blob: 7088313fcdc84850cbd19c059a31598e8db8a75c [file] [log] [blame]
Dan Gohman343f0c02008-11-19 23:18:57 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
Dan Gohman40362062008-11-20 01:41:34 +000021#include <climits>
Dan Gohman343f0c02008-11-19 23:18:57 +000022using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25 const TargetMachine &tm)
26 : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27 TII = TM.getInstrInfo();
28 MF = BB->getParent();
29 TRI = TM.getRegisterInfo();
30 TLI = TM.getTargetLowering();
31 ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
36/// CalculateDepths - compute depths using algorithms for the longest
37/// paths in the DAG
38void ScheduleDAG::CalculateDepths() {
39 unsigned DAGSize = SUnits.size();
40 std::vector<SUnit*> WorkList;
41 WorkList.reserve(DAGSize);
42
43 // Initialize the data structures
44 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
45 SUnit *SU = &SUnits[i];
46 unsigned Degree = SU->Preds.size();
47 // Temporarily use the Depth field as scratch space for the degree count.
48 SU->Depth = Degree;
49
50 // Is it a node without dependencies?
51 if (Degree == 0) {
52 assert(SU->Preds.empty() && "SUnit should have no predecessors");
53 // Collect leaf nodes
54 WorkList.push_back(SU);
55 }
56 }
57
58 // Process nodes in the topological order
59 while (!WorkList.empty()) {
60 SUnit *SU = WorkList.back();
61 WorkList.pop_back();
62 unsigned SUDepth = 0;
63
64 // Use dynamic programming:
65 // When current node is being processed, all of its dependencies
66 // are already processed.
67 // So, just iterate over all predecessors and take the longest path
68 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
69 I != E; ++I) {
70 unsigned PredDepth = I->Dep->Depth;
71 if (PredDepth+1 > SUDepth) {
72 SUDepth = PredDepth + 1;
73 }
74 }
75
76 SU->Depth = SUDepth;
77
78 // Update degrees of all nodes depending on current SUnit
79 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
80 I != E; ++I) {
81 SUnit *SU = I->Dep;
82 if (!--SU->Depth)
83 // If all dependencies of the node are processed already,
84 // then the longest path for the node can be computed now
85 WorkList.push_back(SU);
86 }
87 }
88}
89
90/// CalculateHeights - compute heights using algorithms for the longest
91/// paths in the DAG
92void ScheduleDAG::CalculateHeights() {
93 unsigned DAGSize = SUnits.size();
94 std::vector<SUnit*> WorkList;
95 WorkList.reserve(DAGSize);
96
97 // Initialize the data structures
98 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
99 SUnit *SU = &SUnits[i];
100 unsigned Degree = SU->Succs.size();
101 // Temporarily use the Height field as scratch space for the degree count.
102 SU->Height = Degree;
103
104 // Is it a node without dependencies?
105 if (Degree == 0) {
106 assert(SU->Succs.empty() && "Something wrong");
107 assert(WorkList.empty() && "Should be empty");
108 // Collect leaf nodes
109 WorkList.push_back(SU);
110 }
111 }
112
113 // Process nodes in the topological order
114 while (!WorkList.empty()) {
115 SUnit *SU = WorkList.back();
116 WorkList.pop_back();
117 unsigned SUHeight = 0;
118
119 // Use dynamic programming:
120 // When current node is being processed, all of its dependencies
121 // are already processed.
122 // So, just iterate over all successors and take the longest path
123 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
124 I != E; ++I) {
125 unsigned SuccHeight = I->Dep->Height;
126 if (SuccHeight+1 > SUHeight) {
127 SUHeight = SuccHeight + 1;
128 }
129 }
130
131 SU->Height = SUHeight;
132
133 // Update degrees of all nodes depending on current SUnit
134 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
135 I != E; ++I) {
136 SUnit *SU = I->Dep;
137 if (!--SU->Height)
138 // If all dependencies of the node are processed already,
139 // then the longest path for the node can be computed now
140 WorkList.push_back(SU);
141 }
142 }
143}
144
145/// dump - dump the schedule.
146void ScheduleDAG::dumpSchedule() const {
147 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
148 if (SUnit *SU = Sequence[i])
149 SU->dump(this);
150 else
151 cerr << "**** NOOP ****\n";
152 }
153}
154
155
156/// Run - perform scheduling.
157///
158void ScheduleDAG::Run() {
159 Schedule();
160
161 DOUT << "*** Final schedule ***\n";
162 DEBUG(dumpSchedule());
163 DOUT << "\n";
164}
165
166/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
167/// a group of nodes flagged together.
168void SUnit::dump(const ScheduleDAG *G) const {
169 cerr << "SU(" << NodeNum << "): ";
170 G->dumpNode(this);
171}
172
173void SUnit::dumpAll(const ScheduleDAG *G) const {
174 dump(G);
175
176 cerr << " # preds left : " << NumPredsLeft << "\n";
177 cerr << " # succs left : " << NumSuccsLeft << "\n";
178 cerr << " Latency : " << Latency << "\n";
179 cerr << " Depth : " << Depth << "\n";
180 cerr << " Height : " << Height << "\n";
181
182 if (Preds.size() != 0) {
183 cerr << " Predecessors:\n";
184 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
185 I != E; ++I) {
186 if (I->isCtrl)
187 cerr << " ch #";
188 else
189 cerr << " val #";
190 cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
Dan Gohman98adea12008-11-21 02:18:56 +0000191 if (I->isArtificial)
Dan Gohman343f0c02008-11-19 23:18:57 +0000192 cerr << " *";
193 cerr << "\n";
194 }
195 }
196 if (Succs.size() != 0) {
197 cerr << " Successors:\n";
198 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
199 I != E; ++I) {
200 if (I->isCtrl)
201 cerr << " ch #";
202 else
203 cerr << " val #";
204 cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
Dan Gohman98adea12008-11-21 02:18:56 +0000205 if (I->isArtificial)
Dan Gohman343f0c02008-11-19 23:18:57 +0000206 cerr << " *";
207 cerr << "\n";
208 }
209 }
210 cerr << "\n";
211}
Dan Gohmana1e6d362008-11-20 01:26:25 +0000212
213#ifndef NDEBUG
214/// VerifySchedule - Verify that all SUnits were scheduled and that
215/// their state is consistent.
216///
217void ScheduleDAG::VerifySchedule(bool isBottomUp) {
218 bool AnyNotSched = false;
219 unsigned DeadNodes = 0;
220 unsigned Noops = 0;
221 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
222 if (!SUnits[i].isScheduled) {
223 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
224 ++DeadNodes;
225 continue;
226 }
227 if (!AnyNotSched)
228 cerr << "*** Scheduling failed! ***\n";
229 SUnits[i].dump(this);
230 cerr << "has not been scheduled!\n";
231 AnyNotSched = true;
232 }
233 if (SUnits[i].isScheduled && SUnits[i].Cycle > (unsigned)INT_MAX) {
234 if (!AnyNotSched)
235 cerr << "*** Scheduling failed! ***\n";
236 SUnits[i].dump(this);
237 cerr << "has an unexpected Cycle value!\n";
238 AnyNotSched = true;
239 }
240 if (isBottomUp) {
241 if (SUnits[i].NumSuccsLeft != 0) {
242 if (!AnyNotSched)
243 cerr << "*** Scheduling failed! ***\n";
244 SUnits[i].dump(this);
245 cerr << "has successors left!\n";
246 AnyNotSched = true;
247 }
248 } else {
249 if (SUnits[i].NumPredsLeft != 0) {
250 if (!AnyNotSched)
251 cerr << "*** Scheduling failed! ***\n";
252 SUnits[i].dump(this);
253 cerr << "has predecessors left!\n";
254 AnyNotSched = true;
255 }
256 }
257 }
258 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
259 if (!Sequence[i])
260 ++Noops;
261 assert(!AnyNotSched);
262 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
263 "The number of nodes scheduled doesn't match the expected number!");
264}
265#endif
Dan Gohman21d90032008-11-25 00:52:40 +0000266
267/// InitDAGTopologicalSorting - create the initial topological
268/// ordering from the DAG to be scheduled.
269///
270/// The idea of the algorithm is taken from
271/// "Online algorithms for managing the topological order of
272/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
273/// This is the MNR algorithm, which was first introduced by
274/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
275/// "Maintaining a topological order under edge insertions".
276///
277/// Short description of the algorithm:
278///
279/// Topological ordering, ord, of a DAG maps each node to a topological
280/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
281///
282/// This means that if there is a path from the node X to the node Z,
283/// then ord(X) < ord(Z).
284///
285/// This property can be used to check for reachability of nodes:
286/// if Z is reachable from X, then an insertion of the edge Z->X would
287/// create a cycle.
288///
289/// The algorithm first computes a topological ordering for the DAG by
290/// initializing the Index2Node and Node2Index arrays and then tries to keep
291/// the ordering up-to-date after edge insertions by reordering the DAG.
292///
293/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
294/// the nodes reachable from Y, and then shifts them using Shift to lie
295/// immediately after X in Index2Node.
296void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
297 unsigned DAGSize = SUnits.size();
298 std::vector<SUnit*> WorkList;
299 WorkList.reserve(DAGSize);
300
301 Index2Node.resize(DAGSize);
302 Node2Index.resize(DAGSize);
303
304 // Initialize the data structures.
305 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
306 SUnit *SU = &SUnits[i];
307 int NodeNum = SU->NodeNum;
308 unsigned Degree = SU->Succs.size();
309 // Temporarily use the Node2Index array as scratch space for degree counts.
310 Node2Index[NodeNum] = Degree;
311
312 // Is it a node without dependencies?
313 if (Degree == 0) {
314 assert(SU->Succs.empty() && "SUnit should have no successors");
315 // Collect leaf nodes.
316 WorkList.push_back(SU);
317 }
318 }
319
320 int Id = DAGSize;
321 while (!WorkList.empty()) {
322 SUnit *SU = WorkList.back();
323 WorkList.pop_back();
324 Allocate(SU->NodeNum, --Id);
325 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
326 I != E; ++I) {
327 SUnit *SU = I->Dep;
328 if (!--Node2Index[SU->NodeNum])
329 // If all dependencies of the node are processed already,
330 // then the node can be computed now.
331 WorkList.push_back(SU);
332 }
333 }
334
335 Visited.resize(DAGSize);
336
337#ifndef NDEBUG
338 // Check correctness of the ordering
339 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
340 SUnit *SU = &SUnits[i];
341 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
342 I != E; ++I) {
343 assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
344 "Wrong topological sorting");
345 }
346 }
347#endif
348}
349
350/// AddPred - Updates the topological ordering to accomodate an edge
351/// to be added from SUnit X to SUnit Y.
352void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
353 int UpperBound, LowerBound;
354 LowerBound = Node2Index[Y->NodeNum];
355 UpperBound = Node2Index[X->NodeNum];
356 bool HasLoop = false;
357 // Is Ord(X) < Ord(Y) ?
358 if (LowerBound < UpperBound) {
359 // Update the topological order.
360 Visited.reset();
361 DFS(Y, UpperBound, HasLoop);
362 assert(!HasLoop && "Inserted edge creates a loop!");
363 // Recompute topological indexes.
364 Shift(Visited, LowerBound, UpperBound);
365 }
366}
367
368/// RemovePred - Updates the topological ordering to accomodate an
369/// an edge to be removed from the specified node N from the predecessors
370/// of the current node M.
371void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
372 // InitDAGTopologicalSorting();
373}
374
375/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
376/// all nodes affected by the edge insertion. These nodes will later get new
377/// topological indexes by means of the Shift method.
378void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
379 std::vector<const SUnit*> WorkList;
380 WorkList.reserve(SUnits.size());
381
382 WorkList.push_back(SU);
383 while (!WorkList.empty()) {
384 SU = WorkList.back();
385 WorkList.pop_back();
386 Visited.set(SU->NodeNum);
387 for (int I = SU->Succs.size()-1; I >= 0; --I) {
388 int s = SU->Succs[I].Dep->NodeNum;
389 if (Node2Index[s] == UpperBound) {
390 HasLoop = true;
391 return;
392 }
393 // Visit successors if not already and in affected region.
394 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
395 WorkList.push_back(SU->Succs[I].Dep);
396 }
397 }
398 }
399}
400
401/// Shift - Renumber the nodes so that the topological ordering is
402/// preserved.
403void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
404 int UpperBound) {
405 std::vector<int> L;
406 int shift = 0;
407 int i;
408
409 for (i = LowerBound; i <= UpperBound; ++i) {
410 // w is node at topological index i.
411 int w = Index2Node[i];
412 if (Visited.test(w)) {
413 // Unmark.
414 Visited.reset(w);
415 L.push_back(w);
416 shift = shift + 1;
417 } else {
418 Allocate(w, i - shift);
419 }
420 }
421
422 for (unsigned j = 0; j < L.size(); ++j) {
423 Allocate(L[j], i - shift);
424 i = i + 1;
425 }
426}
427
428
429/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
430/// create a cycle.
431bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
432 if (IsReachable(TargetSU, SU))
433 return true;
434 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
435 I != E; ++I)
436 if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
437 return true;
438 return false;
439}
440
441/// IsReachable - Checks if SU is reachable from TargetSU.
442bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
443 // If insertion of the edge SU->TargetSU would create a cycle
444 // then there is a path from TargetSU to SU.
445 int UpperBound, LowerBound;
446 LowerBound = Node2Index[TargetSU->NodeNum];
447 UpperBound = Node2Index[SU->NodeNum];
448 bool HasLoop = false;
449 // Is Ord(TargetSU) < Ord(SU) ?
450 if (LowerBound < UpperBound) {
451 Visited.reset();
452 // There may be a path from TargetSU to SU. Check for it.
453 DFS(TargetSU, UpperBound, HasLoop);
454 }
455 return HasLoop;
456}
457
458/// Allocate - assign the topological index to the node n.
459void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
460 Node2Index[n] = index;
461 Index2Node[index] = n;
462}
463
464ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
465 std::vector<SUnit> &sunits)
466 : SUnits(sunits) {}