Duraid Madina | a8c7682 | 2007-06-22 08:27:12 +0000 | [diff] [blame^] | 1 | //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This register allocator is derived from RegAllocLocal.cpp. Like it, this |
| 11 | // allocator works on one basic block at a time, oblivious to others. |
| 12 | // However, the algorithm used here is suited for long blocks of |
| 13 | // instructions - registers are spilled by greedily choosing those holding |
| 14 | // values that will not be needed for the longest amount of time. This works |
| 15 | // particularly well for blocks with 10 or more times as many instructions |
| 16 | // as machine registers, but can be used for general code. |
| 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | // |
| 20 | // TODO: - automagically invoke linearscan for (groups of) small BBs? |
| 21 | // - break ties when picking regs? (probably not worth it in a |
| 22 | // JIT context) |
| 23 | // |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #define DEBUG_TYPE "regalloc" |
| 27 | #include "llvm/BasicBlock.h" |
| 28 | #include "llvm/CodeGen/Passes.h" |
| 29 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 30 | #include "llvm/CodeGen/MachineInstr.h" |
| 31 | #include "llvm/CodeGen/SSARegMap.h" |
| 32 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 33 | #include "llvm/CodeGen/LiveVariables.h" |
| 34 | #include "llvm/CodeGen/RegAllocRegistry.h" |
| 35 | #include "llvm/Target/TargetInstrInfo.h" |
| 36 | #include "llvm/Target/TargetMachine.h" |
| 37 | #include "llvm/Support/CommandLine.h" |
| 38 | #include "llvm/Support/Debug.h" |
| 39 | #include "llvm/Support/Compiler.h" |
| 40 | #include "llvm/ADT/IndexedMap.h" |
| 41 | #include "llvm/ADT/DenseMap.h" |
| 42 | #include "llvm/ADT/SmallVector.h" |
| 43 | #include "llvm/ADT/Statistic.h" |
| 44 | #include <algorithm> |
| 45 | using namespace llvm; |
| 46 | |
| 47 | STATISTIC(NumStores, "Number of stores added"); |
| 48 | STATISTIC(NumLoads , "Number of loads added"); |
| 49 | STATISTIC(NumFolded, "Number of loads/stores folded into instructions"); |
| 50 | |
| 51 | namespace { |
| 52 | static RegisterRegAlloc |
| 53 | bigBlockRegAlloc("bigblock", " Big-block register allocator", |
| 54 | createBigBlockRegisterAllocator); |
| 55 | |
| 56 | struct VRegKeyInfo { |
| 57 | static inline unsigned getEmptyKey() { return -1U; } |
| 58 | static inline unsigned getTombstoneKey() { return -2U; } |
| 59 | static unsigned getHashValue(const unsigned &Key) { return Key; } |
| 60 | }; |
| 61 | |
| 62 | class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass { |
| 63 | public: |
| 64 | static char ID; |
| 65 | RABigBlock() : MachineFunctionPass((intptr_t)&ID) {} |
| 66 | private: |
| 67 | const TargetMachine *TM; |
| 68 | MachineFunction *MF; |
| 69 | const MRegisterInfo *RegInfo; |
| 70 | LiveVariables *LV; |
| 71 | |
| 72 | // InsnTimes - maps machine instructions to their "execute times" |
| 73 | std::map<MachineInstr *, unsigned> InsnTimes; |
| 74 | |
| 75 | // VRegReadTable - maps VRegs in a BB to the set of times they are read |
| 76 | DenseMap<unsigned, SmallVector<unsigned, 2>*, VRegKeyInfo> VRegReadTable; |
| 77 | |
| 78 | // StackSlotForVirtReg - Maps virtual regs to the frame index where these |
| 79 | // values are spilled. |
| 80 | std::map<unsigned, int> StackSlotForVirtReg; |
| 81 | |
| 82 | // Virt2PhysRegMap - This map contains entries for each virtual register |
| 83 | // that is currently available in a physical register. |
| 84 | IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; |
| 85 | |
| 86 | unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { |
| 87 | return Virt2PhysRegMap[VirtReg]; |
| 88 | } |
| 89 | |
| 90 | // PhysRegsUsed - This array is effectively a map, containing entries for |
| 91 | // each physical register that currently has a value (ie, it is in |
| 92 | // Virt2PhysRegMap). The value mapped to is the virtual register |
| 93 | // corresponding to the physical register (the inverse of the |
| 94 | // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned |
| 95 | // because it is used by a future instruction, and to -2 if it is not |
| 96 | // allocatable. If the entry for a physical register is -1, then the |
| 97 | // physical register is "not in the map". |
| 98 | // |
| 99 | std::vector<int> PhysRegsUsed; |
| 100 | |
| 101 | // PhysRegsUseOrder - This contains a list of the physical registers that |
| 102 | // currently have a virtual register value in them. This list provides an |
| 103 | // ordering of registers, imposing a reallocation order. This list is only |
| 104 | // used if all registers are allocated and we have to spill one, in which |
| 105 | // case we spill the least recently used register. Entries at the front of |
| 106 | // the list are the least recently used registers, entries at the back are |
| 107 | // the most recently used. |
| 108 | // |
| 109 | std::vector<unsigned> PhysRegsUseOrder; |
| 110 | |
| 111 | // VirtRegModified - This bitset contains information about which virtual |
| 112 | // registers need to be spilled back to memory when their registers are |
| 113 | // scavenged. If a virtual register has simply been rematerialized, there |
| 114 | // is no reason to spill it to memory when we need the register back. |
| 115 | // |
| 116 | std::vector<bool> VirtRegModified; |
| 117 | |
| 118 | void markVirtRegModified(unsigned Reg, bool Val = true) { |
| 119 | assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); |
| 120 | Reg -= MRegisterInfo::FirstVirtualRegister; |
| 121 | if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1); |
| 122 | VirtRegModified[Reg] = Val; |
| 123 | } |
| 124 | |
| 125 | bool isVirtRegModified(unsigned Reg) const { |
| 126 | assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); |
| 127 | assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size() |
| 128 | && "Illegal virtual register!"); |
| 129 | return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister]; |
| 130 | } |
| 131 | |
| 132 | void MarkPhysRegRecentlyUsed(unsigned Reg) { |
| 133 | if (PhysRegsUseOrder.empty() || |
| 134 | PhysRegsUseOrder.back() == Reg) return; // Already most recently used |
| 135 | |
| 136 | for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i) |
| 137 | if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) { |
| 138 | unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle |
| 139 | PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); |
| 140 | // Add it to the end of the list |
| 141 | PhysRegsUseOrder.push_back(RegMatch); |
| 142 | if (RegMatch == Reg) |
| 143 | return; // Found an exact match, exit early |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | public: |
| 148 | virtual const char *getPassName() const { |
| 149 | return "BigBlock Register Allocator"; |
| 150 | } |
| 151 | |
| 152 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 153 | AU.addRequired<LiveVariables>(); |
| 154 | AU.addRequiredID(PHIEliminationID); |
| 155 | AU.addRequiredID(TwoAddressInstructionPassID); |
| 156 | MachineFunctionPass::getAnalysisUsage(AU); |
| 157 | } |
| 158 | |
| 159 | private: |
| 160 | /// runOnMachineFunction - Register allocate the whole function |
| 161 | bool runOnMachineFunction(MachineFunction &Fn); |
| 162 | |
| 163 | /// AllocateBasicBlock - Register allocate the specified basic block. |
| 164 | void AllocateBasicBlock(MachineBasicBlock &MBB); |
| 165 | |
| 166 | /// FillVRegReadTable - Fill out the table of vreg read times given a BB |
| 167 | void FillVRegReadTable(MachineBasicBlock &MBB); |
| 168 | |
| 169 | /// areRegsEqual - This method returns true if the specified registers are |
| 170 | /// related to each other. To do this, it checks to see if they are equal |
| 171 | /// or if the first register is in the alias set of the second register. |
| 172 | /// |
| 173 | bool areRegsEqual(unsigned R1, unsigned R2) const { |
| 174 | if (R1 == R2) return true; |
| 175 | for (const unsigned *AliasSet = RegInfo->getAliasSet(R2); |
| 176 | *AliasSet; ++AliasSet) { |
| 177 | if (*AliasSet == R1) return true; |
| 178 | } |
| 179 | return false; |
| 180 | } |
| 181 | |
| 182 | /// getStackSpaceFor - This returns the frame index of the specified virtual |
| 183 | /// register on the stack, allocating space if necessary. |
| 184 | int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); |
| 185 | |
| 186 | /// removePhysReg - This method marks the specified physical register as no |
| 187 | /// longer being in use. |
| 188 | /// |
| 189 | void removePhysReg(unsigned PhysReg); |
| 190 | |
| 191 | /// spillVirtReg - This method spills the value specified by PhysReg into |
| 192 | /// the virtual register slot specified by VirtReg. It then updates the RA |
| 193 | /// data structures to indicate the fact that PhysReg is now available. |
| 194 | /// |
| 195 | void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| 196 | unsigned VirtReg, unsigned PhysReg); |
| 197 | |
| 198 | /// spillPhysReg - This method spills the specified physical register into |
| 199 | /// the virtual register slot associated with it. If OnlyVirtRegs is set to |
| 200 | /// true, then the request is ignored if the physical register does not |
| 201 | /// contain a virtual register. |
| 202 | /// |
| 203 | void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, |
| 204 | unsigned PhysReg, bool OnlyVirtRegs = false); |
| 205 | |
| 206 | /// assignVirtToPhysReg - This method updates local state so that we know |
| 207 | /// that PhysReg is the proper container for VirtReg now. The physical |
| 208 | /// register must not be used for anything else when this is called. |
| 209 | /// |
| 210 | void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); |
| 211 | |
| 212 | /// liberatePhysReg - Make sure the specified physical register is available |
| 213 | /// for use. If there is currently a value in it, it is either moved out of |
| 214 | /// the way or spilled to memory. |
| 215 | /// |
| 216 | void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, |
| 217 | unsigned PhysReg); |
| 218 | |
| 219 | /// isPhysRegAvailable - Return true if the specified physical register is |
| 220 | /// free and available for use. This also includes checking to see if |
| 221 | /// aliased registers are all free... |
| 222 | /// |
| 223 | bool isPhysRegAvailable(unsigned PhysReg) const; |
| 224 | |
| 225 | /// getFreeReg - Look to see if there is a free register available in the |
| 226 | /// specified register class. If not, return 0. |
| 227 | /// |
| 228 | unsigned getFreeReg(const TargetRegisterClass *RC); |
| 229 | |
| 230 | /// chooseReg - Pick a physical register to hold the specified |
| 231 | /// virtual register by choosing the one which will be read furthest |
| 232 | /// in the future. |
| 233 | /// |
| 234 | unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| 235 | unsigned VirtReg); |
| 236 | |
| 237 | /// reloadVirtReg - This method transforms the specified specified virtual |
| 238 | /// register use to refer to a physical register. This method may do this |
| 239 | /// in one of several ways: if the register is available in a physical |
| 240 | /// register already, it uses that physical register. If the value is not |
| 241 | /// in a physical register, and if there are physical registers available, |
| 242 | /// it loads it into a register. If register pressure is high, and it is |
| 243 | /// possible, it tries to fold the load of the virtual register into the |
| 244 | /// instruction itself. It avoids doing this if register pressure is low to |
| 245 | /// improve the chance that subsequent instructions can use the reloaded |
| 246 | /// value. This method returns the modified instruction. |
| 247 | /// |
| 248 | MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| 249 | unsigned OpNum); |
| 250 | |
| 251 | }; |
| 252 | char RABigBlock::ID = 0; |
| 253 | } |
| 254 | |
| 255 | /// getStackSpaceFor - This allocates space for the specified virtual register |
| 256 | /// to be held on the stack. |
| 257 | int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { |
| 258 | // Find the location Reg would belong... |
| 259 | std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg); |
| 260 | |
| 261 | if (I != StackSlotForVirtReg.end() && I->first == VirtReg) |
| 262 | return I->second; // Already has space allocated? |
| 263 | |
| 264 | // Allocate a new stack object for this spill location... |
| 265 | int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), |
| 266 | RC->getAlignment()); |
| 267 | |
| 268 | // Assign the slot... |
| 269 | StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx)); |
| 270 | return FrameIdx; |
| 271 | } |
| 272 | |
| 273 | |
| 274 | /// removePhysReg - This method marks the specified physical register as no |
| 275 | /// longer being in use. |
| 276 | /// |
| 277 | void RABigBlock::removePhysReg(unsigned PhysReg) { |
| 278 | PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used |
| 279 | |
| 280 | std::vector<unsigned>::iterator It = |
| 281 | std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); |
| 282 | if (It != PhysRegsUseOrder.end()) |
| 283 | PhysRegsUseOrder.erase(It); |
| 284 | } |
| 285 | |
| 286 | |
| 287 | /// spillVirtReg - This method spills the value specified by PhysReg into the |
| 288 | /// virtual register slot specified by VirtReg. It then updates the RA data |
| 289 | /// structures to indicate the fact that PhysReg is now available. |
| 290 | /// |
| 291 | void RABigBlock::spillVirtReg(MachineBasicBlock &MBB, |
| 292 | MachineBasicBlock::iterator I, |
| 293 | unsigned VirtReg, unsigned PhysReg) { |
| 294 | assert(VirtReg && "Spilling a physical register is illegal!" |
| 295 | " Must not have appropriate kill for the register or use exists beyond" |
| 296 | " the intended one."); |
| 297 | DOUT << " Spilling register " << RegInfo->getName(PhysReg) |
| 298 | << " containing %reg" << VirtReg; |
| 299 | if (!isVirtRegModified(VirtReg)) |
| 300 | DOUT << " which has not been modified, so no store necessary!"; |
| 301 | |
| 302 | // Otherwise, there is a virtual register corresponding to this physical |
| 303 | // register. We only need to spill it into its stack slot if it has been |
| 304 | // modified. |
| 305 | if (isVirtRegModified(VirtReg)) { |
| 306 | const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); |
| 307 | int FrameIndex = getStackSpaceFor(VirtReg, RC); |
| 308 | DOUT << " to stack slot #" << FrameIndex; |
| 309 | RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC); |
| 310 | ++NumStores; // Update statistics |
| 311 | } |
| 312 | |
| 313 | getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available |
| 314 | |
| 315 | DOUT << "\n"; |
| 316 | removePhysReg(PhysReg); |
| 317 | } |
| 318 | |
| 319 | |
| 320 | /// spillPhysReg - This method spills the specified physical register into the |
| 321 | /// virtual register slot associated with it. If OnlyVirtRegs is set to true, |
| 322 | /// then the request is ignored if the physical register does not contain a |
| 323 | /// virtual register. |
| 324 | /// |
| 325 | void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, |
| 326 | unsigned PhysReg, bool OnlyVirtRegs) { |
| 327 | if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used! |
| 328 | assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); |
| 329 | if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) |
| 330 | spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); |
| 331 | } else { |
| 332 | // If the selected register aliases any other registers, we must make |
| 333 | // sure that one of the aliases isn't alive. |
| 334 | for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); |
| 335 | *AliasSet; ++AliasSet) |
| 336 | if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register. |
| 337 | PhysRegsUsed[*AliasSet] != -2) // If allocatable. |
| 338 | if (PhysRegsUsed[*AliasSet] == 0) { |
| 339 | // This must have been a dead def due to something like this: |
| 340 | // %EAX := |
| 341 | // := op %AL |
| 342 | // No more use of %EAX, %AH, etc. |
| 343 | // %EAX isn't dead upon definition, but %AH is. However %AH isn't |
| 344 | // an operand of definition MI so it's not marked as such. |
| 345 | DOUT << " Register " << RegInfo->getName(*AliasSet) |
| 346 | << " [%reg" << *AliasSet |
| 347 | << "] is never used, removing it frame live list\n"; |
| 348 | removePhysReg(*AliasSet); |
| 349 | } else |
| 350 | spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | |
| 355 | /// assignVirtToPhysReg - This method updates local state so that we know |
| 356 | /// that PhysReg is the proper container for VirtReg now. The physical |
| 357 | /// register must not be used for anything else when this is called. |
| 358 | /// |
| 359 | void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { |
| 360 | assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); |
| 361 | // Update information to note the fact that this register was just used, and |
| 362 | // it holds VirtReg. |
| 363 | PhysRegsUsed[PhysReg] = VirtReg; |
| 364 | getVirt2PhysRegMapSlot(VirtReg) = PhysReg; |
| 365 | PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg |
| 366 | } |
| 367 | |
| 368 | |
| 369 | /// isPhysRegAvailable - Return true if the specified physical register is free |
| 370 | /// and available for use. This also includes checking to see if aliased |
| 371 | /// registers are all free... |
| 372 | /// |
| 373 | bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const { |
| 374 | if (PhysRegsUsed[PhysReg] != -1) return false; |
| 375 | |
| 376 | // If the selected register aliases any other allocated registers, it is |
| 377 | // not free! |
| 378 | for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); |
| 379 | *AliasSet; ++AliasSet) |
| 380 | if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use? |
| 381 | return false; // Can't use this reg then. |
| 382 | return true; |
| 383 | } |
| 384 | |
| 385 | |
| 386 | //////// FIX THIS: |
| 387 | /// getFreeReg - Look to see if there is a free register available in the |
| 388 | /// specified register class. If not, return 0. |
| 389 | /// |
| 390 | unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) { |
| 391 | // Get iterators defining the range of registers that are valid to allocate in |
| 392 | // this class, which also specifies the preferred allocation order. |
| 393 | TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); |
| 394 | TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); |
| 395 | |
| 396 | for (; RI != RE; ++RI) |
| 397 | if (isPhysRegAvailable(*RI)) { // Is reg unused? |
| 398 | assert(*RI != 0 && "Cannot use register!"); |
| 399 | return *RI; // Found an unused register! |
| 400 | } |
| 401 | return 0; |
| 402 | } |
| 403 | |
| 404 | |
| 405 | /// liberatePhysReg - Make sure the specified physical register is available for |
| 406 | /// use. If there is currently a value in it, it is either moved out of the way |
| 407 | /// or spilled to memory. |
| 408 | /// |
| 409 | void RABigBlock::liberatePhysReg(MachineBasicBlock &MBB, |
| 410 | MachineBasicBlock::iterator &I, |
| 411 | unsigned PhysReg) { |
| 412 | spillPhysReg(MBB, I, PhysReg); |
| 413 | } |
| 414 | |
| 415 | /// chooseReg - Pick a physical register to hold the specified |
| 416 | /// virtual register by choosing the one whose value will be read |
| 417 | /// furthest in the future. |
| 418 | /// |
| 419 | unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I, |
| 420 | unsigned VirtReg) { |
| 421 | const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); |
| 422 | // First check to see if we have a free register of the requested type... |
| 423 | unsigned PhysReg = getFreeReg(RC); |
| 424 | |
| 425 | // If we didn't find an unused register, find the one which will be |
| 426 | // read at the most distant point in time. |
| 427 | if (PhysReg == 0) { |
| 428 | unsigned delay=0, longest_delay=0; |
| 429 | SmallVector<unsigned, 2> *ReadTimes; |
| 430 | |
| 431 | unsigned curTime = InsnTimes[I]; |
| 432 | |
| 433 | // for all physical regs in the RC, |
| 434 | for(TargetRegisterClass::iterator pReg = RC->begin(); |
| 435 | pReg != RC->end(); ++pReg) { |
| 436 | // how long until they're read? |
| 437 | if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs |
| 438 | ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]]; |
| 439 | SmallVector<unsigned, 2>::iterator pt = |
| 440 | std::lower_bound(ReadTimes->begin(), |
| 441 | ReadTimes->end(), |
| 442 | curTime); |
| 443 | delay = *pt - curTime; |
| 444 | |
| 445 | if(delay > longest_delay) { |
| 446 | longest_delay = delay; |
| 447 | PhysReg = *pReg; |
| 448 | } |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | assert(PhysReg && "couldn't grab a register from the table?"); |
| 453 | // TODO: assert that RC->contains(PhysReg) / handle aliased registers |
| 454 | |
| 455 | // since we needed to look in the table we need to spill this register. |
| 456 | spillPhysReg(MBB, I, PhysReg); |
| 457 | } |
| 458 | |
| 459 | // assign the vreg to our chosen physical register |
| 460 | assignVirtToPhysReg(VirtReg, PhysReg); |
| 461 | return PhysReg; // and return it |
| 462 | } |
| 463 | |
| 464 | |
| 465 | /// reloadVirtReg - This method transforms an instruction with a virtual |
| 466 | /// register use to one that references a physical register. It does this as |
| 467 | /// follows: |
| 468 | /// |
| 469 | /// 1) If the register is already in a physical register, it uses it. |
| 470 | /// 2) Otherwise, if there is a free physical register, it uses that. |
| 471 | /// 3) Otherwise, it calls chooseReg() to get the physical register |
| 472 | /// holding the most distantly needed value, generating a spill in |
| 473 | /// the process. |
| 474 | /// |
| 475 | /// This method returns the modified instruction. |
| 476 | MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| 477 | unsigned OpNum) { |
| 478 | unsigned VirtReg = MI->getOperand(OpNum).getReg(); |
| 479 | |
| 480 | // If the virtual register is already available in a physical register, |
| 481 | // just update the instruction and return. |
| 482 | if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { |
| 483 | MI->getOperand(OpNum).setReg(PR); |
| 484 | return MI; |
| 485 | } |
| 486 | |
| 487 | // Otherwise, if we have free physical registers available to hold the |
| 488 | // value, use them. |
| 489 | const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); |
| 490 | unsigned PhysReg = getFreeReg(RC); |
| 491 | int FrameIndex = getStackSpaceFor(VirtReg, RC); |
| 492 | |
| 493 | if (PhysReg) { // we have a free register, so use it. |
| 494 | assignVirtToPhysReg(VirtReg, PhysReg); |
| 495 | } else { // no free registers available. |
| 496 | // try to fold the spill into the instruction |
| 497 | if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)) { |
| 498 | ++NumFolded; |
| 499 | // Since we changed the address of MI, make sure to update live variables |
| 500 | // to know that the new instruction has the properties of the old one. |
| 501 | LV->instructionChanged(MI, FMI); |
| 502 | return MBB.insert(MBB.erase(MI), FMI); |
| 503 | } |
| 504 | |
| 505 | // determine which of the physical registers we'll kill off, since we |
| 506 | // couldn't fold. |
| 507 | PhysReg = chooseReg(MBB, MI, VirtReg); |
| 508 | } |
| 509 | |
| 510 | // this virtual register is now unmodified (since we just reloaded it) |
| 511 | markVirtRegModified(VirtReg, false); |
| 512 | |
| 513 | DOUT << " Reloading %reg" << VirtReg << " into " |
| 514 | << RegInfo->getName(PhysReg) << "\n"; |
| 515 | |
| 516 | // Add move instruction(s) |
| 517 | RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); |
| 518 | ++NumLoads; // Update statistics |
| 519 | |
| 520 | MF->setPhysRegUsed(PhysReg); |
| 521 | MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register |
| 522 | return MI; |
| 523 | } |
| 524 | |
| 525 | /// Fill out the vreg read timetable. Since ReadTime increases |
| 526 | /// monotonically, the individual readtime sets will be sorted |
| 527 | /// in ascending order. |
| 528 | void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) { |
| 529 | // loop over each instruction |
| 530 | MachineBasicBlock::iterator MII; |
| 531 | unsigned ReadTime; |
| 532 | |
| 533 | for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) { |
| 534 | MachineInstr *MI = MII; |
| 535 | |
| 536 | InsnTimes[MI] = ReadTime; |
| 537 | |
| 538 | for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| 539 | MachineOperand& MO = MI->getOperand(i); |
| 540 | // look for vreg reads.. |
| 541 | if (MO.isRegister() && !MO.isDef() && MO.getReg() && |
| 542 | MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| 543 | // ..and add them to the read table. |
| 544 | if(!VRegReadTable[MO.getReg()]) |
| 545 | VRegReadTable[MO.getReg()] = new SmallVector<unsigned, 2>; |
| 546 | |
| 547 | VRegReadTable[MO.getReg()]->push_back(ReadTime); |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | } |
| 552 | |
| 553 | } |
| 554 | |
| 555 | void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) { |
| 556 | // loop over each instruction |
| 557 | MachineBasicBlock::iterator MII = MBB.begin(); |
| 558 | const TargetInstrInfo &TII = *TM->getInstrInfo(); |
| 559 | |
| 560 | DEBUG(const BasicBlock *LBB = MBB.getBasicBlock(); |
| 561 | if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName()); |
| 562 | |
| 563 | // If this is the first basic block in the machine function, add live-in |
| 564 | // registers as active. |
| 565 | if (&MBB == &*MF->begin()) { |
| 566 | for (MachineFunction::livein_iterator I = MF->livein_begin(), |
| 567 | E = MF->livein_end(); I != E; ++I) { |
| 568 | unsigned Reg = I->first; |
| 569 | MF->setPhysRegUsed(Reg); |
| 570 | PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| 571 | PhysRegsUseOrder.push_back(Reg); |
| 572 | for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| 573 | *AliasSet; ++AliasSet) { |
| 574 | if (PhysRegsUsed[*AliasSet] != -2) { |
| 575 | PhysRegsUseOrder.push_back(*AliasSet); |
| 576 | PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now |
| 577 | MF->setPhysRegUsed(*AliasSet); |
| 578 | } |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | // Otherwise, sequentially allocate each instruction in the MBB. |
| 584 | while (MII != MBB.end()) { |
| 585 | MachineInstr *MI = MII++; |
| 586 | const TargetInstrDescriptor &TID = TII.get(MI->getOpcode()); |
| 587 | DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI; |
| 588 | DOUT << " Regs have values: "; |
| 589 | for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i) |
| 590 | if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) |
| 591 | DOUT << "[" << RegInfo->getName(i) |
| 592 | << ",%reg" << PhysRegsUsed[i] << "] "; |
| 593 | DOUT << "\n"); |
| 594 | |
| 595 | // Loop over the implicit uses, making sure that they are at the head of the |
| 596 | // use order list, so they don't get reallocated. |
| 597 | if (TID.ImplicitUses) { |
| 598 | for (const unsigned *ImplicitUses = TID.ImplicitUses; |
| 599 | *ImplicitUses; ++ImplicitUses) |
| 600 | MarkPhysRegRecentlyUsed(*ImplicitUses); |
| 601 | } |
| 602 | |
| 603 | SmallVector<unsigned, 8> Kills; |
| 604 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 605 | MachineOperand& MO = MI->getOperand(i); |
| 606 | if (MO.isRegister() && MO.isKill()) |
| 607 | Kills.push_back(MO.getReg()); |
| 608 | } |
| 609 | |
| 610 | // Get the used operands into registers. This has the potential to spill |
| 611 | // incoming values if we are out of registers. Note that we completely |
| 612 | // ignore physical register uses here. We assume that if an explicit |
| 613 | // physical register is referenced by the instruction, that it is guaranteed |
| 614 | // to be live-in, or the input is badly hosed. |
| 615 | // |
| 616 | for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| 617 | MachineOperand& MO = MI->getOperand(i); |
| 618 | // here we are looking for only used operands (never def&use) |
| 619 | if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && |
| 620 | MRegisterInfo::isVirtualRegister(MO.getReg())) |
| 621 | MI = reloadVirtReg(MBB, MI, i); |
| 622 | } |
| 623 | |
| 624 | // If this instruction is the last user of this register, kill the |
| 625 | // value, freeing the register being used, so it doesn't need to be |
| 626 | // spilled to memory. |
| 627 | // |
| 628 | for (unsigned i = 0, e = Kills.size(); i != e; ++i) { |
| 629 | unsigned VirtReg = Kills[i]; |
| 630 | unsigned PhysReg = VirtReg; |
| 631 | if (MRegisterInfo::isVirtualRegister(VirtReg)) { |
| 632 | // If the virtual register was never materialized into a register, it |
| 633 | // might not be in the map, but it won't hurt to zero it out anyway. |
| 634 | unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); |
| 635 | PhysReg = PhysRegSlot; |
| 636 | PhysRegSlot = 0; |
| 637 | } else if (PhysRegsUsed[PhysReg] == -2) { |
| 638 | // Unallocatable register dead, ignore. |
| 639 | continue; |
| 640 | } |
| 641 | |
| 642 | if (PhysReg) { |
| 643 | DOUT << " Last use of " << RegInfo->getName(PhysReg) |
| 644 | << "[%reg" << VirtReg <<"], removing it from live set\n"; |
| 645 | removePhysReg(PhysReg); |
| 646 | for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); |
| 647 | *AliasSet; ++AliasSet) { |
| 648 | if (PhysRegsUsed[*AliasSet] != -2) { |
| 649 | DOUT << " Last use of " |
| 650 | << RegInfo->getName(*AliasSet) |
| 651 | << "[%reg" << VirtReg <<"], removing it from live set\n"; |
| 652 | removePhysReg(*AliasSet); |
| 653 | } |
| 654 | } |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | // Loop over all of the operands of the instruction, spilling registers that |
| 659 | // are defined, and marking explicit destinations in the PhysRegsUsed map. |
| 660 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 661 | MachineOperand& MO = MI->getOperand(i); |
| 662 | if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() && |
| 663 | MRegisterInfo::isPhysicalRegister(MO.getReg())) { |
| 664 | unsigned Reg = MO.getReg(); |
| 665 | if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. |
| 666 | |
| 667 | MF->setPhysRegUsed(Reg); |
| 668 | spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg |
| 669 | PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| 670 | PhysRegsUseOrder.push_back(Reg); |
| 671 | for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| 672 | *AliasSet; ++AliasSet) { |
| 673 | if (PhysRegsUsed[*AliasSet] != -2) { |
| 674 | PhysRegsUseOrder.push_back(*AliasSet); |
| 675 | PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now |
| 676 | MF->setPhysRegUsed(*AliasSet); |
| 677 | } |
| 678 | } |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | // Loop over the implicit defs, spilling them as well. |
| 683 | if (TID.ImplicitDefs) { |
| 684 | for (const unsigned *ImplicitDefs = TID.ImplicitDefs; |
| 685 | *ImplicitDefs; ++ImplicitDefs) { |
| 686 | unsigned Reg = *ImplicitDefs; |
| 687 | bool IsNonAllocatable = PhysRegsUsed[Reg] == -2; |
| 688 | if (!IsNonAllocatable) { |
| 689 | spillPhysReg(MBB, MI, Reg, true); |
| 690 | PhysRegsUseOrder.push_back(Reg); |
| 691 | PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| 692 | } |
| 693 | MF->setPhysRegUsed(Reg); |
| 694 | |
| 695 | for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| 696 | *AliasSet; ++AliasSet) { |
| 697 | if (PhysRegsUsed[*AliasSet] != -2) { |
| 698 | if (!IsNonAllocatable) { |
| 699 | PhysRegsUseOrder.push_back(*AliasSet); |
| 700 | PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now |
| 701 | } |
| 702 | MF->setPhysRegUsed(*AliasSet); |
| 703 | } |
| 704 | } |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | SmallVector<unsigned, 8> DeadDefs; |
| 709 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 710 | MachineOperand& MO = MI->getOperand(i); |
| 711 | if (MO.isRegister() && MO.isDead()) |
| 712 | DeadDefs.push_back(MO.getReg()); |
| 713 | } |
| 714 | |
| 715 | // Okay, we have allocated all of the source operands and spilled any values |
| 716 | // that would be destroyed by defs of this instruction. Loop over the |
| 717 | // explicit defs and assign them to a register, spilling incoming values if |
| 718 | // we need to scavenge a register. |
| 719 | // |
| 720 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 721 | MachineOperand& MO = MI->getOperand(i); |
| 722 | if (MO.isRegister() && MO.isDef() && MO.getReg() && |
| 723 | MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| 724 | unsigned DestVirtReg = MO.getReg(); |
| 725 | unsigned DestPhysReg; |
| 726 | |
| 727 | // If DestVirtReg already has a value, use it. |
| 728 | if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) |
| 729 | DestPhysReg = chooseReg(MBB, MI, DestVirtReg); |
| 730 | MF->setPhysRegUsed(DestPhysReg); |
| 731 | markVirtRegModified(DestVirtReg); |
| 732 | MI->getOperand(i).setReg(DestPhysReg); // Assign the output register |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | // If this instruction defines any registers that are immediately dead, |
| 737 | // kill them now. |
| 738 | // |
| 739 | for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { |
| 740 | unsigned VirtReg = DeadDefs[i]; |
| 741 | unsigned PhysReg = VirtReg; |
| 742 | if (MRegisterInfo::isVirtualRegister(VirtReg)) { |
| 743 | unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); |
| 744 | PhysReg = PhysRegSlot; |
| 745 | assert(PhysReg != 0); |
| 746 | PhysRegSlot = 0; |
| 747 | } else if (PhysRegsUsed[PhysReg] == -2) { |
| 748 | // Unallocatable register dead, ignore. |
| 749 | continue; |
| 750 | } |
| 751 | |
| 752 | if (PhysReg) { |
| 753 | DOUT << " Register " << RegInfo->getName(PhysReg) |
| 754 | << " [%reg" << VirtReg |
| 755 | << "] is never used, removing it frame live list\n"; |
| 756 | removePhysReg(PhysReg); |
| 757 | for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); |
| 758 | *AliasSet; ++AliasSet) { |
| 759 | if (PhysRegsUsed[*AliasSet] != -2) { |
| 760 | DOUT << " Register " << RegInfo->getName(*AliasSet) |
| 761 | << " [%reg" << *AliasSet |
| 762 | << "] is never used, removing it frame live list\n"; |
| 763 | removePhysReg(*AliasSet); |
| 764 | } |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | // Finally, if this is a noop copy instruction, zap it. |
| 770 | unsigned SrcReg, DstReg; |
| 771 | if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) { |
| 772 | LV->removeVirtualRegistersKilled(MI); |
| 773 | LV->removeVirtualRegistersDead(MI); |
| 774 | MBB.erase(MI); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); |
| 779 | |
| 780 | // Spill all physical registers holding virtual registers now. |
| 781 | for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) |
| 782 | if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) |
| 783 | if (unsigned VirtReg = PhysRegsUsed[i]) |
| 784 | spillVirtReg(MBB, MI, VirtReg, i); |
| 785 | else |
| 786 | removePhysReg(i); |
| 787 | |
| 788 | #if 0 |
| 789 | // This checking code is very expensive. |
| 790 | bool AllOk = true; |
| 791 | for (unsigned i = MRegisterInfo::FirstVirtualRegister, |
| 792 | e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i) |
| 793 | if (unsigned PR = Virt2PhysRegMap[i]) { |
| 794 | cerr << "Register still mapped: " << i << " -> " << PR << "\n"; |
| 795 | AllOk = false; |
| 796 | } |
| 797 | assert(AllOk && "Virtual registers still in phys regs?"); |
| 798 | #endif |
| 799 | |
| 800 | // Clear any physical register which appear live at the end of the basic |
| 801 | // block, but which do not hold any virtual registers. e.g., the stack |
| 802 | // pointer. |
| 803 | PhysRegsUseOrder.clear(); |
| 804 | } |
| 805 | |
| 806 | /// runOnMachineFunction - Register allocate the whole function |
| 807 | /// |
| 808 | bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) { |
| 809 | DOUT << "Machine Function " << "\n"; |
| 810 | MF = &Fn; |
| 811 | TM = &Fn.getTarget(); |
| 812 | RegInfo = TM->getRegisterInfo(); |
| 813 | LV = &getAnalysis<LiveVariables>(); |
| 814 | |
| 815 | PhysRegsUsed.assign(RegInfo->getNumRegs(), -1); |
| 816 | |
| 817 | // At various places we want to efficiently check to see whether a register |
| 818 | // is allocatable. To handle this, we mark all unallocatable registers as |
| 819 | // being pinned down, permanently. |
| 820 | { |
| 821 | BitVector Allocable = RegInfo->getAllocatableSet(Fn); |
| 822 | for (unsigned i = 0, e = Allocable.size(); i != e; ++i) |
| 823 | if (!Allocable[i]) |
| 824 | PhysRegsUsed[i] = -2; // Mark the reg unallocable. |
| 825 | } |
| 826 | |
| 827 | // initialize the virtual->physical register map to have a 'null' |
| 828 | // mapping for all virtual registers |
| 829 | Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg()); |
| 830 | |
| 831 | // Loop over all of the basic blocks, eliminating virtual register references |
| 832 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| 833 | MBB != MBBe; ++MBB) { |
| 834 | // fill out the read timetable |
| 835 | FillVRegReadTable(*MBB); |
| 836 | // use it to allocate the BB |
| 837 | AllocateBasicBlock(*MBB); |
| 838 | // clear it |
| 839 | VRegReadTable.clear(); |
| 840 | } |
| 841 | |
| 842 | StackSlotForVirtReg.clear(); |
| 843 | PhysRegsUsed.clear(); |
| 844 | VirtRegModified.clear(); |
| 845 | Virt2PhysRegMap.clear(); |
| 846 | return true; |
| 847 | } |
| 848 | |
| 849 | FunctionPass *llvm::createBigBlockRegisterAllocator() { |
| 850 | return new RABigBlock(); |
| 851 | } |
| 852 | |