blob: 317e9d9e2e76f93bf656e1c7792655107e9de23f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
Duncan Sandsb233fb52009-01-18 12:19:30 +000017#include "llvm/Analysis/CaptureTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018#include "llvm/Analysis/Passes.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
Owen Anderson37f3ffb2008-02-17 21:29:08 +000024#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
Owen Anderson1636de92007-09-07 04:06:50 +000028#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
Chris Lattner21c4fd12008-06-16 06:30:22 +000035//===----------------------------------------------------------------------===//
36// Useful predicates
37//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039static const User *isGEP(const Value *V) {
40 if (isa<GetElementPtrInst>(V) ||
41 (isa<ConstantExpr>(V) &&
42 cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
43 return cast<User>(V);
44 return 0;
45}
46
47static const Value *GetGEPOperands(const Value *V,
Chris Lattner2d34c6c2008-12-10 01:04:47 +000048 SmallVector<Value*, 16> &GEPOps) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 assert(GEPOps.empty() && "Expect empty list to populate!");
50 GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
51 cast<User>(V)->op_end());
52
53 // Accumulate all of the chained indexes into the operand array
54 V = cast<User>(V)->getOperand(0);
55
56 while (const User *G = isGEP(V)) {
57 if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
58 !cast<Constant>(GEPOps[0])->isNullValue())
59 break; // Don't handle folding arbitrary pointer offsets yet...
60 GEPOps.erase(GEPOps.begin()); // Drop the zero index
61 GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
62 V = G->getOperand(0);
63 }
64 return V;
65}
66
Chris Lattnerfc2026e2008-06-16 06:10:11 +000067/// isKnownNonNull - Return true if we know that the specified value is never
68/// null.
69static bool isKnownNonNull(const Value *V) {
70 // Alloca never returns null, malloc might.
71 if (isa<AllocaInst>(V)) return true;
72
73 // A byval argument is never null.
74 if (const Argument *A = dyn_cast<Argument>(V))
75 return A->hasByValAttr();
76
77 // Global values are not null unless extern weak.
78 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
79 return !GV->hasExternalWeakLinkage();
80 return false;
81}
82
Chris Lattnerd26e5d82008-06-16 06:19:11 +000083/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
84/// object that never escapes from the function.
85static bool isNonEscapingLocalObject(const Value *V) {
Chris Lattner7ce67392008-06-16 06:28:01 +000086 // If this is a local allocation, check to see if it escapes.
Nick Lewyckyff384472008-11-24 03:41:24 +000087 if (isa<AllocationInst>(V) || isNoAliasCall(V))
Duncan Sandsb233fb52009-01-18 12:19:30 +000088 return !PointerMayBeCaptured(V, false);
Duncan Sands75378432009-01-05 21:19:53 +000089
Chris Lattner7ce67392008-06-16 06:28:01 +000090 // If this is an argument that corresponds to a byval or noalias argument,
Duncan Sands75378432009-01-05 21:19:53 +000091 // then it has not escaped before entering the function. Check if it escapes
92 // inside the function.
Chris Lattner7ce67392008-06-16 06:28:01 +000093 if (const Argument *A = dyn_cast<Argument>(V))
Duncan Sands75378432009-01-05 21:19:53 +000094 if (A->hasByValAttr() || A->hasNoAliasAttr()) {
95 // Don't bother analyzing arguments already known not to escape.
96 if (A->hasNoCaptureAttr())
97 return true;
Duncan Sandsb233fb52009-01-18 12:19:30 +000098 return !PointerMayBeCaptured(V, false);
Duncan Sands75378432009-01-05 21:19:53 +000099 }
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000100 return false;
101}
102
103
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000104/// isObjectSmallerThan - Return true if we can prove that the object specified
105/// by V is smaller than Size.
106static bool isObjectSmallerThan(const Value *V, unsigned Size,
107 const TargetData &TD) {
Chris Lattner194ae9d2008-12-08 06:28:54 +0000108 const Type *AccessTy;
109 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000110 AccessTy = GV->getType()->getElementType();
Chris Lattner194ae9d2008-12-08 06:28:54 +0000111 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000112 if (!AI->isArrayAllocation())
113 AccessTy = AI->getType()->getElementType();
Chris Lattner194ae9d2008-12-08 06:28:54 +0000114 else
115 return false;
116 } else if (const Argument *A = dyn_cast<Argument>(V)) {
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000117 if (A->hasByValAttr())
118 AccessTy = cast<PointerType>(A->getType())->getElementType();
Chris Lattner194ae9d2008-12-08 06:28:54 +0000119 else
120 return false;
121 } else {
122 return false;
123 }
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000124
Chris Lattner194ae9d2008-12-08 06:28:54 +0000125 if (AccessTy->isSized())
Duncan Sandsd68f13b2009-01-12 20:38:59 +0000126 return TD.getTypePaddedSize(AccessTy) < Size;
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000127 return false;
128}
129
Chris Lattner21c4fd12008-06-16 06:30:22 +0000130//===----------------------------------------------------------------------===//
131// NoAA Pass
132//===----------------------------------------------------------------------===//
133
134namespace {
135 /// NoAA - This class implements the -no-aa pass, which always returns "I
136 /// don't know" for alias queries. NoAA is unlike other alias analysis
137 /// implementations, in that it does not chain to a previous analysis. As
138 /// such it doesn't follow many of the rules that other alias analyses must.
139 ///
140 struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
141 static char ID; // Class identification, replacement for typeinfo
Dan Gohman26f8c272008-09-04 17:05:41 +0000142 NoAA() : ImmutablePass(&ID) {}
143 explicit NoAA(void *PID) : ImmutablePass(PID) { }
Chris Lattner21c4fd12008-06-16 06:30:22 +0000144
145 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.addRequired<TargetData>();
147 }
148
149 virtual void initializePass() {
150 TD = &getAnalysis<TargetData>();
151 }
152
153 virtual AliasResult alias(const Value *V1, unsigned V1Size,
154 const Value *V2, unsigned V2Size) {
155 return MayAlias;
156 }
157
158 virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
159 std::vector<PointerAccessInfo> *Info) {
160 return UnknownModRefBehavior;
161 }
162
163 virtual void getArgumentAccesses(Function *F, CallSite CS,
164 std::vector<PointerAccessInfo> &Info) {
165 assert(0 && "This method may not be called on this function!");
166 }
167
168 virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
169 virtual bool pointsToConstantMemory(const Value *P) { return false; }
170 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
171 return ModRef;
172 }
173 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
174 return ModRef;
175 }
176 virtual bool hasNoModRefInfoForCalls() const { return true; }
177
178 virtual void deleteValue(Value *V) {}
179 virtual void copyValue(Value *From, Value *To) {}
180 };
181} // End of anonymous namespace
182
183// Register this pass...
184char NoAA::ID = 0;
185static RegisterPass<NoAA>
186U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
187
188// Declare that we implement the AliasAnalysis interface
189static RegisterAnalysisGroup<AliasAnalysis> V(U);
190
191ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
192
193//===----------------------------------------------------------------------===//
194// BasicAA Pass
195//===----------------------------------------------------------------------===//
196
197namespace {
198 /// BasicAliasAnalysis - This is the default alias analysis implementation.
199 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
200 /// derives from the NoAA class.
201 struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
202 static char ID; // Class identification, replacement for typeinfo
Dan Gohman26f8c272008-09-04 17:05:41 +0000203 BasicAliasAnalysis() : NoAA(&ID) {}
Chris Lattner21c4fd12008-06-16 06:30:22 +0000204 AliasResult alias(const Value *V1, unsigned V1Size,
205 const Value *V2, unsigned V2Size);
206
207 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
Chris Lattner7e0f4462008-12-09 21:19:42 +0000208 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
209
Chris Lattner21c4fd12008-06-16 06:30:22 +0000210 /// hasNoModRefInfoForCalls - We can provide mod/ref information against
211 /// non-escaping allocations.
212 virtual bool hasNoModRefInfoForCalls() const { return false; }
213
214 /// pointsToConstantMemory - Chase pointers until we find a (constant
215 /// global) or not.
216 bool pointsToConstantMemory(const Value *P);
217
218 private:
219 // CheckGEPInstructions - Check two GEP instructions with known
220 // must-aliasing base pointers. This checks to see if the index expressions
221 // preclude the pointers from aliasing...
222 AliasResult
223 CheckGEPInstructions(const Type* BasePtr1Ty,
224 Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
225 const Type *BasePtr2Ty,
226 Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
227 };
228} // End of anonymous namespace
229
230// Register this pass...
231char BasicAliasAnalysis::ID = 0;
232static RegisterPass<BasicAliasAnalysis>
233X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
234
235// Declare that we implement the AliasAnalysis interface
236static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
237
238ImmutablePass *llvm::createBasicAliasAnalysisPass() {
239 return new BasicAliasAnalysis();
240}
241
242
243/// pointsToConstantMemory - Chase pointers until we find a (constant
244/// global) or not.
245bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
246 if (const GlobalVariable *GV =
Duncan Sands52fb8732008-10-01 15:25:41 +0000247 dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
Chris Lattner21c4fd12008-06-16 06:30:22 +0000248 return GV->isConstant();
249 return false;
250}
251
252// getModRefInfo - Check to see if the specified callsite can clobber the
253// specified memory object. Since we only look at local properties of this
254// function, we really can't say much about this query. We do, however, use
255// simple "address taken" analysis on local objects.
256//
257AliasAnalysis::ModRefResult
258BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
Owen Andersondf151b72009-02-04 05:16:46 +0000259 // If the function only accesses its arguments, it suffices to check that
260 // P does not alias any of those arguments.
261 if (AliasAnalysis::getModRefBehavior(CS, 0) ==
262 AliasAnalysis::AccessesArguments) {
263 bool doesAlias = false;
264 for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
265 AI != AE; ++AI)
266 if (alias(*AI, ~0U, P, Size) != NoAlias) {
267 doesAlias = true;
268 break;
269 }
270
271 if (!doesAlias)
272 return NoModRef;
273 }
274
Chris Lattner21c4fd12008-06-16 06:30:22 +0000275 if (!isa<Constant>(P)) {
Duncan Sands52fb8732008-10-01 15:25:41 +0000276 const Value *Object = P->getUnderlyingObject();
Chris Lattner21c4fd12008-06-16 06:30:22 +0000277
278 // If this is a tail call and P points to a stack location, we know that
279 // the tail call cannot access or modify the local stack.
280 // We cannot exclude byval arguments here; these belong to the caller of
281 // the current function not to the current function, and a tail callee
282 // may reference them.
283 if (isa<AllocaInst>(Object))
284 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
285 if (CI->isTailCall())
286 return NoModRef;
287
Chris Lattnerb46b9752008-06-16 06:38:26 +0000288 // If the pointer is to a locally allocated object that does not escape,
289 // then the call can not mod/ref the pointer unless the call takes the
290 // argument without capturing it.
291 if (isNonEscapingLocalObject(Object)) {
292 bool passedAsArg = false;
293 // TODO: Eventually only check 'nocapture' arguments.
294 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
295 CI != CE; ++CI)
296 if (isa<PointerType>((*CI)->getType()) &&
297 alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
298 passedAsArg = true;
299
300 if (!passedAsArg)
301 return NoModRef;
Chris Lattner21c4fd12008-06-16 06:30:22 +0000302 }
303 }
304
305 // The AliasAnalysis base class has some smarts, lets use them.
306 return AliasAnalysis::getModRefInfo(CS, P, Size);
307}
308
309
Chris Lattner7e0f4462008-12-09 21:19:42 +0000310AliasAnalysis::ModRefResult
311BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
312 // If CS1 or CS2 are readnone, they don't interact.
313 ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
314 if (CS1B == DoesNotAccessMemory) return NoModRef;
315
316 ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
317 if (CS2B == DoesNotAccessMemory) return NoModRef;
318
319 // If they both only read from memory, just return ref.
320 if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
321 return Ref;
322
323 // Otherwise, fall back to NoAA (mod+ref).
324 return NoAA::getModRefInfo(CS1, CS2);
325}
326
327
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
Chris Lattner2d34c6c2008-12-10 01:04:47 +0000329// as array references.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330//
331AliasAnalysis::AliasResult
332BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
333 const Value *V2, unsigned V2Size) {
334 // Strip off any constant expression casts if they exist
335 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
336 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
337 V1 = CE->getOperand(0);
338 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
339 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
340 V2 = CE->getOperand(0);
341
342 // Are we checking for alias of the same value?
343 if (V1 == V2) return MustAlias;
344
Nick Lewyckyff384472008-11-24 03:41:24 +0000345 if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346 return NoAlias; // Scalars cannot alias each other
347
Chris Lattner2d34c6c2008-12-10 01:04:47 +0000348 // Strip off cast instructions. Since V1 and V2 are pointers, they must be
349 // pointer<->pointer bitcasts.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000350 if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
351 return alias(I->getOperand(0), V1Size, V2, V2Size);
352 if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
353 return alias(V1, V1Size, I->getOperand(0), V2Size);
354
Chris Lattner2d34c6c2008-12-10 01:04:47 +0000355 // Figure out what objects these things are pointing to if we can.
Duncan Sands52fb8732008-10-01 15:25:41 +0000356 const Value *O1 = V1->getUnderlyingObject();
357 const Value *O2 = V2->getUnderlyingObject();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000358
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000359 if (O1 != O2) {
360 // If V1/V2 point to two different objects we know that we have no alias.
361 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
362 return NoAlias;
363
Nick Lewyckya604a942008-11-24 05:00:44 +0000364 // Arguments can't alias with local allocations or noalias calls.
365 if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
366 (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000367 return NoAlias;
Nick Lewyckyff384472008-11-24 03:41:24 +0000368
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000369 // Most objects can't alias null.
370 if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
371 (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
372 return NoAlias;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373 }
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000374
375 // If the size of one access is larger than the entire object on the other
376 // side, then we know such behavior is undefined and can assume no alias.
377 const TargetData &TD = getTargetData();
378 if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
379 (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
380 return NoAlias;
381
Chris Lattnerd26e5d82008-06-16 06:19:11 +0000382 // If one pointer is the result of a call/invoke and the other is a
383 // non-escaping local object, then we know the object couldn't escape to a
384 // point where the call could return it.
385 if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
386 isNonEscapingLocalObject(O2))
387 return NoAlias;
388 if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
389 isNonEscapingLocalObject(O1))
390 return NoAlias;
Chris Lattnerfc2026e2008-06-16 06:10:11 +0000391
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 // If we have two gep instructions with must-alias'ing base pointers, figure
393 // out if the indexes to the GEP tell us anything about the derived pointer.
394 // Note that we also handle chains of getelementptr instructions as well as
395 // constant expression getelementptrs here.
396 //
397 if (isGEP(V1) && isGEP(V2)) {
Chris Lattner2d34c6c2008-12-10 01:04:47 +0000398 const User *GEP1 = cast<User>(V1);
399 const User *GEP2 = cast<User>(V2);
400
401 // If V1 and V2 are identical GEPs, just recurse down on both of them.
402 // This allows us to analyze things like:
403 // P = gep A, 0, i, 1
404 // Q = gep B, 0, i, 1
405 // by just analyzing A and B. This is even safe for variable indices.
406 if (GEP1->getType() == GEP2->getType() &&
407 GEP1->getNumOperands() == GEP2->getNumOperands() &&
408 GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
409 // All operands are the same, ignoring the base.
410 std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
411 return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
412
413
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 // Drill down into the first non-gep value, to test for must-aliasing of
415 // the base pointers.
Chris Lattner2d34c6c2008-12-10 01:04:47 +0000416 while (isGEP(GEP1->getOperand(0)) &&
417 GEP1->getOperand(1) ==
418 Constant::getNullValue(GEP1->getOperand(1)->getType()))
419 GEP1 = cast<User>(GEP1->getOperand(0));
420 const Value *BasePtr1 = GEP1->getOperand(0);
Wojciech Matyjewicz170707f2007-12-13 16:22:58 +0000421
Chris Lattner2d34c6c2008-12-10 01:04:47 +0000422 while (isGEP(GEP2->getOperand(0)) &&
423 GEP2->getOperand(1) ==
424 Constant::getNullValue(GEP2->getOperand(1)->getType()))
425 GEP2 = cast<User>(GEP2->getOperand(0));
426 const Value *BasePtr2 = GEP2->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427
428 // Do the base pointers alias?
429 AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
430 if (BaseAlias == NoAlias) return NoAlias;
431 if (BaseAlias == MustAlias) {
432 // If the base pointers alias each other exactly, check to see if we can
433 // figure out anything about the resultant pointers, to try to prove
434 // non-aliasing.
435
436 // Collect all of the chained GEP operands together into one simple place
437 SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
438 BasePtr1 = GetGEPOperands(V1, GEP1Ops);
439 BasePtr2 = GetGEPOperands(V2, GEP2Ops);
440
441 // If GetGEPOperands were able to fold to the same must-aliased pointer,
442 // do the comparison.
443 if (BasePtr1 == BasePtr2) {
444 AliasResult GAlias =
445 CheckGEPInstructions(BasePtr1->getType(),
446 &GEP1Ops[0], GEP1Ops.size(), V1Size,
447 BasePtr2->getType(),
448 &GEP2Ops[0], GEP2Ops.size(), V2Size);
449 if (GAlias != MayAlias)
450 return GAlias;
451 }
452 }
453 }
454
455 // Check to see if these two pointers are related by a getelementptr
456 // instruction. If one pointer is a GEP with a non-zero index of the other
457 // pointer, we know they cannot alias.
458 //
459 if (isGEP(V2)) {
460 std::swap(V1, V2);
461 std::swap(V1Size, V2Size);
462 }
463
464 if (V1Size != ~0U && V2Size != ~0U)
465 if (isGEP(V1)) {
466 SmallVector<Value*, 16> GEPOperands;
467 const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
468
469 AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
470 if (R == MustAlias) {
471 // If there is at least one non-zero constant index, we know they cannot
472 // alias.
473 bool ConstantFound = false;
474 bool AllZerosFound = true;
475 for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
476 if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
477 if (!C->isNullValue()) {
478 ConstantFound = true;
479 AllZerosFound = false;
480 break;
481 }
482 } else {
483 AllZerosFound = false;
484 }
485
486 // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
487 // the ptr, the end result is a must alias also.
488 if (AllZerosFound)
489 return MustAlias;
490
491 if (ConstantFound) {
492 if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
493 return NoAlias;
494
495 // Otherwise we have to check to see that the distance is more than
496 // the size of the argument... build an index vector that is equal to
497 // the arguments provided, except substitute 0's for any variable
498 // indexes we find...
499 if (cast<PointerType>(
500 BasePtr->getType())->getElementType()->isSized()) {
501 for (unsigned i = 0; i != GEPOperands.size(); ++i)
502 if (!isa<ConstantInt>(GEPOperands[i]))
503 GEPOperands[i] =
504 Constant::getNullValue(GEPOperands[i]->getType());
505 int64_t Offset =
506 getTargetData().getIndexedOffset(BasePtr->getType(),
507 &GEPOperands[0],
508 GEPOperands.size());
509
510 if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
511 return NoAlias;
512 }
513 }
514 }
515 }
516
517 return MayAlias;
518}
519
Duncan Sandsa52b7542008-12-08 14:01:59 +0000520// This function is used to determine if the indices of two GEP instructions are
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000521// equal. V1 and V2 are the indices.
522static bool IndexOperandsEqual(Value *V1, Value *V2) {
523 if (V1->getType() == V2->getType())
524 return V1 == V2;
525 if (Constant *C1 = dyn_cast<Constant>(V1))
526 if (Constant *C2 = dyn_cast<Constant>(V2)) {
527 // Sign extend the constants to long types, if necessary
528 if (C1->getType() != Type::Int64Ty)
529 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
530 if (C2->getType() != Type::Int64Ty)
531 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
532 return C1 == C2;
533 }
534 return false;
535}
536
537/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
538/// base pointers. This checks to see if the index expressions preclude the
539/// pointers from aliasing...
540AliasAnalysis::AliasResult
541BasicAliasAnalysis::CheckGEPInstructions(
542 const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
543 const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
544 // We currently can't handle the case when the base pointers have different
545 // primitive types. Since this is uncommon anyway, we are happy being
546 // extremely conservative.
547 if (BasePtr1Ty != BasePtr2Ty)
548 return MayAlias;
549
550 const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
551
552 // Find the (possibly empty) initial sequence of equal values... which are not
553 // necessarily constants.
554 unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
555 unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
556 unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
557 unsigned UnequalOper = 0;
558 while (UnequalOper != MinOperands &&
559 IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
560 // Advance through the type as we go...
561 ++UnequalOper;
562 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
563 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
564 else {
565 // If all operands equal each other, then the derived pointers must
566 // alias each other...
567 BasePtr1Ty = 0;
568 assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
569 "Ran out of type nesting, but not out of operands?");
570 return MustAlias;
571 }
572 }
573
574 // If we have seen all constant operands, and run out of indexes on one of the
575 // getelementptrs, check to see if the tail of the leftover one is all zeros.
576 // If so, return mustalias.
577 if (UnequalOper == MinOperands) {
578 if (NumGEP1Ops < NumGEP2Ops) {
579 std::swap(GEP1Ops, GEP2Ops);
580 std::swap(NumGEP1Ops, NumGEP2Ops);
581 }
582
583 bool AllAreZeros = true;
584 for (unsigned i = UnequalOper; i != MaxOperands; ++i)
585 if (!isa<Constant>(GEP1Ops[i]) ||
586 !cast<Constant>(GEP1Ops[i])->isNullValue()) {
587 AllAreZeros = false;
588 break;
589 }
590 if (AllAreZeros) return MustAlias;
591 }
592
593
594 // So now we know that the indexes derived from the base pointers,
595 // which are known to alias, are different. We can still determine a
596 // no-alias result if there are differing constant pairs in the index
597 // chain. For example:
598 // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
599 //
600 // We have to be careful here about array accesses. In particular, consider:
601 // A[1][0] vs A[0][i]
602 // In this case, we don't *know* that the array will be accessed in bounds:
603 // the index could even be negative. Because of this, we have to
604 // conservatively *give up* and return may alias. We disregard differing
605 // array subscripts that are followed by a variable index without going
606 // through a struct.
607 //
608 unsigned SizeMax = std::max(G1S, G2S);
609 if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
610
611 // Scan for the first operand that is constant and unequal in the
612 // two getelementptrs...
613 unsigned FirstConstantOper = UnequalOper;
614 for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
615 const Value *G1Oper = GEP1Ops[FirstConstantOper];
616 const Value *G2Oper = GEP2Ops[FirstConstantOper];
617
618 if (G1Oper != G2Oper) // Found non-equal constant indexes...
619 if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
620 if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
621 if (G1OC->getType() != G2OC->getType()) {
622 // Sign extend both operands to long.
623 if (G1OC->getType() != Type::Int64Ty)
624 G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
625 if (G2OC->getType() != Type::Int64Ty)
626 G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
627 GEP1Ops[FirstConstantOper] = G1OC;
628 GEP2Ops[FirstConstantOper] = G2OC;
629 }
630
631 if (G1OC != G2OC) {
632 // Handle the "be careful" case above: if this is an array/vector
633 // subscript, scan for a subsequent variable array index.
634 if (isa<SequentialType>(BasePtr1Ty)) {
635 const Type *NextTy =
636 cast<SequentialType>(BasePtr1Ty)->getElementType();
637 bool isBadCase = false;
638
639 for (unsigned Idx = FirstConstantOper+1;
640 Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
641 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
642 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
643 isBadCase = true;
644 break;
645 }
646 NextTy = cast<SequentialType>(NextTy)->getElementType();
647 }
648
649 if (isBadCase) G1OC = 0;
650 }
651
652 // Make sure they are comparable (ie, not constant expressions), and
653 // make sure the GEP with the smaller leading constant is GEP1.
654 if (G1OC) {
655 Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
656 G1OC, G2OC);
657 if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
658 if (CV->getZExtValue()) { // If they are comparable and G2 > G1
659 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
660 std::swap(NumGEP1Ops, NumGEP2Ops);
661 }
662 break;
663 }
664 }
665 }
666 }
667 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
668 }
669
670 // No shared constant operands, and we ran out of common operands. At this
671 // point, the GEP instructions have run through all of their operands, and we
672 // haven't found evidence that there are any deltas between the GEP's.
673 // However, one GEP may have more operands than the other. If this is the
674 // case, there may still be hope. Check this now.
675 if (FirstConstantOper == MinOperands) {
676 // Make GEP1Ops be the longer one if there is a longer one.
677 if (NumGEP1Ops < NumGEP2Ops) {
678 std::swap(GEP1Ops, GEP2Ops);
679 std::swap(NumGEP1Ops, NumGEP2Ops);
680 }
681
682 // Is there anything to check?
683 if (NumGEP1Ops > MinOperands) {
684 for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
685 if (isa<ConstantInt>(GEP1Ops[i]) &&
686 !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
687 // Yup, there's a constant in the tail. Set all variables to
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000688 // constants in the GEP instruction to make it suitable for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689 // TargetData::getIndexedOffset.
690 for (i = 0; i != MaxOperands; ++i)
691 if (!isa<ConstantInt>(GEP1Ops[i]))
692 GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
693 // Okay, now get the offset. This is the relative offset for the full
694 // instruction.
695 const TargetData &TD = getTargetData();
696 int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
697 NumGEP1Ops);
698
699 // Now check without any constants at the end.
700 int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
701 MinOperands);
702
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000703 // Make sure we compare the absolute difference.
704 if (Offset1 > Offset2)
705 std::swap(Offset1, Offset2);
706
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 // If the tail provided a bit enough offset, return noalias!
708 if ((uint64_t)(Offset2-Offset1) >= SizeMax)
709 return NoAlias;
Wojciech Matyjewicze1709452008-06-02 17:26:12 +0000710 // Otherwise break - we don't look for another constant in the tail.
711 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 }
713 }
714
715 // Couldn't find anything useful.
716 return MayAlias;
717 }
718
719 // If there are non-equal constants arguments, then we can figure
720 // out a minimum known delta between the two index expressions... at
721 // this point we know that the first constant index of GEP1 is less
722 // than the first constant index of GEP2.
723
724 // Advance BasePtr[12]Ty over this first differing constant operand.
725 BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
726 getTypeAtIndex(GEP2Ops[FirstConstantOper]);
727 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
728 getTypeAtIndex(GEP1Ops[FirstConstantOper]);
729
730 // We are going to be using TargetData::getIndexedOffset to determine the
731 // offset that each of the GEP's is reaching. To do this, we have to convert
732 // all variable references to constant references. To do this, we convert the
733 // initial sequence of array subscripts into constant zeros to start with.
734 const Type *ZeroIdxTy = GEPPointerTy;
735 for (unsigned i = 0; i != FirstConstantOper; ++i) {
736 if (!isa<StructType>(ZeroIdxTy))
737 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
738
739 if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
740 ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
741 }
742
743 // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
744
745 // Loop over the rest of the operands...
746 for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
747 const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
748 const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
749 // If they are equal, use a zero index...
750 if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
751 if (!isa<ConstantInt>(Op1))
752 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
753 // Otherwise, just keep the constants we have.
754 } else {
755 if (Op1) {
756 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
757 // If this is an array index, make sure the array element is in range.
758 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
759 if (Op1C->getZExtValue() >= AT->getNumElements())
760 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000761 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
762 if (Op1C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763 return MayAlias; // Be conservative with out-of-range accesses
764 }
765
766 } else {
767 // GEP1 is known to produce a value less than GEP2. To be
768 // conservatively correct, we must assume the largest possible
769 // constant is used in this position. This cannot be the initial
770 // index to the GEP instructions (because we know we have at least one
771 // element before this one with the different constant arguments), so
772 // we know that the current index must be into either a struct or
773 // array. Because we know it's not constant, this cannot be a
774 // structure index. Because of this, we can calculate the maximum
775 // value possible.
776 //
777 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
778 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000779 else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
780 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781 }
782 }
783
784 if (Op2) {
785 if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
786 // If this is an array index, make sure the array element is in range.
Chris Lattnereaf7b232007-12-09 07:35:13 +0000787 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 if (Op2C->getZExtValue() >= AT->getNumElements())
789 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000790 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000791 if (Op2C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792 return MayAlias; // Be conservative with out-of-range accesses
793 }
794 } else { // Conservatively assume the minimum value for this index
795 GEP2Ops[i] = Constant::getNullValue(Op2->getType());
796 }
797 }
798 }
799
800 if (BasePtr1Ty && Op1) {
801 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
802 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
803 else
804 BasePtr1Ty = 0;
805 }
806
807 if (BasePtr2Ty && Op2) {
808 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
809 BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
810 else
811 BasePtr2Ty = 0;
812 }
813 }
814
815 if (GEPPointerTy->getElementType()->isSized()) {
816 int64_t Offset1 =
817 getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
818 int64_t Offset2 =
819 getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000820 assert(Offset1 != Offset2 &&
821 "There is at least one different constant here!");
822
823 // Make sure we compare the absolute difference.
824 if (Offset1 > Offset2)
825 std::swap(Offset1, Offset2);
826
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000827 if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
828 //cerr << "Determined that these two GEP's don't alias ["
829 // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
830 return NoAlias;
831 }
832 }
833 return MayAlias;
834}
835
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836// Make sure that anything that uses AliasAnalysis pulls in this file...
837DEFINING_FILE_FOR(BasicAliasAnalysis)