blob: 9c18751ed6f855787393fa52b9f6c7f3654de758 [file] [log] [blame]
Chris Lattnerab7d9cc2008-05-12 01:12:24 +00001//===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an abstract sparse conditional propagation algorithm,
11// modeled after SCCP, but with a customizable lattice function.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sparseprop"
16#include "llvm/Analysis/SparsePropagation.h"
17#include "llvm/Constants.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Pass.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/Streams.h"
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27// AbstractLatticeFunction Implementation
28//===----------------------------------------------------------------------===//
29
30AbstractLatticeFunction::~AbstractLatticeFunction() {}
31
32/// PrintValue - Render the specified lattice value to the specified stream.
33void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) {
34 if (V == UndefVal)
35 OS << "undefined";
36 else if (V == OverdefinedVal)
37 OS << "overdefined";
38 else if (V == UntrackedVal)
39 OS << "untracked";
40 else
41 OS << "unknown lattice value";
42}
43
44//===----------------------------------------------------------------------===//
45// SparseSolver Implementation
46//===----------------------------------------------------------------------===//
47
48/// getOrInitValueState - Return the LatticeVal object that corresponds to the
49/// value, initializing the value's state if it hasn't been entered into the
50/// map yet. This function is necessary because not all values should start
51/// out in the underdefined state... Arguments should be overdefined, and
52/// constants should be marked as constants.
53///
54SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
55 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
56 if (I != ValueState.end()) return I->second; // Common case, in the map
57
58 LatticeVal LV;
59 if (LatticeFunc->IsUntrackedValue(V))
60 return LatticeFunc->getUntrackedVal();
61 else if (Constant *C = dyn_cast<Constant>(V))
62 LV = LatticeFunc->ComputeConstant(C);
63 else if (!isa<Instruction>(V))
64 // Non-instructions (e.g. formal arguments) are overdefined.
65 LV = LatticeFunc->getOverdefinedVal();
66 else
67 // All instructions are underdefined by default.
68 LV = LatticeFunc->getUndefVal();
69
70 // If this value is untracked, don't add it to the map.
71 if (LV == LatticeFunc->getUntrackedVal())
72 return LV;
73 return ValueState[V] = LV;
74}
75
76/// UpdateState - When the state for some instruction is potentially updated,
77/// this function notices and adds I to the worklist if needed.
78void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
79 DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
80 if (I != ValueState.end() && I->second == V)
81 return; // No change.
82
83 // An update. Visit uses of I.
84 ValueState[&Inst] = V;
85 InstWorkList.push_back(&Inst);
86}
87
88/// MarkBlockExecutable - This method can be used by clients to mark all of
89/// the blocks that are known to be intrinsically live in the processed unit.
90void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
91 DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
92 BBExecutable.insert(BB); // Basic block is executable!
93 BBWorkList.push_back(BB); // Add the block to the work list!
94}
95
96/// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
97/// work list if it is not already executable...
98void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
99 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
100 return; // This edge is already known to be executable!
101
102 if (BBExecutable.count(Dest)) {
103 DOUT << "Marking Edge Executable: " << Source->getNameStart()
104 << " -> " << Dest->getNameStart() << "\n";
105
106 // The destination is already executable, but we just made an edge
107 // feasible that wasn't before. Revisit the PHI nodes in the block
108 // because they have potentially new operands.
109 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
110 visitPHINode(*cast<PHINode>(I));
111
112 } else {
113 MarkBlockExecutable(Dest);
114 }
115}
116
117
118/// getFeasibleSuccessors - Return a vector of booleans to indicate which
119/// successors are reachable from a given terminator instruction.
120void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
121 SmallVectorImpl<bool> &Succs) {
122 Succs.resize(TI.getNumSuccessors());
123 if (TI.getNumSuccessors() == 0) return;
124
125 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
126 if (BI->isUnconditional()) {
127 Succs[0] = true;
128 return;
129 }
130
131 LatticeVal BCValue = getOrInitValueState(BI->getCondition());
132 if (BCValue == LatticeFunc->getOverdefinedVal() ||
133 BCValue == LatticeFunc->getUntrackedVal()) {
134 // Overdefined condition variables can branch either way.
135 Succs[0] = Succs[1] = true;
136 return;
137 }
138
139 // If undefined, neither is feasible yet.
140 if (BCValue == LatticeFunc->getUndefVal())
141 return;
142
143 Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
144 if (C == 0 || !isa<ConstantInt>(C)) {
145 // Non-constant values can go either way.
146 Succs[0] = Succs[1] = true;
147 return;
148 }
149
150 // Constant condition variables mean the branch can only go a single way
151 Succs[C == ConstantInt::getFalse()] = true;
152 return;
153 }
154
155 if (isa<InvokeInst>(TI)) {
156 // Invoke instructions successors are always executable.
157 // TODO: Could ask the lattice function if the value can throw.
158 Succs[0] = Succs[1] = true;
159 return;
160 }
161
162 SwitchInst &SI = cast<SwitchInst>(TI);
163 LatticeVal SCValue = getOrInitValueState(SI.getCondition());
164 if (SCValue == LatticeFunc->getOverdefinedVal() ||
165 SCValue == LatticeFunc->getUntrackedVal()) {
166 // All destinations are executable!
167 Succs.assign(TI.getNumSuccessors(), true);
168 return;
169 }
170
171 // If undefined, neither is feasible yet.
172 if (SCValue == LatticeFunc->getUndefVal())
173 return;
174
175 Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
176 if (C == 0 || !isa<ConstantInt>(C)) {
177 // All destinations are executable!
178 Succs.assign(TI.getNumSuccessors(), true);
179 return;
180 }
181
182 Succs[SI.findCaseValue(cast<ConstantInt>(C))] = true;
183}
184
185
186/// isEdgeFeasible - Return true if the control flow edge from the 'From'
187/// basic block to the 'To' basic block is currently feasible...
188bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
189 SmallVector<bool, 16> SuccFeasible;
190 TerminatorInst *TI = From->getTerminator();
191 getFeasibleSuccessors(*TI, SuccFeasible);
192
193 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
194 if (TI->getSuccessor(i) == To && SuccFeasible[i])
195 return true;
196
197 return false;
198}
199
200void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
201 SmallVector<bool, 16> SuccFeasible;
202 getFeasibleSuccessors(TI, SuccFeasible);
203
204 BasicBlock *BB = TI.getParent();
205
206 // Mark all feasible successors executable...
207 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
208 if (SuccFeasible[i])
209 markEdgeExecutable(BB, TI.getSuccessor(i));
210}
211
212void SparseSolver::visitPHINode(PHINode &PN) {
213 LatticeVal PNIV = getOrInitValueState(&PN);
214 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
215
216 // If this value is already overdefined (common) just return.
217 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
218 return; // Quick exit
219
220 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
221 // and slow us down a lot. Just mark them overdefined.
222 if (PN.getNumIncomingValues() > 64) {
223 UpdateState(PN, Overdefined);
224 return;
225 }
226
227 // Look at all of the executable operands of the PHI node. If any of them
228 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
229 // transfer function to give us the merge of the incoming values.
230 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
231 // If the edge is not yet known to be feasible, it doesn't impact the PHI.
232 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
233 continue;
234
235 // Merge in this value.
236 LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
237 if (OpVal != PNIV)
238 PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
239
240 if (PNIV == Overdefined)
241 break; // Rest of input values don't matter.
242 }
243
244 // Update the PHI with the compute value, which is the merge of the inputs.
245 UpdateState(PN, PNIV);
246}
247
248
249void SparseSolver::visitInst(Instruction &I) {
250 // PHIs are handled by the propagation logic, they are never passed into the
251 // transfer functions.
252 if (PHINode *PN = dyn_cast<PHINode>(&I))
253 return visitPHINode(*PN);
254
255 // Otherwise, ask the transfer function what the result is. If this is
256 // something that we care about, remember it.
257 LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
258 if (IV != LatticeFunc->getUntrackedVal())
259 UpdateState(I, IV);
260
261 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
262 visitTerminatorInst(*TI);
263}
264
265void SparseSolver::Solve(Function &F) {
266 MarkBlockExecutable(F.begin());
267
268 // Process the work lists until they are empty!
269 while (!BBWorkList.empty() || !InstWorkList.empty()) {
270 // Process the instruction work list.
271 while (!InstWorkList.empty()) {
272 Instruction *I = InstWorkList.back();
273 InstWorkList.pop_back();
274
275 DOUT << "\nPopped off I-WL: " << *I;
276
277 // "I" got into the work list because it made a transition. See if any
278 // users are both live and in need of updating.
279 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
280 UI != E; ++UI) {
281 Instruction *U = cast<Instruction>(*UI);
282 if (BBExecutable.count(U->getParent())) // Inst is executable?
283 visitInst(*U);
284 }
285 }
286
287 // Process the basic block work list.
288 while (!BBWorkList.empty()) {
289 BasicBlock *BB = BBWorkList.back();
290 BBWorkList.pop_back();
291
292 DOUT << "\nPopped off BBWL: " << *BB;
293
294 // Notify all instructions in this basic block that they are newly
295 // executable.
296 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
297 visitInst(*I);
298 }
299 }
300}
301
302void SparseSolver::Print(Function &F, std::ostream &OS) {
303 OS << "\nFUNCTION: " << F.getNameStr() << "\n";
304 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
305 if (!BBExecutable.count(BB))
306 OS << "INFEASIBLE: ";
307 OS << "\t";
308 if (BB->hasName())
309 OS << BB->getNameStr() << ":\n";
310 else
311 OS << "; anon bb\n";
312 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
313 LatticeFunc->PrintValue(getLatticeState(I), OS);
314 OS << *I;
315 }
316
317 OS << "\n";
318 }
319}
320