blob: 73381b545177be3a94236783ab26fa8e024fa09b [file] [log] [blame]
Sean Silva2f8a1762013-07-01 20:45:12 +00001=======================
2Writing an LLVM Backend
3=======================
Dmitri Gribenko91cb6942012-12-01 12:13:48 +00004
Sean Silva5d0d67f2012-12-31 11:49:51 +00005.. toctree::
6 :hidden:
7
8 HowToUseInstrMappings
9
Dmitri Gribenko91cb6942012-12-01 12:13:48 +000010.. contents::
11 :local:
12
13Introduction
14============
15
16This document describes techniques for writing compiler backends that convert
17the LLVM Intermediate Representation (IR) to code for a specified machine or
18other languages. Code intended for a specific machine can take the form of
19either assembly code or binary code (usable for a JIT compiler).
20
21The backend of LLVM features a target-independent code generator that may
22create output for several types of target CPUs --- including X86, PowerPC,
23ARM, and SPARC. The backend may also be used to generate code targeted at SPUs
24of the Cell processor or GPUs to support the execution of compute kernels.
25
26The document focuses on existing examples found in subdirectories of
27``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document
28focuses on the example of creating a static compiler (one that emits text
29assembly) for a SPARC target, because SPARC has fairly standard
30characteristics, such as a RISC instruction set and straightforward calling
31conventions.
32
33Audience
34--------
35
36The audience for this document is anyone who needs to write an LLVM backend to
37generate code for a specific hardware or software target.
38
39Prerequisite Reading
40--------------------
41
42These essential documents must be read before reading this document:
43
44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
45 the LLVM assembly language.
46
47* :doc:`CodeGenerator` --- a guide to the components (classes and code
48 generation algorithms) for translating the LLVM internal representation into
49 machine code for a specified target. Pay particular attention to the
50 descriptions of code generation stages: Instruction Selection, Scheduling and
51 Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
52 Insertion, Late Machine Code Optimizations, and Code Emission.
53
54* :doc:`TableGenFundamentals` --- a document that describes the TableGen
55 (``tblgen``) application that manages domain-specific information to support
56 LLVM code generation. TableGen processes input from a target description
57 file (``.td`` suffix) and generates C++ code that can be used for code
58 generation.
59
Dmitri Gribenkob64f0202012-12-12 17:02:44 +000060* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
61 are several ``SelectionDAG`` processing steps.
Dmitri Gribenko91cb6942012-12-01 12:13:48 +000062
63To follow the SPARC examples in this document, have a copy of `The SPARC
64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
65reference. For details about the ARM instruction set, refer to the `ARM
66Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about
67the GNU Assembler format (``GAS``), see `Using As
68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
69assembly printer. "Using As" contains a list of target machine dependent
70features.
71
72Basic Steps
73-----------
74
75To write a compiler backend for LLVM that converts the LLVM IR to code for a
76specified target (machine or other language), follow these steps:
77
78* Create a subclass of the ``TargetMachine`` class that describes
79 characteristics of your target machine. Copy existing examples of specific
80 ``TargetMachine`` class and header files; for example, start with
81 ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
82 names for your target. Similarly, change code that references "``Sparc``" to
83 reference your target.
84
85* Describe the register set of the target. Use TableGen to generate code for
86 register definition, register aliases, and register classes from a
87 target-specific ``RegisterInfo.td`` input file. You should also write
88 additional code for a subclass of the ``TargetRegisterInfo`` class that
89 represents the class register file data used for register allocation and also
90 describes the interactions between registers.
91
92* Describe the instruction set of the target. Use TableGen to generate code
93 for target-specific instructions from target-specific versions of
94 ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write
95 additional code for a subclass of the ``TargetInstrInfo`` class to represent
96 machine instructions supported by the target machine.
97
98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
99 Graph (DAG) representation of instructions to native target-specific
100 instructions. Use TableGen to generate code that matches patterns and
101 selects instructions based on additional information in a target-specific
102 version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``,
103 where ``XXX`` identifies the specific target, to perform pattern matching and
104 DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp``
105 to replace or remove operations and data types that are not supported
106 natively in a SelectionDAG.
107
108* Write code for an assembly printer that converts LLVM IR to a GAS format for
109 your target machine. You should add assembly strings to the instructions
110 defined in your target-specific version of ``TargetInstrInfo.td``. You
111 should also write code for a subclass of ``AsmPrinter`` that performs the
112 LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
113
114* Optionally, add support for subtargets (i.e., variants with different
115 capabilities). You should also write code for a subclass of the
116 ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
117 ``-mattr=`` command-line options.
118
119* Optionally, add JIT support and create a machine code emitter (subclass of
120 ``TargetJITInfo``) that is used to emit binary code directly into memory.
121
122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
123implement them later. Initially, you may not know which private members that
124the class will need and which components will need to be subclassed.
125
126Preliminaries
127-------------
128
129To actually create your compiler backend, you need to create and modify a few
130files. The absolute minimum is discussed here. But to actually use the LLVM
131target-independent code generator, you must perform the steps described in the
132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
133
134First, you should create a subdirectory under ``lib/Target`` to hold all the
135files related to your target. If your target is called "Dummy", create the
136directory ``lib/Target/Dummy``.
137
138In this new directory, create a ``Makefile``. It is easiest to copy a
139``Makefile`` of another target and modify it. It should at least contain the
140``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
141``$(LEVEL)/Makefile.common``. The library can be named ``LLVMDummy`` (for
142example, see the MIPS target). Alternatively, you can split the library into
143``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
144implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
145PowerPC target).
146
147Note that these two naming schemes are hardcoded into ``llvm-config``. Using
148any other naming scheme will confuse ``llvm-config`` and produce a lot of
149(seemingly unrelated) linker errors when linking ``llc``.
150
151To make your target actually do something, you need to implement a subclass of
152``TargetMachine``. This implementation should typically be in the file
153``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
154directory will be built and should work. To use LLVM's target independent code
155generator, you should do what all current machine backends do: create a
156subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a
157subclass of ``TargetMachine``.)
158
159To get LLVM to actually build and link your target, you need to add it to the
160``TARGETS_TO_BUILD`` variable. To do this, you modify the configure script to
161know about your target when parsing the ``--enable-targets`` option. Search
162the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
163there (some creativity required), and then reconfigure. Alternatively, you can
164change ``autotools/configure.ac`` and regenerate configure by running
165``./autoconf/AutoRegen.sh``.
166
167Target Machine
168==============
169
170``LLVMTargetMachine`` is designed as a base class for targets implemented with
171the LLVM target-independent code generator. The ``LLVMTargetMachine`` class
172should be specialized by a concrete target class that implements the various
173virtual methods. ``LLVMTargetMachine`` is defined as a subclass of
174``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The
175``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
176numerous command-line options.
177
178To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
179by copying an existing ``TargetMachine`` class and header. You should name the
180files that you create to reflect your specific target. For instance, for the
181SPARC target, name the files ``SparcTargetMachine.h`` and
182``SparcTargetMachine.cpp``.
183
184For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
185have access methods to obtain objects that represent target components. These
186methods are named ``get*Info``, and are intended to obtain the instruction set
187(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
188(``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also
189implement the ``getDataLayout`` method to access an object with target-specific
190data characteristics, such as data type size and alignment requirements.
191
192For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
193declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
194simply return a class member.
195
196.. code-block:: c++
197
198 namespace llvm {
199
200 class Module;
201
202 class SparcTargetMachine : public LLVMTargetMachine {
203 const DataLayout DataLayout; // Calculates type size & alignment
204 SparcSubtarget Subtarget;
205 SparcInstrInfo InstrInfo;
206 TargetFrameInfo FrameInfo;
207
208 protected:
209 virtual const TargetAsmInfo *createTargetAsmInfo() const;
210
211 public:
212 SparcTargetMachine(const Module &M, const std::string &FS);
213
214 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
215 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
216 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
217 virtual const TargetRegisterInfo *getRegisterInfo() const {
218 return &InstrInfo.getRegisterInfo();
219 }
220 virtual const DataLayout *getDataLayout() const { return &DataLayout; }
221 static unsigned getModuleMatchQuality(const Module &M);
222
223 // Pass Pipeline Configuration
224 virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
225 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
226 };
227
228 } // end namespace llvm
229
230* ``getInstrInfo()``
231* ``getRegisterInfo()``
232* ``getFrameInfo()``
233* ``getDataLayout()``
234* ``getSubtargetImpl()``
235
236For some targets, you also need to support the following methods:
237
238* ``getTargetLowering()``
239* ``getJITInfo()``
240
241In addition, the ``XXXTargetMachine`` constructor should specify a
242``TargetDescription`` string that determines the data layout for the target
243machine, including characteristics such as pointer size, alignment, and
244endianness. For example, the constructor for ``SparcTargetMachine`` contains
245the following:
246
247.. code-block:: c++
248
249 SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
250 : DataLayout("E-p:32:32-f128:128:128"),
251 Subtarget(M, FS), InstrInfo(Subtarget),
252 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
253 }
254
255Hyphens separate portions of the ``TargetDescription`` string.
256
257* An upper-case "``E``" in the string indicates a big-endian target data model.
258 A lower-case "``e``" indicates little-endian.
259
260* "``p:``" is followed by pointer information: size, ABI alignment, and
261 preferred alignment. If only two figures follow "``p:``", then the first
262 value is pointer size, and the second value is both ABI and preferred
263 alignment.
264
265* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
266 "``a``" (corresponding to integer, floating point, vector, or aggregate).
267 "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
268 alignment. "``f``" is followed by three values: the first indicates the size
269 of a long double, then ABI alignment, and then ABI preferred alignment.
270
271Target Registration
272===================
273
274You must also register your target with the ``TargetRegistry``, which is what
275other LLVM tools use to be able to lookup and use your target at runtime. The
276``TargetRegistry`` can be used directly, but for most targets there are helper
277templates which should take care of the work for you.
278
279All targets should declare a global ``Target`` object which is used to
280represent the target during registration. Then, in the target's ``TargetInfo``
281library, the target should define that object and use the ``RegisterTarget``
282template to register the target. For example, the Sparc registration code
283looks like this:
284
285.. code-block:: c++
286
287 Target llvm::TheSparcTarget;
288
289 extern "C" void LLVMInitializeSparcTargetInfo() {
290 RegisterTarget<Triple::sparc, /*HasJIT=*/false>
291 X(TheSparcTarget, "sparc", "Sparc");
292 }
293
294This allows the ``TargetRegistry`` to look up the target by name or by target
295triple. In addition, most targets will also register additional features which
296are available in separate libraries. These registration steps are separate,
297because some clients may wish to only link in some parts of the target --- the
298JIT code generator does not require the use of the assembler printer, for
299example. Here is an example of registering the Sparc assembly printer:
300
301.. code-block:: c++
302
303 extern "C" void LLVMInitializeSparcAsmPrinter() {
304 RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
305 }
306
307For more information, see "`llvm/Target/TargetRegistry.h
308</doxygen/TargetRegistry_8h-source.html>`_".
309
310Register Set and Register Classes
311=================================
312
313You should describe a concrete target-specific class that represents the
314register file of a target machine. This class is called ``XXXRegisterInfo``
315(where ``XXX`` identifies the target) and represents the class register file
316data that is used for register allocation. It also describes the interactions
317between registers.
318
319You also need to define register classes to categorize related registers. A
320register class should be added for groups of registers that are all treated the
321same way for some instruction. Typical examples are register classes for
322integer, floating-point, or vector registers. A register allocator allows an
323instruction to use any register in a specified register class to perform the
324instruction in a similar manner. Register classes allocate virtual registers
325to instructions from these sets, and register classes let the
326target-independent register allocator automatically choose the actual
327registers.
328
329Much of the code for registers, including register definition, register
330aliases, and register classes, is generated by TableGen from
331``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
332and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the
333implementation of ``XXXRegisterInfo`` requires hand-coding.
334
335Defining a Register
336-------------------
337
338The ``XXXRegisterInfo.td`` file typically starts with register definitions for
339a target machine. The ``Register`` class (specified in ``Target.td``) is used
340to define an object for each register. The specified string ``n`` becomes the
341``Name`` of the register. The basic ``Register`` object does not have any
342subregisters and does not specify any aliases.
343
344.. code-block:: llvm
345
346 class Register<string n> {
347 string Namespace = "";
348 string AsmName = n;
349 string Name = n;
350 int SpillSize = 0;
351 int SpillAlignment = 0;
352 list<Register> Aliases = [];
353 list<Register> SubRegs = [];
354 list<int> DwarfNumbers = [];
355 }
356
357For example, in the ``X86RegisterInfo.td`` file, there are register definitions
358that utilize the ``Register`` class, such as:
359
360.. code-block:: llvm
361
362 def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
363
364This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
365that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
366register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
367representing 3 different modes: the first element is for X86-64, the second for
368exception handling (EH) on X86-32, and the third is generic. -1 is a special
369Dwarf number that indicates the gcc number is undefined, and -2 indicates the
370register number is invalid for this mode.
371
372From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
373generates this code in the ``X86GenRegisterInfo.inc`` file:
374
375.. code-block:: c++
376
377 static const unsigned GR8[] = { X86::AL, ... };
378
379 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
380
381 const TargetRegisterDesc RegisterDescriptors[] = {
382 ...
383 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
384
385From the register info file, TableGen generates a ``TargetRegisterDesc`` object
386for each register. ``TargetRegisterDesc`` is defined in
387``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
388
389.. code-block:: c++
390
391 struct TargetRegisterDesc {
392 const char *AsmName; // Assembly language name for the register
393 const char *Name; // Printable name for the reg (for debugging)
394 const unsigned *AliasSet; // Register Alias Set
395 const unsigned *SubRegs; // Sub-register set
396 const unsigned *ImmSubRegs; // Immediate sub-register set
397 const unsigned *SuperRegs; // Super-register set
398 };
399
400TableGen uses the entire target description file (``.td``) to determine text
401names for the register (in the ``AsmName`` and ``Name`` fields of
402``TargetRegisterDesc``) and the relationships of other registers to the defined
403register (in the other ``TargetRegisterDesc`` fields). In this example, other
404definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
405aliases for one another, so TableGen generates a null-terminated array
406(``AL_AliasSet``) for this register alias set.
407
408The ``Register`` class is commonly used as a base class for more complex
409classes. In ``Target.td``, the ``Register`` class is the base for the
410``RegisterWithSubRegs`` class that is used to define registers that need to
411specify subregisters in the ``SubRegs`` list, as shown here:
412
413.. code-block:: llvm
414
415 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
416 let SubRegs = subregs;
417 }
418
419In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
420a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
421and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a
422feature common to these subclasses. Note the use of "``let``" expressions to
423override values that are initially defined in a superclass (such as ``SubRegs``
424field in the ``Rd`` class).
425
426.. code-block:: llvm
427
428 class SparcReg<string n> : Register<n> {
429 field bits<5> Num;
430 let Namespace = "SP";
431 }
432 // Ri - 32-bit integer registers
433 class Ri<bits<5> num, string n> :
434 SparcReg<n> {
435 let Num = num;
436 }
437 // Rf - 32-bit floating-point registers
438 class Rf<bits<5> num, string n> :
439 SparcReg<n> {
440 let Num = num;
441 }
442 // Rd - Slots in the FP register file for 64-bit floating-point values.
443 class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
444 let Num = num;
445 let SubRegs = subregs;
446 }
447
448In the ``SparcRegisterInfo.td`` file, there are register definitions that
449utilize these subclasses of ``Register``, such as:
450
451.. code-block:: llvm
452
453 def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
454 def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
455 ...
456 def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
457 def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
458 ...
459 def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
460 def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
461
462The last two registers shown above (``D0`` and ``D1``) are double-precision
463floating-point registers that are aliases for pairs of single-precision
464floating-point sub-registers. In addition to aliases, the sub-register and
465super-register relationships of the defined register are in fields of a
466register's ``TargetRegisterDesc``.
467
468Defining a Register Class
469-------------------------
470
471The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
472object that represents a group of related registers and also defines the
473default allocation order of the registers. A target description file
474``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
475using the following class:
476
477.. code-block:: llvm
478
479 class RegisterClass<string namespace,
480 list<ValueType> regTypes, int alignment, dag regList> {
481 string Namespace = namespace;
482 list<ValueType> RegTypes = regTypes;
483 int Size = 0; // spill size, in bits; zero lets tblgen pick the size
484 int Alignment = alignment;
485
486 // CopyCost is the cost of copying a value between two registers
487 // default value 1 means a single instruction
488 // A negative value means copying is extremely expensive or impossible
489 int CopyCost = 1;
490 dag MemberList = regList;
491
492 // for register classes that are subregisters of this class
493 list<RegisterClass> SubRegClassList = [];
494
495 code MethodProtos = [{}]; // to insert arbitrary code
496 code MethodBodies = [{}];
497 }
498
499To define a ``RegisterClass``, use the following 4 arguments:
500
501* The first argument of the definition is the name of the namespace.
502
503* The second argument is a list of ``ValueType`` register type values that are
504 defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include
505 integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
506 floating-point types (``f32``, ``f64``), and vector types (for example,
507 ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass``
508 must have the same ``ValueType``, but some registers may store vector data in
509 different configurations. For example a register that can process a 128-bit
510 vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
511 32-bit integers, and so on.
512
513* The third argument of the ``RegisterClass`` definition specifies the
514 alignment required of the registers when they are stored or loaded to
515 memory.
516
517* The final argument, ``regList``, specifies which registers are in this class.
518 If an alternative allocation order method is not specified, then ``regList``
519 also defines the order of allocation used by the register allocator. Besides
520 simply listing registers with ``(add R0, R1, ...)``, more advanced set
521 operators are available. See ``include/llvm/Target/Target.td`` for more
522 information.
523
524In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
525``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the
526first argument defines the namespace with the string "``SP``". ``FPRegs``
527defines a group of 32 single-precision floating-point registers (``F0`` to
528``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
529(``D0-D15``).
530
531.. code-block:: llvm
532
533 // F0, F1, F2, ..., F31
534 def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
535
536 def DFPRegs : RegisterClass<"SP", [f64], 64,
537 (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
538 D9, D10, D11, D12, D13, D14, D15)>;
539
540 def IntRegs : RegisterClass<"SP", [i32], 32,
541 (add L0, L1, L2, L3, L4, L5, L6, L7,
542 I0, I1, I2, I3, I4, I5,
543 O0, O1, O2, O3, O4, O5, O7,
544 G1,
545 // Non-allocatable regs:
546 G2, G3, G4,
547 O6, // stack ptr
548 I6, // frame ptr
549 I7, // return address
550 G0, // constant zero
551 G5, G6, G7 // reserved for kernel
552 )>;
553
554Using ``SparcRegisterInfo.td`` with TableGen generates several output files
555that are intended for inclusion in other source code that you write.
556``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
557be included in the header file for the implementation of the SPARC register
558implementation that you write (``SparcRegisterInfo.h``). In
559``SparcGenRegisterInfo.h.inc`` a new structure is defined called
560``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also
561specifies types, based upon the defined register classes: ``DFPRegsClass``,
562``FPRegsClass``, and ``IntRegsClass``.
563
564``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
565included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
566implementation. The code below shows only the generated integer registers and
567associated register classes. The order of registers in ``IntRegs`` reflects
568the order in the definition of ``IntRegs`` in the target description file.
569
570.. code-block:: c++
571
572 // IntRegs Register Class...
573 static const unsigned IntRegs[] = {
574 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
575 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
576 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
577 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
578 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
579 SP::G6, SP::G7,
580 };
581
582 // IntRegsVTs Register Class Value Types...
583 static const MVT::ValueType IntRegsVTs[] = {
584 MVT::i32, MVT::Other
585 };
586
587 namespace SP { // Register class instances
588 DFPRegsClass DFPRegsRegClass;
589 FPRegsClass FPRegsRegClass;
590 IntRegsClass IntRegsRegClass;
591 ...
592 // IntRegs Sub-register Classess...
593 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
594 NULL
595 };
596 ...
597 // IntRegs Super-register Classess...
598 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
599 NULL
600 };
601 ...
602 // IntRegs Register Class sub-classes...
603 static const TargetRegisterClass* const IntRegsSubclasses [] = {
604 NULL
605 };
606 ...
607 // IntRegs Register Class super-classes...
608 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
609 NULL
610 };
611
612 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
613 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
614 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
615 }
616
617The register allocators will avoid using reserved registers, and callee saved
618registers are not used until all the volatile registers have been used. That
619is usually good enough, but in some cases it may be necessary to provide custom
620allocation orders.
621
622Implement a subclass of ``TargetRegisterInfo``
623----------------------------------------------
624
625The final step is to hand code portions of ``XXXRegisterInfo``, which
626implements the interface described in ``TargetRegisterInfo.h`` (see
627:ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or
628``false``, unless overridden. Here is a list of functions that are overridden
629for the SPARC implementation in ``SparcRegisterInfo.cpp``:
630
631* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
632 order of the desired callee-save stack frame offset.
633
634* ``getReservedRegs`` --- Returns a bitset indexed by physical register
635 numbers, indicating if a particular register is unavailable.
636
637* ``hasFP`` --- Return a Boolean indicating if a function should have a
638 dedicated frame pointer register.
639
640* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
641 instructions are used, this can be called to eliminate them.
642
643* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
644 instructions that may use them.
645
646* ``emitPrologue`` --- Insert prologue code into the function.
647
648* ``emitEpilogue`` --- Insert epilogue code into the function.
649
650.. _instruction-set:
651
652Instruction Set
653===============
654
655During the early stages of code generation, the LLVM IR code is converted to a
656``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
657containing target instructions. An ``SDNode`` has an opcode, operands, type
658requirements, and operation properties. For example, is an operation
659commutative, does an operation load from memory. The various operation node
660types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
661(values of the ``NodeType`` enum in the ``ISD`` namespace).
662
663TableGen uses the following target description (``.td``) input files to
664generate much of the code for instruction definition:
665
666* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
667 other fundamental classes are defined.
668
669* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
670 generators, contains ``SDTC*`` classes (selection DAG type constraint),
671 definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
672 ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
673 ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
674
675* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
676 instructions.
677
678* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
679 condition codes, and instructions of an instruction set. For architecture
680 modifications, a different file name may be used. For example, for Pentium
681 with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
682 MMX, this file is ``X86InstrMMX.td``.
683
684There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
685the target. The ``XXX.td`` file includes the other ``.td`` input files, but
686its contents are only directly important for subtargets.
687
688You should describe a concrete target-specific class ``XXXInstrInfo`` that
689represents machine instructions supported by a target machine.
690``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
691which describes one instruction. An instruction descriptor defines:
692
693* Opcode mnemonic
694* Number of operands
695* List of implicit register definitions and uses
696* Target-independent properties (such as memory access, is commutable)
697* Target-specific flags
698
699The Instruction class (defined in ``Target.td``) is mostly used as a base for
700more complex instruction classes.
701
702.. code-block:: llvm
703
704 class Instruction {
705 string Namespace = "";
706 dag OutOperandList; // A dag containing the MI def operand list.
707 dag InOperandList; // A dag containing the MI use operand list.
708 string AsmString = ""; // The .s format to print the instruction with.
709 list<dag> Pattern; // Set to the DAG pattern for this instruction.
710 list<Register> Uses = [];
711 list<Register> Defs = [];
712 list<Predicate> Predicates = []; // predicates turned into isel match code
713 ... remainder not shown for space ...
714 }
715
716A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
717target-specific instruction that is defined in ``XXXInstrInfo.td``. The
718instruction objects should represent instructions from the architecture manual
719of the target machine (such as the SPARC Architecture Manual for the SPARC
720target).
721
722A single instruction from the architecture manual is often modeled as multiple
723target instructions, depending upon its operands. For example, a manual might
724describe an add instruction that takes a register or an immediate operand. An
725LLVM target could model this with two instructions named ``ADDri`` and
726``ADDrr``.
727
728You should define a class for each instruction category and define each opcode
729as a subclass of the category with appropriate parameters such as the fixed
730binary encoding of opcodes and extended opcodes. You should map the register
731bits to the bits of the instruction in which they are encoded (for the JIT).
732Also you should specify how the instruction should be printed when the
733automatic assembly printer is used.
734
735As is described in the SPARC Architecture Manual, Version 8, there are three
736major 32-bit formats for instructions. Format 1 is only for the ``CALL``
737instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high
738bits of a register) instructions. Format 3 is for other instructions.
739
740Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
741``InstSP`` is a base class for other instruction classes. Additional base
742classes are specified for more precise formats: for example in
743``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
744branches. There are three other base classes: ``F3_1`` for register/register
745operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
746floating-point operations. ``SparcInstrInfo.td`` also adds the base class
747``Pseudo`` for synthetic SPARC instructions.
748
749``SparcInstrInfo.td`` largely consists of operand and instruction definitions
750for the SPARC target. In ``SparcInstrInfo.td``, the following target
751description file entry, ``LDrr``, defines the Load Integer instruction for a
752Word (the ``LD`` SPARC opcode) from a memory address to a register. The first
753parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
754category of operation. The second parameter (``000000``\ :sub:`2`) is the
755specific operation value for ``LD``/Load Word. The third parameter is the
756output destination, which is a register operand and defined in the ``Register``
757target description file (``IntRegs``).
758
759.. code-block:: llvm
760
761 def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
762 "ld [$addr], $dst",
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000763 [(set i32:$dst, (load ADDRrr:$addr))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000764
765The fourth parameter is the input source, which uses the address operand
766``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
767
768.. code-block:: llvm
769
770 def MEMrr : Operand<i32> {
771 let PrintMethod = "printMemOperand";
772 let MIOperandInfo = (ops IntRegs, IntRegs);
773 }
774
775The fifth parameter is a string that is used by the assembly printer and can be
776left as an empty string until the assembly printer interface is implemented.
777The sixth and final parameter is the pattern used to match the instruction
778during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
779This parameter is detailed in the next section, :ref:`instruction-selector`.
780
781Instruction class definitions are not overloaded for different operand types,
782so separate versions of instructions are needed for register, memory, or
783immediate value operands. For example, to perform a Load Integer instruction
784for a Word from an immediate operand to a register, the following instruction
785class is defined:
786
787.. code-block:: llvm
788
789 def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
790 "ld [$addr], $dst",
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000791 [(set i32:$dst, (load ADDRri:$addr))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000792
793Writing these definitions for so many similar instructions can involve a lot of
794cut and paste. In ``.td`` files, the ``multiclass`` directive enables the
795creation of templates to define several instruction classes at once (using the
796``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass``
797pattern ``F3_12`` is defined to create 2 instruction classes each time
798``F3_12`` is invoked:
799
800.. code-block:: llvm
801
802 multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
803 def rr : F3_1 <2, Op3Val,
804 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
805 !strconcat(OpcStr, " $b, $c, $dst"),
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000806 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000807 def ri : F3_2 <2, Op3Val,
808 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
809 !strconcat(OpcStr, " $b, $c, $dst"),
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000810 [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000811 }
812
813So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
814instructions, as seen below, it creates four instruction objects: ``XORrr``,
815``XORri``, ``ADDrr``, and ``ADDri``.
816
817.. code-block:: llvm
818
819 defm XOR : F3_12<"xor", 0b000011, xor>;
820 defm ADD : F3_12<"add", 0b000000, add>;
821
822``SparcInstrInfo.td`` also includes definitions for condition codes that are
823referenced by branch instructions. The following definitions in
824``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
825For example, the 10\ :sup:`th` bit represents the "greater than" condition for
826integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
827floats.
828
829.. code-block:: llvm
830
831 def ICC_NE : ICC_VAL< 9>; // Not Equal
832 def ICC_E : ICC_VAL< 1>; // Equal
833 def ICC_G : ICC_VAL<10>; // Greater
834 ...
835 def FCC_U : FCC_VAL<23>; // Unordered
836 def FCC_G : FCC_VAL<22>; // Greater
837 def FCC_UG : FCC_VAL<21>; // Unordered or Greater
838 ...
839
840(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
841condition codes. Care must be taken to ensure the values in ``Sparc.h``
842correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``,
843``SPCC::FCC_U = 23`` and so on.)
844
845Instruction Operand Mapping
846---------------------------
847
848The code generator backend maps instruction operands to fields in the
849instruction. Operands are assigned to unbound fields in the instruction in the
850order they are defined. Fields are bound when they are assigned a value. For
851example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
852format instruction having three operands.
853
854.. code-block:: llvm
855
856 def XNORrr : F3_1<2, 0b000111,
857 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
858 "xnor $b, $c, $dst",
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000859 [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000860
861The instruction templates in ``SparcInstrFormats.td`` show the base class for
862``F3_1`` is ``InstSP``.
863
864.. code-block:: llvm
865
866 class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
867 field bits<32> Inst;
868 let Namespace = "SP";
869 bits<2> op;
870 let Inst{31-30} = op;
871 dag OutOperandList = outs;
872 dag InOperandList = ins;
873 let AsmString = asmstr;
874 let Pattern = pattern;
875 }
876
877``InstSP`` leaves the ``op`` field unbound.
878
879.. code-block:: llvm
880
881 class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
882 : InstSP<outs, ins, asmstr, pattern> {
883 bits<5> rd;
884 bits<6> op3;
885 bits<5> rs1;
886 let op{1} = 1; // Op = 2 or 3
887 let Inst{29-25} = rd;
888 let Inst{24-19} = op3;
889 let Inst{18-14} = rs1;
890 }
891
892``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
893fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
894``rs1`` fields.
895
896.. code-block:: llvm
897
898 class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
899 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
900 bits<8> asi = 0; // asi not currently used
901 bits<5> rs2;
902 let op = opVal;
903 let op3 = op3val;
904 let Inst{13} = 0; // i field = 0
905 let Inst{12-5} = asi; // address space identifier
906 let Inst{4-0} = rs2;
907 }
908
909``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1``
910format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
911fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
912and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
913
Tom Stellard898b9f02013-06-25 21:22:09 +0000914TableGen will also generate a function called getNamedOperandIdx() which
915can be used to look up an operand's index in a MachineInstr based on its
916TableGen name. Setting the UseNamedOperandTable bit in an instruction's
917TableGen definition will add all of its operands to an enumeration in the
918llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
919table, which can be queried using getNamedOperandIdx()
920
921.. code-block:: llvm
922
923 int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
924 int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1
925 int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2
926 int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1
927
928 ...
929
930The entries in the OpName enum are taken verbatim from the TableGen definitions,
931so operands with lowercase names will have lower case entries in the enum.
932
933To include the getNamedOperandIdx() function in your backend, you will need
934to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
935For example:
936
937XXXInstrInfo.cpp:
938
939.. code-block:: c++
940
941 #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
942 #include "XXXGenInstrInfo.inc"
943
944XXXInstrInfo.h:
945
946.. code-block:: c++
947
948 #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
949 #include "XXXGenInstrInfo.inc"
950
951 namespace XXX {
952 int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
953 } // End namespace XXX
954
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000955Instruction Relation Mapping
956----------------------------
957
958This TableGen feature is used to relate instructions with each other. It is
959particularly useful when you have multiple instruction formats and need to
960switch between them after instruction selection. This entire feature is driven
961by relation models which can be defined in ``XXXInstrInfo.td`` files
962according to the target-specific instruction set. Relation models are defined
963using ``InstrMapping`` class as a base. TableGen parses all the models
964and generates instruction relation maps using the specified information.
965Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
966along with the functions to query them. For the detailed information on how to
967use this feature, please refer to :doc:`HowToUseInstrMappings`.
968
969Implement a subclass of ``TargetInstrInfo``
970-------------------------------------------
971
972The final step is to hand code portions of ``XXXInstrInfo``, which implements
973the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
974These functions return ``0`` or a Boolean or they assert, unless overridden.
975Here's a list of functions that are overridden for the SPARC implementation in
976``SparcInstrInfo.cpp``:
977
978* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
979 load from a stack slot, return the register number of the destination and the
980 ``FrameIndex`` of the stack slot.
981
982* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
983 store to a stack slot, return the register number of the destination and the
984 ``FrameIndex`` of the stack slot.
985
986* ``copyPhysReg`` --- Copy values between a pair of physical registers.
987
988* ``storeRegToStackSlot`` --- Store a register value to a stack slot.
989
990* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
991
992* ``storeRegToAddr`` --- Store a register value to memory.
993
994* ``loadRegFromAddr`` --- Load a register value from memory.
995
996* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
997 store instruction for the specified operand(s).
998
999Branch Folding and If Conversion
1000--------------------------------
1001
1002Performance can be improved by combining instructions or by eliminating
1003instructions that are never reached. The ``AnalyzeBranch`` method in
1004``XXXInstrInfo`` may be implemented to examine conditional instructions and
1005remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a
1006machine basic block (MBB) for opportunities for improvement, such as branch
1007folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine
1008function passes (see the source files ``BranchFolding.cpp`` and
1009``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
1010to improve the control flow graph that represents the instructions.
1011
1012Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
1013examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC
1014does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
1015shown below.
1016
1017``AnalyzeBranch`` returns a Boolean value and takes four parameters:
1018
1019* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
1020
1021* ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a
1022 conditional branch that evaluates to true, ``TBB`` is the destination.
1023
1024* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
1025 false, ``FBB`` is returned as the destination.
1026
1027* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
1028 condition for a conditional branch.
1029
1030In the simplest case, if a block ends without a branch, then it falls through
1031to the successor block. No destination blocks are specified for either ``TBB``
1032or ``FBB``, so both parameters return ``NULL``. The start of the
1033``AnalyzeBranch`` (see code below for the ARM target) shows the function
1034parameters and the code for the simplest case.
1035
1036.. code-block:: c++
1037
1038 bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1039 MachineBasicBlock *&TBB,
1040 MachineBasicBlock *&FBB,
1041 std::vector<MachineOperand> &Cond) const
1042 {
1043 MachineBasicBlock::iterator I = MBB.end();
1044 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1045 return false;
1046
1047If a block ends with a single unconditional branch instruction, then
1048``AnalyzeBranch`` (shown below) should return the destination of that branch in
1049the ``TBB`` parameter.
1050
1051.. code-block:: c++
1052
1053 if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1054 TBB = LastInst->getOperand(0).getMBB();
1055 return false;
1056 }
1057
1058If a block ends with two unconditional branches, then the second branch is
1059never reached. In that situation, as shown below, remove the last branch
1060instruction and return the penultimate branch in the ``TBB`` parameter.
1061
1062.. code-block:: c++
1063
1064 if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1065 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1066 TBB = SecondLastInst->getOperand(0).getMBB();
1067 I = LastInst;
1068 I->eraseFromParent();
1069 return false;
1070 }
1071
1072A block may end with a single conditional branch instruction that falls through
1073to successor block if the condition evaluates to false. In that case,
1074``AnalyzeBranch`` (shown below) should return the destination of that
1075conditional branch in the ``TBB`` parameter and a list of operands in the
1076``Cond`` parameter to evaluate the condition.
1077
1078.. code-block:: c++
1079
1080 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1081 // Block ends with fall-through condbranch.
1082 TBB = LastInst->getOperand(0).getMBB();
1083 Cond.push_back(LastInst->getOperand(1));
1084 Cond.push_back(LastInst->getOperand(2));
1085 return false;
1086 }
1087
1088If a block ends with both a conditional branch and an ensuing unconditional
1089branch, then ``AnalyzeBranch`` (shown below) should return the conditional
1090branch destination (assuming it corresponds to a conditional evaluation of
1091"``true``") in the ``TBB`` parameter and the unconditional branch destination
1092in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A
1093list of operands to evaluate the condition should be returned in the ``Cond``
1094parameter.
1095
1096.. code-block:: c++
1097
1098 unsigned SecondLastOpc = SecondLastInst->getOpcode();
1099
1100 if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1101 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1102 TBB = SecondLastInst->getOperand(0).getMBB();
1103 Cond.push_back(SecondLastInst->getOperand(1));
1104 Cond.push_back(SecondLastInst->getOperand(2));
1105 FBB = LastInst->getOperand(0).getMBB();
1106 return false;
1107 }
1108
1109For the last two cases (ending with a single conditional branch or ending with
1110one conditional and one unconditional branch), the operands returned in the
1111``Cond`` parameter can be passed to methods of other instructions to create new
1112branches or perform other operations. An implementation of ``AnalyzeBranch``
1113requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
1114subsequent operations.
1115
1116``AnalyzeBranch`` should return false indicating success in most circumstances.
1117``AnalyzeBranch`` should only return true when the method is stumped about what
1118to do, for example, if a block has three terminating branches.
1119``AnalyzeBranch`` may return true if it encounters a terminator it cannot
1120handle, such as an indirect branch.
1121
1122.. _instruction-selector:
1123
1124Instruction Selector
1125====================
1126
1127LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1128the ``SelectionDAG`` ideally represent native target instructions. During code
1129generation, instruction selection passes are performed to convert non-native
1130DAG instructions into native target-specific instructions. The pass described
1131in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1132instruction selection. Optionally, a pass may be defined (in
1133``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1134instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1135operations and data types not supported natively (legalizes) in a
1136``SelectionDAG``.
1137
1138TableGen generates code for instruction selection using the following target
1139description input files:
1140
1141* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1142 target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1143 included in ``XXXISelDAGToDAG.cpp``.
1144
1145* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1146 for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1147 which is included in ``XXXISelLowering.cpp``.
1148
1149The implementation of an instruction selection pass must include a header that
1150declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In
1151``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1152selection pass into the queue of passes to run.
1153
1154The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1155contents of DAGs. To display the ``SelectionDAG`` before or after specific
1156processing phases, use the command line options for ``llc``, described at
1157:ref:`SelectionDAG-Process`.
1158
1159To describe instruction selector behavior, you should add patterns for lowering
1160LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1161definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``,
1162this entry defines a register store operation, and the last parameter describes
1163a pattern with the store DAG operator.
1164
1165.. code-block:: llvm
1166
1167 def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +00001168 "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +00001169
1170``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1171
1172.. code-block:: llvm
1173
1174 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1175
1176The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1177defined in an implementation of the Instructor Selector (such as
1178``SparcISelDAGToDAG.cpp``).
1179
1180In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1181below:
1182
1183.. code-block:: llvm
1184
1185 def store : PatFrag<(ops node:$val, node:$ptr),
1186 (st node:$val, node:$ptr), [{
1187 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1188 return !ST->isTruncatingStore() &&
1189 ST->getAddressingMode() == ISD::UNINDEXED;
1190 return false;
1191 }]>;
1192
1193``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1194``SelectCode`` method that is used to call the appropriate processing method
1195for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1196for the ``ISD::STORE`` opcode.
1197
1198.. code-block:: c++
1199
1200 SDNode *SelectCode(SDValue N) {
1201 ...
1202 MVT::ValueType NVT = N.getNode()->getValueType(0);
1203 switch (N.getOpcode()) {
1204 case ISD::STORE: {
1205 switch (NVT) {
1206 default:
1207 return Select_ISD_STORE(N);
1208 break;
1209 }
1210 break;
1211 }
1212 ...
1213
1214The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1215code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method
1216is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1217instruction.
1218
1219.. code-block:: c++
1220
1221 SDNode *Select_ISD_STORE(const SDValue &N) {
1222 SDValue Chain = N.getOperand(0);
1223 if (Predicate_store(N.getNode())) {
1224 SDValue N1 = N.getOperand(1);
1225 SDValue N2 = N.getOperand(2);
1226 SDValue CPTmp0;
1227 SDValue CPTmp1;
1228
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +00001229 // Pattern: (st:void i32:i32:$src,
Dmitri Gribenko91cb6942012-12-01 12:13:48 +00001230 // ADDRrr:i32:$addr)<<P:Predicate_store>>
1231 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1232 // Pattern complexity = 13 cost = 1 size = 0
1233 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1234 N1.getNode()->getValueType(0) == MVT::i32 &&
1235 N2.getNode()->getValueType(0) == MVT::i32) {
1236 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1237 }
1238 ...
1239
1240The SelectionDAG Legalize Phase
1241-------------------------------
1242
1243The Legalize phase converts a DAG to use types and operations that are natively
1244supported by the target. For natively unsupported types and operations, you
1245need to add code to the target-specific ``XXXTargetLowering`` implementation to
1246convert unsupported types and operations to supported ones.
1247
1248In the constructor for the ``XXXTargetLowering`` class, first use the
1249``addRegisterClass`` method to specify which types are supported and which
1250register classes are associated with them. The code for the register classes
1251are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1252``XXXGenRegisterInfo.h.inc``. For example, the implementation of the
1253constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1254starts with the following code:
1255
1256.. code-block:: c++
1257
1258 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1259 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1260 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1261
1262You should examine the node types in the ``ISD`` namespace
1263(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1264the target natively supports. For operations that do **not** have native
1265support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1266so the instruction selection process knows what to do. The ``TargetLowering``
1267class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1268
1269* ``setOperationAction`` --- General operation.
1270* ``setLoadExtAction`` --- Load with extension.
1271* ``setTruncStoreAction`` --- Truncating store.
1272* ``setIndexedLoadAction`` --- Indexed load.
1273* ``setIndexedStoreAction`` --- Indexed store.
1274* ``setConvertAction`` --- Type conversion.
1275* ``setCondCodeAction`` --- Support for a given condition code.
1276
1277Note: on older releases, ``setLoadXAction`` is used instead of
1278``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not
1279be supported. Examine your release to see what methods are specifically
1280supported.
1281
1282These callbacks are used to determine that an operation does or does not work
1283with a specified type (or types). And in all cases, the third parameter is a
1284``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1285``Legal``. ``SparcISelLowering.cpp`` contains examples of all four
1286``LegalAction`` values.
1287
1288Promote
1289^^^^^^^
1290
1291For an operation without native support for a given type, the specified type
1292may be promoted to a larger type that is supported. For example, SPARC does
1293not support a sign-extending load for Boolean values (``i1`` type), so in
1294``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1295``i1`` type values to a large type before loading.
1296
1297.. code-block:: c++
1298
1299 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1300
1301Expand
1302^^^^^^
1303
1304For a type without native support, a value may need to be broken down further,
1305rather than promoted. For an operation without native support, a combination
1306of other operations may be used to similar effect. In SPARC, the
1307floating-point sine and cosine trig operations are supported by expansion to
1308other operations, as indicated by the third parameter, ``Expand``, to
1309``setOperationAction``:
1310
1311.. code-block:: c++
1312
1313 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1314 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1315
1316Custom
1317^^^^^^
1318
1319For some operations, simple type promotion or operation expansion may be
1320insufficient. In some cases, a special intrinsic function must be implemented.
1321
1322For example, a constant value may require special treatment, or an operation
1323may require spilling and restoring registers in the stack and working with
1324register allocators.
1325
1326As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1327from a floating point value to a signed integer, first the
1328``setOperationAction`` should be called with ``Custom`` as the third parameter:
1329
1330.. code-block:: c++
1331
1332 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1333
1334In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1335statement should be added to indicate what function to call. In the following
1336code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1337
1338.. code-block:: c++
1339
1340 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1341 switch (Op.getOpcode()) {
1342 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1343 ...
1344 }
1345 }
1346
1347Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1348convert the floating-point value to an integer.
1349
1350.. code-block:: c++
1351
1352 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1353 assert(Op.getValueType() == MVT::i32);
1354 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1355 return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1356 }
1357
1358Legal
1359^^^^^
1360
1361The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1362**is** natively supported. ``Legal`` represents the default condition, so it
1363is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1364operation to count the bits set in an integer) is natively supported only for
1365SPARC v9. The following code enables the ``Expand`` conversion technique for
1366non-v9 SPARC implementations.
1367
1368.. code-block:: c++
1369
1370 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1371 ...
1372 if (TM.getSubtarget<SparcSubtarget>().isV9())
1373 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1374
1375Calling Conventions
1376-------------------
1377
1378To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1379interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1380``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor
1381file ``XXXGenCallingConv.td`` and generate the header file
1382``XXXGenCallingConv.inc``, which is typically included in
1383``XXXISelLowering.cpp``. You can use the interfaces in
1384``TargetCallingConv.td`` to specify:
1385
1386* The order of parameter allocation.
1387
1388* Where parameters and return values are placed (that is, on the stack or in
1389 registers).
1390
1391* Which registers may be used.
1392
1393* Whether the caller or callee unwinds the stack.
1394
1395The following example demonstrates the use of the ``CCIfType`` and
1396``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is,
1397if the current argument is of type ``f32`` or ``f64``), then the action is
1398performed. In this case, the ``CCAssignToReg`` action assigns the argument
1399value to the first available register: either ``R0`` or ``R1``.
1400
1401.. code-block:: llvm
1402
1403 CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1404
1405``SparcCallingConv.td`` contains definitions for a target-specific return-value
1406calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1407(``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates
1408which registers are used for specified scalar return types. A single-precision
1409float is returned to register ``F0``, and a double-precision float goes to
1410register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``.
1411
1412.. code-block:: llvm
1413
1414 def RetCC_Sparc32 : CallingConv<[
1415 CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1416 CCIfType<[f32], CCAssignToReg<[F0]>>,
1417 CCIfType<[f64], CCAssignToReg<[D0]>>
1418 ]>;
1419
1420The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1421``CCAssignToStack``, which assigns the value to a stack slot with the specified
1422size and alignment. In the example below, the first parameter, 4, indicates
1423the size of the slot, and the second parameter, also 4, indicates the stack
1424alignment along 4-byte units. (Special cases: if size is zero, then the ABI
1425size is used; if alignment is zero, then the ABI alignment is used.)
1426
1427.. code-block:: llvm
1428
1429 def CC_Sparc32 : CallingConv<[
1430 // All arguments get passed in integer registers if there is space.
1431 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1432 CCAssignToStack<4, 4>
1433 ]>;
1434
1435``CCDelegateTo`` is another commonly used interface, which tries to find a
1436specified sub-calling convention, and, if a match is found, it is invoked. In
1437the following example (in ``X86CallingConv.td``), the definition of
1438``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is
1439assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1440invoked.
1441
1442.. code-block:: llvm
1443
1444 def RetCC_X86_32_C : CallingConv<[
1445 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1446 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1447 CCDelegateTo<RetCC_X86Common>
1448 ]>;
1449
1450``CCIfCC`` is an interface that attempts to match the given name to the current
1451calling convention. If the name identifies the current calling convention,
1452then a specified action is invoked. In the following example (in
1453``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1454``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in
1455use, then ``RetCC_X86_32_SSE`` is invoked.
1456
1457.. code-block:: llvm
1458
1459 def RetCC_X86_32 : CallingConv<[
1460 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1461 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1462 CCDelegateTo<RetCC_X86_32_C>
1463 ]>;
1464
1465Other calling convention interfaces include:
1466
1467* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1468
1469* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1470 attribute, then apply the action.
1471
1472* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1473 attribute, then apply the action.
1474
1475* ``CCIfNotVarArg <action>`` --- If the current function does not take a
1476 variable number of arguments, apply the action.
1477
1478* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1479 ``CCAssignToReg``, but with a shadow list of registers.
1480
1481* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1482 minimum specified size and alignment.
1483
1484* ``CCPromoteToType <type>`` --- Promote the current value to the specified
1485 type.
1486
1487* ``CallingConv <[actions]>`` --- Define each calling convention that is
1488 supported.
1489
1490Assembly Printer
1491================
1492
1493During the code emission stage, the code generator may utilize an LLVM pass to
1494produce assembly output. To do this, you want to implement the code for a
1495printer that converts LLVM IR to a GAS-format assembly language for your target
1496machine, using the following steps:
1497
1498* Define all the assembly strings for your target, adding them to the
1499 instructions defined in the ``XXXInstrInfo.td`` file. (See
1500 :ref:`instruction-set`.) TableGen will produce an output file
1501 (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1502 method for the ``XXXAsmPrinter`` class.
1503
1504* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1505 the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1506
1507* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1508 ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1509
1510* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1511 performs the LLVM-to-assembly conversion.
1512
1513The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1514``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly,
1515``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1516replacement values that override the default values in ``TargetAsmInfo.cpp``.
1517For example in ``SparcTargetAsmInfo.cpp``:
1518
1519.. code-block:: c++
1520
1521 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1522 Data16bitsDirective = "\t.half\t";
1523 Data32bitsDirective = "\t.word\t";
1524 Data64bitsDirective = 0; // .xword is only supported by V9.
1525 ZeroDirective = "\t.skip\t";
1526 CommentString = "!";
1527 ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1528 }
1529
1530The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1531where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1532``ExpandInlineAsm``.
1533
1534A target-specific implementation of ``AsmPrinter`` is written in
1535``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1536the LLVM to printable assembly. The implementation must include the following
1537headers that have declarations for the ``AsmPrinter`` and
1538``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of
1539``FunctionPass``.
1540
1541.. code-block:: c++
1542
1543 #include "llvm/CodeGen/AsmPrinter.h"
1544 #include "llvm/CodeGen/MachineFunctionPass.h"
1545
1546As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1547up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is
1548instantiated to process variable names.
1549
1550In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1551``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In
1552``MachineFunctionPass``, the ``runOnFunction`` method invokes
1553``runOnMachineFunction``. Target-specific implementations of
1554``runOnMachineFunction`` differ, but generally do the following to process each
1555machine function:
1556
1557* Call ``SetupMachineFunction`` to perform initialization.
1558
1559* Call ``EmitConstantPool`` to print out (to the output stream) constants which
1560 have been spilled to memory.
1561
1562* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1563 function.
1564
1565* Print out the label for the current function.
1566
1567* Print out the code for the function, including basic block labels and the
1568 assembly for the instruction (using ``printInstruction``)
1569
1570The ``XXXAsmPrinter`` implementation must also include the code generated by
1571TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in
1572``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1573method that may call these methods:
1574
1575* ``printOperand``
1576* ``printMemOperand``
1577* ``printCCOperand`` (for conditional statements)
1578* ``printDataDirective``
1579* ``printDeclare``
1580* ``printImplicitDef``
1581* ``printInlineAsm``
1582
1583The implementations of ``printDeclare``, ``printImplicitDef``,
1584``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1585adequate for printing assembly and do not need to be overridden.
1586
1587The ``printOperand`` method is implemented with a long ``switch``/``case``
1588statement for the type of operand: register, immediate, basic block, external
1589symbol, global address, constant pool index, or jump table index. For an
1590instruction with a memory address operand, the ``printMemOperand`` method
1591should be implemented to generate the proper output. Similarly,
1592``printCCOperand`` should be used to print a conditional operand.
1593
1594``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1595called to shut down the assembly printer. During ``doFinalization``, global
1596variables and constants are printed to output.
1597
1598Subtarget Support
1599=================
1600
1601Subtarget support is used to inform the code generation process of instruction
1602set variations for a given chip set. For example, the LLVM SPARC
1603implementation provided covers three major versions of the SPARC microprocessor
1604architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
160564-bit architecture), and the UltraSPARC architecture. V8 has 16
1606double-precision floating-point registers that are also usable as either 32
1607single-precision or 8 quad-precision registers. V8 is also purely big-endian.
1608V9 has 32 double-precision floating-point registers that are also usable as 16
1609quad-precision registers, but cannot be used as single-precision registers.
1610The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1611extensions.
1612
1613If subtarget support is needed, you should implement a target-specific
1614``XXXSubtarget`` class for your architecture. This class should process the
1615command-line options ``-mcpu=`` and ``-mattr=``.
1616
1617TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1618generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the
1619``SubtargetFeature`` interface is defined. The first 4 string parameters of
1620the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1621feature, the value of the attribute, and a description of the feature. (The
1622fifth parameter is a list of features whose presence is implied, and its
1623default value is an empty array.)
1624
1625.. code-block:: llvm
1626
1627 class SubtargetFeature<string n, string a, string v, string d,
1628 list<SubtargetFeature> i = []> {
1629 string Name = n;
1630 string Attribute = a;
1631 string Value = v;
1632 string Desc = d;
1633 list<SubtargetFeature> Implies = i;
1634 }
1635
1636In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1637following features.
1638
1639.. code-block:: llvm
1640
1641 def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1642 "Enable SPARC-V9 instructions">;
1643 def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1644 "V8DeprecatedInsts", "true",
1645 "Enable deprecated V8 instructions in V9 mode">;
1646 def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1647 "Enable UltraSPARC Visual Instruction Set extensions">;
1648
1649Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1650define particular SPARC processor subtypes that may have the previously
1651described features.
1652
1653.. code-block:: llvm
1654
1655 class Proc<string Name, list<SubtargetFeature> Features>
1656 : Processor<Name, NoItineraries, Features>;
1657
1658 def : Proc<"generic", []>;
1659 def : Proc<"v8", []>;
1660 def : Proc<"supersparc", []>;
1661 def : Proc<"sparclite", []>;
1662 def : Proc<"f934", []>;
1663 def : Proc<"hypersparc", []>;
1664 def : Proc<"sparclite86x", []>;
1665 def : Proc<"sparclet", []>;
1666 def : Proc<"tsc701", []>;
1667 def : Proc<"v9", [FeatureV9]>;
1668 def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>;
1669 def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>;
1670 def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1671
1672From ``Target.td`` and ``Sparc.td`` files, the resulting
1673``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1674arrays of constants to represent the CPU features and CPU subtypes, and the
1675``ParseSubtargetFeatures`` method that parses the features string that sets
1676specified subtarget options. The generated ``SparcGenSubtarget.inc`` file
1677should be included in the ``SparcSubtarget.cpp``. The target-specific
1678implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1679
1680.. code-block:: c++
1681
1682 XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1683 // Set the default features
1684 // Determine default and user specified characteristics of the CPU
1685 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1686 // Perform any additional operations
1687 }
1688
1689JIT Support
1690===========
1691
1692The implementation of a target machine optionally includes a Just-In-Time (JIT)
1693code generator that emits machine code and auxiliary structures as binary
1694output that can be written directly to memory. To do this, implement JIT code
1695generation by performing the following steps:
1696
1697* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1698 that transforms target-machine instructions into relocatable machine
1699 code.
1700
1701* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1702 target-specific code-generation activities, such as emitting machine code and
1703 stubs.
1704
1705* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1706 through its ``getJITInfo`` method.
1707
1708There are several different approaches to writing the JIT support code. For
1709instance, TableGen and target descriptor files may be used for creating a JIT
1710code generator, but are not mandatory. For the Alpha and PowerPC target
1711machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1712contains the binary coding of machine instructions and the
1713``getBinaryCodeForInstr`` method to access those codes. Other JIT
1714implementations do not.
1715
1716Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1717``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1718``MachineCodeEmitter`` class containing code for several callback functions
1719that write data (in bytes, words, strings, etc.) to the output stream.
1720
1721Machine Code Emitter
1722--------------------
1723
1724In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1725implemented as a function pass (subclass of ``MachineFunctionPass``). The
1726target-specific implementation of ``runOnMachineFunction`` (invoked by
1727``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1728``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1729emit binary code. ``emitInstruction`` is largely implemented with case
1730statements on the instruction types defined in ``XXXInstrInfo.h``. For
1731example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1732around the following ``switch``/``case`` statements:
1733
1734.. code-block:: c++
1735
1736 switch (Desc->TSFlags & X86::FormMask) {
1737 case X86II::Pseudo: // for not yet implemented instructions
1738 ... // or pseudo-instructions
1739 break;
1740 case X86II::RawFrm: // for instructions with a fixed opcode value
1741 ...
1742 break;
1743 case X86II::AddRegFrm: // for instructions that have one register operand
1744 ... // added to their opcode
1745 break;
1746 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1747 ... // to specify a destination (register)
1748 break;
1749 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1750 ... // to specify a destination (memory)
1751 break;
1752 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1753 ... // to specify a source (register)
1754 break;
1755 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1756 ... // to specify a source (memory)
1757 break;
1758 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
1759 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
1760 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
1761 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
1762 ...
1763 break;
1764 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
1765 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
1766 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
1767 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
1768 ...
1769 break;
1770 case X86II::MRMInitReg: // for instructions whose source and
1771 ... // destination are the same register
1772 break;
1773 }
1774
1775The implementations of these case statements often first emit the opcode and
1776then get the operand(s). Then depending upon the operand, helper methods may
1777be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``,
1778for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1779the opcode added to the register operand. Then an object representing the
1780machine operand, ``MO1``, is extracted. The helper methods such as
1781``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1782``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1783(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1784``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1785and ``emitJumpTableAddress`` that emit the data into the output stream.)
1786
1787.. code-block:: c++
1788
1789 case X86II::AddRegFrm:
1790 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1791
1792 if (CurOp != NumOps) {
1793 const MachineOperand &MO1 = MI.getOperand(CurOp++);
1794 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1795 if (MO1.isImmediate())
1796 emitConstant(MO1.getImm(), Size);
1797 else {
1798 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1799 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1800 if (Opcode == X86::MOV64ri)
1801 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
1802 if (MO1.isGlobalAddress()) {
1803 bool NeedStub = isa<Function>(MO1.getGlobal());
1804 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1805 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1806 NeedStub, isLazy);
1807 } else if (MO1.isExternalSymbol())
1808 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1809 else if (MO1.isConstantPoolIndex())
1810 emitConstPoolAddress(MO1.getIndex(), rt);
1811 else if (MO1.isJumpTableIndex())
1812 emitJumpTableAddress(MO1.getIndex(), rt);
1813 }
1814 }
1815 break;
1816
1817In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1818is a ``RelocationType`` enum that may be used to relocate addresses (for
1819example, a global address with a PIC base offset). The ``RelocationType`` enum
1820for that target is defined in the short target-specific ``XXXRelocations.h``
1821file. The ``RelocationType`` is used by the ``relocate`` method defined in
1822``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1823
1824For example, ``X86Relocations.h`` specifies the following relocation types for
1825the X86 addresses. In all four cases, the relocated value is added to the
1826value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1827there is an additional initial adjustment.
1828
1829.. code-block:: c++
1830
1831 enum RelocationType {
1832 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
1833 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
1834 reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1835 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1836 };
1837
1838Target JIT Info
1839---------------
1840
1841``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1842code-generation activities, such as emitting machine code and stubs. At
1843minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1844
1845* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1846 function that is used for compilation.
1847
1848* ``emitFunctionStub`` --- Returns a native function with a specified address
1849 for a callback function.
1850
1851* ``relocate`` --- Changes the addresses of referenced globals, based on
1852 relocation types.
1853
1854* Callback function that are wrappers to a function stub that is used when the
1855 real target is not initially known.
1856
1857``getLazyResolverFunction`` is generally trivial to implement. It makes the
1858incoming parameter as the global ``JITCompilerFunction`` and returns the
1859callback function that will be used a function wrapper. For the Alpha target
1860(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1861simply:
1862
1863.. code-block:: c++
1864
1865 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1866 JITCompilerFn F) {
1867 JITCompilerFunction = F;
1868 return AlphaCompilationCallback;
1869 }
1870
1871For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1872more complicated, because it returns a different callback function for
1873processors with SSE instructions and XMM registers.
1874
1875The callback function initially saves and later restores the callee register
1876values, incoming arguments, and frame and return address. The callback
1877function needs low-level access to the registers or stack, so it is typically
1878implemented with assembler.
1879