chris Lattner00950542001-06-06 20:29:01 +0000163<li>Named values are represented as a string of characters with a '%' prefix. For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
164<li>Unnamed values are represented as an unsigned numeric value with a '%' prefix. For example, %12, %2, %44.
165</ol><p>
166
Chris Lattner7faa8832002-04-14 06:13:44 +0000167LLVM requires the values start with a '%' sign for two reasons: Compilers don't
168need to worry about name clashes with reserved words, and the set of reserved
169words may be expanded in the future without penalty. Additionally, unnamed
170identifiers allow a compiler to quickly come up with a temporary variable
171without having to avoid symbol table conflicts.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000172
Chris Lattner7faa8832002-04-14 06:13:44 +0000173Reserved words in LLVM are very similar to reserved words in other languages.
174There are keywords for different opcodes ('<tt><a href="#i_add">add</a></tt>',
175'<tt><a href="#i_cast">cast</a></tt>', '<tt><a href="#i_ret">ret</a></tt>',
176etc...), for primitive type names ('<tt><a href="#t_void">void</a></tt>',
177'<tt><a href="#t_uint">uint</a></tt>', etc...), and others. These reserved
178words cannot conflict with variable names, because none of them start with a '%'
179character.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000180
Chris Lattner7faa8832002-04-14 06:13:44 +0000181Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>'
182by 8:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000183
184The easy way:
185<pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000186 %result = <a href="#i_mul">mul</a> uint %X, 8
Chris Lattner00950542001-06-06 20:29:01 +0000187</pre>
188
189After strength reduction:
190<pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000191 %result = <a href="#i_shl">shl</a> uint %X, ubyte 3
Chris Lattner00950542001-06-06 20:29:01 +0000192</pre>
193
194And the hard way:
195<pre>
Chris Lattner7bae3952002-06-25 18:03:17 +0000196 <a href="#i_add">add</a> uint %X, %X <i>; yields {uint}:%0</i>
197 <a href="#i_add">add</a> uint %0, %0 <i>; yields {uint}:%1</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000198 %result = <a href="#i_add">add</a> uint %1, %1
Chris Lattner00950542001-06-06 20:29:01 +0000199</pre>
200
201This last way of multiplying <tt>%X</tt> by 8 illustrates several important lexical features of LLVM:<p>
202
203<ol>
204<li>Comments are delimited with a '<tt>;</tt>' and go until the end of line.
Chris Lattner7faa8832002-04-14 06:13:44 +0000205<li>Unnamed temporaries are created when the result of a computation is not
206 assigned to a named value.
Chris Lattner00950542001-06-06 20:29:01 +0000207<li>Unnamed temporaries are numbered sequentially
208</ol><p>
209
Chris Lattner7faa8832002-04-14 06:13:44 +0000210...and it also show a convention that we follow in this document. When
211demonstrating instructions, we will follow an instruction with a comment that
212defines the type and name of value produced. Comments are shown in italic
213text.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000214
Chris Lattner2b7d3202002-05-06 03:03:22 +0000215The one unintuitive notation for constants is the optional hexidecimal form of
216floating point constants. For example, the form '<tt>double
2170x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
2184.5e+15</tt>' which is also supported by the parser. The only time hexadecimal
219floating point constants are useful (and the only time that they are generated
220by the disassembler) is when an FP constant has to be emitted that is not
221representable as a decimal floating point number exactly. For example, NaN's,
222infinities, and other special cases are represented in their IEEE hexadecimal
223format so that assembly and disassembly do not cause any bits to change in the
224constants.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000225
226
227<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000228</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
229<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000230<a name="typesystem">Type System
231</b></font></td></tr></table><ul>
232<!-- *********************************************************************** -->
233
Chris Lattner2b7d3202002-05-06 03:03:22 +0000234The LLVM type system is one of the most important features of the intermediate
Chris Lattnerb7c6c2a2002-06-25 20:20:08 +0000235representation. Being typed enables a number of optimizations to be performed
236on the IR directly, without having to do extra analyses on the side before the
237transformation. A strong type system makes it easier to read the generated code
238and enables novel analyses and transformations that are not feasible to perform
239on normal three address code representations.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000240
Chris Lattner7bae3952002-06-25 18:03:17 +0000241<!-- The written form for the type system was heavily influenced by the
242syntactic problems with types in the C language<sup><a
243href="#rw_stroustrup">1</a></sup>.<p> -->
Chris Lattner00950542001-06-06 20:29:01 +0000244
245
246
247<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000248</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
249<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000250<a name="t_primitive">Primitive Types
251</b></font></td></tr></table><ul>
252
Chris Lattner7faa8832002-04-14 06:13:44 +0000253The primitive types are the fundemental building blocks of the LLVM system. The
254current set of primitive types are as follows:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000255
256<table border=0 align=center><tr><td>
257
258<table border=1 cellspacing=0 cellpadding=4 align=center>
259<tr><td><tt>void</tt></td> <td>No value</td></tr>
260<tr><td><tt>ubyte</tt></td> <td>Unsigned 8 bit value</td></tr>
261<tr><td><tt>ushort</tt></td><td>Unsigned 16 bit value</td></tr>
262<tr><td><tt>uint</tt></td> <td>Unsigned 32 bit value</td></tr>
263<tr><td><tt>ulong</tt></td> <td>Unsigned 64 bit value</td></tr>
264<tr><td><tt>float</tt></td> <td>32 bit floating point value</td></tr>
265<tr><td><tt>label</tt></td> <td>Branch destination</td></tr>
266</table>
267
Chris Lattner7faa8832002-04-14 06:13:44 +0000268</td><td valign=top>
Chris Lattner00950542001-06-06 20:29:01 +0000269
270<table border=1 cellspacing=0 cellpadding=4 align=center>
271<tr><td><tt>bool</tt></td> <td>True or False value</td></tr>
272<tr><td><tt>sbyte</tt></td> <td>Signed 8 bit value</td></tr>
273<tr><td><tt>short</tt></td> <td>Signed 16 bit value</td></tr>
274<tr><td><tt>int</tt></td> <td>Signed 32 bit value</td></tr>
275<tr><td><tt>long</tt></td> <td>Signed 64 bit value</td></tr>
276<tr><td><tt>double</tt></td><td>64 bit floating point value</td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000277</table>
278
279</td></tr></table><p>
280
281
282
283<!-- _______________________________________________________________________ -->
284</ul><a name="t_classifications"><h4><hr size=0>Type Classifications</h4><ul>
285
286These different primitive types fall into a few useful classifications:<p>
287
288<table border=1 cellspacing=0 cellpadding=4 align=center>
289<tr><td><a name="t_signed">signed</td> <td><tt>sbyte, short, int, long, float, double</tt></td></tr>
290<tr><td><a name="t_unsigned">unsigned</td><td><tt>ubyte, ushort, uint, ulong</tt></td></tr>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000291<tr><td><a name="t_integral">integer</td><td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
292<tr><td><a name="t_integral">integral</td><td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000293<tr><td><a name="t_floating">floating point</td><td><tt>float, double</tt></td></tr>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000294<tr><td><a name="t_firstclass">first class</td><td><tt>bool, ubyte, sbyte, ushort, short,<br> uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000295</table><p>
296
297
298
299
300
301<!-- ======================================================================= -->
302</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
303<a name="t_derived">Derived Types
304</b></font></td></tr></table><ul>
305
Chris Lattner7faa8832002-04-14 06:13:44 +0000306The real power in LLVM comes from the derived types in the system. This is what
307allows a programmer to represent arrays, functions, pointers, and other useful
308types. Note that these derived types may be recursive: For example, it is
309possible to have a two dimensional array.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000310
311
312
313<!-- _______________________________________________________________________ -->
314</ul><a name="t_array"><h4><hr size=0>Array Type</h4><ul>
315
316<h5>Overview:</h5>
317
Chris Lattner7faa8832002-04-14 06:13:44 +0000318The array type is a very simple derived type that arranges elements sequentially
319in memory. The array type requires a size (number of elements) and an
320underlying data type.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000321
Chris Lattner7faa8832002-04-14 06:13:44 +0000322<h5>Syntax:</h5>
323<pre>
324 [&lt;# elements&gt; x &lt;elementtype&gt;]
325</pre>
Chris Lattner00950542001-06-06 20:29:01 +0000326
Chris Lattner2b7d3202002-05-06 03:03:22 +0000327The number of elements is a constant integer value, elementtype may be any type
Chris Lattner7faa8832002-04-14 06:13:44 +0000328with a size.<p>
329
330<h5>Examples:</h5>
331<ul>
Chris Lattner00950542001-06-06 20:29:01 +0000332 <tt>[40 x int ]</tt>: Array of 40 integer values.<br>
333 <tt>[41 x int ]</tt>: Array of 41 integer values.<br>
334 <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000335</ul>
Chris Lattner00950542001-06-06 20:29:01 +0000336
337Here are some examples of multidimensional arrays:<p>
338<ul>
339<table border=0 cellpadding=0 cellspacing=0>
340<tr><td><tt>[3 x [4 x int]]</tt></td><td>: 3x4 array integer values.</td></tr>
Chris Lattner7faa8832002-04-14 06:13:44 +0000341<tr><td><tt>[12 x [10 x float]]</tt></td><td>: 2x10 array of single precision floating point values.</td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000342<tr><td><tt>[2 x [3 x [4 x uint]]]</tt></td><td>: 2x3x4 array of unsigned integer values.</td></tr>
343</table>
344</ul>
345
346
Chris Lattner00950542001-06-06 20:29:01 +0000347<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +0000348</ul><a name="t_function"><h4><hr size=0>Function Type</h4><ul>
Chris Lattner00950542001-06-06 20:29:01 +0000349
350<h5>Overview:</h5>
351
Chris Lattner7faa8832002-04-14 06:13:44 +0000352The function type can be thought of as a function signature. It consists of a
353return type and a list of formal parameter types. Function types are usually
354used when to build virtual function tables (which are structures of pointers to
355functions), for indirect function calls, and when defining a function.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000356
357<h5>Syntax:</h5>
358<pre>
359 &lt;returntype&gt; (&lt;parameter list&gt;)
360</pre>
361
Chris Lattner7faa8832002-04-14 06:13:44 +0000362Where '<tt>&lt;parameter list&gt;</tt>' is a comma seperated list of type
363specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
364which indicates that the function takes a variable number of arguments. Note
365that there currently is no way to define a function in LLVM that takes a
366variable number of arguments, but it is possible to <b>call</b> a function that
367is vararg.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000368
369<h5>Examples:</h5>
370<ul>
371<table border=0 cellpadding=0 cellspacing=0>
Chris Lattner7faa8832002-04-14 06:13:44 +0000372
373<tr><td><tt>int (int)</tt></td><td>: function taking an <tt>int</tt>, returning
374an <tt>int</tt></td></tr>
375
376<tr><td><tt>float (int, int *) *</tt></td><td>: <a href="#t_pointer">Pointer</a>
377to a function that takes an <tt>int</tt> and a <a href="#t_pointer">pointer</a>
378to <tt>int</tt>, returning <tt>float</tt>.</td></tr>
379
380<tr><td><tt>int (sbyte *, ...)</tt></td><td>: A vararg function that takes at
381least one <a href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C),
382which returns an integer. This is the signature for <tt>printf</tt> in
383LLVM.</td></tr>
384
Chris Lattner00950542001-06-06 20:29:01 +0000385</table>
386</ul>
387
388
389
390<!-- _______________________________________________________________________ -->
391</ul><a name="t_struct"><h4><hr size=0>Structure Type</h4><ul>
392
393<h5>Overview:</h5>
394
Chris Lattner2b7d3202002-05-06 03:03:22 +0000395The structure type is used to represent a collection of data members together in
Chris Lattner7bae3952002-06-25 18:03:17 +0000396memory. The packing of the field types is defined to match the ABI of the
397underlying processor. The elements of a structure may be any type that has a
398size.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000399
Chris Lattner2b7d3202002-05-06 03:03:22 +0000400Structures are accessed using '<tt><a href="#i_load">load</a></tt> and '<tt><a
401href="#i_store">store</a></tt>' by getting a pointer to a field with the '<tt><a
402href="#i_getelementptr">getelementptr</a></tt>' instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000403
404<h5>Syntax:</h5>
405<pre>
406 { &lt;type list&gt; }
407</pre>
408
409
410<h5>Examples:</h5>
411<table border=0 cellpadding=0 cellspacing=0>
Chris Lattner7faa8832002-04-14 06:13:44 +0000412
413<tr><td><tt>{ int, int, int }</tt></td><td>: a triple of three <tt>int</tt>
414values</td></tr>
415
Chris Lattner7bae3952002-06-25 18:03:17 +0000416<tr><td><tt>{ float, int (int) * }</tt></td><td>: A pair, where the first
Chris Lattner7faa8832002-04-14 06:13:44 +0000417element is a <tt>float</tt> and the second element is a <a
418href="#t_pointer">pointer</a> to a <a href="t_function">function</a> that takes
419an <tt>int</tt>, returning an <tt>int</tt>.</td></tr>
420
Chris Lattner00950542001-06-06 20:29:01 +0000421</table>
422
423
424<!-- _______________________________________________________________________ -->
425</ul><a name="t_pointer"><h4><hr size=0>Pointer Type</h4><ul>
426
Chris Lattner7faa8832002-04-14 06:13:44 +0000427<h5>Overview:</h5>
428
429As in many languages, the pointer type represents a pointer or reference to
430another object, which must live in memory.<p>
431
432<h5>Syntax:</h5>
433<pre>
434 &lt;type&gt; *
435</pre>
436
437<h5>Examples:</h5>
438
439<table border=0 cellpadding=0 cellspacing=0>
440
441<tr><td><tt>[4x int]*</tt></td><td>: <a href="#t_pointer">pointer</a> to <a
442href="#t_array">array</a> of four <tt>int</tt> values</td></tr>
443
444<tr><td><tt>int (int *) *</tt></td><td>: A <a href="#t_pointer">pointer</a> to a
445<a href="t_function">function</a> that takes an <tt>int</tt>, returning an
446<tt>int</tt>.</td></tr>
447
448</table>
449<p>
450
Chris Lattner00950542001-06-06 20:29:01 +0000451
452<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +0000453<!--
Chris Lattner00950542001-06-06 20:29:01 +0000454</ul><a name="t_packed"><h4><hr size=0>Packed Type</h4><ul>
455
456Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p>
457
458Packed types should be 'nonsaturated' because standard data types are not saturated. Maybe have a saturated packed type?<p>
459
Chris Lattner7faa8832002-04-14 06:13:44 +0000460-->
461
Chris Lattner00950542001-06-06 20:29:01 +0000462
463<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000464</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
465<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000466<a name="highlevel">High Level Structure
467</b></font></td></tr></table><ul>
468<!-- *********************************************************************** -->
469
470
471<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000472</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
473<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000474<a name="modulestructure">Module Structure
475</b></font></td></tr></table><ul>
476
Chris Lattner2b7d3202002-05-06 03:03:22 +0000477LLVM programs are composed of "Module"s, each of which is a translation unit of
478the input programs. Each module consists of functions, global variables, and
479symbol table entries. Modules may be combined together with the LLVM linker,
480which merges function (and global variable) definitions, resolves forward
481declarations, and merges symbol table entries. Here is an example of the "hello world" module:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000482
Chris Lattner2b7d3202002-05-06 03:03:22 +0000483<pre>
484<i>; Declare the string constant as a global constant...</i>
485<a href="#identifiers">%.LC0</a> = <a href="#linkage_decl">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00" <i>; [13 x sbyte]*</i>
486
487<i>; Forward declaration of puts</i>
488<a href="#functionstructure">declare</a> int "puts"(sbyte*) <i>; int(sbyte*)* </i>
489
490<i>; Definition of main function</i>
491int "main"() { <i>; int()* </i>
492 <i>; Convert [13x sbyte]* to sbyte *...</i>
493 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, uint 0, uint 0 <i>; sbyte*</i>
494
495 <i>; Call puts function to write out the string to stdout...</i>
496 <a href="#i_call">call</a> int %puts(sbyte* %cast210) <i>; int</i>
497 <a href="#i_ret">ret</a> int 0
498}
499</pre>
500
501This example is made up of a <a href="#globalvars">global variable</a> named
502"<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and a
503<a href="#functionstructure">function definition</a> for "<tt>main</tt>".<p>
504
505<a name="linkage_decl">
506In general, a module is made up of a list of global values, where both functions
507and global variables are global values. Global values are represented by a
508pointer to a memory location (in this case, a pointer to an array of char, and a
509pointer to a function), and can be either "internal" or externally accessible
Chris Lattner7bae3952002-06-25 18:03:17 +0000510(which corresponds to the static keyword in C, when used at global scope).<p>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000511
512For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
513another module defined a "<tt>.LC0</tt>" variable and was linked with this one,
514one of the two would be renamed, preventing a collision. Since "<tt>main</tt>"
Chris Lattner7bae3952002-06-25 18:03:17 +0000515and "<tt>puts</tt>" are external (i.e., lacking "<tt>internal</tt>"
516declarations), they are accessible outside of the current module. It is illegal
517for a function declaration to be "<tt>internal</tt>".<p>
Chris Lattner00950542001-06-06 20:29:01 +0000518
519
520<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000521</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
522<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
523<a name="globalvars">Global Variables
524</b></font></td></tr></table><ul>
525
526Global variables define regions of memory allocated at compilation time instead
Chris Lattner7bae3952002-06-25 18:03:17 +0000527of run-time. Global variables may optionally be initialized. A variable may
528be defined as a global "constant", which indicates that the contents of the
Chris Lattner2b7d3202002-05-06 03:03:22 +0000529variable will never be modified (opening options for optimization). Constants
530must always have an initial value.<p>
531
Chris Lattner7bae3952002-06-25 18:03:17 +0000532As SSA values, global variables define pointer values that are in scope
533(i.e. they dominate) for all basic blocks in the program. Global variables
534always define a pointer to their "content" type because they describe a region
535of memory, and all memory objects in LLVM are accessed through pointers.<p>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000536
537
538
539<!-- ======================================================================= -->
540</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
541<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner7faa8832002-04-14 06:13:44 +0000542<a name="functionstructure">Function Structure
Chris Lattner00950542001-06-06 20:29:01 +0000543</b></font></td></tr></table><ul>
544
Chris Lattner2b7d3202002-05-06 03:03:22 +0000545LLVM functions definitions are composed of a (possibly empty) argument list, an
546opening curly brace, a list of basic blocks, and a closing curly brace. LLVM
547function declarations are defined with the "<tt>declare</tt>" keyword, a
548function name and a function signature.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000549
Chris Lattner2b7d3202002-05-06 03:03:22 +0000550A function definition contains a list of basic blocks, forming the CFG for the
551function. Each basic block may optionally start with a label (giving the basic
552block a symbol table entry), contains a list of instructions, and ends with a <a
553href="#terminators">terminator</a> instruction (such as a branch or function
554return).<p>
555
556The first basic block in program is special in two ways: it is immediately
557executed on entrance to the function, and it is not allowed to have predecessor
558basic blocks (i.e. there can not be any branches to the entry block of a
559function).<p>
Chris Lattner00950542001-06-06 20:29:01 +0000560
561
562<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000563</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
564<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000565<a name="instref">Instruction Reference
566</b></font></td></tr></table><ul>
567<!-- *********************************************************************** -->
568
Chris Lattner2b7d3202002-05-06 03:03:22 +0000569The LLVM instruction set consists of several different classifications of
Chris Lattnere489aa52002-08-14 17:55:59 +0000570instructions: <a href="#terminators">terminator instructions</a>, <a
571href="#binaryops">binary instructions</a>, <a href="#memoryops">memory
572instructions</a>, and <a href="#otherops">other instructions</a>.<p>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000573
Chris Lattner00950542001-06-06 20:29:01 +0000574
575<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000576</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
577<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000578<a name="terminators">Terminator Instructions
579</b></font></td></tr></table><ul>
580
Chris Lattner2b7d3202002-05-06 03:03:22 +0000581As mentioned <a href="#functionstructure">previously</a>, every basic block in a
Chris Lattner7bae3952002-06-25 18:03:17 +0000582program ends with a "Terminator" instruction, which indicates which block should
583be executed after the current block is finished. These terminator instructions
584typically yield a '<tt>void</tt>' value: they produce control flow, not values
585(the one exception being the '<a href="#i_invoke"><tt>invoke</tt></a>'
586instruction).<p>
Chris Lattner00950542001-06-06 20:29:01 +0000587
Chris Lattner7faa8832002-04-14 06:13:44 +0000588There are four different terminator instructions: the '<a
589href="#i_ret"><tt>ret</tt></a>' instruction, the '<a
590href="#i_br"><tt>br</tt></a>' instruction, the '<a
591href="#i_switch"><tt>switch</tt></a>' instruction, and the '<a
592href="#i_invoke"><tt>invoke</tt></a>' instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000593
594
595<!-- _______________________________________________________________________ -->
596</ul><a name="i_ret"><h4><hr size=0>'<tt>ret</tt>' Instruction</h4><ul>
597
598<h5>Syntax:</h5>
599<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000600 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
601 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +0000602</pre>
603
604<h5>Overview:</h5>
Chris Lattner00950542001-06-06 20:29:01 +0000605
Chris Lattner2b7d3202002-05-06 03:03:22 +0000606The '<tt>ret</tt>' instruction is used to return control flow (and a value) from
607a function, back to the caller.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000608
609There are two forms of the '<tt>ret</tt>' instructruction: one that returns a
610value and then causes control flow, and one that just causes control flow to
611occur.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000612
613<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000614
615The '<tt>ret</tt>' instruction may return any '<a href="#t_firstclass">first
616class</a>' type. Notice that a function is not <a href="#wellformed">well
617formed</a> if there exists a '<tt>ret</tt>' instruction inside of the function
618that returns a value that does not match the return type of the function.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000619
620<h5>Semantics:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000621
622When the '<tt>ret</tt>' instruction is executed, control flow returns back to
623the calling function's context. If the instruction returns a value, that value
Misha Brukmana3bbcb52002-10-29 23:06:16 +0000624shall be propagated into the calling function's data space.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000625
626<h5>Example:</h5>
627<pre>
628 ret int 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +0000629 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +0000630</pre>
631
632
633<!-- _______________________________________________________________________ -->
634</ul><a name="i_br"><h4><hr size=0>'<tt>br</tt>' Instruction</h4><ul>
635
636<h5>Syntax:</h5>
637<pre>
638 br bool &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
639 br label &lt;dest&gt; <i>; Unconditional branch</i>
640</pre>
641
642<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000643
644The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
645different basic block in the current function. There are two forms of this
646instruction, corresponding to a conditional branch and an unconditional
647branch.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000648
649<h5>Arguments:</h5>
650
Chris Lattner7faa8832002-04-14 06:13:44 +0000651The conditional branch form of the '<tt>br</tt>' instruction takes a single
652'<tt>bool</tt>' value and two '<tt>label</tt>' values. The unconditional form
653of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
654target.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000655
656<h5>Semantics:</h5>
657
Chris Lattner7faa8832002-04-14 06:13:44 +0000658Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
659argument is evaluated. If the value is <tt>true</tt>, control flows to the
660'<tt>iftrue</tt>' '<tt>label</tt>' argument. If "cond" is <tt>false</tt>,
661control flows to the '<tt>iffalse</tt>' '<tt>label</tt>' argument.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000662
663<h5>Example:</h5>
664<pre>
665Test:
666 %cond = <a href="#i_setcc">seteq</a> int %a, %b
667 br bool %cond, label %IfEqual, label %IfUnequal
668IfEqual:
Chris Lattner2b7d3202002-05-06 03:03:22 +0000669 <a href="#i_ret">ret</a> int 1
Chris Lattner00950542001-06-06 20:29:01 +0000670IfUnequal:
Chris Lattner2b7d3202002-05-06 03:03:22 +0000671 <a href="#i_ret">ret</a> int 0
Chris Lattner00950542001-06-06 20:29:01 +0000672</pre>
673
674
675<!-- _______________________________________________________________________ -->
676</ul><a name="i_switch"><h4><hr size=0>'<tt>switch</tt>' Instruction</h4><ul>
677
678<h5>Syntax:</h5>
679<pre>
680 <i>; Definitions for lookup indirect branch</i>
681 %switchtype = type [&lt;anysize&gt; x { uint, label }]
682
683 <i>; Lookup indirect branch</i>
684 switch uint &lt;value&gt;, label &lt;defaultdest&gt;, %switchtype &lt;switchtable&gt;
685
686 <i>; Indexed indirect branch</i>
687 switch uint &lt;idxvalue&gt;, label &lt;defaultdest&gt;, [&lt;anysize&gt; x label] &lt;desttable&gt;
688</pre>
689
690<h5>Overview:</h5>
Chris Lattner00950542001-06-06 20:29:01 +0000691
Chris Lattner7faa8832002-04-14 06:13:44 +0000692The '<tt>switch</tt>' instruction is used to transfer control flow to one of
693several different places. It is a generalization of the '<tt>br</tt>'
694instruction, allowing a branch to occur to one of many possible destinations.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000695
Chris Lattner7faa8832002-04-14 06:13:44 +0000696The '<tt>switch</tt>' statement supports two different styles of indirect
697branching: lookup branching and indexed branching. Lookup branching is
698generally useful if the values to switch on are spread far appart, where index
699branching is useful if the values to switch on are generally dense.<p>
700
701The two different forms of the '<tt>switch</tt>' statement are simple hints to
Chris Lattner2b7d3202002-05-06 03:03:22 +0000702the underlying implementation. For example, the compiler may choose to
703implement a small indirect branch table as a series of predicated comparisons:
704if it is faster for the target architecture.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000705
706<h5>Arguments:</h5>
Chris Lattner00950542001-06-06 20:29:01 +0000707
Chris Lattner7faa8832002-04-14 06:13:44 +0000708The lookup form of the '<tt>switch</tt>' instruction uses three parameters: a
709'<tt>uint</tt>' comparison value '<tt>value</tt>', a default '<tt>label</tt>'
710destination, and an array of pairs of comparison value constants and
711'<tt>label</tt>'s. The sized array must be a constant value.<p>
712
713The indexed form of the '<tt>switch</tt>' instruction uses three parameters: an
714'<tt>uint</tt>' index value, a default '<tt>label</tt>' and a sized array of
715'<tt>label</tt>'s. The '<tt>dests</tt>' array must be a constant array.
Chris Lattner00950542001-06-06 20:29:01 +0000716
717<h5>Semantics:</h5>
718
Chris Lattner7faa8832002-04-14 06:13:44 +0000719The lookup style switch statement specifies a table of values and destinations.
720When the '<tt>switch</tt>' instruction is executed, this table is searched for
721the given value. If the value is found, the corresponding destination is
722branched to. <p>
Chris Lattner00950542001-06-06 20:29:01 +0000723
Chris Lattner7faa8832002-04-14 06:13:44 +0000724The index branch form simply looks up a label element directly in a table and
725branches to it.<p>
726
727In either case, the compiler knows the static size of the array, because it is
728provided as part of the constant values type.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000729
730<h5>Example:</h5>
731<pre>
732 <i>; Emulate a conditional br instruction</i>
733 %Val = <a href="#i_cast">cast</a> bool %value to uint
734 switch uint %Val, label %truedest, [1 x label] [label %falsedest ]
735
736 <i>; Emulate an unconditional br instruction</i>
737 switch uint 0, label %dest, [ 0 x label] [ ]
738
Chris Lattner2b7d3202002-05-06 03:03:22 +0000739 <i>; Implement a jump table:</i>
Chris Lattner00950542001-06-06 20:29:01 +0000740 switch uint %val, label %otherwise, [3 x label] [ label %onzero,
741 label %onone,
742 label %ontwo ]
743
744</pre>
745
746
747
748<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +0000749</ul><a name="i_invoke"><h4><hr size=0>'<tt>invoke</tt>' Instruction</h4><ul>
Chris Lattner00950542001-06-06 20:29:01 +0000750
751<h5>Syntax:</h5>
752<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000753 &lt;result&gt; = invoke &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
754 to label &lt;normal label&gt; except label &lt;exception label&gt;
Chris Lattner00950542001-06-06 20:29:01 +0000755</pre>
756
Chris Lattner6536cfe2002-05-06 22:08:29 +0000757<h5>Overview:</h5>
758
759The '<tt>invoke</tt>' instruction is used to cause control flow to transfer to a
760specified function, with the possibility of control flow transfer to either the
761'<tt>normal label</tt>' label or the '<tt>exception label</tt>'. The '<tt><a
762href="#i_call">call</a></tt>' instruction is closely related, but guarantees
763that control flow either never returns from the called function, or that it
Chris Lattner7bae3952002-06-25 18:03:17 +0000764returns to the instruction following the '<tt><a href="#i_call">call</a></tt>'
Chris Lattner6536cfe2002-05-06 22:08:29 +0000765instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000766
767<h5>Arguments:</h5>
768
769This instruction requires several arguments:<p>
770<ol>
Chris Lattner7faa8832002-04-14 06:13:44 +0000771
772<li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Chris Lattner2b7d3202002-05-06 03:03:22 +0000773function value being invoked. In most cases, this is a direct function
Misha Brukmane6fe6712002-09-18 02:35:14 +0000774invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
Chris Lattner7faa8832002-04-14 06:13:44 +0000775an arbitrary pointer to function value.<p>
776
777<li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
778function to be invoked.
779
780<li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner6536cfe2002-05-06 22:08:29 +0000781signature argument types. If the function signature indicates the function
782accepts a variable number of arguments, the extra arguments can be specified.
Chris Lattner7faa8832002-04-14 06:13:44 +0000783
784<li>'<tt>normal label</tt>': the label reached when the called function executes
785a '<tt><a href="#i_ret">ret</a></tt>' instruction.
786
787<li>'<tt>exception label</tt>': the label reached when an exception is thrown.
Chris Lattner00950542001-06-06 20:29:01 +0000788</ol>
789
790<h5>Semantics:</h5>
791
Chris Lattner2b7d3202002-05-06 03:03:22 +0000792This instruction is designed to operate as a standard '<tt><a
793href="#i_call">call</a></tt>' instruction in most regards. The primary
794difference is that it associates a label with the function invocation that may
795be accessed via the runtime library provided by the execution environment. This
796instruction is used in languages with destructors to ensure that proper cleanup
797is performed in the case of either a <tt>longjmp</tt> or a thrown exception.
798Additionally, this is important for implementation of '<tt>catch</tt>' clauses
799in high-level languages that support them.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000800
Chris Lattner7bae3952002-06-25 18:03:17 +0000801<!-- For a more comprehensive explanation of how this instruction is used, look in the llvm/docs/2001-05-18-ExceptionHandling.txt document.<p> -->
Chris Lattner00950542001-06-06 20:29:01 +0000802
803<h5>Example:</h5>
804<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000805 %retval = invoke int %Test(int 15)
806 to label %Continue except label %TestCleanup <i>; {int}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +0000807</pre>
808
809
810
811<!-- ======================================================================= -->
Chris Lattner00950542001-06-06 20:29:01 +0000812</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
813<a name="binaryops">Binary Operations
814</b></font></td></tr></table><ul>
815
Chris Lattner7faa8832002-04-14 06:13:44 +0000816Binary operators are used to do most of the computation in a program. They
817require two operands, execute an operation on them, and produce a single value.
818The result value of a binary operator is not neccesarily the same type as its
819operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000820
821There are several different binary operators:<p>
822
823
824<!-- _______________________________________________________________________ -->
825</ul><a name="i_add"><h4><hr size=0>'<tt>add</tt>' Instruction</h4><ul>
826
827<h5>Syntax:</h5>
828<pre>
829 &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
830</pre>
831
832<h5>Overview:</h5>
833The '<tt>add</tt>' instruction returns the sum of its two operands.<p>
834
835<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000836The two arguments to the '<tt>add</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000837
838<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000839
Chris Lattnereaee9e12002-09-03 00:52:52 +0000840The value produced is the integer or floating point sum of the two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000841
842<h5>Example:</h5>
843<pre>
844 &lt;result&gt; = add int 4, %var <i>; yields {int}:result = 4 + %var</i>
845</pre>
846
847
848<!-- _______________________________________________________________________ -->
849</ul><a name="i_sub"><h4><hr size=0>'<tt>sub</tt>' Instruction</h4><ul>
850
851<h5>Syntax:</h5>
852<pre>
853 &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
854</pre>
855
856<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000857
Chris Lattner00950542001-06-06 20:29:01 +0000858The '<tt>sub</tt>' instruction returns the difference of its two operands.<p>
859
Chris Lattner7faa8832002-04-14 06:13:44 +0000860Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
861instruction present in most other intermediate representations.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000862
863<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000864
865The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattnereaee9e12002-09-03 00:52:52 +0000866href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattner7faa8832002-04-14 06:13:44 +0000867values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000868
869<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000870
Chris Lattnereaee9e12002-09-03 00:52:52 +0000871The value produced is the integer or floating point difference of the two
Chris Lattner7bae3952002-06-25 18:03:17 +0000872operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000873
874<h5>Example:</h5>
875<pre>
876 &lt;result&gt; = sub int 4, %var <i>; yields {int}:result = 4 - %var</i>
877 &lt;result&gt; = sub int 0, %val <i>; yields {int}:result = -%var</i>
878</pre>
879
880<!-- _______________________________________________________________________ -->
881</ul><a name="i_mul"><h4><hr size=0>'<tt>mul</tt>' Instruction</h4><ul>
882
883<h5>Syntax:</h5>
884<pre>
885 &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
886</pre>
887
888<h5>Overview:</h5>
889The '<tt>mul</tt>' instruction returns the product of its two operands.<p>
890
891<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000892The two arguments to the '<tt>mul</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000893
894<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000895
Chris Lattnereaee9e12002-09-03 00:52:52 +0000896The value produced is the integer or floating point product of the two
Chris Lattner7bae3952002-06-25 18:03:17 +0000897operands.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000898
899There is no signed vs unsigned multiplication. The appropriate action is taken
900based on the type of the operand. <p>
Chris Lattner00950542001-06-06 20:29:01 +0000901
902
903<h5>Example:</h5>
904<pre>
905 &lt;result&gt; = mul int 4, %var <i>; yields {int}:result = 4 * %var</i>
906</pre>
907
908
909<!-- _______________________________________________________________________ -->
910</ul><a name="i_div"><h4><hr size=0>'<tt>div</tt>' Instruction</h4><ul>
911
912<h5>Syntax:</h5>
913<pre>
914 &lt;result&gt; = div &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
915</pre>
916
917<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000918
Chris Lattner00950542001-06-06 20:29:01 +0000919The '<tt>div</tt>' instruction returns the quotient of its two operands.<p>
920
921<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000922
923The two arguments to the '<tt>div</tt>' instruction must be either <a
Chris Lattnereaee9e12002-09-03 00:52:52 +0000924href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattner7faa8832002-04-14 06:13:44 +0000925values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000926
927<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000928
Chris Lattnereaee9e12002-09-03 00:52:52 +0000929The value produced is the integer or floating point quotient of the two
Chris Lattner7bae3952002-06-25 18:03:17 +0000930operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000931
932<h5>Example:</h5>
933<pre>
934 &lt;result&gt; = div int 4, %var <i>; yields {int}:result = 4 / %var</i>
935</pre>
936
937
938<!-- _______________________________________________________________________ -->
939</ul><a name="i_rem"><h4><hr size=0>'<tt>rem</tt>' Instruction</h4><ul>
940
941<h5>Syntax:</h5>
942<pre>
943 &lt;result&gt; = rem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
944</pre>
945
946<h5>Overview:</h5>
947The '<tt>rem</tt>' instruction returns the remainder from the division of its two operands.<p>
948
949<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000950The two arguments to the '<tt>rem</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000951
952<h5>Semantics:</h5>
Chris Lattner6536cfe2002-05-06 22:08:29 +0000953
954This returns the <i>remainder</i> of a division (where the result has the same
955sign as the divisor), not the <i>modulus</i> (where the result has the same sign
956as the dividend) of a value. For more information about the difference, see: <a
957href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The Math
958Forum</a>.<p>
959
Chris Lattner00950542001-06-06 20:29:01 +0000960<h5>Example:</h5>
961<pre>
962 &lt;result&gt; = rem int 4, %var <i>; yields {int}:result = 4 % %var</i>
963</pre>
964
965
966<!-- _______________________________________________________________________ -->
967</ul><a name="i_setcc"><h4><hr size=0>'<tt>set<i>cc</i></tt>' Instructions</h4><ul>
968
969<h5>Syntax:</h5>
970<pre>
971 &lt;result&gt; = seteq &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
972 &lt;result&gt; = setne &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
973 &lt;result&gt; = setlt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
974 &lt;result&gt; = setgt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
975 &lt;result&gt; = setle &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
976 &lt;result&gt; = setge &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
977</pre>
978
Chris Lattner6536cfe2002-05-06 22:08:29 +0000979<h5>Overview:</h5> The '<tt>set<i>cc</i></tt>' family of instructions returns a
980boolean value based on a comparison of their two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000981
Chris Lattner7faa8832002-04-14 06:13:44 +0000982<h5>Arguments:</h5> The two arguments to the '<tt>set<i>cc</i></tt>'
983instructions must be of <a href="#t_firstclass">first class</a> or <a
984href="#t_pointer">pointer</a> type (it is not possible to compare
985'<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' or '<tt>void</tt>'
Chris Lattner6536cfe2002-05-06 22:08:29 +0000986values, etc...). Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000987
Chris Lattner6536cfe2002-05-06 22:08:29 +0000988The '<tt>setlt</tt>', '<tt>setgt</tt>', '<tt>setle</tt>', and '<tt>setge</tt>'
989instructions do not operate on '<tt>bool</tt>' typed arguments.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000990
991<h5>Semantics:</h5>
Chris Lattner6536cfe2002-05-06 22:08:29 +0000992
993The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
994both operands are equal.<br>
995
996The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
997both operands are unequal.<br>
998
999The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1000the first operand is less than the second operand.<br>
1001
1002The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1003the first operand is greater than the second operand.<br>
1004
1005The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1006the first operand is less than or equal to the second operand.<br>
1007
1008The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1009the first operand is greater than or equal to the second operand.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001010
1011<h5>Example:</h5>
1012<pre>
1013 &lt;result&gt; = seteq int 4, 5 <i>; yields {bool}:result = false</i>
1014 &lt;result&gt; = setne float 4, 5 <i>; yields {bool}:result = true</i>
1015 &lt;result&gt; = setlt uint 4, 5 <i>; yields {bool}:result = true</i>
1016 &lt;result&gt; = setgt sbyte 4, 5 <i>; yields {bool}:result = false</i>
1017 &lt;result&gt; = setle sbyte 4, 5 <i>; yields {bool}:result = true</i>
1018 &lt;result&gt; = setge sbyte 4, 5 <i>; yields {bool}:result = false</i>
1019</pre>
1020
1021
1022
1023<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001024</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1025<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +00001026<a name="bitwiseops">Bitwise Binary Operations
1027</b></font></td></tr></table><ul>
1028
Chris Lattner2b7d3202002-05-06 03:03:22 +00001029Bitwise binary operators are used to do various forms of bit-twiddling in a
1030program. They are generally very efficient instructions, and can commonly be
1031strength reduced from other instructions. They require two operands, execute an
1032operation on them, and produce a single value. The resulting value of the
1033bitwise binary operators is always the same type as its first operand.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001034
1035<!-- _______________________________________________________________________ -->
1036</ul><a name="i_and"><h4><hr size=0>'<tt>and</tt>' Instruction</h4><ul>
1037
1038<h5>Syntax:</h5>
1039<pre>
1040 &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1041</pre>
1042
1043<h5>Overview:</h5>
1044The '<tt>and</tt>' instruction returns the bitwise logical and of its two operands.<p>
1045
1046<h5>Arguments:</h5>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001047
Chris Lattnereaee9e12002-09-03 00:52:52 +00001048The two arguments to the '<tt>and</tt>' instruction must be <a
1049href="#t_integral">integral</a> values. Both arguments must have identical
1050types.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001051
1052
1053<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001054
1055The truth table used for the '<tt>and</tt>' instruction is:<p>
1056
Chris Lattnerc98cbbc2002-06-25 18:06:50 +00001057<center><table border=1 cellspacing=0 cellpadding=4>
Chris Lattner7bae3952002-06-25 18:03:17 +00001058<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
1059<tr><td>0</td> <td>0</td> <td>0</td></tr>
1060<tr><td>0</td> <td>1</td> <td>0</td></tr>
1061<tr><td>1</td> <td>0</td> <td>0</td></tr>
1062<tr><td>1</td> <td>1</td> <td>1</td></tr>
1063</table></center><p>
Chris Lattner00950542001-06-06 20:29:01 +00001064
1065
1066<h5>Example:</h5>
1067<pre>
1068 &lt;result&gt; = and int 4, %var <i>; yields {int}:result = 4 & %var</i>
1069 &lt;result&gt; = and int 15, 40 <i>; yields {int}:result = 8</i>
1070 &lt;result&gt; = and int 4, 8 <i>; yields {int}:result = 0</i>
1071</pre>
1072
1073
1074
1075<!-- _______________________________________________________________________ -->
1076</ul><a name="i_or"><h4><hr size=0>'<tt>or</tt>' Instruction</h4><ul>
1077
1078<h5>Syntax:</h5>
1079<pre>
1080 &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1081</pre>
1082
Chris Lattner7faa8832002-04-14 06:13:44 +00001083<h5>Overview:</h5> The '<tt>or</tt>' instruction returns the bitwise logical
1084inclusive or of its two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001085
1086<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001087
Chris Lattnereaee9e12002-09-03 00:52:52 +00001088The two arguments to the '<tt>or</tt>' instruction must be <a
1089href="#t_integral">integral</a> values. Both arguments must have identical
1090types.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001091
1092
1093<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001094
1095The truth table used for the '<tt>or</tt>' instruction is:<p>
1096
Chris Lattnerc98cbbc2002-06-25 18:06:50 +00001097<center><table border=1 cellspacing=0 cellpadding=4>
Chris Lattner7bae3952002-06-25 18:03:17 +00001098<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
1099<tr><td>0</td> <td>0</td> <td>0</td></tr>
1100<tr><td>0</td> <td>1</td> <td>1</td></tr>
1101<tr><td>1</td> <td>0</td> <td>1</td></tr>
1102<tr><td>1</td> <td>1</td> <td>1</td></tr>
1103</table></center><p>
Chris Lattner00950542001-06-06 20:29:01 +00001104
1105
1106<h5>Example:</h5>
1107<pre>
1108 &lt;result&gt; = or int 4, %var <i>; yields {int}:result = 4 | %var</i>
1109 &lt;result&gt; = or int 15, 40 <i>; yields {int}:result = 47</i>
1110 &lt;result&gt; = or int 4, 8 <i>; yields {int}:result = 12</i>
1111</pre>
1112
1113
1114<!-- _______________________________________________________________________ -->
1115</ul><a name="i_xor"><h4><hr size=0>'<tt>xor</tt>' Instruction</h4><ul>
1116
1117<h5>Syntax:</h5>
1118<pre>
1119 &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1120</pre>
1121
1122<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001123
1124The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of its
1125two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001126
1127<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001128
Chris Lattnereaee9e12002-09-03 00:52:52 +00001129The two arguments to the '<tt>xor</tt>' instruction must be <a
1130href="#t_integral">integral</a> values. Both arguments must have identical
1131types.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001132
1133
1134<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001135
1136The truth table used for the '<tt>xor</tt>' instruction is:<p>
1137
Chris Lattnerc98cbbc2002-06-25 18:06:50 +00001138<center><table border=1 cellspacing=0 cellpadding=4>
Chris Lattner7bae3952002-06-25 18:03:17 +00001139<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
1140<tr><td>0</td> <td>0</td> <td>0</td></tr>
1141<tr><td>0</td> <td>1</td> <td>1</td></tr>
1142<tr><td>1</td> <td>0</td> <td>1</td></tr>
1143<tr><td>1</td> <td>1</td> <td>0</td></tr>
1144</table></center><p>
Chris Lattner00950542001-06-06 20:29:01 +00001145
1146
1147<h5>Example:</h5>
1148<pre>
1149 &lt;result&gt; = xor int 4, %var <i>; yields {int}:result = 4 ^ %var</i>
1150 &lt;result&gt; = xor int 15, 40 <i>; yields {int}:result = 39</i>
1151 &lt;result&gt; = xor int 4, 8 <i>; yields {int}:result = 12</i>
1152</pre>
1153
1154
1155<!-- _______________________________________________________________________ -->
1156</ul><a name="i_shl"><h4><hr size=0>'<tt>shl</tt>' Instruction</h4><ul>
1157
1158<h5>Syntax:</h5>
1159<pre>
1160 &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
1161</pre>
1162
1163<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001164
1165The '<tt>shl</tt>' instruction returns the first operand shifted to the left a
1166specified number of bits.
Chris Lattner00950542001-06-06 20:29:01 +00001167
1168<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001169
1170The first argument to the '<tt>shl</tt>' instruction must be an <a
Chris Lattnereaee9e12002-09-03 00:52:52 +00001171href="#t_integer">integer</a> type. The second argument must be an
Chris Lattner7faa8832002-04-14 06:13:44 +00001172'<tt>ubyte</tt>' type.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001173
1174<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001175
1176The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001177
1178
1179<h5>Example:</h5>
1180<pre>
1181 &lt;result&gt; = shl int 4, ubyte %var <i>; yields {int}:result = 4 << %var</i>
1182 &lt;result&gt; = shl int 4, ubyte 2 <i>; yields {int}:result = 16</i>
1183 &lt;result&gt; = shl int 1, ubyte 10 <i>; yields {int}:result = 1024</i>
1184</pre>
1185
1186
1187<!-- _______________________________________________________________________ -->
1188</ul><a name="i_shr"><h4><hr size=0>'<tt>shr</tt>' Instruction</h4><ul>
1189
1190
1191<h5>Syntax:</h5>
1192<pre>
1193 &lt;result&gt; = shr &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
1194</pre>
1195
1196<h5>Overview:</h5>
1197The '<tt>shr</tt>' instruction returns the first operand shifted to the right a specified number of bits.
1198
1199<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +00001200The first argument to the '<tt>shr</tt>' instruction must be an <a href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>' type.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001201
1202<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001203
1204If the first argument is a <a href="#t_signed">signed</a> type, the most
1205significant bit is duplicated in the newly free'd bit positions. If the first
1206argument is unsigned, zero bits shall fill the empty positions.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001207
1208<h5>Example:</h5>
1209<pre>
1210 &lt;result&gt; = shr int 4, ubyte %var <i>; yields {int}:result = 4 >> %var</i>
1211 &lt;result&gt; = shr int 4, ubyte 1 <i>; yields {int}:result = 2</i>
1212 &lt;result&gt; = shr int 4, ubyte 2 <i>; yields {int}:result = 1</i>
1213 &lt;result&gt; = shr int 4, ubyte 3 <i>; yields {int}:result = 0</i>
1214</pre>
1215
1216
1217
1218
1219
1220<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001221</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1222<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +00001223<a name="memoryops">Memory Access Operations
1224</b></font></td></tr></table><ul>
1225
Chris Lattner6536cfe2002-05-06 22:08:29 +00001226Accessing memory in SSA form is, well, sticky at best. This section describes how to read, write, allocate and free memory in LLVM.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001227
1228
1229<!-- _______________________________________________________________________ -->
1230</ul><a name="i_malloc"><h4><hr size=0>'<tt>malloc</tt>' Instruction</h4><ul>
1231
1232<h5>Syntax:</h5>
1233<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001234 &lt;result&gt; = malloc &lt;type&gt;, uint &lt;NumElements&gt; <i>; yields {type*}:result</i>
1235 &lt;result&gt; = malloc &lt;type&gt; <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001236</pre>
1237
1238<h5>Overview:</h5>
1239The '<tt>malloc</tt>' instruction allocates memory from the system heap and returns a pointer to it.<p>
1240
1241<h5>Arguments:</h5>
1242
Chris Lattner7faa8832002-04-14 06:13:44 +00001243The the '<tt>malloc</tt>' instruction allocates
1244<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
1245system, and returns a pointer of the appropriate type to the program. The
1246second form of the instruction is a shorter version of the first instruction
1247that defaults to allocating one element.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001248
Chris Lattner7faa8832002-04-14 06:13:44 +00001249'<tt>type</tt>' must be a sized type<p>
Chris Lattner00950542001-06-06 20:29:01 +00001250
1251<h5>Semantics:</h5>
1252Memory is allocated, a pointer is returned.<p>
1253
1254<h5>Example:</h5>
1255<pre>
1256 %array = malloc [4 x ubyte ] <i>; yields {[%4 x ubyte]*}:array</i>
1257
1258 %size = <a href="#i_add">add</a> uint 2, 2 <i>; yields {uint}:size = uint 4</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001259 %array1 = malloc ubyte, uint 4 <i>; yields {ubyte*}:array1</i>
1260 %array2 = malloc [12 x ubyte], uint %size <i>; yields {[12 x ubyte]*}:array2</i>
Chris Lattner00950542001-06-06 20:29:01 +00001261</pre>
1262
1263
1264<!-- _______________________________________________________________________ -->
1265</ul><a name="i_free"><h4><hr size=0>'<tt>free</tt>' Instruction</h4><ul>
1266
1267<h5>Syntax:</h5>
1268<pre>
1269 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
1270</pre>
1271
1272
1273<h5>Overview:</h5>
1274The '<tt>free</tt>' instruction returns memory back to the unused memory heap, to be reallocated in the future.<p>
1275
1276
1277<h5>Arguments:</h5>
1278
Chris Lattner6536cfe2002-05-06 22:08:29 +00001279'<tt>value</tt>' shall be a pointer value that points to a value that was
1280allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001281
1282
1283<h5>Semantics:</h5>
Chris Lattner00950542001-06-06 20:29:01 +00001284
Chris Lattner6536cfe2002-05-06 22:08:29 +00001285Access to the memory pointed to by the pointer is not longer defined after this instruction executes.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001286
1287<h5>Example:</h5>
1288<pre>
1289 %array = <a href="#i_malloc">malloc</a> [4 x ubyte] <i>; yields {[4 x ubyte]*}:array</i>
1290 free [4 x ubyte]* %array
1291</pre>
1292
1293
1294<!-- _______________________________________________________________________ -->
1295</ul><a name="i_alloca"><h4><hr size=0>'<tt>alloca</tt>' Instruction</h4><ul>
1296
1297<h5>Syntax:</h5>
1298<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001299 &lt;result&gt; = alloca &lt;type&gt;, uint &lt;NumElements&gt; <i>; yields {type*}:result</i>
1300 &lt;result&gt; = alloca &lt;type&gt; <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001301</pre>
1302
1303<h5>Overview:</h5>
1304
Chris Lattner7faa8832002-04-14 06:13:44 +00001305The '<tt>alloca</tt>' instruction allocates memory on the current stack frame of
1306the procedure that is live until the current function returns to its caller.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001307
1308<h5>Arguments:</h5>
Chris Lattner00950542001-06-06 20:29:01 +00001309
Chris Lattner7faa8832002-04-14 06:13:44 +00001310The the '<tt>alloca</tt>' instruction allocates
1311<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the runtime stack,
1312returning a pointer of the appropriate type to the program. The second form of
1313the instruction is a shorter version of the first that defaults to allocating
1314one element.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001315
Chris Lattner7faa8832002-04-14 06:13:44 +00001316'<tt>type</tt>' may be any sized type.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001317
1318<h5>Semantics:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001319
1320Memory is allocated, a pointer is returned. '<tt>alloca</tt>'d memory is
1321automatically released when the function returns. The '<tt>alloca</tt>'
1322instruction is commonly used to represent automatic variables that must have an
1323address available, as well as spilled variables.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001324
1325<h5>Example:</h5>
1326<pre>
1327 %ptr = alloca int <i>; yields {int*}:ptr</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001328 %ptr = alloca int, uint 4 <i>; yields {int*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00001329</pre>
1330
1331
1332<!-- _______________________________________________________________________ -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001333</ul><a name="i_load"><h4><hr size=0>'<tt>load</tt>' Instruction</h4><ul>
1334
1335<h5>Syntax:</h5>
1336<pre>
1337 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;
1338</pre>
1339
1340<h5>Overview:</h5>
1341The '<tt>load</tt>' instruction is used to read from memory.<p>
1342
1343<h5>Arguments:</h5>
1344
1345The argument to the '<tt>load</tt>' instruction specifies the memory address to load from. The pointer must point to a <a href="t_firstclass">first class</a> type.<p>
1346
1347<h5>Semantics:</h5>
1348
1349The location of memory pointed to is loaded.
1350
1351<h5>Examples:</h5>
1352<pre>
1353 %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
1354 <a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
1355 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
1356</pre>
1357
1358
1359
1360
1361<!-- _______________________________________________________________________ -->
1362</ul><a name="i_store"><h4><hr size=0>'<tt>store</tt>' Instruction</h4><ul>
1363
1364<h5>Syntax:</h5>
1365<pre>
1366 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
1367</pre>
1368
1369<h5>Overview:</h5>
1370The '<tt>store</tt>' instruction is used to write to memory.<p>
1371
1372<h5>Arguments:</h5>
1373
1374There are two arguments to the '<tt>store</tt>' instruction: a value to store
1375and an address to store it into. The type of the '<tt>&lt;pointer&gt;</tt>'
1376operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
1377operand.<p>
1378
1379<h5>Semantics:</h5> The contents of memory are updated to contain
1380'<tt>&lt;value&gt;</tt>' at the location specified by the
1381'<tt>&lt;pointer&gt;</tt>' operand.<p>
1382
1383<h5>Example:</h5>
1384<pre>
1385 %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
1386 <a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
1387 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
1388</pre>
1389
1390
1391
1392
1393<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +00001394</ul><a name="i_getelementptr"><h4><hr size=0>'<tt>getelementptr</tt>' Instruction</h4><ul>
1395
1396<h5>Syntax:</h5>
1397<pre>
1398 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, uint &lt;aidx&gt;|, ubyte &lt;sidx&gt;}*
1399</pre>
1400
1401<h5>Overview:</h5>
1402
1403The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner6536cfe2002-05-06 22:08:29 +00001404subelement of an aggregate data structure.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001405
1406<h5>Arguments:</h5>
1407
1408This instruction takes a list of <tt>uint</tt> values and <tt>ubyte</tt>
1409constants that indicate what form of addressing to perform. The actual types of
1410the arguments provided depend on the type of the first pointer argument. The
1411'<tt>getelementptr</tt>' instruction is used to index down through the type
1412levels of a structure.<p>
1413
Chris Lattner6536cfe2002-05-06 22:08:29 +00001414For example, lets consider a C code fragment and how it gets compiled to
1415LLVM:<p>
1416
1417<pre>
1418struct RT {
1419 char A;
1420 int B[10][20];
1421 char C;
1422};
1423struct ST {
1424 int X;
1425 double Y;
1426 struct RT Z;
1427};
1428
1429int *foo(struct ST *s) {
1430 return &amp;s[1].Z.B[5][13];
1431}
1432</pre>
1433
1434The LLVM code generated by the GCC frontend is:
1435
1436<pre>
1437%RT = type { sbyte, [10 x [20 x int]], sbyte }
1438%ST = type { int, double, %RT }
1439
1440int* "foo"(%ST* %s) {
1441 %reg = getelementptr %ST* %s, uint 1, ubyte 2, ubyte 1, uint 5, uint 13
1442 ret int* %reg
1443}
1444</pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001445
1446<h5>Semantics:</h5>
1447
Chris Lattner6536cfe2002-05-06 22:08:29 +00001448The index types specified for the '<tt>getelementptr</tt>' instruction depend on
1449the pointer type that is being index into. <a href="t_pointer">Pointer</a> and
1450<a href="t_array">array</a> types require '<tt>uint</tt>' values, and <a
1451href="t_struct">structure</a> types require '<tt>ubyte</tt>'
1452<b>constants</b>.<p>
1453
1454In the example above, the first index is indexing into the '<tt>%ST*</tt>' type,
1455which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT }</tt>'
1456type, a structure. The second index indexes into the third element of the
1457structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]], sbyte
1458}</tt>' type, another structure. The third index indexes into the second
1459element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an
1460array. The two dimensions of the array are subscripted into, yielding an
1461'<tt>int</tt>' type. The '<tt>getelementptr</tt>' instruction return a pointer
1462to this element, thus yielding a '<tt>int*</tt>' type.<p>
1463
1464Note that it is perfectly legal to index partially through a structure,
1465returning a pointer to an inner element. Because of this, the LLVM code for the
1466given testcase is equivalent to:<p>
1467
1468<pre>
1469int* "foo"(%ST* %s) {
1470 %t1 = getelementptr %ST* %s , uint 1 <i>; yields %ST*:%t1</i>
1471 %t2 = getelementptr %ST* %t1, uint 0, ubyte 2 <i>; yields %RT*:%t2</i>
1472 %t3 = getelementptr %RT* %t2, uint 0, ubyte 1 <i>; yields [10 x [20 x int]]*:%t3</i>
1473 %t4 = getelementptr [10 x [20 x int]]* %t3, uint 0, uint 5 <i>; yields [20 x int]*:%t4</i>
1474 %t5 = getelementptr [20 x int]* %t4, uint 0, uint 13 <i>; yields int*:%t5</i>
1475 ret int* %t5
1476}
1477</pre>
1478
1479
Chris Lattner7faa8832002-04-14 06:13:44 +00001480
1481<h5>Example:</h5>
1482<pre>
Chris Lattnerf31860b2002-08-19 21:14:38 +00001483 <i>; yields [12 x ubyte]*:aptr</i>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001484 %aptr = getelementptr {int, [12 x ubyte]}* %sptr, uint 0, ubyte 1
Chris Lattner7faa8832002-04-14 06:13:44 +00001485</pre>
1486
1487
1488
Chris Lattner00950542001-06-06 20:29:01 +00001489<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001490</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1491<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +00001492<a name="otherops">Other Operations
1493</b></font></td></tr></table><ul>
1494
1495The instructions in this catagory are the "miscellaneous" functions, that defy better classification.<p>
1496
1497
1498<!-- _______________________________________________________________________ -->
Chris Lattner6536cfe2002-05-06 22:08:29 +00001499</ul><a name="i_phi"><h4><hr size=0>'<tt>phi</tt>' Instruction</h4><ul>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001500
1501<h5>Syntax:</h5>
1502<pre>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001503 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
Chris Lattner33ba0d92001-07-09 00:26:23 +00001504</pre>
1505
1506<h5>Overview:</h5>
1507
Chris Lattner6536cfe2002-05-06 22:08:29 +00001508The '<tt>phi</tt>' instruction is used to implement the &phi; node in the SSA
1509graph representing the function.<p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001510
1511<h5>Arguments:</h5>
1512
Chris Lattner6536cfe2002-05-06 22:08:29 +00001513The type of the incoming values are specified with the first type field. After
1514this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
1515one pair for each predecessor basic block of the current block.<p>
1516
1517There must be no non-phi instructions between the start of a basic block and the
1518PHI instructions: i.e. PHI instructions must be first in a basic block.<p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001519
1520<h5>Semantics:</h5>
1521
Chris Lattner6536cfe2002-05-06 22:08:29 +00001522At runtime, the '<tt>phi</tt>' instruction logically takes on the value
1523specified by the parameter, depending on which basic block we came from in the
1524last <a href="#terminators">terminator</a> instruction.<p>
1525
1526<h5>Example:</h5>
1527
1528<pre>
1529Loop: ; Infinite loop that counts from 0 on up...
1530 %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
1531 %nextindvar = add uint %indvar, 1
1532 br label %Loop
1533</pre>
1534
1535
1536<!-- _______________________________________________________________________ -->
1537</ul><a name="i_cast"><h4><hr size=0>'<tt>cast .. to</tt>' Instruction</h4><ul>
1538
1539<h5>Syntax:</h5>
1540<pre>
1541 &lt;result&gt; = cast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
1542</pre>
1543
1544<h5>Overview:</h5>
1545
1546The '<tt>cast</tt>' instruction is used as the primitive means to convert
1547integers to floating point, change data type sizes, and break type safety (by
1548casting pointers).<p>
1549
1550<h5>Arguments:</h5>
1551
Chris Lattner7bae3952002-06-25 18:03:17 +00001552The '<tt>cast</tt>' instruction takes a value to cast, which must be a first
Chris Lattner6536cfe2002-05-06 22:08:29 +00001553class value, and a type to cast it to, which must also be a first class type.<p>
1554
1555<h5>Semantics:</h5>
1556
1557This instruction follows the C rules for explicit casts when determining how the
1558data being cast must change to fit in its new container.<p>
1559
Chris Lattner7bae3952002-06-25 18:03:17 +00001560When casting to bool, any value that would be considered true in the context of
1561a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' values,
1562all else are '<tt>false</tt>'.<p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001563
Chris Lattnerf8856bc2002-08-13 20:52:09 +00001564When extending an integral value from a type of one signness to another (for
1565example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value is sign-extended if the
1566<b>source</b> value is signed, and zero-extended if the source value is
Chris Lattner2b4dcbb2002-08-15 19:36:05 +00001567unsigned. <tt>bool</tt> values are always zero extended into either zero or
1568one.<p>
Chris Lattnerf8856bc2002-08-13 20:52:09 +00001569
Chris Lattner33ba0d92001-07-09 00:26:23 +00001570<h5>Example:</h5>
1571<pre>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001572 %X = cast int 257 to ubyte <i>; yields ubyte:1</i>
Chris Lattner7bae3952002-06-25 18:03:17 +00001573 %Y = cast int 123 to bool <i>; yields bool:true</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001574</pre>
1575
1576
1577
1578<!-- _______________________________________________________________________ -->
Chris Lattner00950542001-06-06 20:29:01 +00001579</ul><a name="i_call"><h4><hr size=0>'<tt>call</tt>' Instruction</h4><ul>
1580
1581<h5>Syntax:</h5>
1582<pre>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001583 &lt;result&gt; = call &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner00950542001-06-06 20:29:01 +00001584</pre>
1585
1586<h5>Overview:</h5>
1587
Chris Lattner6536cfe2002-05-06 22:08:29 +00001588The '<tt>call</tt>' instruction represents a simple function call.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001589
1590<h5>Arguments:</h5>
1591
Chris Lattner6536cfe2002-05-06 22:08:29 +00001592This instruction requires several arguments:<p>
1593<ol>
1594
1595<li>'<tt>ty</tt>': shall be the signature of the pointer to function value being
1596invoked. The argument types must match the types implied by this signature.<p>
1597
1598<li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to be
1599invoked. In most cases, this is a direct function invocation, but indirect
Misha Brukmane6fe6712002-09-18 02:35:14 +00001600<tt>call</tt>s are just as possible, calling an arbitrary pointer to function
Chris Lattner6536cfe2002-05-06 22:08:29 +00001601values.<p>
1602
1603<li>'<tt>function args</tt>': argument list whose types match the function
1604signature argument types. If the function signature indicates the function
1605accepts a variable number of arguments, the extra arguments can be specified.
1606</ol>
Chris Lattner00950542001-06-06 20:29:01 +00001607
1608<h5>Semantics:</h5>
1609
Chris Lattner6536cfe2002-05-06 22:08:29 +00001610The '<tt>call</tt>' instruction is used to cause control flow to transfer to a
1611specified function, with its incoming arguments bound to the specified values.
1612Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called function,
1613control flow continues with the instruction after the function call, and the
1614return value of the function is bound to the result argument. This is a simpler
1615case of the <a href="#i_invoke">invoke</a> instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001616
1617<h5>Example:</h5>
1618<pre>
1619 %retval = call int %test(int %argc)
Chris Lattner6536cfe2002-05-06 22:08:29 +00001620 call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);
1621
Chris Lattner00950542001-06-06 20:29:01 +00001622</pre>
1623
Chris Lattner6536cfe2002-05-06 22:08:29 +00001624<!--
Chris Lattner00950542001-06-06 20:29:01 +00001625
Chris Lattner6536cfe2002-05-06 22:08:29 +00001626<!x- *********************************************************************** -x>
Chris Lattner2b7d3202002-05-06 03:03:22 +00001627</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
1628<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +00001629<a name="related">Related Work
1630</b></font></td></tr></table><ul>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001631<!x- *********************************************************************** -x>
Chris Lattner00950542001-06-06 20:29:01 +00001632
1633
1634Codesigned virtual machines.<p>
1635
1636<dl>
1637<a name="rw_safetsa">
1638<dt>SafeTSA
1639<DD>Description here<p>
1640
1641<a name="rw_java">
1642<dt><a href="http://www.javasoft.com">Java</a>
1643<DD>Desciption here<p>
1644
1645<a name="rw_net">
1646<dt><a href="http://www.microsoft.com/net">Microsoft .net</a>
1647<DD>Desciption here<p>
1648
1649<a name="rw_gccrtl">
1650<dt><a href="http://www.math.umn.edu/systems_guide/gcc-2.95.1/gcc_15.html">GNU RTL Intermediate Representation</a>
1651<DD>Desciption here<p>
1652
1653<a name="rw_ia64">
1654<dt><a href="http://developer.intel.com/design/ia-64/index.htm">IA64 Architecture &amp; Instruction Set</a>
1655<DD>Desciption here<p>
1656
1657<a name="rw_mmix">
1658<dt><a href="http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html">MMIX Instruction Set</a>
1659<DD>Desciption here<p>
1660
1661<a name="rw_stroustrup">
1662<dt><a href="http://www.research.att.com/~bs/devXinterview.html">"Interview With Bjarne Stroustrup"</a>
1663<DD>This interview influenced the design and thought process behind LLVM in several ways, most notably the way that derived types are written in text format. See the question that starts with "you defined the C declarator syntax as an experiment that failed".<p>
1664</dl>
1665
Chris Lattner6536cfe2002-05-06 22:08:29 +00001666<!x- _______________________________________________________________________ -x>
Chris Lattner00950542001-06-06 20:29:01 +00001667</ul><a name="rw_vectorization"><h3><hr size=0>Vectorized Architectures</h3><ul>
1668
1669<dl>
1670<a name="rw_intel_simd">
1671<dt>Intel MMX, MMX2, SSE, SSE2
1672<DD>Description here<p>
1673
1674<a name="rw_amd_simd">
1675<dt><a href="http://www.nondot.org/~sabre/os/H1ChipFeatures/3DNow!TechnologyManual.pdf">AMD 3Dnow!, 3Dnow! 2</a>
1676<DD>Desciption here<p>
1677
1678<a name="rw_sun_simd">
1679<dt><a href="http://www.nondot.org/~sabre/os/H1ChipFeatures/VISInstructionSetUsersManual.pdf">Sun VIS ISA</a>
1680<DD>Desciption here<p>
1681
Chris Lattner6536cfe2002-05-06 22:08:29 +00001682<a name="rw_powerpc_simd">
1683<dt>PowerPC Altivec
1684<DD>Desciption here<p>
Chris Lattner00950542001-06-06 20:29:01 +00001685
1686</dl>
1687
1688more...
1689
Chris Lattner6536cfe2002-05-06 22:08:29 +00001690-->
1691
1692
Chris Lattner00950542001-06-06 20:29:01 +00001693<!-- *********************************************************************** -->
1694</ul>
1695<!-- *********************************************************************** -->
1696
1697
1698<hr>
1699<font size=-1>
1700<address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
1701<!-- Created: Tue Jan 23 15:19:28 CST 2001 -->
1702<!-- hhmts start -->
Misha Brukmana3bbcb52002-10-29 23:06:16 +00001703Last modified: Tue Oct 29 01:57:05 CST 2002
Chris Lattner00950542001-06-06 20:29:01 +00001704<!-- hhmts end -->
1705</font>
1706</body></html>