Sebastian Pop | ad43499 | 2012-10-11 07:32:34 +0000 | [diff] [blame^] | 1 | //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // DependenceAnalysis is an LLVM pass that analyses dependences between memory |
| 11 | // accesses. Currently, it is an (incomplete) implementation of the approach |
| 12 | // described in |
| 13 | // |
| 14 | // Practical Dependence Testing |
| 15 | // Goff, Kennedy, Tseng |
| 16 | // PLDI 1991 |
| 17 | // |
| 18 | // There's a single entry point that analyzes the dependence between a pair |
| 19 | // of memory references in a function, returning either NULL, for no dependence, |
| 20 | // or a more-or-less detailed description of the dependence between them. |
| 21 | // |
| 22 | // Currently, the implementation cannot propagate constraints between |
| 23 | // coupled RDIV subscripts and lacks a multi-subscript MIV test. |
| 24 | // Both of these are conservative weaknesses; |
| 25 | // that is, not a source of correctness problems. |
| 26 | // |
| 27 | // The implementation depends on the GEP instruction to |
| 28 | // differentiate subscripts. Since Clang linearizes subscripts |
| 29 | // for most arrays, we give up some precision (though the existing MIV tests |
| 30 | // will help). We trust that the GEP instruction will eventually be extended. |
| 31 | // In the meantime, we should explore Maslov's ideas about delinearization. |
| 32 | // |
| 33 | // We should pay some careful attention to the possibility of integer overflow |
| 34 | // in the implementation of the various tests. This could happen with Add, |
| 35 | // Subtract, or Multiply, with both APInt's and SCEV's. |
| 36 | // |
| 37 | // Some non-linear subscript pairs can be handled by the GCD test |
| 38 | // (and perhaps other tests). |
| 39 | // Should explore how often these things occur. |
| 40 | // |
| 41 | // Finally, it seems like certain test cases expose weaknesses in the SCEV |
| 42 | // simplification, especially in the handling of sign and zero extensions. |
| 43 | // It could be useful to spend time exploring these. |
| 44 | // |
| 45 | // Please note that this is work in progress and the interface is subject to |
| 46 | // change. |
| 47 | // |
| 48 | //===----------------------------------------------------------------------===// |
| 49 | // // |
| 50 | // In memory of Ken Kennedy, 1945 - 2007 // |
| 51 | // // |
| 52 | //===----------------------------------------------------------------------===// |
| 53 | |
| 54 | #define DEBUG_TYPE "da" |
| 55 | |
| 56 | #include "llvm/Analysis/DependenceAnalysis.h" |
| 57 | #include "llvm/ADT/Statistic.h" |
| 58 | #include "llvm/Instructions.h" |
| 59 | #include "llvm/Operator.h" |
| 60 | #include "llvm/Analysis/ValueTracking.h" |
| 61 | #include "llvm/Support/Debug.h" |
| 62 | #include "llvm/Support/ErrorHandling.h" |
| 63 | #include "llvm/Support/InstIterator.h" |
| 64 | |
| 65 | using namespace llvm; |
| 66 | |
| 67 | //===----------------------------------------------------------------------===// |
| 68 | // statistics |
| 69 | |
| 70 | STATISTIC(TotalArrayPairs, "Array pairs tested"); |
| 71 | STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs"); |
| 72 | STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs"); |
| 73 | STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs"); |
| 74 | STATISTIC(ZIVapplications, "ZIV applications"); |
| 75 | STATISTIC(ZIVindependence, "ZIV independence"); |
| 76 | STATISTIC(StrongSIVapplications, "Strong SIV applications"); |
| 77 | STATISTIC(StrongSIVsuccesses, "Strong SIV successes"); |
| 78 | STATISTIC(StrongSIVindependence, "Strong SIV independence"); |
| 79 | STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications"); |
| 80 | STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes"); |
| 81 | STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence"); |
| 82 | STATISTIC(ExactSIVapplications, "Exact SIV applications"); |
| 83 | STATISTIC(ExactSIVsuccesses, "Exact SIV successes"); |
| 84 | STATISTIC(ExactSIVindependence, "Exact SIV independence"); |
| 85 | STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications"); |
| 86 | STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes"); |
| 87 | STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence"); |
| 88 | STATISTIC(ExactRDIVapplications, "Exact RDIV applications"); |
| 89 | STATISTIC(ExactRDIVindependence, "Exact RDIV independence"); |
| 90 | STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications"); |
| 91 | STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence"); |
| 92 | STATISTIC(DeltaApplications, "Delta applications"); |
| 93 | STATISTIC(DeltaSuccesses, "Delta successes"); |
| 94 | STATISTIC(DeltaIndependence, "Delta independence"); |
| 95 | STATISTIC(DeltaPropagations, "Delta propagations"); |
| 96 | STATISTIC(GCDapplications, "GCD applications"); |
| 97 | STATISTIC(GCDsuccesses, "GCD successes"); |
| 98 | STATISTIC(GCDindependence, "GCD independence"); |
| 99 | STATISTIC(BanerjeeApplications, "Banerjee applications"); |
| 100 | STATISTIC(BanerjeeIndependence, "Banerjee independence"); |
| 101 | STATISTIC(BanerjeeSuccesses, "Banerjee successes"); |
| 102 | |
| 103 | //===----------------------------------------------------------------------===// |
| 104 | // basics |
| 105 | |
| 106 | INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da", |
| 107 | "Dependence Analysis", true, true) |
| 108 | INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| 109 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| 110 | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| 111 | INITIALIZE_PASS_END(DependenceAnalysis, "da", |
| 112 | "Dependence Analysis", true, true) |
| 113 | |
| 114 | char DependenceAnalysis::ID = 0; |
| 115 | |
| 116 | |
| 117 | FunctionPass *llvm::createDependenceAnalysisPass() { |
| 118 | return new DependenceAnalysis(); |
| 119 | } |
| 120 | |
| 121 | |
| 122 | bool DependenceAnalysis::runOnFunction(Function &F) { |
| 123 | this->F = &F; |
| 124 | AA = &getAnalysis<AliasAnalysis>(); |
| 125 | SE = &getAnalysis<ScalarEvolution>(); |
| 126 | LI = &getAnalysis<LoopInfo>(); |
| 127 | return false; |
| 128 | } |
| 129 | |
| 130 | |
| 131 | void DependenceAnalysis::releaseMemory() { |
| 132 | } |
| 133 | |
| 134 | |
| 135 | void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| 136 | AU.setPreservesAll(); |
| 137 | AU.addRequiredTransitive<AliasAnalysis>(); |
| 138 | AU.addRequiredTransitive<ScalarEvolution>(); |
| 139 | AU.addRequiredTransitive<LoopInfo>(); |
| 140 | } |
| 141 | |
| 142 | |
| 143 | // Used to test the dependence analyzer. |
| 144 | // Looks through the function, noting the first store instruction |
| 145 | // and the first load instruction |
| 146 | // (which always follows the first load in our tests). |
| 147 | // Calls depends() and prints out the result. |
| 148 | // Ignores all other instructions. |
| 149 | static |
| 150 | void dumpExampleDependence(raw_ostream &OS, Function *F, |
| 151 | DependenceAnalysis *DA) { |
| 152 | for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); |
| 153 | SrcI != SrcE; ++SrcI) { |
| 154 | if (const StoreInst *Src = dyn_cast<StoreInst>(&*SrcI)) { |
| 155 | for (inst_iterator DstI = SrcI, DstE = inst_end(F); |
| 156 | DstI != DstE; ++DstI) { |
| 157 | if (const LoadInst *Dst = dyn_cast<LoadInst>(&*DstI)) { |
| 158 | OS << "da analyze - "; |
| 159 | if (Dependence *D = DA->depends(Src, Dst, true)) { |
| 160 | D->dump(OS); |
| 161 | for (unsigned Level = 1; Level <= D->getLevels(); Level++) { |
| 162 | if (D->isSplitable(Level)) { |
| 163 | OS << "da analyze - split level = " << Level; |
| 164 | OS << ", iteration = " << *DA->getSplitIteration(D, Level); |
| 165 | OS << "!\n"; |
| 166 | } |
| 167 | } |
| 168 | delete D; |
| 169 | } |
| 170 | else |
| 171 | OS << "none!\n"; |
| 172 | return; |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | |
| 180 | void DependenceAnalysis::print(raw_ostream &OS, const Module*) const { |
| 181 | dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this)); |
| 182 | } |
| 183 | |
| 184 | //===----------------------------------------------------------------------===// |
| 185 | // Dependence methods |
| 186 | |
| 187 | // Returns true if this is an input dependence. |
| 188 | bool Dependence::isInput() const { |
| 189 | return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); |
| 190 | } |
| 191 | |
| 192 | |
| 193 | // Returns true if this is an output dependence. |
| 194 | bool Dependence::isOutput() const { |
| 195 | return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); |
| 196 | } |
| 197 | |
| 198 | |
| 199 | // Returns true if this is an flow (aka true) dependence. |
| 200 | bool Dependence::isFlow() const { |
| 201 | return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); |
| 202 | } |
| 203 | |
| 204 | |
| 205 | // Returns true if this is an anti dependence. |
| 206 | bool Dependence::isAnti() const { |
| 207 | return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); |
| 208 | } |
| 209 | |
| 210 | |
| 211 | // Returns true if a particular level is scalar; that is, |
| 212 | // if no subscript in the source or destination mention the induction |
| 213 | // variable associated with the loop at this level. |
| 214 | // Leave this out of line, so it will serve as a virtual method anchor |
| 215 | bool Dependence::isScalar(unsigned level) const { |
| 216 | return false; |
| 217 | } |
| 218 | |
| 219 | |
| 220 | //===----------------------------------------------------------------------===// |
| 221 | // FullDependence methods |
| 222 | |
| 223 | FullDependence::FullDependence(const Instruction *Source, |
| 224 | const Instruction *Destination, |
| 225 | bool PossiblyLoopIndependent, |
| 226 | unsigned CommonLevels) : |
| 227 | Dependence(Source, Destination), |
| 228 | Levels(CommonLevels), |
| 229 | LoopIndependent(PossiblyLoopIndependent) { |
| 230 | Consistent = true; |
| 231 | DV = CommonLevels ? new DVEntry[CommonLevels] : NULL; |
| 232 | } |
| 233 | |
| 234 | // The rest are simple getters that hide the implementation. |
| 235 | |
| 236 | // getDirection - Returns the direction associated with a particular level. |
| 237 | unsigned FullDependence::getDirection(unsigned Level) const { |
| 238 | assert(0 < Level && Level <= Levels && "Level out of range"); |
| 239 | return DV[Level - 1].Direction; |
| 240 | } |
| 241 | |
| 242 | |
| 243 | // Returns the distance (or NULL) associated with a particular level. |
| 244 | const SCEV *FullDependence::getDistance(unsigned Level) const { |
| 245 | assert(0 < Level && Level <= Levels && "Level out of range"); |
| 246 | return DV[Level - 1].Distance; |
| 247 | } |
| 248 | |
| 249 | |
| 250 | // Returns true if a particular level is scalar; that is, |
| 251 | // if no subscript in the source or destination mention the induction |
| 252 | // variable associated with the loop at this level. |
| 253 | bool FullDependence::isScalar(unsigned Level) const { |
| 254 | assert(0 < Level && Level <= Levels && "Level out of range"); |
| 255 | return DV[Level - 1].Scalar; |
| 256 | } |
| 257 | |
| 258 | |
| 259 | // Returns true if peeling the first iteration from this loop |
| 260 | // will break this dependence. |
| 261 | bool FullDependence::isPeelFirst(unsigned Level) const { |
| 262 | assert(0 < Level && Level <= Levels && "Level out of range"); |
| 263 | return DV[Level - 1].PeelFirst; |
| 264 | } |
| 265 | |
| 266 | |
| 267 | // Returns true if peeling the last iteration from this loop |
| 268 | // will break this dependence. |
| 269 | bool FullDependence::isPeelLast(unsigned Level) const { |
| 270 | assert(0 < Level && Level <= Levels && "Level out of range"); |
| 271 | return DV[Level - 1].PeelLast; |
| 272 | } |
| 273 | |
| 274 | |
| 275 | // Returns true if splitting this loop will break the dependence. |
| 276 | bool FullDependence::isSplitable(unsigned Level) const { |
| 277 | assert(0 < Level && Level <= Levels && "Level out of range"); |
| 278 | return DV[Level - 1].Splitable; |
| 279 | } |
| 280 | |
| 281 | |
| 282 | //===----------------------------------------------------------------------===// |
| 283 | // DependenceAnalysis::Constraint methods |
| 284 | |
| 285 | // If constraint is a point <X, Y>, returns X. |
| 286 | // Otherwise assert. |
| 287 | const SCEV *DependenceAnalysis::Constraint::getX() const { |
| 288 | assert(Kind == Point && "Kind should be Point"); |
| 289 | return A; |
| 290 | } |
| 291 | |
| 292 | |
| 293 | // If constraint is a point <X, Y>, returns Y. |
| 294 | // Otherwise assert. |
| 295 | const SCEV *DependenceAnalysis::Constraint::getY() const { |
| 296 | assert(Kind == Point && "Kind should be Point"); |
| 297 | return B; |
| 298 | } |
| 299 | |
| 300 | |
| 301 | // If constraint is a line AX + BY = C, returns A. |
| 302 | // Otherwise assert. |
| 303 | const SCEV *DependenceAnalysis::Constraint::getA() const { |
| 304 | assert((Kind == Line || Kind == Distance) && |
| 305 | "Kind should be Line (or Distance)"); |
| 306 | return A; |
| 307 | } |
| 308 | |
| 309 | |
| 310 | // If constraint is a line AX + BY = C, returns B. |
| 311 | // Otherwise assert. |
| 312 | const SCEV *DependenceAnalysis::Constraint::getB() const { |
| 313 | assert((Kind == Line || Kind == Distance) && |
| 314 | "Kind should be Line (or Distance)"); |
| 315 | return B; |
| 316 | } |
| 317 | |
| 318 | |
| 319 | // If constraint is a line AX + BY = C, returns C. |
| 320 | // Otherwise assert. |
| 321 | const SCEV *DependenceAnalysis::Constraint::getC() const { |
| 322 | assert((Kind == Line || Kind == Distance) && |
| 323 | "Kind should be Line (or Distance)"); |
| 324 | return C; |
| 325 | } |
| 326 | |
| 327 | |
| 328 | // If constraint is a distance, returns D. |
| 329 | // Otherwise assert. |
| 330 | const SCEV *DependenceAnalysis::Constraint::getD() const { |
| 331 | assert(Kind == Distance && "Kind should be Distance"); |
| 332 | return SE->getNegativeSCEV(C); |
| 333 | } |
| 334 | |
| 335 | |
| 336 | // Returns the loop associated with this constraint. |
| 337 | const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const { |
| 338 | assert((Kind == Distance || Kind == Line || Kind == Point) && |
| 339 | "Kind should be Distance, Line, or Point"); |
| 340 | return AssociatedLoop; |
| 341 | } |
| 342 | |
| 343 | |
| 344 | void DependenceAnalysis::Constraint::setPoint(const SCEV *X, |
| 345 | const SCEV *Y, |
| 346 | const Loop *CurLoop) { |
| 347 | Kind = Point; |
| 348 | A = X; |
| 349 | B = Y; |
| 350 | AssociatedLoop = CurLoop; |
| 351 | } |
| 352 | |
| 353 | |
| 354 | void DependenceAnalysis::Constraint::setLine(const SCEV *AA, |
| 355 | const SCEV *BB, |
| 356 | const SCEV *CC, |
| 357 | const Loop *CurLoop) { |
| 358 | Kind = Line; |
| 359 | A = AA; |
| 360 | B = BB; |
| 361 | C = CC; |
| 362 | AssociatedLoop = CurLoop; |
| 363 | } |
| 364 | |
| 365 | |
| 366 | void DependenceAnalysis::Constraint::setDistance(const SCEV *D, |
| 367 | const Loop *CurLoop) { |
| 368 | Kind = Distance; |
| 369 | A = SE->getConstant(D->getType(), 1); |
| 370 | B = SE->getNegativeSCEV(A); |
| 371 | C = SE->getNegativeSCEV(D); |
| 372 | AssociatedLoop = CurLoop; |
| 373 | } |
| 374 | |
| 375 | |
| 376 | void DependenceAnalysis::Constraint::setEmpty() { |
| 377 | Kind = Empty; |
| 378 | } |
| 379 | |
| 380 | |
| 381 | void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) { |
| 382 | SE = NewSE; |
| 383 | Kind = Any; |
| 384 | } |
| 385 | |
| 386 | |
| 387 | // For debugging purposes. Dumps the constraint out to OS. |
| 388 | void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const { |
| 389 | if (isEmpty()) |
| 390 | OS << " Empty\n"; |
| 391 | else if (isAny()) |
| 392 | OS << " Any\n"; |
| 393 | else if (isPoint()) |
| 394 | OS << " Point is <" << *getX() << ", " << *getY() << ">\n"; |
| 395 | else if (isDistance()) |
| 396 | OS << " Distance is " << *getD() << |
| 397 | " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n"; |
| 398 | else if (isLine()) |
| 399 | OS << " Line is " << *getA() << "*X + " << |
| 400 | *getB() << "*Y = " << *getC() << "\n"; |
| 401 | else |
| 402 | llvm_unreachable("unknown constraint type in Constraint::dump"); |
| 403 | } |
| 404 | |
| 405 | |
| 406 | // Updates X with the intersection |
| 407 | // of the Constraints X and Y. Returns true if X has changed. |
| 408 | // Corresponds to Figure 4 from the paper |
| 409 | // |
| 410 | // Practical Dependence Testing |
| 411 | // Goff, Kennedy, Tseng |
| 412 | // PLDI 1991 |
| 413 | bool DependenceAnalysis::intersectConstraints(Constraint *X, |
| 414 | const Constraint *Y) { |
| 415 | ++DeltaApplications; |
| 416 | DEBUG(dbgs() << "\tintersect constraints\n"); |
| 417 | DEBUG(dbgs() << "\t X ="; X->dump(dbgs())); |
| 418 | DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs())); |
| 419 | assert(!Y->isPoint() && "Y must not be a Point"); |
| 420 | if (X->isAny()) { |
| 421 | if (Y->isAny()) |
| 422 | return false; |
| 423 | *X = *Y; |
| 424 | return true; |
| 425 | } |
| 426 | if (X->isEmpty()) |
| 427 | return false; |
| 428 | if (Y->isEmpty()) { |
| 429 | X->setEmpty(); |
| 430 | return true; |
| 431 | } |
| 432 | |
| 433 | if (X->isDistance() && Y->isDistance()) { |
| 434 | DEBUG(dbgs() << "\t intersect 2 distances\n"); |
| 435 | if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD())) |
| 436 | return false; |
| 437 | if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) { |
| 438 | X->setEmpty(); |
| 439 | ++DeltaSuccesses; |
| 440 | return true; |
| 441 | } |
| 442 | // Hmmm, interesting situation. |
| 443 | // I guess if either is constant, keep it and ignore the other. |
| 444 | if (isa<SCEVConstant>(Y->getD())) { |
| 445 | *X = *Y; |
| 446 | return true; |
| 447 | } |
| 448 | return false; |
| 449 | } |
| 450 | |
| 451 | // At this point, the pseudo-code in Figure 4 of the paper |
| 452 | // checks if (X->isPoint() && Y->isPoint()). |
| 453 | // This case can't occur in our implementation, |
| 454 | // since a Point can only arise as the result of intersecting |
| 455 | // two Line constraints, and the right-hand value, Y, is never |
| 456 | // the result of an intersection. |
| 457 | assert(!(X->isPoint() && Y->isPoint()) && |
| 458 | "We shouldn't ever see X->isPoint() && Y->isPoint()"); |
| 459 | |
| 460 | if (X->isLine() && Y->isLine()) { |
| 461 | DEBUG(dbgs() << "\t intersect 2 lines\n"); |
| 462 | const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB()); |
| 463 | const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA()); |
| 464 | if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) { |
| 465 | // slopes are equal, so lines are parallel |
| 466 | DEBUG(dbgs() << "\t\tsame slope\n"); |
| 467 | Prod1 = SE->getMulExpr(X->getC(), Y->getB()); |
| 468 | Prod2 = SE->getMulExpr(X->getB(), Y->getC()); |
| 469 | if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) |
| 470 | return false; |
| 471 | if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { |
| 472 | X->setEmpty(); |
| 473 | ++DeltaSuccesses; |
| 474 | return true; |
| 475 | } |
| 476 | return false; |
| 477 | } |
| 478 | if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { |
| 479 | // slopes differ, so lines intersect |
| 480 | DEBUG(dbgs() << "\t\tdifferent slopes\n"); |
| 481 | const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB()); |
| 482 | const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA()); |
| 483 | const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB()); |
| 484 | const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA()); |
| 485 | const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB()); |
| 486 | const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB()); |
| 487 | const SCEVConstant *C1A2_C2A1 = |
| 488 | dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1)); |
| 489 | const SCEVConstant *C1B2_C2B1 = |
| 490 | dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1)); |
| 491 | const SCEVConstant *A1B2_A2B1 = |
| 492 | dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1)); |
| 493 | const SCEVConstant *A2B1_A1B2 = |
| 494 | dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2)); |
| 495 | if (!C1B2_C2B1 || !C1A2_C2A1 || |
| 496 | !A1B2_A2B1 || !A2B1_A1B2) |
| 497 | return false; |
| 498 | APInt Xtop = C1B2_C2B1->getValue()->getValue(); |
| 499 | APInt Xbot = A1B2_A2B1->getValue()->getValue(); |
| 500 | APInt Ytop = C1A2_C2A1->getValue()->getValue(); |
| 501 | APInt Ybot = A2B1_A1B2->getValue()->getValue(); |
| 502 | DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n"); |
| 503 | DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n"); |
| 504 | DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n"); |
| 505 | DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n"); |
| 506 | APInt Xq = Xtop; // these need to be initialized, even |
| 507 | APInt Xr = Xtop; // though they're just going to be overwritten |
| 508 | APInt::sdivrem(Xtop, Xbot, Xq, Xr); |
| 509 | APInt Yq = Ytop; |
| 510 | APInt Yr = Ytop;; |
| 511 | APInt::sdivrem(Ytop, Ybot, Yq, Yr); |
| 512 | if (Xr != 0 || Yr != 0) { |
| 513 | X->setEmpty(); |
| 514 | ++DeltaSuccesses; |
| 515 | return true; |
| 516 | } |
| 517 | DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n"); |
| 518 | if (Xq.slt(0) || Yq.slt(0)) { |
| 519 | X->setEmpty(); |
| 520 | ++DeltaSuccesses; |
| 521 | return true; |
| 522 | } |
| 523 | if (const SCEVConstant *CUB = |
| 524 | collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) { |
| 525 | APInt UpperBound = CUB->getValue()->getValue(); |
| 526 | DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n"); |
| 527 | if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) { |
| 528 | X->setEmpty(); |
| 529 | ++DeltaSuccesses; |
| 530 | return true; |
| 531 | } |
| 532 | } |
| 533 | X->setPoint(SE->getConstant(Xq), |
| 534 | SE->getConstant(Yq), |
| 535 | X->getAssociatedLoop()); |
| 536 | ++DeltaSuccesses; |
| 537 | return true; |
| 538 | } |
| 539 | return false; |
| 540 | } |
| 541 | |
| 542 | // if (X->isLine() && Y->isPoint()) This case can't occur. |
| 543 | assert(!(X->isLine() && Y->isPoint()) && "This case should never occur"); |
| 544 | |
| 545 | if (X->isPoint() && Y->isLine()) { |
| 546 | DEBUG(dbgs() << "\t intersect Point and Line\n"); |
| 547 | const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX()); |
| 548 | const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY()); |
| 549 | const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1); |
| 550 | if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC())) |
| 551 | return false; |
| 552 | if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) { |
| 553 | X->setEmpty(); |
| 554 | ++DeltaSuccesses; |
| 555 | return true; |
| 556 | } |
| 557 | return false; |
| 558 | } |
| 559 | |
| 560 | llvm_unreachable("shouldn't reach the end of Constraint intersection"); |
| 561 | return false; |
| 562 | } |
| 563 | |
| 564 | |
| 565 | //===----------------------------------------------------------------------===// |
| 566 | // DependenceAnalysis methods |
| 567 | |
| 568 | // For debugging purposes. Dumps a dependence to OS. |
| 569 | void Dependence::dump(raw_ostream &OS) const { |
| 570 | bool Splitable = false; |
| 571 | if (isConfused()) |
| 572 | OS << "confused"; |
| 573 | else { |
| 574 | if (isConsistent()) |
| 575 | OS << "consistent "; |
| 576 | if (isFlow()) |
| 577 | OS << "flow"; |
| 578 | else if (isOutput()) |
| 579 | OS << "output"; |
| 580 | else if (isAnti()) |
| 581 | OS << "anti"; |
| 582 | else if (isInput()) |
| 583 | OS << "input"; |
| 584 | unsigned Levels = getLevels(); |
| 585 | if (Levels) { |
| 586 | OS << " ["; |
| 587 | for (unsigned II = 1; II <= Levels; ++II) { |
| 588 | if (isSplitable(II)) |
| 589 | Splitable = true; |
| 590 | if (isPeelFirst(II)) |
| 591 | OS << 'p'; |
| 592 | const SCEV *Distance = getDistance(II); |
| 593 | if (Distance) |
| 594 | OS << *Distance; |
| 595 | else if (isScalar(II)) |
| 596 | OS << "S"; |
| 597 | else { |
| 598 | unsigned Direction = getDirection(II); |
| 599 | if (Direction == DVEntry::ALL) |
| 600 | OS << "*"; |
| 601 | else { |
| 602 | if (Direction & DVEntry::LT) |
| 603 | OS << "<"; |
| 604 | if (Direction & DVEntry::EQ) |
| 605 | OS << "="; |
| 606 | if (Direction & DVEntry::GT) |
| 607 | OS << ">"; |
| 608 | } |
| 609 | } |
| 610 | if (isPeelLast(II)) |
| 611 | OS << 'p'; |
| 612 | if (II < Levels) |
| 613 | OS << " "; |
| 614 | } |
| 615 | if (isLoopIndependent()) |
| 616 | OS << "|<"; |
| 617 | OS << "]"; |
| 618 | if (Splitable) |
| 619 | OS << " splitable"; |
| 620 | } |
| 621 | } |
| 622 | OS << "!\n"; |
| 623 | } |
| 624 | |
| 625 | |
| 626 | |
| 627 | static |
| 628 | AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA, |
| 629 | const Value *A, |
| 630 | const Value *B) { |
| 631 | const Value *AObj = GetUnderlyingObject(A); |
| 632 | const Value *BObj = GetUnderlyingObject(B); |
| 633 | return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()), |
| 634 | BObj, AA->getTypeStoreSize(BObj->getType())); |
| 635 | } |
| 636 | |
| 637 | |
| 638 | // Returns true if the load or store can be analyzed. Atomic and volatile |
| 639 | // operations have properties which this analysis does not understand. |
| 640 | static |
| 641 | bool isLoadOrStore(const Instruction *I) { |
| 642 | if (const LoadInst *LI = dyn_cast<LoadInst>(I)) |
| 643 | return LI->isUnordered(); |
| 644 | else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) |
| 645 | return SI->isUnordered(); |
| 646 | return false; |
| 647 | } |
| 648 | |
| 649 | |
| 650 | static |
| 651 | const Value *getPointerOperand(const Instruction *I) { |
| 652 | if (const LoadInst *LI = dyn_cast<LoadInst>(I)) |
| 653 | return LI->getPointerOperand(); |
| 654 | if (const StoreInst *SI = dyn_cast<StoreInst>(I)) |
| 655 | return SI->getPointerOperand(); |
| 656 | llvm_unreachable("Value is not load or store instruction"); |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | |
| 661 | // Examines the loop nesting of the Src and Dst |
| 662 | // instructions and establishes their shared loops. Sets the variables |
| 663 | // CommonLevels, SrcLevels, and MaxLevels. |
| 664 | // The source and destination instructions needn't be contained in the same |
| 665 | // loop. The routine establishNestingLevels finds the level of most deeply |
| 666 | // nested loop that contains them both, CommonLevels. An instruction that's |
| 667 | // not contained in a loop is at level = 0. MaxLevels is equal to the level |
| 668 | // of the source plus the level of the destination, minus CommonLevels. |
| 669 | // This lets us allocate vectors MaxLevels in length, with room for every |
| 670 | // distinct loop referenced in both the source and destination subscripts. |
| 671 | // The variable SrcLevels is the nesting depth of the source instruction. |
| 672 | // It's used to help calculate distinct loops referenced by the destination. |
| 673 | // Here's the map from loops to levels: |
| 674 | // 0 - unused |
| 675 | // 1 - outermost common loop |
| 676 | // ... - other common loops |
| 677 | // CommonLevels - innermost common loop |
| 678 | // ... - loops containing Src but not Dst |
| 679 | // SrcLevels - innermost loop containing Src but not Dst |
| 680 | // ... - loops containing Dst but not Src |
| 681 | // MaxLevels - innermost loops containing Dst but not Src |
| 682 | // Consider the follow code fragment: |
| 683 | // for (a = ...) { |
| 684 | // for (b = ...) { |
| 685 | // for (c = ...) { |
| 686 | // for (d = ...) { |
| 687 | // A[] = ...; |
| 688 | // } |
| 689 | // } |
| 690 | // for (e = ...) { |
| 691 | // for (f = ...) { |
| 692 | // for (g = ...) { |
| 693 | // ... = A[]; |
| 694 | // } |
| 695 | // } |
| 696 | // } |
| 697 | // } |
| 698 | // } |
| 699 | // If we're looking at the possibility of a dependence between the store |
| 700 | // to A (the Src) and the load from A (the Dst), we'll note that they |
| 701 | // have 2 loops in common, so CommonLevels will equal 2 and the direction |
| 702 | // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. |
| 703 | // A map from loop names to loop numbers would look like |
| 704 | // a - 1 |
| 705 | // b - 2 = CommonLevels |
| 706 | // c - 3 |
| 707 | // d - 4 = SrcLevels |
| 708 | // e - 5 |
| 709 | // f - 6 |
| 710 | // g - 7 = MaxLevels |
| 711 | void DependenceAnalysis::establishNestingLevels(const Instruction *Src, |
| 712 | const Instruction *Dst) { |
| 713 | const BasicBlock *SrcBlock = Src->getParent(); |
| 714 | const BasicBlock *DstBlock = Dst->getParent(); |
| 715 | unsigned SrcLevel = LI->getLoopDepth(SrcBlock); |
| 716 | unsigned DstLevel = LI->getLoopDepth(DstBlock); |
| 717 | const Loop *SrcLoop = LI->getLoopFor(SrcBlock); |
| 718 | const Loop *DstLoop = LI->getLoopFor(DstBlock); |
| 719 | SrcLevels = SrcLevel; |
| 720 | MaxLevels = SrcLevel + DstLevel; |
| 721 | while (SrcLevel > DstLevel) { |
| 722 | SrcLoop = SrcLoop->getParentLoop(); |
| 723 | SrcLevel--; |
| 724 | } |
| 725 | while (DstLevel > SrcLevel) { |
| 726 | DstLoop = DstLoop->getParentLoop(); |
| 727 | DstLevel--; |
| 728 | } |
| 729 | while (SrcLoop != DstLoop) { |
| 730 | SrcLoop = SrcLoop->getParentLoop(); |
| 731 | DstLoop = DstLoop->getParentLoop(); |
| 732 | SrcLevel--; |
| 733 | } |
| 734 | CommonLevels = SrcLevel; |
| 735 | MaxLevels -= CommonLevels; |
| 736 | } |
| 737 | |
| 738 | |
| 739 | // Given one of the loops containing the source, return |
| 740 | // its level index in our numbering scheme. |
| 741 | unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const { |
| 742 | return SrcLoop->getLoopDepth(); |
| 743 | } |
| 744 | |
| 745 | |
| 746 | // Given one of the loops containing the destination, |
| 747 | // return its level index in our numbering scheme. |
| 748 | unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const { |
| 749 | unsigned D = DstLoop->getLoopDepth(); |
| 750 | if (D > CommonLevels) |
| 751 | return D - CommonLevels + SrcLevels; |
| 752 | else |
| 753 | return D; |
| 754 | } |
| 755 | |
| 756 | |
| 757 | // Returns true if Expression is loop invariant in LoopNest. |
| 758 | bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression, |
| 759 | const Loop *LoopNest) const { |
| 760 | if (!LoopNest) |
| 761 | return true; |
| 762 | return SE->isLoopInvariant(Expression, LoopNest) && |
| 763 | isLoopInvariant(Expression, LoopNest->getParentLoop()); |
| 764 | } |
| 765 | |
| 766 | |
| 767 | |
| 768 | // Finds the set of loops from the LoopNest that |
| 769 | // have a level <= CommonLevels and are referred to by the SCEV Expression. |
| 770 | void DependenceAnalysis::collectCommonLoops(const SCEV *Expression, |
| 771 | const Loop *LoopNest, |
| 772 | SmallBitVector &Loops) const { |
| 773 | while (LoopNest) { |
| 774 | unsigned Level = LoopNest->getLoopDepth(); |
| 775 | if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest)) |
| 776 | Loops.set(Level); |
| 777 | LoopNest = LoopNest->getParentLoop(); |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | |
| 782 | // removeMatchingExtensions - Examines a subscript pair. |
| 783 | // If the source and destination are identically sign (or zero) |
| 784 | // extended, it strips off the extension in an effect to simplify |
| 785 | // the actual analysis. |
| 786 | void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) { |
| 787 | const SCEV *Src = Pair->Src; |
| 788 | const SCEV *Dst = Pair->Dst; |
| 789 | if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) || |
| 790 | (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) { |
| 791 | const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src); |
| 792 | const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst); |
| 793 | if (SrcCast->getType() == DstCast->getType()) { |
| 794 | Pair->Src = SrcCast->getOperand(); |
| 795 | Pair->Dst = DstCast->getOperand(); |
| 796 | } |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | |
| 801 | // Examine the scev and return true iff it's linear. |
| 802 | // Collect any loops mentioned in the set of "Loops". |
| 803 | bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src, |
| 804 | const Loop *LoopNest, |
| 805 | SmallBitVector &Loops) { |
| 806 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src); |
| 807 | if (!AddRec) |
| 808 | return isLoopInvariant(Src, LoopNest); |
| 809 | const SCEV *Start = AddRec->getStart(); |
| 810 | const SCEV *Step = AddRec->getStepRecurrence(*SE); |
| 811 | if (!isLoopInvariant(Step, LoopNest)) |
| 812 | return false; |
| 813 | Loops.set(mapSrcLoop(AddRec->getLoop())); |
| 814 | return checkSrcSubscript(Start, LoopNest, Loops); |
| 815 | } |
| 816 | |
| 817 | |
| 818 | |
| 819 | // Examine the scev and return true iff it's linear. |
| 820 | // Collect any loops mentioned in the set of "Loops". |
| 821 | bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst, |
| 822 | const Loop *LoopNest, |
| 823 | SmallBitVector &Loops) { |
| 824 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst); |
| 825 | if (!AddRec) |
| 826 | return isLoopInvariant(Dst, LoopNest); |
| 827 | const SCEV *Start = AddRec->getStart(); |
| 828 | const SCEV *Step = AddRec->getStepRecurrence(*SE); |
| 829 | if (!isLoopInvariant(Step, LoopNest)) |
| 830 | return false; |
| 831 | Loops.set(mapDstLoop(AddRec->getLoop())); |
| 832 | return checkDstSubscript(Start, LoopNest, Loops); |
| 833 | } |
| 834 | |
| 835 | |
| 836 | // Examines the subscript pair (the Src and Dst SCEVs) |
| 837 | // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. |
| 838 | // Collects the associated loops in a set. |
| 839 | DependenceAnalysis::Subscript::ClassificationKind |
| 840 | DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, |
| 841 | const SCEV *Dst, const Loop *DstLoopNest, |
| 842 | SmallBitVector &Loops) { |
| 843 | SmallBitVector SrcLoops(MaxLevels + 1); |
| 844 | SmallBitVector DstLoops(MaxLevels + 1); |
| 845 | if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops)) |
| 846 | return Subscript::NonLinear; |
| 847 | if (!checkDstSubscript(Dst, DstLoopNest, DstLoops)) |
| 848 | return Subscript::NonLinear; |
| 849 | Loops = SrcLoops; |
| 850 | Loops |= DstLoops; |
| 851 | unsigned N = Loops.count(); |
| 852 | if (N == 0) |
| 853 | return Subscript::ZIV; |
| 854 | if (N == 1) |
| 855 | return Subscript::SIV; |
| 856 | if (N == 2 && (SrcLoops.count() == 0 || |
| 857 | DstLoops.count() == 0 || |
| 858 | (SrcLoops.count() == 1 && DstLoops.count() == 1))) |
| 859 | return Subscript::RDIV; |
| 860 | return Subscript::MIV; |
| 861 | } |
| 862 | |
| 863 | |
| 864 | // A wrapper around SCEV::isKnownPredicate. |
| 865 | // Looks for cases where we're interested in comparing for equality. |
| 866 | // If both X and Y have been identically sign or zero extended, |
| 867 | // it strips off the (confusing) extensions before invoking |
| 868 | // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package |
| 869 | // will be similarly updated. |
| 870 | // |
| 871 | // If SCEV::isKnownPredicate can't prove the predicate, |
| 872 | // we try simple subtraction, which seems to help in some cases |
| 873 | // involving symbolics. |
| 874 | bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred, |
| 875 | const SCEV *X, |
| 876 | const SCEV *Y) const { |
| 877 | if (Pred == CmpInst::ICMP_EQ || |
| 878 | Pred == CmpInst::ICMP_NE) { |
| 879 | if ((isa<SCEVSignExtendExpr>(X) && |
| 880 | isa<SCEVSignExtendExpr>(Y)) || |
| 881 | (isa<SCEVZeroExtendExpr>(X) && |
| 882 | isa<SCEVZeroExtendExpr>(Y))) { |
| 883 | const SCEVCastExpr *CX = cast<SCEVCastExpr>(X); |
| 884 | const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y); |
| 885 | const SCEV *Xop = CX->getOperand(); |
| 886 | const SCEV *Yop = CY->getOperand(); |
| 887 | if (Xop->getType() == Yop->getType()) { |
| 888 | X = Xop; |
| 889 | Y = Yop; |
| 890 | } |
| 891 | } |
| 892 | } |
| 893 | if (SE->isKnownPredicate(Pred, X, Y)) |
| 894 | return true; |
| 895 | // If SE->isKnownPredicate can't prove the condition, |
| 896 | // we try the brute-force approach of subtracting |
| 897 | // and testing the difference. |
| 898 | // By testing with SE->isKnownPredicate first, we avoid |
| 899 | // the possibility of overflow when the arguments are constants. |
| 900 | const SCEV *Delta = SE->getMinusSCEV(X, Y); |
| 901 | switch (Pred) { |
| 902 | case CmpInst::ICMP_EQ: |
| 903 | return Delta->isZero(); |
| 904 | case CmpInst::ICMP_NE: |
| 905 | return SE->isKnownNonZero(Delta); |
| 906 | case CmpInst::ICMP_SGE: |
| 907 | return SE->isKnownNonNegative(Delta); |
| 908 | case CmpInst::ICMP_SLE: |
| 909 | return SE->isKnownNonPositive(Delta); |
| 910 | case CmpInst::ICMP_SGT: |
| 911 | return SE->isKnownPositive(Delta); |
| 912 | case CmpInst::ICMP_SLT: |
| 913 | return SE->isKnownNegative(Delta); |
| 914 | default: |
| 915 | llvm_unreachable("unexpected predicate in isKnownPredicate"); |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | |
| 920 | // All subscripts are all the same type. |
| 921 | // Loop bound may be smaller (e.g., a char). |
| 922 | // Should zero extend loop bound, since it's always >= 0. |
| 923 | // This routine collects upper bound and extends if needed. |
| 924 | // Return null if no bound available. |
| 925 | const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L, |
| 926 | Type *T) const { |
| 927 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| 928 | const SCEV *UB = SE->getBackedgeTakenCount(L); |
| 929 | return SE->getNoopOrZeroExtend(UB, T); |
| 930 | } |
| 931 | return NULL; |
| 932 | } |
| 933 | |
| 934 | |
| 935 | // Calls collectUpperBound(), then attempts to cast it to SCEVConstant. |
| 936 | // If the cast fails, returns NULL. |
| 937 | const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L, |
| 938 | Type *T |
| 939 | ) const { |
| 940 | if (const SCEV *UB = collectUpperBound(L, T)) |
| 941 | return dyn_cast<SCEVConstant>(UB); |
| 942 | return NULL; |
| 943 | } |
| 944 | |
| 945 | |
| 946 | // testZIV - |
| 947 | // When we have a pair of subscripts of the form [c1] and [c2], |
| 948 | // where c1 and c2 are both loop invariant, we attack it using |
| 949 | // the ZIV test. Basically, we test by comparing the two values, |
| 950 | // but there are actually three possible results: |
| 951 | // 1) the values are equal, so there's a dependence |
| 952 | // 2) the values are different, so there's no dependence |
| 953 | // 3) the values might be equal, so we have to assume a dependence. |
| 954 | // |
| 955 | // Return true if dependence disproved. |
| 956 | bool DependenceAnalysis::testZIV(const SCEV *Src, |
| 957 | const SCEV *Dst, |
| 958 | FullDependence &Result) const { |
| 959 | DEBUG(dbgs() << " src = " << *Src << "\n"); |
| 960 | DEBUG(dbgs() << " dst = " << *Dst << "\n"); |
| 961 | ++ZIVapplications; |
| 962 | if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) { |
| 963 | DEBUG(dbgs() << " provably dependent\n"); |
| 964 | return false; // provably dependent |
| 965 | } |
| 966 | if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) { |
| 967 | DEBUG(dbgs() << " provably independent\n"); |
| 968 | ++ZIVindependence; |
| 969 | return true; // provably independent |
| 970 | } |
| 971 | DEBUG(dbgs() << " possibly dependent\n"); |
| 972 | Result.Consistent = false; |
| 973 | return false; // possibly dependent |
| 974 | } |
| 975 | |
| 976 | |
| 977 | // strongSIVtest - |
| 978 | // From the paper, Practical Dependence Testing, Section 4.2.1 |
| 979 | // |
| 980 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], |
| 981 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 982 | // and a is a constant, we can solve it exactly using the Strong SIV test. |
| 983 | // |
| 984 | // Can prove independence. Failing that, can compute distance (and direction). |
| 985 | // In the presence of symbolic terms, we can sometimes make progress. |
| 986 | // |
| 987 | // If there's a dependence, |
| 988 | // |
| 989 | // c1 + a*i = c2 + a*i' |
| 990 | // |
| 991 | // The dependence distance is |
| 992 | // |
| 993 | // d = i' - i = (c1 - c2)/a |
| 994 | // |
| 995 | // A dependence only exists if d is an integer and abs(d) <= U, where U is the |
| 996 | // loop's upper bound. If a dependence exists, the dependence direction is |
| 997 | // defined as |
| 998 | // |
| 999 | // { < if d > 0 |
| 1000 | // direction = { = if d = 0 |
| 1001 | // { > if d < 0 |
| 1002 | // |
| 1003 | // Return true if dependence disproved. |
| 1004 | bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff, |
| 1005 | const SCEV *SrcConst, |
| 1006 | const SCEV *DstConst, |
| 1007 | const Loop *CurLoop, |
| 1008 | unsigned Level, |
| 1009 | FullDependence &Result, |
| 1010 | Constraint &NewConstraint) const { |
| 1011 | DEBUG(dbgs() << "\tStrong SIV test\n"); |
| 1012 | DEBUG(dbgs() << "\t Coeff = " << *Coeff); |
| 1013 | DEBUG(dbgs() << ", " << *Coeff->getType() << "\n"); |
| 1014 | DEBUG(dbgs() << "\t SrcConst = " << *SrcConst); |
| 1015 | DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n"); |
| 1016 | DEBUG(dbgs() << "\t DstConst = " << *DstConst); |
| 1017 | DEBUG(dbgs() << ", " << *DstConst->getType() << "\n"); |
| 1018 | ++StrongSIVapplications; |
| 1019 | assert(0 < Level && Level <= CommonLevels && "level out of range"); |
| 1020 | Level--; |
| 1021 | |
| 1022 | const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); |
| 1023 | DEBUG(dbgs() << "\t Delta = " << *Delta); |
| 1024 | DEBUG(dbgs() << ", " << *Delta->getType() << "\n"); |
| 1025 | |
| 1026 | // check that |Delta| < iteration count |
| 1027 | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { |
| 1028 | DEBUG(dbgs() << "\t UpperBound = " << *UpperBound); |
| 1029 | DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n"); |
| 1030 | const SCEV *AbsDelta = |
| 1031 | SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta); |
| 1032 | const SCEV *AbsCoeff = |
| 1033 | SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff); |
| 1034 | const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff); |
| 1035 | if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) { |
| 1036 | // Distance greater than trip count - no dependence |
| 1037 | ++StrongSIVindependence; |
| 1038 | ++StrongSIVsuccesses; |
| 1039 | return true; |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | // Can we compute distance? |
| 1044 | if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) { |
| 1045 | APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue(); |
| 1046 | APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue(); |
| 1047 | APInt Distance = ConstDelta; // these need to be initialized |
| 1048 | APInt Remainder = ConstDelta; |
| 1049 | APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder); |
| 1050 | DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); |
| 1051 | DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); |
| 1052 | // Make sure Coeff divides Delta exactly |
| 1053 | if (Remainder != 0) { |
| 1054 | // Coeff doesn't divide Distance, no dependence |
| 1055 | ++StrongSIVindependence; |
| 1056 | ++StrongSIVsuccesses; |
| 1057 | return true; |
| 1058 | } |
| 1059 | Result.DV[Level].Distance = SE->getConstant(Distance); |
| 1060 | NewConstraint.setDistance(SE->getConstant(Distance), CurLoop); |
| 1061 | if (Distance.sgt(0)) |
| 1062 | Result.DV[Level].Direction &= Dependence::DVEntry::LT; |
| 1063 | else if (Distance.slt(0)) |
| 1064 | Result.DV[Level].Direction &= Dependence::DVEntry::GT; |
| 1065 | else |
| 1066 | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; |
| 1067 | ++StrongSIVsuccesses; |
| 1068 | } |
| 1069 | else if (Delta->isZero()) { |
| 1070 | // since 0/X == 0 |
| 1071 | Result.DV[Level].Distance = Delta; |
| 1072 | NewConstraint.setDistance(Delta, CurLoop); |
| 1073 | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; |
| 1074 | ++StrongSIVsuccesses; |
| 1075 | } |
| 1076 | else { |
| 1077 | if (Coeff->isOne()) { |
| 1078 | DEBUG(dbgs() << "\t Distance = " << *Delta << "\n"); |
| 1079 | Result.DV[Level].Distance = Delta; // since X/1 == X |
| 1080 | NewConstraint.setDistance(Delta, CurLoop); |
| 1081 | } |
| 1082 | else { |
| 1083 | Result.Consistent = false; |
| 1084 | NewConstraint.setLine(Coeff, |
| 1085 | SE->getNegativeSCEV(Coeff), |
| 1086 | SE->getNegativeSCEV(Delta), CurLoop); |
| 1087 | } |
| 1088 | |
| 1089 | // maybe we can get a useful direction |
| 1090 | bool DeltaMaybeZero = !SE->isKnownNonZero(Delta); |
| 1091 | bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta); |
| 1092 | bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta); |
| 1093 | bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff); |
| 1094 | bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff); |
| 1095 | // The double negatives above are confusing. |
| 1096 | // It helps to read !SE->isKnownNonZero(Delta) |
| 1097 | // as "Delta might be Zero" |
| 1098 | unsigned NewDirection = Dependence::DVEntry::NONE; |
| 1099 | if ((DeltaMaybePositive && CoeffMaybePositive) || |
| 1100 | (DeltaMaybeNegative && CoeffMaybeNegative)) |
| 1101 | NewDirection = Dependence::DVEntry::LT; |
| 1102 | if (DeltaMaybeZero) |
| 1103 | NewDirection |= Dependence::DVEntry::EQ; |
| 1104 | if ((DeltaMaybeNegative && CoeffMaybePositive) || |
| 1105 | (DeltaMaybePositive && CoeffMaybeNegative)) |
| 1106 | NewDirection |= Dependence::DVEntry::GT; |
| 1107 | if (NewDirection < Result.DV[Level].Direction) |
| 1108 | ++StrongSIVsuccesses; |
| 1109 | Result.DV[Level].Direction &= NewDirection; |
| 1110 | } |
| 1111 | return false; |
| 1112 | } |
| 1113 | |
| 1114 | |
| 1115 | // weakCrossingSIVtest - |
| 1116 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
| 1117 | // |
| 1118 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], |
| 1119 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 1120 | // and a is a constant, we can solve it exactly using the |
| 1121 | // Weak-Crossing SIV test. |
| 1122 | // |
| 1123 | // Given c1 + a*i = c2 - a*i', we can look for the intersection of |
| 1124 | // the two lines, where i = i', yielding |
| 1125 | // |
| 1126 | // c1 + a*i = c2 - a*i |
| 1127 | // 2a*i = c2 - c1 |
| 1128 | // i = (c2 - c1)/2a |
| 1129 | // |
| 1130 | // If i < 0, there is no dependence. |
| 1131 | // If i > upperbound, there is no dependence. |
| 1132 | // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. |
| 1133 | // If i = upperbound, there's a dependence with distance = 0. |
| 1134 | // If i is integral, there's a dependence (all directions). |
| 1135 | // If the non-integer part = 1/2, there's a dependence (<> directions). |
| 1136 | // Otherwise, there's no dependence. |
| 1137 | // |
| 1138 | // Can prove independence. Failing that, |
| 1139 | // can sometimes refine the directions. |
| 1140 | // Can determine iteration for splitting. |
| 1141 | // |
| 1142 | // Return true if dependence disproved. |
| 1143 | bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff, |
| 1144 | const SCEV *SrcConst, |
| 1145 | const SCEV *DstConst, |
| 1146 | const Loop *CurLoop, |
| 1147 | unsigned Level, |
| 1148 | FullDependence &Result, |
| 1149 | Constraint &NewConstraint, |
| 1150 | const SCEV *&SplitIter) const { |
| 1151 | DEBUG(dbgs() << "\tWeak-Crossing SIV test\n"); |
| 1152 | DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n"); |
| 1153 | DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); |
| 1154 | DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); |
| 1155 | ++WeakCrossingSIVapplications; |
| 1156 | assert(0 < Level && Level <= CommonLevels && "Level out of range"); |
| 1157 | Level--; |
| 1158 | Result.Consistent = false; |
| 1159 | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); |
| 1160 | DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); |
| 1161 | NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop); |
| 1162 | if (Delta->isZero()) { |
| 1163 | Result.DV[Level].Direction &= ~Dependence::DVEntry::LT; |
| 1164 | Result.DV[Level].Direction &= ~Dependence::DVEntry::GT; |
| 1165 | ++WeakCrossingSIVsuccesses; |
| 1166 | if (!Result.DV[Level].Direction) { |
| 1167 | ++WeakCrossingSIVindependence; |
| 1168 | return true; |
| 1169 | } |
| 1170 | Result.DV[Level].Distance = Delta; // = 0 |
| 1171 | return false; |
| 1172 | } |
| 1173 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff); |
| 1174 | if (!ConstCoeff) |
| 1175 | return false; |
| 1176 | |
| 1177 | Result.DV[Level].Splitable = true; |
| 1178 | if (SE->isKnownNegative(ConstCoeff)) { |
| 1179 | ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff)); |
| 1180 | assert(ConstCoeff && |
| 1181 | "dynamic cast of negative of ConstCoeff should yield constant"); |
| 1182 | Delta = SE->getNegativeSCEV(Delta); |
| 1183 | } |
| 1184 | assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive"); |
| 1185 | |
| 1186 | // compute SplitIter for use by DependenceAnalysis::getSplitIteration() |
| 1187 | SplitIter = |
| 1188 | SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0), |
| 1189 | Delta), |
| 1190 | SE->getMulExpr(SE->getConstant(Delta->getType(), 2), |
| 1191 | ConstCoeff)); |
| 1192 | DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n"); |
| 1193 | |
| 1194 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); |
| 1195 | if (!ConstDelta) |
| 1196 | return false; |
| 1197 | |
| 1198 | // We're certain that ConstCoeff > 0; therefore, |
| 1199 | // if Delta < 0, then no dependence. |
| 1200 | DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); |
| 1201 | DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n"); |
| 1202 | if (SE->isKnownNegative(Delta)) { |
| 1203 | // No dependence, Delta < 0 |
| 1204 | ++WeakCrossingSIVindependence; |
| 1205 | ++WeakCrossingSIVsuccesses; |
| 1206 | return true; |
| 1207 | } |
| 1208 | |
| 1209 | // We're certain that Delta > 0 and ConstCoeff > 0. |
| 1210 | // Check Delta/(2*ConstCoeff) against upper loop bound |
| 1211 | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { |
| 1212 | DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); |
| 1213 | const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2); |
| 1214 | const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), |
| 1215 | ConstantTwo); |
| 1216 | DEBUG(dbgs() << "\t ML = " << *ML << "\n"); |
| 1217 | if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) { |
| 1218 | // Delta too big, no dependence |
| 1219 | ++WeakCrossingSIVindependence; |
| 1220 | ++WeakCrossingSIVsuccesses; |
| 1221 | return true; |
| 1222 | } |
| 1223 | if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) { |
| 1224 | // i = i' = UB |
| 1225 | Result.DV[Level].Direction &= ~Dependence::DVEntry::LT; |
| 1226 | Result.DV[Level].Direction &= ~Dependence::DVEntry::GT; |
| 1227 | ++WeakCrossingSIVsuccesses; |
| 1228 | if (!Result.DV[Level].Direction) { |
| 1229 | ++WeakCrossingSIVindependence; |
| 1230 | return true; |
| 1231 | } |
| 1232 | Result.DV[Level].Splitable = false; |
| 1233 | Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0); |
| 1234 | return false; |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | // check that Coeff divides Delta |
| 1239 | APInt APDelta = ConstDelta->getValue()->getValue(); |
| 1240 | APInt APCoeff = ConstCoeff->getValue()->getValue(); |
| 1241 | APInt Distance = APDelta; // these need to be initialzed |
| 1242 | APInt Remainder = APDelta; |
| 1243 | APInt::sdivrem(APDelta, APCoeff, Distance, Remainder); |
| 1244 | DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); |
| 1245 | if (Remainder != 0) { |
| 1246 | // Coeff doesn't divide Delta, no dependence |
| 1247 | ++WeakCrossingSIVindependence; |
| 1248 | ++WeakCrossingSIVsuccesses; |
| 1249 | return true; |
| 1250 | } |
| 1251 | DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); |
| 1252 | |
| 1253 | // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible |
| 1254 | APInt Two = APInt(Distance.getBitWidth(), 2, true); |
| 1255 | Remainder = Distance.srem(Two); |
| 1256 | DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); |
| 1257 | if (Remainder != 0) { |
| 1258 | // Equal direction isn't possible |
| 1259 | Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ; |
| 1260 | ++WeakCrossingSIVsuccesses; |
| 1261 | } |
| 1262 | return false; |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | // Kirch's algorithm, from |
| 1267 | // |
| 1268 | // Optimizing Supercompilers for Supercomputers |
| 1269 | // Michael Wolfe |
| 1270 | // MIT Press, 1989 |
| 1271 | // |
| 1272 | // Program 2.1, page 29. |
| 1273 | // Computes the GCD of AM and BM. |
| 1274 | // Also finds a solution to the equation ax - by = gdc(a, b). |
| 1275 | // Returns true iff the gcd divides Delta. |
| 1276 | static |
| 1277 | bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta, |
| 1278 | APInt &G, APInt &X, APInt &Y) { |
| 1279 | APInt A0(Bits, 1, true), A1(Bits, 0, true); |
| 1280 | APInt B0(Bits, 0, true), B1(Bits, 1, true); |
| 1281 | APInt G0 = AM.abs(); |
| 1282 | APInt G1 = BM.abs(); |
| 1283 | APInt Q = G0; // these need to be initialized |
| 1284 | APInt R = G0; |
| 1285 | APInt::sdivrem(G0, G1, Q, R); |
| 1286 | while (R != 0) { |
| 1287 | APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; |
| 1288 | APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; |
| 1289 | G0 = G1; G1 = R; |
| 1290 | APInt::sdivrem(G0, G1, Q, R); |
| 1291 | } |
| 1292 | G = G1; |
| 1293 | DEBUG(dbgs() << "\t GCD = " << G << "\n"); |
| 1294 | X = AM.slt(0) ? -A1 : A1; |
| 1295 | Y = BM.slt(0) ? B1 : -B1; |
| 1296 | |
| 1297 | // make sure gcd divides Delta |
| 1298 | R = Delta.srem(G); |
| 1299 | if (R != 0) |
| 1300 | return true; // gcd doesn't divide Delta, no dependence |
| 1301 | Q = Delta.sdiv(G); |
| 1302 | X *= Q; |
| 1303 | Y *= Q; |
| 1304 | return false; |
| 1305 | } |
| 1306 | |
| 1307 | |
| 1308 | static |
| 1309 | APInt floorOfQuotient(APInt A, APInt B) { |
| 1310 | APInt Q = A; // these need to be initialized |
| 1311 | APInt R = A; |
| 1312 | APInt::sdivrem(A, B, Q, R); |
| 1313 | if (R == 0) |
| 1314 | return Q; |
| 1315 | if ((A.sgt(0) && B.sgt(0)) || |
| 1316 | (A.slt(0) && B.slt(0))) |
| 1317 | return Q; |
| 1318 | else |
| 1319 | return Q - 1; |
| 1320 | } |
| 1321 | |
| 1322 | |
| 1323 | static |
| 1324 | APInt ceilingOfQuotient(APInt A, APInt B) { |
| 1325 | APInt Q = A; // these need to be initialized |
| 1326 | APInt R = A; |
| 1327 | APInt::sdivrem(A, B, Q, R); |
| 1328 | if (R == 0) |
| 1329 | return Q; |
| 1330 | if ((A.sgt(0) && B.sgt(0)) || |
| 1331 | (A.slt(0) && B.slt(0))) |
| 1332 | return Q + 1; |
| 1333 | else |
| 1334 | return Q; |
| 1335 | } |
| 1336 | |
| 1337 | |
| 1338 | static |
| 1339 | APInt maxAPInt(APInt A, APInt B) { |
| 1340 | return A.sgt(B) ? A : B; |
| 1341 | } |
| 1342 | |
| 1343 | |
| 1344 | static |
| 1345 | APInt minAPInt(APInt A, APInt B) { |
| 1346 | return A.slt(B) ? A : B; |
| 1347 | } |
| 1348 | |
| 1349 | |
| 1350 | // exactSIVtest - |
| 1351 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], |
| 1352 | // where i is an induction variable, c1 and c2 are loop invariant, and a1 |
| 1353 | // and a2 are constant, we can solve it exactly using an algorithm developed |
| 1354 | // by Banerjee and Wolfe. See Section 2.5.3 in |
| 1355 | // |
| 1356 | // Optimizing Supercompilers for Supercomputers |
| 1357 | // Michael Wolfe |
| 1358 | // MIT Press, 1989 |
| 1359 | // |
| 1360 | // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), |
| 1361 | // so use them if possible. They're also a bit better with symbolics and, |
| 1362 | // in the case of the strong SIV test, can compute Distances. |
| 1363 | // |
| 1364 | // Return true if dependence disproved. |
| 1365 | bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff, |
| 1366 | const SCEV *DstCoeff, |
| 1367 | const SCEV *SrcConst, |
| 1368 | const SCEV *DstConst, |
| 1369 | const Loop *CurLoop, |
| 1370 | unsigned Level, |
| 1371 | FullDependence &Result, |
| 1372 | Constraint &NewConstraint) const { |
| 1373 | DEBUG(dbgs() << "\tExact SIV test\n"); |
| 1374 | DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); |
| 1375 | DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); |
| 1376 | DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); |
| 1377 | DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); |
| 1378 | ++ExactSIVapplications; |
| 1379 | assert(0 < Level && Level <= CommonLevels && "Level out of range"); |
| 1380 | Level--; |
| 1381 | Result.Consistent = false; |
| 1382 | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); |
| 1383 | DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); |
| 1384 | NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), |
| 1385 | Delta, CurLoop); |
| 1386 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); |
| 1387 | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); |
| 1388 | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); |
| 1389 | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) |
| 1390 | return false; |
| 1391 | |
| 1392 | // find gcd |
| 1393 | APInt G, X, Y; |
| 1394 | APInt AM = ConstSrcCoeff->getValue()->getValue(); |
| 1395 | APInt BM = ConstDstCoeff->getValue()->getValue(); |
| 1396 | unsigned Bits = AM.getBitWidth(); |
| 1397 | if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) { |
| 1398 | // gcd doesn't divide Delta, no dependence |
| 1399 | ++ExactSIVindependence; |
| 1400 | ++ExactSIVsuccesses; |
| 1401 | return true; |
| 1402 | } |
| 1403 | |
| 1404 | DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); |
| 1405 | |
| 1406 | // since SCEV construction normalizes, LM = 0 |
| 1407 | APInt UM(Bits, 1, true); |
| 1408 | bool UMvalid = false; |
| 1409 | // UM is perhaps unavailable, let's check |
| 1410 | if (const SCEVConstant *CUB = |
| 1411 | collectConstantUpperBound(CurLoop, Delta->getType())) { |
| 1412 | UM = CUB->getValue()->getValue(); |
| 1413 | DEBUG(dbgs() << "\t UM = " << UM << "\n"); |
| 1414 | UMvalid = true; |
| 1415 | } |
| 1416 | |
| 1417 | APInt TU(APInt::getSignedMaxValue(Bits)); |
| 1418 | APInt TL(APInt::getSignedMinValue(Bits)); |
| 1419 | |
| 1420 | // test(BM/G, LM-X) and test(-BM/G, X-UM) |
| 1421 | APInt TMUL = BM.sdiv(G); |
| 1422 | if (TMUL.sgt(0)) { |
| 1423 | TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); |
| 1424 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1425 | if (UMvalid) { |
| 1426 | TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL)); |
| 1427 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1428 | } |
| 1429 | } |
| 1430 | else { |
| 1431 | TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); |
| 1432 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1433 | if (UMvalid) { |
| 1434 | TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL)); |
| 1435 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | // test(AM/G, LM-Y) and test(-AM/G, Y-UM) |
| 1440 | TMUL = AM.sdiv(G); |
| 1441 | if (TMUL.sgt(0)) { |
| 1442 | TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); |
| 1443 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1444 | if (UMvalid) { |
| 1445 | TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL)); |
| 1446 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1447 | } |
| 1448 | } |
| 1449 | else { |
| 1450 | TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); |
| 1451 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1452 | if (UMvalid) { |
| 1453 | TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL)); |
| 1454 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1455 | } |
| 1456 | } |
| 1457 | if (TL.sgt(TU)) { |
| 1458 | ++ExactSIVindependence; |
| 1459 | ++ExactSIVsuccesses; |
| 1460 | return true; |
| 1461 | } |
| 1462 | |
| 1463 | // explore directions |
| 1464 | unsigned NewDirection = Dependence::DVEntry::NONE; |
| 1465 | |
| 1466 | // less than |
| 1467 | APInt SaveTU(TU); // save these |
| 1468 | APInt SaveTL(TL); |
| 1469 | DEBUG(dbgs() << "\t exploring LT direction\n"); |
| 1470 | TMUL = AM - BM; |
| 1471 | if (TMUL.sgt(0)) { |
| 1472 | TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL)); |
| 1473 | DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); |
| 1474 | } |
| 1475 | else { |
| 1476 | TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL)); |
| 1477 | DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); |
| 1478 | } |
| 1479 | if (TL.sle(TU)) { |
| 1480 | NewDirection |= Dependence::DVEntry::LT; |
| 1481 | ++ExactSIVsuccesses; |
| 1482 | } |
| 1483 | |
| 1484 | // equal |
| 1485 | TU = SaveTU; // restore |
| 1486 | TL = SaveTL; |
| 1487 | DEBUG(dbgs() << "\t exploring EQ direction\n"); |
| 1488 | if (TMUL.sgt(0)) { |
| 1489 | TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL)); |
| 1490 | DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); |
| 1491 | } |
| 1492 | else { |
| 1493 | TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL)); |
| 1494 | DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); |
| 1495 | } |
| 1496 | TMUL = BM - AM; |
| 1497 | if (TMUL.sgt(0)) { |
| 1498 | TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL)); |
| 1499 | DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); |
| 1500 | } |
| 1501 | else { |
| 1502 | TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL)); |
| 1503 | DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); |
| 1504 | } |
| 1505 | if (TL.sle(TU)) { |
| 1506 | NewDirection |= Dependence::DVEntry::EQ; |
| 1507 | ++ExactSIVsuccesses; |
| 1508 | } |
| 1509 | |
| 1510 | // greater than |
| 1511 | TU = SaveTU; // restore |
| 1512 | TL = SaveTL; |
| 1513 | DEBUG(dbgs() << "\t exploring GT direction\n"); |
| 1514 | if (TMUL.sgt(0)) { |
| 1515 | TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL)); |
| 1516 | DEBUG(dbgs() << "\t\t TL = " << TL << "\n"); |
| 1517 | } |
| 1518 | else { |
| 1519 | TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL)); |
| 1520 | DEBUG(dbgs() << "\t\t TU = " << TU << "\n"); |
| 1521 | } |
| 1522 | if (TL.sle(TU)) { |
| 1523 | NewDirection |= Dependence::DVEntry::GT; |
| 1524 | ++ExactSIVsuccesses; |
| 1525 | } |
| 1526 | |
| 1527 | // finished |
| 1528 | Result.DV[Level].Direction &= NewDirection; |
| 1529 | if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) |
| 1530 | ++ExactSIVindependence; |
| 1531 | return Result.DV[Level].Direction == Dependence::DVEntry::NONE; |
| 1532 | } |
| 1533 | |
| 1534 | |
| 1535 | |
| 1536 | // Return true if the divisor evenly divides the dividend. |
| 1537 | static |
| 1538 | bool isRemainderZero(const SCEVConstant *Dividend, |
| 1539 | const SCEVConstant *Divisor) { |
| 1540 | APInt ConstDividend = Dividend->getValue()->getValue(); |
| 1541 | APInt ConstDivisor = Divisor->getValue()->getValue(); |
| 1542 | return ConstDividend.srem(ConstDivisor) == 0; |
| 1543 | } |
| 1544 | |
| 1545 | |
| 1546 | // weakZeroSrcSIVtest - |
| 1547 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
| 1548 | // |
| 1549 | // When we have a pair of subscripts of the form [c1] and [c2 + a*i], |
| 1550 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 1551 | // and a is a constant, we can solve it exactly using the |
| 1552 | // Weak-Zero SIV test. |
| 1553 | // |
| 1554 | // Given |
| 1555 | // |
| 1556 | // c1 = c2 + a*i |
| 1557 | // |
| 1558 | // we get |
| 1559 | // |
| 1560 | // (c1 - c2)/a = i |
| 1561 | // |
| 1562 | // If i is not an integer, there's no dependence. |
| 1563 | // If i < 0 or > UB, there's no dependence. |
| 1564 | // If i = 0, the direction is <= and peeling the |
| 1565 | // 1st iteration will break the dependence. |
| 1566 | // If i = UB, the direction is >= and peeling the |
| 1567 | // last iteration will break the dependence. |
| 1568 | // Otherwise, the direction is *. |
| 1569 | // |
| 1570 | // Can prove independence. Failing that, we can sometimes refine |
| 1571 | // the directions. Can sometimes show that first or last |
| 1572 | // iteration carries all the dependences (so worth peeling). |
| 1573 | // |
| 1574 | // (see also weakZeroDstSIVtest) |
| 1575 | // |
| 1576 | // Return true if dependence disproved. |
| 1577 | bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff, |
| 1578 | const SCEV *SrcConst, |
| 1579 | const SCEV *DstConst, |
| 1580 | const Loop *CurLoop, |
| 1581 | unsigned Level, |
| 1582 | FullDependence &Result, |
| 1583 | Constraint &NewConstraint) const { |
| 1584 | // For the WeakSIV test, it's possible the loop isn't common to |
| 1585 | // the Src and Dst loops. If it isn't, then there's no need to |
| 1586 | // record a direction. |
| 1587 | DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n"); |
| 1588 | DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n"); |
| 1589 | DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); |
| 1590 | DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); |
| 1591 | ++WeakZeroSIVapplications; |
| 1592 | assert(0 < Level && Level <= MaxLevels && "Level out of range"); |
| 1593 | Level--; |
| 1594 | Result.Consistent = false; |
| 1595 | const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); |
| 1596 | NewConstraint.setLine(SE->getConstant(Delta->getType(), 0), |
| 1597 | DstCoeff, Delta, CurLoop); |
| 1598 | DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); |
| 1599 | if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) { |
| 1600 | if (Level < CommonLevels) { |
| 1601 | Result.DV[Level].Direction &= Dependence::DVEntry::LE; |
| 1602 | Result.DV[Level].PeelFirst = true; |
| 1603 | ++WeakZeroSIVsuccesses; |
| 1604 | } |
| 1605 | return false; // dependences caused by first iteration |
| 1606 | } |
| 1607 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff); |
| 1608 | if (!ConstCoeff) |
| 1609 | return false; |
| 1610 | const SCEV *AbsCoeff = |
| 1611 | SE->isKnownNegative(ConstCoeff) ? |
| 1612 | SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; |
| 1613 | const SCEV *NewDelta = |
| 1614 | SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; |
| 1615 | |
| 1616 | // check that Delta/SrcCoeff < iteration count |
| 1617 | // really check NewDelta < count*AbsCoeff |
| 1618 | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { |
| 1619 | DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); |
| 1620 | const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); |
| 1621 | if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { |
| 1622 | ++WeakZeroSIVindependence; |
| 1623 | ++WeakZeroSIVsuccesses; |
| 1624 | return true; |
| 1625 | } |
| 1626 | if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { |
| 1627 | // dependences caused by last iteration |
| 1628 | if (Level < CommonLevels) { |
| 1629 | Result.DV[Level].Direction &= Dependence::DVEntry::GE; |
| 1630 | Result.DV[Level].PeelLast = true; |
| 1631 | ++WeakZeroSIVsuccesses; |
| 1632 | } |
| 1633 | return false; |
| 1634 | } |
| 1635 | } |
| 1636 | |
| 1637 | // check that Delta/SrcCoeff >= 0 |
| 1638 | // really check that NewDelta >= 0 |
| 1639 | if (SE->isKnownNegative(NewDelta)) { |
| 1640 | // No dependence, newDelta < 0 |
| 1641 | ++WeakZeroSIVindependence; |
| 1642 | ++WeakZeroSIVsuccesses; |
| 1643 | return true; |
| 1644 | } |
| 1645 | |
| 1646 | // if SrcCoeff doesn't divide Delta, then no dependence |
| 1647 | if (isa<SCEVConstant>(Delta) && |
| 1648 | !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { |
| 1649 | ++WeakZeroSIVindependence; |
| 1650 | ++WeakZeroSIVsuccesses; |
| 1651 | return true; |
| 1652 | } |
| 1653 | return false; |
| 1654 | } |
| 1655 | |
| 1656 | |
| 1657 | // weakZeroDstSIVtest - |
| 1658 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
| 1659 | // |
| 1660 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2], |
| 1661 | // where i is an induction variable, c1 and c2 are loop invariant, |
| 1662 | // and a is a constant, we can solve it exactly using the |
| 1663 | // Weak-Zero SIV test. |
| 1664 | // |
| 1665 | // Given |
| 1666 | // |
| 1667 | // c1 + a*i = c2 |
| 1668 | // |
| 1669 | // we get |
| 1670 | // |
| 1671 | // i = (c2 - c1)/a |
| 1672 | // |
| 1673 | // If i is not an integer, there's no dependence. |
| 1674 | // If i < 0 or > UB, there's no dependence. |
| 1675 | // If i = 0, the direction is <= and peeling the |
| 1676 | // 1st iteration will break the dependence. |
| 1677 | // If i = UB, the direction is >= and peeling the |
| 1678 | // last iteration will break the dependence. |
| 1679 | // Otherwise, the direction is *. |
| 1680 | // |
| 1681 | // Can prove independence. Failing that, we can sometimes refine |
| 1682 | // the directions. Can sometimes show that first or last |
| 1683 | // iteration carries all the dependences (so worth peeling). |
| 1684 | // |
| 1685 | // (see also weakZeroSrcSIVtest) |
| 1686 | // |
| 1687 | // Return true if dependence disproved. |
| 1688 | bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff, |
| 1689 | const SCEV *SrcConst, |
| 1690 | const SCEV *DstConst, |
| 1691 | const Loop *CurLoop, |
| 1692 | unsigned Level, |
| 1693 | FullDependence &Result, |
| 1694 | Constraint &NewConstraint) const { |
| 1695 | // For the WeakSIV test, it's possible the loop isn't common to the |
| 1696 | // Src and Dst loops. If it isn't, then there's no need to record a direction. |
| 1697 | DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n"); |
| 1698 | DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n"); |
| 1699 | DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); |
| 1700 | DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); |
| 1701 | ++WeakZeroSIVapplications; |
| 1702 | assert(0 < Level && Level <= SrcLevels && "Level out of range"); |
| 1703 | Level--; |
| 1704 | Result.Consistent = false; |
| 1705 | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); |
| 1706 | NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0), |
| 1707 | Delta, CurLoop); |
| 1708 | DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); |
| 1709 | if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) { |
| 1710 | if (Level < CommonLevels) { |
| 1711 | Result.DV[Level].Direction &= Dependence::DVEntry::LE; |
| 1712 | Result.DV[Level].PeelFirst = true; |
| 1713 | ++WeakZeroSIVsuccesses; |
| 1714 | } |
| 1715 | return false; // dependences caused by first iteration |
| 1716 | } |
| 1717 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff); |
| 1718 | if (!ConstCoeff) |
| 1719 | return false; |
| 1720 | const SCEV *AbsCoeff = |
| 1721 | SE->isKnownNegative(ConstCoeff) ? |
| 1722 | SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; |
| 1723 | const SCEV *NewDelta = |
| 1724 | SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; |
| 1725 | |
| 1726 | // check that Delta/SrcCoeff < iteration count |
| 1727 | // really check NewDelta < count*AbsCoeff |
| 1728 | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { |
| 1729 | DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); |
| 1730 | const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); |
| 1731 | if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { |
| 1732 | ++WeakZeroSIVindependence; |
| 1733 | ++WeakZeroSIVsuccesses; |
| 1734 | return true; |
| 1735 | } |
| 1736 | if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { |
| 1737 | // dependences caused by last iteration |
| 1738 | if (Level < CommonLevels) { |
| 1739 | Result.DV[Level].Direction &= Dependence::DVEntry::GE; |
| 1740 | Result.DV[Level].PeelLast = true; |
| 1741 | ++WeakZeroSIVsuccesses; |
| 1742 | } |
| 1743 | return false; |
| 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | // check that Delta/SrcCoeff >= 0 |
| 1748 | // really check that NewDelta >= 0 |
| 1749 | if (SE->isKnownNegative(NewDelta)) { |
| 1750 | // No dependence, newDelta < 0 |
| 1751 | ++WeakZeroSIVindependence; |
| 1752 | ++WeakZeroSIVsuccesses; |
| 1753 | return true; |
| 1754 | } |
| 1755 | |
| 1756 | // if SrcCoeff doesn't divide Delta, then no dependence |
| 1757 | if (isa<SCEVConstant>(Delta) && |
| 1758 | !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { |
| 1759 | ++WeakZeroSIVindependence; |
| 1760 | ++WeakZeroSIVsuccesses; |
| 1761 | return true; |
| 1762 | } |
| 1763 | return false; |
| 1764 | } |
| 1765 | |
| 1766 | |
| 1767 | // exactRDIVtest - Tests the RDIV subscript pair for dependence. |
| 1768 | // Things of the form [c1 + a*i] and [c2 + b*j], |
| 1769 | // where i and j are induction variable, c1 and c2 are loop invariant, |
| 1770 | // and a and b are constants. |
| 1771 | // Returns true if any possible dependence is disproved. |
| 1772 | // Marks the result as inconsistant. |
| 1773 | // Works in some cases that symbolicRDIVtest doesn't, and vice versa. |
| 1774 | bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff, |
| 1775 | const SCEV *DstCoeff, |
| 1776 | const SCEV *SrcConst, |
| 1777 | const SCEV *DstConst, |
| 1778 | const Loop *SrcLoop, |
| 1779 | const Loop *DstLoop, |
| 1780 | FullDependence &Result) const { |
| 1781 | DEBUG(dbgs() << "\tExact RDIV test\n"); |
| 1782 | DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); |
| 1783 | DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); |
| 1784 | DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); |
| 1785 | DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); |
| 1786 | ++ExactRDIVapplications; |
| 1787 | Result.Consistent = false; |
| 1788 | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); |
| 1789 | DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); |
| 1790 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); |
| 1791 | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); |
| 1792 | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); |
| 1793 | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) |
| 1794 | return false; |
| 1795 | |
| 1796 | // find gcd |
| 1797 | APInt G, X, Y; |
| 1798 | APInt AM = ConstSrcCoeff->getValue()->getValue(); |
| 1799 | APInt BM = ConstDstCoeff->getValue()->getValue(); |
| 1800 | unsigned Bits = AM.getBitWidth(); |
| 1801 | if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) { |
| 1802 | // gcd doesn't divide Delta, no dependence |
| 1803 | ++ExactRDIVindependence; |
| 1804 | return true; |
| 1805 | } |
| 1806 | |
| 1807 | DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); |
| 1808 | |
| 1809 | // since SCEV construction seems to normalize, LM = 0 |
| 1810 | APInt SrcUM(Bits, 1, true); |
| 1811 | bool SrcUMvalid = false; |
| 1812 | // SrcUM is perhaps unavailable, let's check |
| 1813 | if (const SCEVConstant *UpperBound = |
| 1814 | collectConstantUpperBound(SrcLoop, Delta->getType())) { |
| 1815 | SrcUM = UpperBound->getValue()->getValue(); |
| 1816 | DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n"); |
| 1817 | SrcUMvalid = true; |
| 1818 | } |
| 1819 | |
| 1820 | APInt DstUM(Bits, 1, true); |
| 1821 | bool DstUMvalid = false; |
| 1822 | // UM is perhaps unavailable, let's check |
| 1823 | if (const SCEVConstant *UpperBound = |
| 1824 | collectConstantUpperBound(DstLoop, Delta->getType())) { |
| 1825 | DstUM = UpperBound->getValue()->getValue(); |
| 1826 | DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n"); |
| 1827 | DstUMvalid = true; |
| 1828 | } |
| 1829 | |
| 1830 | APInt TU(APInt::getSignedMaxValue(Bits)); |
| 1831 | APInt TL(APInt::getSignedMinValue(Bits)); |
| 1832 | |
| 1833 | // test(BM/G, LM-X) and test(-BM/G, X-UM) |
| 1834 | APInt TMUL = BM.sdiv(G); |
| 1835 | if (TMUL.sgt(0)) { |
| 1836 | TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); |
| 1837 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1838 | if (SrcUMvalid) { |
| 1839 | TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL)); |
| 1840 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1841 | } |
| 1842 | } |
| 1843 | else { |
| 1844 | TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); |
| 1845 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1846 | if (SrcUMvalid) { |
| 1847 | TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL)); |
| 1848 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | // test(AM/G, LM-Y) and test(-AM/G, Y-UM) |
| 1853 | TMUL = AM.sdiv(G); |
| 1854 | if (TMUL.sgt(0)) { |
| 1855 | TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); |
| 1856 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1857 | if (DstUMvalid) { |
| 1858 | TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL)); |
| 1859 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1860 | } |
| 1861 | } |
| 1862 | else { |
| 1863 | TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); |
| 1864 | DEBUG(dbgs() << "\t TU = " << TU << "\n"); |
| 1865 | if (DstUMvalid) { |
| 1866 | TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL)); |
| 1867 | DEBUG(dbgs() << "\t TL = " << TL << "\n"); |
| 1868 | } |
| 1869 | } |
| 1870 | if (TL.sgt(TU)) |
| 1871 | ++ExactRDIVindependence; |
| 1872 | return TL.sgt(TU); |
| 1873 | } |
| 1874 | |
| 1875 | |
| 1876 | // symbolicRDIVtest - |
| 1877 | // In Section 4.5 of the Practical Dependence Testing paper,the authors |
| 1878 | // introduce a special case of Banerjee's Inequalities (also called the |
| 1879 | // Extreme-Value Test) that can handle some of the SIV and RDIV cases, |
| 1880 | // particularly cases with symbolics. Since it's only able to disprove |
| 1881 | // dependence (not compute distances or directions), we'll use it as a |
| 1882 | // fall back for the other tests. |
| 1883 | // |
| 1884 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] |
| 1885 | // where i and j are induction variables and c1 and c2 are loop invariants, |
| 1886 | // we can use the symbolic tests to disprove some dependences, serving as a |
| 1887 | // backup for the RDIV test. Note that i and j can be the same variable, |
| 1888 | // letting this test serve as a backup for the various SIV tests. |
| 1889 | // |
| 1890 | // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some |
| 1891 | // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) |
| 1892 | // loop bounds for the i and j loops, respectively. So, ... |
| 1893 | // |
| 1894 | // c1 + a1*i = c2 + a2*j |
| 1895 | // a1*i - a2*j = c2 - c1 |
| 1896 | // |
| 1897 | // To test for a dependence, we compute c2 - c1 and make sure it's in the |
| 1898 | // range of the maximum and minimum possible values of a1*i - a2*j. |
| 1899 | // Considering the signs of a1 and a2, we have 4 possible cases: |
| 1900 | // |
| 1901 | // 1) If a1 >= 0 and a2 >= 0, then |
| 1902 | // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 |
| 1903 | // -a2*N2 <= c2 - c1 <= a1*N1 |
| 1904 | // |
| 1905 | // 2) If a1 >= 0 and a2 <= 0, then |
| 1906 | // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 |
| 1907 | // 0 <= c2 - c1 <= a1*N1 - a2*N2 |
| 1908 | // |
| 1909 | // 3) If a1 <= 0 and a2 >= 0, then |
| 1910 | // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 |
| 1911 | // a1*N1 - a2*N2 <= c2 - c1 <= 0 |
| 1912 | // |
| 1913 | // 4) If a1 <= 0 and a2 <= 0, then |
| 1914 | // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2 |
| 1915 | // a1*N1 <= c2 - c1 <= -a2*N2 |
| 1916 | // |
| 1917 | // return true if dependence disproved |
| 1918 | bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1, |
| 1919 | const SCEV *A2, |
| 1920 | const SCEV *C1, |
| 1921 | const SCEV *C2, |
| 1922 | const Loop *Loop1, |
| 1923 | const Loop *Loop2) const { |
| 1924 | ++SymbolicRDIVapplications; |
| 1925 | DEBUG(dbgs() << "\ttry symbolic RDIV test\n"); |
| 1926 | DEBUG(dbgs() << "\t A1 = " << *A1); |
| 1927 | DEBUG(dbgs() << ", type = " << *A1->getType() << "\n"); |
| 1928 | DEBUG(dbgs() << "\t A2 = " << *A2 << "\n"); |
| 1929 | DEBUG(dbgs() << "\t C1 = " << *C1 << "\n"); |
| 1930 | DEBUG(dbgs() << "\t C2 = " << *C2 << "\n"); |
| 1931 | const SCEV *N1 = collectUpperBound(Loop1, A1->getType()); |
| 1932 | const SCEV *N2 = collectUpperBound(Loop2, A1->getType()); |
| 1933 | DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n"); |
| 1934 | DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n"); |
| 1935 | const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1); |
| 1936 | const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2); |
| 1937 | DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n"); |
| 1938 | DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n"); |
| 1939 | if (SE->isKnownNonNegative(A1)) { |
| 1940 | if (SE->isKnownNonNegative(A2)) { |
| 1941 | // A1 >= 0 && A2 >= 0 |
| 1942 | if (N1) { |
| 1943 | // make sure that c2 - c1 <= a1*N1 |
| 1944 | const SCEV *A1N1 = SE->getMulExpr(A1, N1); |
| 1945 | DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); |
| 1946 | if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) { |
| 1947 | ++SymbolicRDIVindependence; |
| 1948 | return true; |
| 1949 | } |
| 1950 | } |
| 1951 | if (N2) { |
| 1952 | // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 |
| 1953 | const SCEV *A2N2 = SE->getMulExpr(A2, N2); |
| 1954 | DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); |
| 1955 | if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) { |
| 1956 | ++SymbolicRDIVindependence; |
| 1957 | return true; |
| 1958 | } |
| 1959 | } |
| 1960 | } |
| 1961 | else if (SE->isKnownNonPositive(A2)) { |
| 1962 | // a1 >= 0 && a2 <= 0 |
| 1963 | if (N1 && N2) { |
| 1964 | // make sure that c2 - c1 <= a1*N1 - a2*N2 |
| 1965 | const SCEV *A1N1 = SE->getMulExpr(A1, N1); |
| 1966 | const SCEV *A2N2 = SE->getMulExpr(A2, N2); |
| 1967 | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); |
| 1968 | DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); |
| 1969 | if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) { |
| 1970 | ++SymbolicRDIVindependence; |
| 1971 | return true; |
| 1972 | } |
| 1973 | } |
| 1974 | // make sure that 0 <= c2 - c1 |
| 1975 | if (SE->isKnownNegative(C2_C1)) { |
| 1976 | ++SymbolicRDIVindependence; |
| 1977 | return true; |
| 1978 | } |
| 1979 | } |
| 1980 | } |
| 1981 | else if (SE->isKnownNonPositive(A1)) { |
| 1982 | if (SE->isKnownNonNegative(A2)) { |
| 1983 | // a1 <= 0 && a2 >= 0 |
| 1984 | if (N1 && N2) { |
| 1985 | // make sure that a1*N1 - a2*N2 <= c2 - c1 |
| 1986 | const SCEV *A1N1 = SE->getMulExpr(A1, N1); |
| 1987 | const SCEV *A2N2 = SE->getMulExpr(A2, N2); |
| 1988 | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); |
| 1989 | DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); |
| 1990 | if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) { |
| 1991 | ++SymbolicRDIVindependence; |
| 1992 | return true; |
| 1993 | } |
| 1994 | } |
| 1995 | // make sure that c2 - c1 <= 0 |
| 1996 | if (SE->isKnownPositive(C2_C1)) { |
| 1997 | ++SymbolicRDIVindependence; |
| 1998 | return true; |
| 1999 | } |
| 2000 | } |
| 2001 | else if (SE->isKnownNonPositive(A2)) { |
| 2002 | // a1 <= 0 && a2 <= 0 |
| 2003 | if (N1) { |
| 2004 | // make sure that a1*N1 <= c2 - c1 |
| 2005 | const SCEV *A1N1 = SE->getMulExpr(A1, N1); |
| 2006 | DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); |
| 2007 | if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) { |
| 2008 | ++SymbolicRDIVindependence; |
| 2009 | return true; |
| 2010 | } |
| 2011 | } |
| 2012 | if (N2) { |
| 2013 | // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 |
| 2014 | const SCEV *A2N2 = SE->getMulExpr(A2, N2); |
| 2015 | DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); |
| 2016 | if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) { |
| 2017 | ++SymbolicRDIVindependence; |
| 2018 | return true; |
| 2019 | } |
| 2020 | } |
| 2021 | } |
| 2022 | } |
| 2023 | return false; |
| 2024 | } |
| 2025 | |
| 2026 | |
| 2027 | // testSIV - |
| 2028 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] |
| 2029 | // where i is an induction variable, c1 and c2 are loop invariant, and a1 and |
| 2030 | // a2 are constant, we attack it with an SIV test. While they can all be |
| 2031 | // solved with the Exact SIV test, it's worthwhile to use simpler tests when |
| 2032 | // they apply; they're cheaper and sometimes more precise. |
| 2033 | // |
| 2034 | // Return true if dependence disproved. |
| 2035 | bool DependenceAnalysis::testSIV(const SCEV *Src, |
| 2036 | const SCEV *Dst, |
| 2037 | unsigned &Level, |
| 2038 | FullDependence &Result, |
| 2039 | Constraint &NewConstraint, |
| 2040 | const SCEV *&SplitIter) const { |
| 2041 | DEBUG(dbgs() << " src = " << *Src << "\n"); |
| 2042 | DEBUG(dbgs() << " dst = " << *Dst << "\n"); |
| 2043 | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); |
| 2044 | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); |
| 2045 | if (SrcAddRec && DstAddRec) { |
| 2046 | const SCEV *SrcConst = SrcAddRec->getStart(); |
| 2047 | const SCEV *DstConst = DstAddRec->getStart(); |
| 2048 | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); |
| 2049 | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); |
| 2050 | const Loop *CurLoop = SrcAddRec->getLoop(); |
| 2051 | assert(CurLoop == DstAddRec->getLoop() && |
| 2052 | "both loops in SIV should be same"); |
| 2053 | Level = mapSrcLoop(CurLoop); |
| 2054 | bool disproven; |
| 2055 | if (SrcCoeff == DstCoeff) |
| 2056 | disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, |
| 2057 | Level, Result, NewConstraint); |
| 2058 | else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff)) |
| 2059 | disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, |
| 2060 | Level, Result, NewConstraint, SplitIter); |
| 2061 | else |
| 2062 | disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, |
| 2063 | Level, Result, NewConstraint); |
| 2064 | return disproven || |
| 2065 | gcdMIVtest(Src, Dst, Result) || |
| 2066 | symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop); |
| 2067 | } |
| 2068 | if (SrcAddRec) { |
| 2069 | const SCEV *SrcConst = SrcAddRec->getStart(); |
| 2070 | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); |
| 2071 | const SCEV *DstConst = Dst; |
| 2072 | const Loop *CurLoop = SrcAddRec->getLoop(); |
| 2073 | Level = mapSrcLoop(CurLoop); |
| 2074 | return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, |
| 2075 | Level, Result, NewConstraint) || |
| 2076 | gcdMIVtest(Src, Dst, Result); |
| 2077 | } |
| 2078 | if (DstAddRec) { |
| 2079 | const SCEV *DstConst = DstAddRec->getStart(); |
| 2080 | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); |
| 2081 | const SCEV *SrcConst = Src; |
| 2082 | const Loop *CurLoop = DstAddRec->getLoop(); |
| 2083 | Level = mapDstLoop(CurLoop); |
| 2084 | return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, |
| 2085 | CurLoop, Level, Result, NewConstraint) || |
| 2086 | gcdMIVtest(Src, Dst, Result); |
| 2087 | } |
| 2088 | llvm_unreachable("SIV test expected at least one AddRec"); |
| 2089 | return false; |
| 2090 | } |
| 2091 | |
| 2092 | |
| 2093 | // testRDIV - |
| 2094 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] |
| 2095 | // where i and j are induction variables, c1 and c2 are loop invariant, |
| 2096 | // and a1 and a2 are constant, we can solve it exactly with an easy adaptation |
| 2097 | // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. |
| 2098 | // It doesn't make sense to talk about distance or direction in this case, |
| 2099 | // so there's no point in making special versions of the Strong SIV test or |
| 2100 | // the Weak-crossing SIV test. |
| 2101 | // |
| 2102 | // With minor algebra, this test can also be used for things like |
| 2103 | // [c1 + a1*i + a2*j][c2]. |
| 2104 | // |
| 2105 | // Return true if dependence disproved. |
| 2106 | bool DependenceAnalysis::testRDIV(const SCEV *Src, |
| 2107 | const SCEV *Dst, |
| 2108 | FullDependence &Result) const { |
| 2109 | // we have 3 possible situations here: |
| 2110 | // 1) [a*i + b] and [c*j + d] |
| 2111 | // 2) [a*i + c*j + b] and [d] |
| 2112 | // 3) [b] and [a*i + c*j + d] |
| 2113 | // We need to find what we've got and get organized |
| 2114 | |
| 2115 | const SCEV *SrcConst, *DstConst; |
| 2116 | const SCEV *SrcCoeff, *DstCoeff; |
| 2117 | const Loop *SrcLoop, *DstLoop; |
| 2118 | |
| 2119 | DEBUG(dbgs() << " src = " << *Src << "\n"); |
| 2120 | DEBUG(dbgs() << " dst = " << *Dst << "\n"); |
| 2121 | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); |
| 2122 | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); |
| 2123 | if (SrcAddRec && DstAddRec) { |
| 2124 | SrcConst = SrcAddRec->getStart(); |
| 2125 | SrcCoeff = SrcAddRec->getStepRecurrence(*SE); |
| 2126 | SrcLoop = SrcAddRec->getLoop(); |
| 2127 | DstConst = DstAddRec->getStart(); |
| 2128 | DstCoeff = DstAddRec->getStepRecurrence(*SE); |
| 2129 | DstLoop = DstAddRec->getLoop(); |
| 2130 | } |
| 2131 | else if (SrcAddRec) { |
| 2132 | if (const SCEVAddRecExpr *tmpAddRec = |
| 2133 | dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) { |
| 2134 | SrcConst = tmpAddRec->getStart(); |
| 2135 | SrcCoeff = tmpAddRec->getStepRecurrence(*SE); |
| 2136 | SrcLoop = tmpAddRec->getLoop(); |
| 2137 | DstConst = Dst; |
| 2138 | DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE)); |
| 2139 | DstLoop = SrcAddRec->getLoop(); |
| 2140 | } |
| 2141 | else |
| 2142 | llvm_unreachable("RDIV reached by surprising SCEVs"); |
| 2143 | } |
| 2144 | else if (DstAddRec) { |
| 2145 | if (const SCEVAddRecExpr *tmpAddRec = |
| 2146 | dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) { |
| 2147 | DstConst = tmpAddRec->getStart(); |
| 2148 | DstCoeff = tmpAddRec->getStepRecurrence(*SE); |
| 2149 | DstLoop = tmpAddRec->getLoop(); |
| 2150 | SrcConst = Src; |
| 2151 | SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE)); |
| 2152 | SrcLoop = DstAddRec->getLoop(); |
| 2153 | } |
| 2154 | else |
| 2155 | llvm_unreachable("RDIV reached by surprising SCEVs"); |
| 2156 | } |
| 2157 | else |
| 2158 | llvm_unreachable("RDIV expected at least one AddRec"); |
| 2159 | return exactRDIVtest(SrcCoeff, DstCoeff, |
| 2160 | SrcConst, DstConst, |
| 2161 | SrcLoop, DstLoop, |
| 2162 | Result) || |
| 2163 | gcdMIVtest(Src, Dst, Result) || |
| 2164 | symbolicRDIVtest(SrcCoeff, DstCoeff, |
| 2165 | SrcConst, DstConst, |
| 2166 | SrcLoop, DstLoop); |
| 2167 | } |
| 2168 | |
| 2169 | |
| 2170 | // Tests the single-subscript MIV pair (Src and Dst) for dependence. |
| 2171 | // Return true if dependence disproved. |
| 2172 | // Can sometimes refine direction vectors. |
| 2173 | bool DependenceAnalysis::testMIV(const SCEV *Src, |
| 2174 | const SCEV *Dst, |
| 2175 | const SmallBitVector &Loops, |
| 2176 | FullDependence &Result) const { |
| 2177 | DEBUG(dbgs() << " src = " << *Src << "\n"); |
| 2178 | DEBUG(dbgs() << " dst = " << *Dst << "\n"); |
| 2179 | Result.Consistent = false; |
| 2180 | return gcdMIVtest(Src, Dst, Result) || |
| 2181 | banerjeeMIVtest(Src, Dst, Loops, Result); |
| 2182 | } |
| 2183 | |
| 2184 | |
| 2185 | // Given a product, e.g., 10*X*Y, returns the first constant operand, |
| 2186 | // in this case 10. If there is no constant part, returns NULL. |
| 2187 | static |
| 2188 | const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) { |
| 2189 | for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) { |
| 2190 | if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op))) |
| 2191 | return Constant; |
| 2192 | } |
| 2193 | return NULL; |
| 2194 | } |
| 2195 | |
| 2196 | |
| 2197 | //===----------------------------------------------------------------------===// |
| 2198 | // gcdMIVtest - |
| 2199 | // Tests an MIV subscript pair for dependence. |
| 2200 | // Returns true if any possible dependence is disproved. |
| 2201 | // Marks the result as inconsistant. |
| 2202 | // Can sometimes disprove the equal direction for 1 or more loops, |
| 2203 | // as discussed in Michael Wolfe's book, |
| 2204 | // High Performance Compilers for Parallel Computing, page 235. |
| 2205 | // |
| 2206 | // We spend some effort (code!) to handle cases like |
| 2207 | // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, |
| 2208 | // but M and N are just loop-invariant variables. |
| 2209 | // This should help us handle linearized subscripts; |
| 2210 | // also makes this test a useful backup to the various SIV tests. |
| 2211 | // |
| 2212 | // It occurs to me that the presence of loop-invariant variables |
| 2213 | // changes the nature of the test from "greatest common divisor" |
| 2214 | // to "a common divisor!" |
| 2215 | bool DependenceAnalysis::gcdMIVtest(const SCEV *Src, |
| 2216 | const SCEV *Dst, |
| 2217 | FullDependence &Result) const { |
| 2218 | DEBUG(dbgs() << "starting gcd\n"); |
| 2219 | ++GCDapplications; |
| 2220 | unsigned BitWidth = Src->getType()->getIntegerBitWidth(); |
| 2221 | APInt RunningGCD = APInt::getNullValue(BitWidth); |
| 2222 | |
| 2223 | // Examine Src coefficients. |
| 2224 | // Compute running GCD and record source constant. |
| 2225 | // Because we're looking for the constant at the end of the chain, |
| 2226 | // we can't quit the loop just because the GCD == 1. |
| 2227 | const SCEV *Coefficients = Src; |
| 2228 | while (const SCEVAddRecExpr *AddRec = |
| 2229 | dyn_cast<SCEVAddRecExpr>(Coefficients)) { |
| 2230 | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); |
| 2231 | const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff); |
| 2232 | if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) |
| 2233 | // If the coefficient is the product of a constant and other stuff, |
| 2234 | // we can use the constant in the GCD computation. |
| 2235 | Constant = getConstantPart(Product); |
| 2236 | if (!Constant) |
| 2237 | return false; |
| 2238 | APInt ConstCoeff = Constant->getValue()->getValue(); |
| 2239 | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); |
| 2240 | Coefficients = AddRec->getStart(); |
| 2241 | } |
| 2242 | const SCEV *SrcConst = Coefficients; |
| 2243 | |
| 2244 | // Examine Dst coefficients. |
| 2245 | // Compute running GCD and record destination constant. |
| 2246 | // Because we're looking for the constant at the end of the chain, |
| 2247 | // we can't quit the loop just because the GCD == 1. |
| 2248 | Coefficients = Dst; |
| 2249 | while (const SCEVAddRecExpr *AddRec = |
| 2250 | dyn_cast<SCEVAddRecExpr>(Coefficients)) { |
| 2251 | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); |
| 2252 | const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff); |
| 2253 | if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) |
| 2254 | // If the coefficient is the product of a constant and other stuff, |
| 2255 | // we can use the constant in the GCD computation. |
| 2256 | Constant = getConstantPart(Product); |
| 2257 | if (!Constant) |
| 2258 | return false; |
| 2259 | APInt ConstCoeff = Constant->getValue()->getValue(); |
| 2260 | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); |
| 2261 | Coefficients = AddRec->getStart(); |
| 2262 | } |
| 2263 | const SCEV *DstConst = Coefficients; |
| 2264 | |
| 2265 | APInt ExtraGCD = APInt::getNullValue(BitWidth); |
| 2266 | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); |
| 2267 | DEBUG(dbgs() << " Delta = " << *Delta << "\n"); |
| 2268 | const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta); |
| 2269 | if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) { |
| 2270 | // If Delta is a sum of products, we may be able to make further progress. |
| 2271 | for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) { |
| 2272 | const SCEV *Operand = Sum->getOperand(Op); |
| 2273 | if (isa<SCEVConstant>(Operand)) { |
| 2274 | assert(!Constant && "Surprised to find multiple constants"); |
| 2275 | Constant = cast<SCEVConstant>(Operand); |
| 2276 | } |
| 2277 | else if (isa<SCEVMulExpr>(Operand)) { |
| 2278 | // Search for constant operand to participate in GCD; |
| 2279 | // If none found; return false. |
| 2280 | const SCEVConstant *ConstOp = |
| 2281 | getConstantPart(cast<SCEVMulExpr>(Operand)); |
| 2282 | APInt ConstOpValue = ConstOp->getValue()->getValue(); |
| 2283 | ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, |
| 2284 | ConstOpValue.abs()); |
| 2285 | } |
| 2286 | else |
| 2287 | return false; |
| 2288 | } |
| 2289 | } |
| 2290 | if (!Constant) |
| 2291 | return false; |
| 2292 | APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue(); |
| 2293 | DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n"); |
| 2294 | if (ConstDelta == 0) |
| 2295 | return false; |
| 2296 | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD); |
| 2297 | DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n"); |
| 2298 | APInt Remainder = ConstDelta.srem(RunningGCD); |
| 2299 | if (Remainder != 0) { |
| 2300 | ++GCDindependence; |
| 2301 | return true; |
| 2302 | } |
| 2303 | |
| 2304 | // Try to disprove equal directions. |
| 2305 | // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], |
| 2306 | // the code above can't disprove the dependence because the GCD = 1. |
| 2307 | // So we consider what happen if i = i' and what happens if j = j'. |
| 2308 | // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], |
| 2309 | // which is infeasible, so we can disallow the = direction for the i level. |
| 2310 | // Setting j = j' doesn't help matters, so we end up with a direction vector |
| 2311 | // of [<>, *] |
| 2312 | // |
| 2313 | // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], |
| 2314 | // we need to remember that the constant part is 5 and the RunningGCD should |
| 2315 | // be initialized to ExtraGCD = 30. |
| 2316 | DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n'); |
| 2317 | |
| 2318 | bool Improved = false; |
| 2319 | Coefficients = Src; |
| 2320 | while (const SCEVAddRecExpr *AddRec = |
| 2321 | dyn_cast<SCEVAddRecExpr>(Coefficients)) { |
| 2322 | Coefficients = AddRec->getStart(); |
| 2323 | const Loop *CurLoop = AddRec->getLoop(); |
| 2324 | RunningGCD = ExtraGCD; |
| 2325 | const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE); |
| 2326 | const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff); |
| 2327 | const SCEV *Inner = Src; |
| 2328 | while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { |
| 2329 | AddRec = cast<SCEVAddRecExpr>(Inner); |
| 2330 | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); |
| 2331 | if (CurLoop == AddRec->getLoop()) |
| 2332 | ; // SrcCoeff == Coeff |
| 2333 | else { |
| 2334 | if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) |
| 2335 | // If the coefficient is the product of a constant and other stuff, |
| 2336 | // we can use the constant in the GCD computation. |
| 2337 | Constant = getConstantPart(Product); |
| 2338 | else |
| 2339 | Constant = cast<SCEVConstant>(Coeff); |
| 2340 | APInt ConstCoeff = Constant->getValue()->getValue(); |
| 2341 | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); |
| 2342 | } |
| 2343 | Inner = AddRec->getStart(); |
| 2344 | } |
| 2345 | Inner = Dst; |
| 2346 | while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { |
| 2347 | AddRec = cast<SCEVAddRecExpr>(Inner); |
| 2348 | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); |
| 2349 | if (CurLoop == AddRec->getLoop()) |
| 2350 | DstCoeff = Coeff; |
| 2351 | else { |
| 2352 | if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff)) |
| 2353 | // If the coefficient is the product of a constant and other stuff, |
| 2354 | // we can use the constant in the GCD computation. |
| 2355 | Constant = getConstantPart(Product); |
| 2356 | else |
| 2357 | Constant = cast<SCEVConstant>(Coeff); |
| 2358 | APInt ConstCoeff = Constant->getValue()->getValue(); |
| 2359 | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); |
| 2360 | } |
| 2361 | Inner = AddRec->getStart(); |
| 2362 | } |
| 2363 | Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff); |
| 2364 | if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta)) |
| 2365 | // If the coefficient is the product of a constant and other stuff, |
| 2366 | // we can use the constant in the GCD computation. |
| 2367 | Constant = getConstantPart(Product); |
| 2368 | else if (isa<SCEVConstant>(Delta)) |
| 2369 | Constant = cast<SCEVConstant>(Delta); |
| 2370 | else { |
| 2371 | // The difference of the two coefficients might not be a product |
| 2372 | // or constant, in which case we give up on this direction. |
| 2373 | continue; |
| 2374 | } |
| 2375 | APInt ConstCoeff = Constant->getValue()->getValue(); |
| 2376 | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); |
| 2377 | DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n"); |
| 2378 | if (RunningGCD != 0) { |
| 2379 | Remainder = ConstDelta.srem(RunningGCD); |
| 2380 | DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n"); |
| 2381 | if (Remainder != 0) { |
| 2382 | unsigned Level = mapSrcLoop(CurLoop); |
| 2383 | Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ; |
| 2384 | Improved = true; |
| 2385 | } |
| 2386 | } |
| 2387 | } |
| 2388 | if (Improved) |
| 2389 | ++GCDsuccesses; |
| 2390 | DEBUG(dbgs() << "all done\n"); |
| 2391 | return false; |
| 2392 | } |
| 2393 | |
| 2394 | |
| 2395 | //===----------------------------------------------------------------------===// |
| 2396 | // banerjeeMIVtest - |
| 2397 | // Use Banerjee's Inequalities to test an MIV subscript pair. |
| 2398 | // (Wolfe, in the race-car book, calls this the Extreme Value Test.) |
| 2399 | // Generally follows the discussion in Section 2.5.2 of |
| 2400 | // |
| 2401 | // Optimizing Supercompilers for Supercomputers |
| 2402 | // Michael Wolfe |
| 2403 | // |
| 2404 | // The inequalities given on page 25 are simplified in that loops are |
| 2405 | // normalized so that the lower bound is always 0 and the stride is always 1. |
| 2406 | // For example, Wolfe gives |
| 2407 | // |
| 2408 | // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
| 2409 | // |
| 2410 | // where A_k is the coefficient of the kth index in the source subscript, |
| 2411 | // B_k is the coefficient of the kth index in the destination subscript, |
| 2412 | // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth |
| 2413 | // index, and N_k is the stride of the kth index. Since all loops are normalized |
| 2414 | // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the |
| 2415 | // equation to |
| 2416 | // |
| 2417 | // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 |
| 2418 | // = (A^-_k - B_k)^- (U_k - 1) - B_k |
| 2419 | // |
| 2420 | // Similar simplifications are possible for the other equations. |
| 2421 | // |
| 2422 | // When we can't determine the number of iterations for a loop, |
| 2423 | // we use NULL as an indicator for the worst case, infinity. |
| 2424 | // When computing the upper bound, NULL denotes +inf; |
| 2425 | // for the lower bound, NULL denotes -inf. |
| 2426 | // |
| 2427 | // Return true if dependence disproved. |
| 2428 | bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src, |
| 2429 | const SCEV *Dst, |
| 2430 | const SmallBitVector &Loops, |
| 2431 | FullDependence &Result) const { |
| 2432 | DEBUG(dbgs() << "starting Banerjee\n"); |
| 2433 | ++BanerjeeApplications; |
| 2434 | DEBUG(dbgs() << " Src = " << *Src << '\n'); |
| 2435 | const SCEV *A0; |
| 2436 | CoefficientInfo *A = collectCoeffInfo(Src, true, A0); |
| 2437 | DEBUG(dbgs() << " Dst = " << *Dst << '\n'); |
| 2438 | const SCEV *B0; |
| 2439 | CoefficientInfo *B = collectCoeffInfo(Dst, false, B0); |
| 2440 | BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; |
| 2441 | const SCEV *Delta = SE->getMinusSCEV(B0, A0); |
| 2442 | DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); |
| 2443 | |
| 2444 | // Compute bounds for all the * directions. |
| 2445 | DEBUG(dbgs() << "\tBounds[*]\n"); |
| 2446 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
| 2447 | Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; |
| 2448 | Bound[K].Direction = Dependence::DVEntry::ALL; |
| 2449 | Bound[K].DirSet = Dependence::DVEntry::NONE; |
| 2450 | findBoundsALL(A, B, Bound, K); |
| 2451 | #ifndef NDEBUG |
| 2452 | DEBUG(dbgs() << "\t " << K << '\t'); |
| 2453 | if (Bound[K].Lower[Dependence::DVEntry::ALL]) |
| 2454 | DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); |
| 2455 | else |
| 2456 | DEBUG(dbgs() << "-inf\t"); |
| 2457 | if (Bound[K].Upper[Dependence::DVEntry::ALL]) |
| 2458 | DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); |
| 2459 | else |
| 2460 | DEBUG(dbgs() << "+inf\n"); |
| 2461 | #endif |
| 2462 | } |
| 2463 | |
| 2464 | // Test the *, *, *, ... case. |
| 2465 | bool Disproved = false; |
| 2466 | if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) { |
| 2467 | // Explore the direction vector hierarchy. |
| 2468 | unsigned DepthExpanded = 0; |
| 2469 | unsigned NewDeps = exploreDirections(1, A, B, Bound, |
| 2470 | Loops, DepthExpanded, Delta); |
| 2471 | if (NewDeps > 0) { |
| 2472 | bool Improved = false; |
| 2473 | for (unsigned K = 1; K <= CommonLevels; ++K) { |
| 2474 | if (Loops[K]) { |
| 2475 | unsigned Old = Result.DV[K - 1].Direction; |
| 2476 | Result.DV[K - 1].Direction = Old & Bound[K].DirSet; |
| 2477 | Improved |= Old != Result.DV[K - 1].Direction; |
| 2478 | if (!Result.DV[K - 1].Direction) { |
| 2479 | Improved = false; |
| 2480 | Disproved = true; |
| 2481 | break; |
| 2482 | } |
| 2483 | } |
| 2484 | } |
| 2485 | if (Improved) |
| 2486 | ++BanerjeeSuccesses; |
| 2487 | } |
| 2488 | else { |
| 2489 | ++BanerjeeIndependence; |
| 2490 | Disproved = true; |
| 2491 | } |
| 2492 | } |
| 2493 | else { |
| 2494 | ++BanerjeeIndependence; |
| 2495 | Disproved = true; |
| 2496 | } |
| 2497 | delete [] Bound; |
| 2498 | delete [] A; |
| 2499 | delete [] B; |
| 2500 | return Disproved; |
| 2501 | } |
| 2502 | |
| 2503 | |
| 2504 | // Hierarchically expands the direction vector |
| 2505 | // search space, combining the directions of discovered dependences |
| 2506 | // in the DirSet field of Bound. Returns the number of distinct |
| 2507 | // dependences discovered. If the dependence is disproved, |
| 2508 | // it will return 0. |
| 2509 | unsigned DependenceAnalysis::exploreDirections(unsigned Level, |
| 2510 | CoefficientInfo *A, |
| 2511 | CoefficientInfo *B, |
| 2512 | BoundInfo *Bound, |
| 2513 | const SmallBitVector &Loops, |
| 2514 | unsigned &DepthExpanded, |
| 2515 | const SCEV *Delta) const { |
| 2516 | if (Level > CommonLevels) { |
| 2517 | // record result |
| 2518 | DEBUG(dbgs() << "\t["); |
| 2519 | for (unsigned K = 1; K <= CommonLevels; ++K) { |
| 2520 | if (Loops[K]) { |
| 2521 | Bound[K].DirSet |= Bound[K].Direction; |
| 2522 | #ifndef NDEBUG |
| 2523 | switch (Bound[K].Direction) { |
| 2524 | case Dependence::DVEntry::LT: |
| 2525 | DEBUG(dbgs() << " <"); |
| 2526 | break; |
| 2527 | case Dependence::DVEntry::EQ: |
| 2528 | DEBUG(dbgs() << " ="); |
| 2529 | break; |
| 2530 | case Dependence::DVEntry::GT: |
| 2531 | DEBUG(dbgs() << " >"); |
| 2532 | break; |
| 2533 | case Dependence::DVEntry::ALL: |
| 2534 | DEBUG(dbgs() << " *"); |
| 2535 | break; |
| 2536 | default: |
| 2537 | llvm_unreachable("unexpected Bound[K].Direction"); |
| 2538 | } |
| 2539 | #endif |
| 2540 | } |
| 2541 | } |
| 2542 | DEBUG(dbgs() << " ]\n"); |
| 2543 | return 1; |
| 2544 | } |
| 2545 | if (Loops[Level]) { |
| 2546 | if (Level > DepthExpanded) { |
| 2547 | DepthExpanded = Level; |
| 2548 | // compute bounds for <, =, > at current level |
| 2549 | findBoundsLT(A, B, Bound, Level); |
| 2550 | findBoundsGT(A, B, Bound, Level); |
| 2551 | findBoundsEQ(A, B, Bound, Level); |
| 2552 | #ifndef NDEBUG |
| 2553 | DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); |
| 2554 | DEBUG(dbgs() << "\t <\t"); |
| 2555 | if (Bound[Level].Lower[Dependence::DVEntry::LT]) |
| 2556 | DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t'); |
| 2557 | else |
| 2558 | DEBUG(dbgs() << "-inf\t"); |
| 2559 | if (Bound[Level].Upper[Dependence::DVEntry::LT]) |
| 2560 | DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n'); |
| 2561 | else |
| 2562 | DEBUG(dbgs() << "+inf\n"); |
| 2563 | DEBUG(dbgs() << "\t =\t"); |
| 2564 | if (Bound[Level].Lower[Dependence::DVEntry::EQ]) |
| 2565 | DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t'); |
| 2566 | else |
| 2567 | DEBUG(dbgs() << "-inf\t"); |
| 2568 | if (Bound[Level].Upper[Dependence::DVEntry::EQ]) |
| 2569 | DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n'); |
| 2570 | else |
| 2571 | DEBUG(dbgs() << "+inf\n"); |
| 2572 | DEBUG(dbgs() << "\t >\t"); |
| 2573 | if (Bound[Level].Lower[Dependence::DVEntry::GT]) |
| 2574 | DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t'); |
| 2575 | else |
| 2576 | DEBUG(dbgs() << "-inf\t"); |
| 2577 | if (Bound[Level].Upper[Dependence::DVEntry::GT]) |
| 2578 | DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n'); |
| 2579 | else |
| 2580 | DEBUG(dbgs() << "+inf\n"); |
| 2581 | #endif |
| 2582 | } |
| 2583 | |
| 2584 | unsigned NewDeps = 0; |
| 2585 | |
| 2586 | // test bounds for <, *, *, ... |
| 2587 | if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta)) |
| 2588 | NewDeps += exploreDirections(Level + 1, A, B, Bound, |
| 2589 | Loops, DepthExpanded, Delta); |
| 2590 | |
| 2591 | // Test bounds for =, *, *, ... |
| 2592 | if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta)) |
| 2593 | NewDeps += exploreDirections(Level + 1, A, B, Bound, |
| 2594 | Loops, DepthExpanded, Delta); |
| 2595 | |
| 2596 | // test bounds for >, *, *, ... |
| 2597 | if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta)) |
| 2598 | NewDeps += exploreDirections(Level + 1, A, B, Bound, |
| 2599 | Loops, DepthExpanded, Delta); |
| 2600 | |
| 2601 | Bound[Level].Direction = Dependence::DVEntry::ALL; |
| 2602 | return NewDeps; |
| 2603 | } |
| 2604 | else |
| 2605 | return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta); |
| 2606 | } |
| 2607 | |
| 2608 | |
| 2609 | // Returns true iff the current bounds are plausible. |
| 2610 | bool DependenceAnalysis::testBounds(unsigned char DirKind, |
| 2611 | unsigned Level, |
| 2612 | BoundInfo *Bound, |
| 2613 | const SCEV *Delta) const { |
| 2614 | Bound[Level].Direction = DirKind; |
| 2615 | if (const SCEV *LowerBound = getLowerBound(Bound)) |
| 2616 | if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta)) |
| 2617 | return false; |
| 2618 | if (const SCEV *UpperBound = getUpperBound(Bound)) |
| 2619 | if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound)) |
| 2620 | return false; |
| 2621 | return true; |
| 2622 | } |
| 2623 | |
| 2624 | |
| 2625 | // Computes the upper and lower bounds for level K |
| 2626 | // using the * direction. Records them in Bound. |
| 2627 | // Wolfe gives the equations |
| 2628 | // |
| 2629 | // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k |
| 2630 | // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k |
| 2631 | // |
| 2632 | // Since we normalize loops, we can simplify these equations to |
| 2633 | // |
| 2634 | // LB^*_k = (A^-_k - B^+_k)U_k |
| 2635 | // UB^*_k = (A^+_k - B^-_k)U_k |
| 2636 | // |
| 2637 | // We must be careful to handle the case where the upper bound is unknown. |
| 2638 | // Note that the lower bound is always <= 0 |
| 2639 | // and the upper bound is always >= 0. |
| 2640 | void DependenceAnalysis::findBoundsALL(CoefficientInfo *A, |
| 2641 | CoefficientInfo *B, |
| 2642 | BoundInfo *Bound, |
| 2643 | unsigned K) const { |
| 2644 | Bound[K].Lower[Dependence::DVEntry::ALL] = NULL; // Default value = -infinity. |
| 2645 | Bound[K].Upper[Dependence::DVEntry::ALL] = NULL; // Default value = +infinity. |
| 2646 | if (Bound[K].Iterations) { |
| 2647 | Bound[K].Lower[Dependence::DVEntry::ALL] = |
| 2648 | SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), |
| 2649 | Bound[K].Iterations); |
| 2650 | Bound[K].Upper[Dependence::DVEntry::ALL] = |
| 2651 | SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), |
| 2652 | Bound[K].Iterations); |
| 2653 | } |
| 2654 | else { |
| 2655 | // If the difference is 0, we won't need to know the number of iterations. |
| 2656 | if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart)) |
| 2657 | Bound[K].Lower[Dependence::DVEntry::ALL] = |
| 2658 | SE->getConstant(A[K].Coeff->getType(), 0); |
| 2659 | if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart)) |
| 2660 | Bound[K].Upper[Dependence::DVEntry::ALL] = |
| 2661 | SE->getConstant(A[K].Coeff->getType(), 0); |
| 2662 | } |
| 2663 | } |
| 2664 | |
| 2665 | |
| 2666 | // Computes the upper and lower bounds for level K |
| 2667 | // using the = direction. Records them in Bound. |
| 2668 | // Wolfe gives the equations |
| 2669 | // |
| 2670 | // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k |
| 2671 | // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k |
| 2672 | // |
| 2673 | // Since we normalize loops, we can simplify these equations to |
| 2674 | // |
| 2675 | // LB^=_k = (A_k - B_k)^- U_k |
| 2676 | // UB^=_k = (A_k - B_k)^+ U_k |
| 2677 | // |
| 2678 | // We must be careful to handle the case where the upper bound is unknown. |
| 2679 | // Note that the lower bound is always <= 0 |
| 2680 | // and the upper bound is always >= 0. |
| 2681 | void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A, |
| 2682 | CoefficientInfo *B, |
| 2683 | BoundInfo *Bound, |
| 2684 | unsigned K) const { |
| 2685 | Bound[K].Lower[Dependence::DVEntry::EQ] = NULL; // Default value = -infinity. |
| 2686 | Bound[K].Upper[Dependence::DVEntry::EQ] = NULL; // Default value = +infinity. |
| 2687 | if (Bound[K].Iterations) { |
| 2688 | const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); |
| 2689 | const SCEV *NegativePart = getNegativePart(Delta); |
| 2690 | Bound[K].Lower[Dependence::DVEntry::EQ] = |
| 2691 | SE->getMulExpr(NegativePart, Bound[K].Iterations); |
| 2692 | const SCEV *PositivePart = getPositivePart(Delta); |
| 2693 | Bound[K].Upper[Dependence::DVEntry::EQ] = |
| 2694 | SE->getMulExpr(PositivePart, Bound[K].Iterations); |
| 2695 | } |
| 2696 | else { |
| 2697 | // If the positive/negative part of the difference is 0, |
| 2698 | // we won't need to know the number of iterations. |
| 2699 | const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); |
| 2700 | const SCEV *NegativePart = getNegativePart(Delta); |
| 2701 | if (NegativePart->isZero()) |
| 2702 | Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero |
| 2703 | const SCEV *PositivePart = getPositivePart(Delta); |
| 2704 | if (PositivePart->isZero()) |
| 2705 | Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero |
| 2706 | } |
| 2707 | } |
| 2708 | |
| 2709 | |
| 2710 | // Computes the upper and lower bounds for level K |
| 2711 | // using the < direction. Records them in Bound. |
| 2712 | // Wolfe gives the equations |
| 2713 | // |
| 2714 | // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
| 2715 | // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
| 2716 | // |
| 2717 | // Since we normalize loops, we can simplify these equations to |
| 2718 | // |
| 2719 | // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k |
| 2720 | // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k |
| 2721 | // |
| 2722 | // We must be careful to handle the case where the upper bound is unknown. |
| 2723 | void DependenceAnalysis::findBoundsLT(CoefficientInfo *A, |
| 2724 | CoefficientInfo *B, |
| 2725 | BoundInfo *Bound, |
| 2726 | unsigned K) const { |
| 2727 | Bound[K].Lower[Dependence::DVEntry::LT] = NULL; // Default value = -infinity. |
| 2728 | Bound[K].Upper[Dependence::DVEntry::LT] = NULL; // Default value = +infinity. |
| 2729 | if (Bound[K].Iterations) { |
| 2730 | const SCEV *Iter_1 = |
| 2731 | SE->getMinusSCEV(Bound[K].Iterations, |
| 2732 | SE->getConstant(Bound[K].Iterations->getType(), 1)); |
| 2733 | const SCEV *NegPart = |
| 2734 | getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); |
| 2735 | Bound[K].Lower[Dependence::DVEntry::LT] = |
| 2736 | SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff); |
| 2737 | const SCEV *PosPart = |
| 2738 | getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); |
| 2739 | Bound[K].Upper[Dependence::DVEntry::LT] = |
| 2740 | SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff); |
| 2741 | } |
| 2742 | else { |
| 2743 | // If the positive/negative part of the difference is 0, |
| 2744 | // we won't need to know the number of iterations. |
| 2745 | const SCEV *NegPart = |
| 2746 | getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); |
| 2747 | if (NegPart->isZero()) |
| 2748 | Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); |
| 2749 | const SCEV *PosPart = |
| 2750 | getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); |
| 2751 | if (PosPart->isZero()) |
| 2752 | Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); |
| 2753 | } |
| 2754 | } |
| 2755 | |
| 2756 | |
| 2757 | // Computes the upper and lower bounds for level K |
| 2758 | // using the > direction. Records them in Bound. |
| 2759 | // Wolfe gives the equations |
| 2760 | // |
| 2761 | // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k |
| 2762 | // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k |
| 2763 | // |
| 2764 | // Since we normalize loops, we can simplify these equations to |
| 2765 | // |
| 2766 | // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k |
| 2767 | // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k |
| 2768 | // |
| 2769 | // We must be careful to handle the case where the upper bound is unknown. |
| 2770 | void DependenceAnalysis::findBoundsGT(CoefficientInfo *A, |
| 2771 | CoefficientInfo *B, |
| 2772 | BoundInfo *Bound, |
| 2773 | unsigned K) const { |
| 2774 | Bound[K].Lower[Dependence::DVEntry::GT] = NULL; // Default value = -infinity. |
| 2775 | Bound[K].Upper[Dependence::DVEntry::GT] = NULL; // Default value = +infinity. |
| 2776 | if (Bound[K].Iterations) { |
| 2777 | const SCEV *Iter_1 = |
| 2778 | SE->getMinusSCEV(Bound[K].Iterations, |
| 2779 | SE->getConstant(Bound[K].Iterations->getType(), 1)); |
| 2780 | const SCEV *NegPart = |
| 2781 | getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); |
| 2782 | Bound[K].Lower[Dependence::DVEntry::GT] = |
| 2783 | SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff); |
| 2784 | const SCEV *PosPart = |
| 2785 | getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); |
| 2786 | Bound[K].Upper[Dependence::DVEntry::GT] = |
| 2787 | SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff); |
| 2788 | } |
| 2789 | else { |
| 2790 | // If the positive/negative part of the difference is 0, |
| 2791 | // we won't need to know the number of iterations. |
| 2792 | const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); |
| 2793 | if (NegPart->isZero()) |
| 2794 | Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; |
| 2795 | const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); |
| 2796 | if (PosPart->isZero()) |
| 2797 | Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; |
| 2798 | } |
| 2799 | } |
| 2800 | |
| 2801 | |
| 2802 | // X^+ = max(X, 0) |
| 2803 | const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const { |
| 2804 | return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0)); |
| 2805 | } |
| 2806 | |
| 2807 | |
| 2808 | // X^- = min(X, 0) |
| 2809 | const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const { |
| 2810 | return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0)); |
| 2811 | } |
| 2812 | |
| 2813 | |
| 2814 | // Walks through the subscript, |
| 2815 | // collecting each coefficient, the associated loop bounds, |
| 2816 | // and recording its positive and negative parts for later use. |
| 2817 | DependenceAnalysis::CoefficientInfo * |
| 2818 | DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript, |
| 2819 | bool SrcFlag, |
| 2820 | const SCEV *&Constant) const { |
| 2821 | const SCEV *Zero = SE->getConstant(Subscript->getType(), 0); |
| 2822 | CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; |
| 2823 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
| 2824 | CI[K].Coeff = Zero; |
| 2825 | CI[K].PosPart = Zero; |
| 2826 | CI[K].NegPart = Zero; |
| 2827 | CI[K].Iterations = NULL; |
| 2828 | } |
| 2829 | while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) { |
| 2830 | const Loop *L = AddRec->getLoop(); |
| 2831 | unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L); |
| 2832 | CI[K].Coeff = AddRec->getStepRecurrence(*SE); |
| 2833 | CI[K].PosPart = getPositivePart(CI[K].Coeff); |
| 2834 | CI[K].NegPart = getNegativePart(CI[K].Coeff); |
| 2835 | CI[K].Iterations = collectUpperBound(L, Subscript->getType()); |
| 2836 | Subscript = AddRec->getStart(); |
| 2837 | } |
| 2838 | Constant = Subscript; |
| 2839 | #ifndef NDEBUG |
| 2840 | DEBUG(dbgs() << "\tCoefficient Info\n"); |
| 2841 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
| 2842 | DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff); |
| 2843 | DEBUG(dbgs() << "\tPos Part = "); |
| 2844 | DEBUG(dbgs() << *CI[K].PosPart); |
| 2845 | DEBUG(dbgs() << "\tNeg Part = "); |
| 2846 | DEBUG(dbgs() << *CI[K].NegPart); |
| 2847 | DEBUG(dbgs() << "\tUpper Bound = "); |
| 2848 | if (CI[K].Iterations) |
| 2849 | DEBUG(dbgs() << *CI[K].Iterations); |
| 2850 | else |
| 2851 | DEBUG(dbgs() << "+inf"); |
| 2852 | DEBUG(dbgs() << '\n'); |
| 2853 | } |
| 2854 | DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n'); |
| 2855 | #endif |
| 2856 | return CI; |
| 2857 | } |
| 2858 | |
| 2859 | |
| 2860 | // Looks through all the bounds info and |
| 2861 | // computes the lower bound given the current direction settings |
| 2862 | // at each level. If the lower bound for any level is -inf, |
| 2863 | // the result is -inf. |
| 2864 | const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const { |
| 2865 | const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; |
| 2866 | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { |
| 2867 | if (Bound[K].Lower[Bound[K].Direction]) |
| 2868 | Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]); |
| 2869 | else |
| 2870 | Sum = NULL; |
| 2871 | } |
| 2872 | return Sum; |
| 2873 | } |
| 2874 | |
| 2875 | |
| 2876 | // Looks through all the bounds info and |
| 2877 | // computes the upper bound given the current direction settings |
| 2878 | // at each level. If the upper bound at any level is +inf, |
| 2879 | // the result is +inf. |
| 2880 | const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const { |
| 2881 | const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; |
| 2882 | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { |
| 2883 | if (Bound[K].Upper[Bound[K].Direction]) |
| 2884 | Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]); |
| 2885 | else |
| 2886 | Sum = NULL; |
| 2887 | } |
| 2888 | return Sum; |
| 2889 | } |
| 2890 | |
| 2891 | |
| 2892 | //===----------------------------------------------------------------------===// |
| 2893 | // Constraint manipulation for Delta test. |
| 2894 | |
| 2895 | // Given a linear SCEV, |
| 2896 | // return the coefficient (the step) |
| 2897 | // corresponding to the specified loop. |
| 2898 | // If there isn't one, return 0. |
| 2899 | // For example, given a*i + b*j + c*k, zeroing the coefficient |
| 2900 | // corresponding to the j loop would yield b. |
| 2901 | const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr, |
| 2902 | const Loop *TargetLoop) const { |
| 2903 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); |
| 2904 | if (!AddRec) |
| 2905 | return SE->getConstant(Expr->getType(), 0); |
| 2906 | if (AddRec->getLoop() == TargetLoop) |
| 2907 | return AddRec->getStepRecurrence(*SE); |
| 2908 | return findCoefficient(AddRec->getStart(), TargetLoop); |
| 2909 | } |
| 2910 | |
| 2911 | |
| 2912 | // Given a linear SCEV, |
| 2913 | // return the SCEV given by zeroing out the coefficient |
| 2914 | // corresponding to the specified loop. |
| 2915 | // For example, given a*i + b*j + c*k, zeroing the coefficient |
| 2916 | // corresponding to the j loop would yield a*i + c*k. |
| 2917 | const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr, |
| 2918 | const Loop *TargetLoop) const { |
| 2919 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); |
| 2920 | if (!AddRec) |
| 2921 | return Expr; // ignore |
| 2922 | if (AddRec->getLoop() == TargetLoop) |
| 2923 | return AddRec->getStart(); |
| 2924 | return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop), |
| 2925 | AddRec->getStepRecurrence(*SE), |
| 2926 | AddRec->getLoop(), |
| 2927 | AddRec->getNoWrapFlags()); |
| 2928 | } |
| 2929 | |
| 2930 | |
| 2931 | // Given a linear SCEV Expr, |
| 2932 | // return the SCEV given by adding some Value to the |
| 2933 | // coefficient corresponding to the specified TargetLoop. |
| 2934 | // For example, given a*i + b*j + c*k, adding 1 to the coefficient |
| 2935 | // corresponding to the j loop would yield a*i + (b+1)*j + c*k. |
| 2936 | const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr, |
| 2937 | const Loop *TargetLoop, |
| 2938 | const SCEV *Value) const { |
| 2939 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); |
| 2940 | if (!AddRec) // create a new addRec |
| 2941 | return SE->getAddRecExpr(Expr, |
| 2942 | Value, |
| 2943 | TargetLoop, |
| 2944 | SCEV::FlagAnyWrap); // Worst case, with no info. |
| 2945 | if (AddRec->getLoop() == TargetLoop) { |
| 2946 | const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value); |
| 2947 | if (Sum->isZero()) |
| 2948 | return AddRec->getStart(); |
| 2949 | return SE->getAddRecExpr(AddRec->getStart(), |
| 2950 | Sum, |
| 2951 | AddRec->getLoop(), |
| 2952 | AddRec->getNoWrapFlags()); |
| 2953 | } |
| 2954 | return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(), |
| 2955 | TargetLoop, Value), |
| 2956 | AddRec->getStepRecurrence(*SE), |
| 2957 | AddRec->getLoop(), |
| 2958 | AddRec->getNoWrapFlags()); |
| 2959 | } |
| 2960 | |
| 2961 | |
| 2962 | // Review the constraints, looking for opportunities |
| 2963 | // to simplify a subscript pair (Src and Dst). |
| 2964 | // Return true if some simplification occurs. |
| 2965 | // If the simplification isn't exact (that is, if it is conservative |
| 2966 | // in terms of dependence), set consistent to false. |
| 2967 | // Corresponds to Figure 5 from the paper |
| 2968 | // |
| 2969 | // Practical Dependence Testing |
| 2970 | // Goff, Kennedy, Tseng |
| 2971 | // PLDI 1991 |
| 2972 | bool DependenceAnalysis::propagate(const SCEV *&Src, |
| 2973 | const SCEV *&Dst, |
| 2974 | SmallBitVector &Loops, |
| 2975 | SmallVector<Constraint, 4> &Constraints, |
| 2976 | bool &Consistent) { |
| 2977 | bool Result = false; |
| 2978 | for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) { |
| 2979 | DEBUG(dbgs() << "\t Constraint[" << LI << "] is"); |
| 2980 | DEBUG(Constraints[LI].dump(dbgs())); |
| 2981 | if (Constraints[LI].isDistance()) |
| 2982 | Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent); |
| 2983 | else if (Constraints[LI].isLine()) |
| 2984 | Result |= propagateLine(Src, Dst, Constraints[LI], Consistent); |
| 2985 | else if (Constraints[LI].isPoint()) |
| 2986 | Result |= propagatePoint(Src, Dst, Constraints[LI]); |
| 2987 | } |
| 2988 | return Result; |
| 2989 | } |
| 2990 | |
| 2991 | |
| 2992 | // Attempt to propagate a distance |
| 2993 | // constraint into a subscript pair (Src and Dst). |
| 2994 | // Return true if some simplification occurs. |
| 2995 | // If the simplification isn't exact (that is, if it is conservative |
| 2996 | // in terms of dependence), set consistent to false. |
| 2997 | bool DependenceAnalysis::propagateDistance(const SCEV *&Src, |
| 2998 | const SCEV *&Dst, |
| 2999 | Constraint &CurConstraint, |
| 3000 | bool &Consistent) { |
| 3001 | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); |
| 3002 | DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); |
| 3003 | const SCEV *A_K = findCoefficient(Src, CurLoop); |
| 3004 | if (A_K->isZero()) |
| 3005 | return false; |
| 3006 | const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD()); |
| 3007 | Src = SE->getMinusSCEV(Src, DA_K); |
| 3008 | Src = zeroCoefficient(Src, CurLoop); |
| 3009 | DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); |
| 3010 | DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); |
| 3011 | Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K)); |
| 3012 | DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); |
| 3013 | if (!findCoefficient(Dst, CurLoop)->isZero()) |
| 3014 | Consistent = false; |
| 3015 | return true; |
| 3016 | } |
| 3017 | |
| 3018 | |
| 3019 | // Attempt to propagate a line |
| 3020 | // constraint into a subscript pair (Src and Dst). |
| 3021 | // Return true if some simplification occurs. |
| 3022 | // If the simplification isn't exact (that is, if it is conservative |
| 3023 | // in terms of dependence), set consistent to false. |
| 3024 | bool DependenceAnalysis::propagateLine(const SCEV *&Src, |
| 3025 | const SCEV *&Dst, |
| 3026 | Constraint &CurConstraint, |
| 3027 | bool &Consistent) { |
| 3028 | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); |
| 3029 | const SCEV *A = CurConstraint.getA(); |
| 3030 | const SCEV *B = CurConstraint.getB(); |
| 3031 | const SCEV *C = CurConstraint.getC(); |
| 3032 | DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n"); |
| 3033 | DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n"); |
| 3034 | DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n"); |
| 3035 | if (A->isZero()) { |
| 3036 | const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B); |
| 3037 | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); |
| 3038 | if (!Bconst || !Cconst) return false; |
| 3039 | APInt Beta = Bconst->getValue()->getValue(); |
| 3040 | APInt Charlie = Cconst->getValue()->getValue(); |
| 3041 | APInt CdivB = Charlie.sdiv(Beta); |
| 3042 | assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B"); |
| 3043 | const SCEV *AP_K = findCoefficient(Dst, CurLoop); |
| 3044 | // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); |
| 3045 | Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); |
| 3046 | Dst = zeroCoefficient(Dst, CurLoop); |
| 3047 | if (!findCoefficient(Src, CurLoop)->isZero()) |
| 3048 | Consistent = false; |
| 3049 | } |
| 3050 | else if (B->isZero()) { |
| 3051 | const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); |
| 3052 | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); |
| 3053 | if (!Aconst || !Cconst) return false; |
| 3054 | APInt Alpha = Aconst->getValue()->getValue(); |
| 3055 | APInt Charlie = Cconst->getValue()->getValue(); |
| 3056 | APInt CdivA = Charlie.sdiv(Alpha); |
| 3057 | assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); |
| 3058 | const SCEV *A_K = findCoefficient(Src, CurLoop); |
| 3059 | Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); |
| 3060 | Src = zeroCoefficient(Src, CurLoop); |
| 3061 | if (!findCoefficient(Dst, CurLoop)->isZero()) |
| 3062 | Consistent = false; |
| 3063 | } |
| 3064 | else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) { |
| 3065 | const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); |
| 3066 | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); |
| 3067 | if (!Aconst || !Cconst) return false; |
| 3068 | APInt Alpha = Aconst->getValue()->getValue(); |
| 3069 | APInt Charlie = Cconst->getValue()->getValue(); |
| 3070 | APInt CdivA = Charlie.sdiv(Alpha); |
| 3071 | assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); |
| 3072 | const SCEV *A_K = findCoefficient(Src, CurLoop); |
| 3073 | Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); |
| 3074 | Src = zeroCoefficient(Src, CurLoop); |
| 3075 | Dst = addToCoefficient(Dst, CurLoop, A_K); |
| 3076 | if (!findCoefficient(Dst, CurLoop)->isZero()) |
| 3077 | Consistent = false; |
| 3078 | } |
| 3079 | else { |
| 3080 | // paper is incorrect here, or perhaps just misleading |
| 3081 | const SCEV *A_K = findCoefficient(Src, CurLoop); |
| 3082 | Src = SE->getMulExpr(Src, A); |
| 3083 | Dst = SE->getMulExpr(Dst, A); |
| 3084 | Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C)); |
| 3085 | Src = zeroCoefficient(Src, CurLoop); |
| 3086 | Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B)); |
| 3087 | if (!findCoefficient(Dst, CurLoop)->isZero()) |
| 3088 | Consistent = false; |
| 3089 | } |
| 3090 | DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n"); |
| 3091 | DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n"); |
| 3092 | return true; |
| 3093 | } |
| 3094 | |
| 3095 | |
| 3096 | // Attempt to propagate a point |
| 3097 | // constraint into a subscript pair (Src and Dst). |
| 3098 | // Return true if some simplification occurs. |
| 3099 | bool DependenceAnalysis::propagatePoint(const SCEV *&Src, |
| 3100 | const SCEV *&Dst, |
| 3101 | Constraint &CurConstraint) { |
| 3102 | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); |
| 3103 | const SCEV *A_K = findCoefficient(Src, CurLoop); |
| 3104 | const SCEV *AP_K = findCoefficient(Dst, CurLoop); |
| 3105 | const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX()); |
| 3106 | const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY()); |
| 3107 | DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); |
| 3108 | Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K)); |
| 3109 | Src = zeroCoefficient(Src, CurLoop); |
| 3110 | DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); |
| 3111 | DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); |
| 3112 | Dst = zeroCoefficient(Dst, CurLoop); |
| 3113 | DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); |
| 3114 | return true; |
| 3115 | } |
| 3116 | |
| 3117 | |
| 3118 | // Update direction vector entry based on the current constraint. |
| 3119 | void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level, |
| 3120 | const Constraint &CurConstraint |
| 3121 | ) const { |
| 3122 | DEBUG(dbgs() << "\tUpdate direction, constraint ="); |
| 3123 | DEBUG(CurConstraint.dump(dbgs())); |
| 3124 | if (CurConstraint.isAny()) |
| 3125 | ; // use defaults |
| 3126 | else if (CurConstraint.isDistance()) { |
| 3127 | // this one is consistent, the others aren't |
| 3128 | Level.Scalar = false; |
| 3129 | Level.Distance = CurConstraint.getD(); |
| 3130 | unsigned NewDirection = Dependence::DVEntry::NONE; |
| 3131 | if (!SE->isKnownNonZero(Level.Distance)) // if may be zero |
| 3132 | NewDirection = Dependence::DVEntry::EQ; |
| 3133 | if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive |
| 3134 | NewDirection |= Dependence::DVEntry::LT; |
| 3135 | if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative |
| 3136 | NewDirection |= Dependence::DVEntry::GT; |
| 3137 | Level.Direction &= NewDirection; |
| 3138 | } |
| 3139 | else if (CurConstraint.isLine()) { |
| 3140 | Level.Scalar = false; |
| 3141 | Level.Distance = NULL; |
| 3142 | // direction should be accurate |
| 3143 | } |
| 3144 | else if (CurConstraint.isPoint()) { |
| 3145 | Level.Scalar = false; |
| 3146 | Level.Distance = NULL; |
| 3147 | unsigned NewDirection = Dependence::DVEntry::NONE; |
| 3148 | if (!isKnownPredicate(CmpInst::ICMP_NE, |
| 3149 | CurConstraint.getY(), |
| 3150 | CurConstraint.getX())) |
| 3151 | // if X may be = Y |
| 3152 | NewDirection |= Dependence::DVEntry::EQ; |
| 3153 | if (!isKnownPredicate(CmpInst::ICMP_SLE, |
| 3154 | CurConstraint.getY(), |
| 3155 | CurConstraint.getX())) |
| 3156 | // if Y may be > X |
| 3157 | NewDirection |= Dependence::DVEntry::LT; |
| 3158 | if (!isKnownPredicate(CmpInst::ICMP_SGE, |
| 3159 | CurConstraint.getY(), |
| 3160 | CurConstraint.getX())) |
| 3161 | // if Y may be < X |
| 3162 | NewDirection |= Dependence::DVEntry::GT; |
| 3163 | Level.Direction &= NewDirection; |
| 3164 | } |
| 3165 | else |
| 3166 | llvm_unreachable("constraint has unexpected kind"); |
| 3167 | } |
| 3168 | |
| 3169 | |
| 3170 | //===----------------------------------------------------------------------===// |
| 3171 | |
| 3172 | #ifndef NDEBUG |
| 3173 | // For debugging purposes, dump a small bit vector to dbgs(). |
| 3174 | static void dumpSmallBitVector(SmallBitVector &BV) { |
| 3175 | dbgs() << "{"; |
| 3176 | for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) { |
| 3177 | dbgs() << VI; |
| 3178 | if (BV.find_next(VI) >= 0) |
| 3179 | dbgs() << ' '; |
| 3180 | } |
| 3181 | dbgs() << "}\n"; |
| 3182 | } |
| 3183 | #endif |
| 3184 | |
| 3185 | |
| 3186 | // depends - |
| 3187 | // Returns NULL if there is no dependence. |
| 3188 | // Otherwise, return a Dependence with as many details as possible. |
| 3189 | // Corresponds to Section 3.1 in the paper |
| 3190 | // |
| 3191 | // Practical Dependence Testing |
| 3192 | // Goff, Kennedy, Tseng |
| 3193 | // PLDI 1991 |
| 3194 | // |
| 3195 | // Care is required to keep the code below up to date w.r.t. this routine. |
| 3196 | Dependence *DependenceAnalysis::depends(const Instruction *Src, |
| 3197 | const Instruction *Dst, |
| 3198 | bool PossiblyLoopIndependent) { |
| 3199 | if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) || |
| 3200 | (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory())) |
| 3201 | // if both instructions don't reference memory, there's no dependence |
| 3202 | return NULL; |
| 3203 | |
| 3204 | if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) |
| 3205 | // can only analyze simple loads and stores, i.e., no calls, invokes, etc. |
| 3206 | return new Dependence(Src, Dst); |
| 3207 | |
| 3208 | const Value *SrcPtr = getPointerOperand(Src); |
| 3209 | const Value *DstPtr = getPointerOperand(Dst); |
| 3210 | |
| 3211 | switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) { |
| 3212 | case AliasAnalysis::MayAlias: |
| 3213 | case AliasAnalysis::PartialAlias: |
| 3214 | // cannot analyse objects if we don't understand their aliasing. |
| 3215 | return new Dependence(Src, Dst); |
| 3216 | case AliasAnalysis::NoAlias: |
| 3217 | // If the objects noalias, they are distinct, accesses are independent. |
| 3218 | return NULL; |
| 3219 | case AliasAnalysis::MustAlias: |
| 3220 | break; // The underlying objects alias; test accesses for dependence. |
| 3221 | } |
| 3222 | |
| 3223 | const GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr); |
| 3224 | const GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr); |
| 3225 | if (!SrcGEP || !DstGEP) |
| 3226 | return new Dependence(Src, Dst); // missing GEP, assume dependence |
| 3227 | |
| 3228 | if (SrcGEP->getPointerOperandType() != DstGEP->getPointerOperandType()) |
| 3229 | return new Dependence(Src, Dst); // different types, assume dependence |
| 3230 | |
| 3231 | // establish loop nesting levels |
| 3232 | establishNestingLevels(Src, Dst); |
| 3233 | DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n"); |
| 3234 | DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n"); |
| 3235 | |
| 3236 | FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels); |
| 3237 | ++TotalArrayPairs; |
| 3238 | |
| 3239 | // classify subscript pairs |
| 3240 | unsigned Pairs = SrcGEP->idx_end() - SrcGEP->idx_begin(); |
| 3241 | SmallVector<Subscript, 4> Pair(Pairs); |
| 3242 | for (unsigned SI = 0; SI < Pairs; ++SI) { |
| 3243 | Pair[SI].Loops.resize(MaxLevels + 1); |
| 3244 | Pair[SI].GroupLoops.resize(MaxLevels + 1); |
| 3245 | Pair[SI].Group.resize(Pairs); |
| 3246 | } |
| 3247 | Pairs = 0; |
| 3248 | for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(), |
| 3249 | SrcEnd = SrcGEP->idx_end(), |
| 3250 | DstIdx = DstGEP->idx_begin(), |
| 3251 | DstEnd = DstGEP->idx_end(); |
| 3252 | SrcIdx != SrcEnd && DstIdx != DstEnd; |
| 3253 | ++SrcIdx, ++DstIdx, ++Pairs) { |
| 3254 | Pair[Pairs].Src = SE->getSCEV(*SrcIdx); |
| 3255 | Pair[Pairs].Dst = SE->getSCEV(*DstIdx); |
| 3256 | removeMatchingExtensions(&Pair[Pairs]); |
| 3257 | Pair[Pairs].Classification = |
| 3258 | classifyPair(Pair[Pairs].Src, LI->getLoopFor(Src->getParent()), |
| 3259 | Pair[Pairs].Dst, LI->getLoopFor(Dst->getParent()), |
| 3260 | Pair[Pairs].Loops); |
| 3261 | Pair[Pairs].GroupLoops = Pair[Pairs].Loops; |
| 3262 | Pair[Pairs].Group.set(Pairs); |
| 3263 | DEBUG(dbgs() << " subscript " << Pairs << "\n"); |
| 3264 | DEBUG(dbgs() << "\tsrc = " << *Pair[Pairs].Src << "\n"); |
| 3265 | DEBUG(dbgs() << "\tdst = " << *Pair[Pairs].Dst << "\n"); |
| 3266 | DEBUG(dbgs() << "\tclass = " << Pair[Pairs].Classification << "\n"); |
| 3267 | DEBUG(dbgs() << "\tloops = "); |
| 3268 | DEBUG(dumpSmallBitVector(Pair[Pairs].Loops)); |
| 3269 | } |
| 3270 | |
| 3271 | SmallBitVector Separable(Pairs); |
| 3272 | SmallBitVector Coupled(Pairs); |
| 3273 | |
| 3274 | // Partition subscripts into separable and minimally-coupled groups |
| 3275 | // Algorithm in paper is algorithmically better; |
| 3276 | // this may be faster in practice. Check someday. |
| 3277 | // |
| 3278 | // Here's an example of how it works. Consider this code: |
| 3279 | // |
| 3280 | // for (i = ...) { |
| 3281 | // for (j = ...) { |
| 3282 | // for (k = ...) { |
| 3283 | // for (l = ...) { |
| 3284 | // for (m = ...) { |
| 3285 | // A[i][j][k][m] = ...; |
| 3286 | // ... = A[0][j][l][i + j]; |
| 3287 | // } |
| 3288 | // } |
| 3289 | // } |
| 3290 | // } |
| 3291 | // } |
| 3292 | // |
| 3293 | // There are 4 subscripts here: |
| 3294 | // 0 [i] and [0] |
| 3295 | // 1 [j] and [j] |
| 3296 | // 2 [k] and [l] |
| 3297 | // 3 [m] and [i + j] |
| 3298 | // |
| 3299 | // We've already classified each subscript pair as ZIV, SIV, etc., |
| 3300 | // and collected all the loops mentioned by pair P in Pair[P].Loops. |
| 3301 | // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops |
| 3302 | // and set Pair[P].Group = {P}. |
| 3303 | // |
| 3304 | // Src Dst Classification Loops GroupLoops Group |
| 3305 | // 0 [i] [0] SIV {1} {1} {0} |
| 3306 | // 1 [j] [j] SIV {2} {2} {1} |
| 3307 | // 2 [k] [l] RDIV {3,4} {3,4} {2} |
| 3308 | // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3} |
| 3309 | // |
| 3310 | // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ. |
| 3311 | // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc. |
| 3312 | // |
| 3313 | // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty. |
| 3314 | // Next, 0 and 2. Again, the intersection of their GroupLoops is empty. |
| 3315 | // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty, |
| 3316 | // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added |
| 3317 | // to either Separable or Coupled). |
| 3318 | // |
| 3319 | // Next, we consider 1 and 2. The intersection of the GroupLoops is empty. |
| 3320 | // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty, |
| 3321 | // so Pair[3].Group = {0, 1, 3} and Done = false. |
| 3322 | // |
| 3323 | // Next, we compare 2 against 3. The intersection of the GroupLoops is empty. |
| 3324 | // Since Done remains true, we add 2 to the set of Separable pairs. |
| 3325 | // |
| 3326 | // Finally, we consider 3. There's nothing to compare it with, |
| 3327 | // so Done remains true and we add it to the Coupled set. |
| 3328 | // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}. |
| 3329 | // |
| 3330 | // In the end, we've got 1 separable subscript and 1 coupled group. |
| 3331 | for (unsigned SI = 0; SI < Pairs; ++SI) { |
| 3332 | if (Pair[SI].Classification == Subscript::NonLinear) { |
| 3333 | // ignore these, but collect loops for later |
| 3334 | ++NonlinearSubscriptPairs; |
| 3335 | collectCommonLoops(Pair[SI].Src, |
| 3336 | LI->getLoopFor(Src->getParent()), |
| 3337 | Pair[SI].Loops); |
| 3338 | collectCommonLoops(Pair[SI].Dst, |
| 3339 | LI->getLoopFor(Dst->getParent()), |
| 3340 | Pair[SI].Loops); |
| 3341 | Result.Consistent = false; |
| 3342 | } |
| 3343 | else if (Pair[SI].Classification == Subscript::ZIV) { |
| 3344 | // always separable |
| 3345 | Separable.set(SI); |
| 3346 | } |
| 3347 | else { |
| 3348 | // SIV, RDIV, or MIV, so check for coupled group |
| 3349 | bool Done = true; |
| 3350 | for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { |
| 3351 | SmallBitVector Intersection = Pair[SI].GroupLoops; |
| 3352 | Intersection &= Pair[SJ].GroupLoops; |
| 3353 | if (Intersection.any()) { |
| 3354 | // accumulate set of all the loops in group |
| 3355 | Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; |
| 3356 | // accumulate set of all subscripts in group |
| 3357 | Pair[SJ].Group |= Pair[SI].Group; |
| 3358 | Done = false; |
| 3359 | } |
| 3360 | } |
| 3361 | if (Done) { |
| 3362 | if (Pair[SI].Group.count() == 1) { |
| 3363 | Separable.set(SI); |
| 3364 | ++SeparableSubscriptPairs; |
| 3365 | } |
| 3366 | else { |
| 3367 | Coupled.set(SI); |
| 3368 | ++CoupledSubscriptPairs; |
| 3369 | } |
| 3370 | } |
| 3371 | } |
| 3372 | } |
| 3373 | |
| 3374 | DEBUG(dbgs() << " Separable = "); |
| 3375 | DEBUG(dumpSmallBitVector(Separable)); |
| 3376 | DEBUG(dbgs() << " Coupled = "); |
| 3377 | DEBUG(dumpSmallBitVector(Coupled)); |
| 3378 | |
| 3379 | Constraint NewConstraint; |
| 3380 | NewConstraint.setAny(SE); |
| 3381 | |
| 3382 | // test separable subscripts |
| 3383 | for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) { |
| 3384 | DEBUG(dbgs() << "testing subscript " << SI); |
| 3385 | switch (Pair[SI].Classification) { |
| 3386 | case Subscript::ZIV: |
| 3387 | DEBUG(dbgs() << ", ZIV\n"); |
| 3388 | if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result)) |
| 3389 | return NULL; |
| 3390 | break; |
| 3391 | case Subscript::SIV: { |
| 3392 | DEBUG(dbgs() << ", SIV\n"); |
| 3393 | unsigned Level; |
| 3394 | const SCEV *SplitIter = NULL; |
| 3395 | if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, |
| 3396 | Result, NewConstraint, SplitIter)) |
| 3397 | return NULL; |
| 3398 | break; |
| 3399 | } |
| 3400 | case Subscript::RDIV: |
| 3401 | DEBUG(dbgs() << ", RDIV\n"); |
| 3402 | if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result)) |
| 3403 | return NULL; |
| 3404 | break; |
| 3405 | case Subscript::MIV: |
| 3406 | DEBUG(dbgs() << ", MIV\n"); |
| 3407 | if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result)) |
| 3408 | return NULL; |
| 3409 | break; |
| 3410 | default: |
| 3411 | llvm_unreachable("subscript has unexpected classification"); |
| 3412 | } |
| 3413 | } |
| 3414 | |
| 3415 | if (Coupled.count()) { |
| 3416 | // test coupled subscript groups |
| 3417 | DEBUG(dbgs() << "starting on coupled subscripts\n"); |
| 3418 | DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n"); |
| 3419 | SmallVector<Constraint, 4> Constraints(MaxLevels + 1); |
| 3420 | for (unsigned II = 0; II <= MaxLevels; ++II) |
| 3421 | Constraints[II].setAny(SE); |
| 3422 | for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) { |
| 3423 | DEBUG(dbgs() << "testing subscript group " << SI << " { "); |
| 3424 | SmallBitVector Group(Pair[SI].Group); |
| 3425 | SmallBitVector Sivs(Pairs); |
| 3426 | SmallBitVector Mivs(Pairs); |
| 3427 | SmallBitVector ConstrainedLevels(MaxLevels + 1); |
| 3428 | for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) { |
| 3429 | DEBUG(dbgs() << SJ << " "); |
| 3430 | if (Pair[SJ].Classification == Subscript::SIV) |
| 3431 | Sivs.set(SJ); |
| 3432 | else |
| 3433 | Mivs.set(SJ); |
| 3434 | } |
| 3435 | DEBUG(dbgs() << "}\n"); |
| 3436 | while (Sivs.any()) { |
| 3437 | bool Changed = false; |
| 3438 | for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) { |
| 3439 | DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n"); |
| 3440 | // SJ is an SIV subscript that's part of the current coupled group |
| 3441 | unsigned Level; |
| 3442 | const SCEV *SplitIter = NULL; |
| 3443 | DEBUG(dbgs() << "SIV\n"); |
| 3444 | if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, |
| 3445 | Result, NewConstraint, SplitIter)) |
| 3446 | return NULL; |
| 3447 | ConstrainedLevels.set(Level); |
| 3448 | if (intersectConstraints(&Constraints[Level], &NewConstraint)) { |
| 3449 | if (Constraints[Level].isEmpty()) { |
| 3450 | ++DeltaIndependence; |
| 3451 | return NULL; |
| 3452 | } |
| 3453 | Changed = true; |
| 3454 | } |
| 3455 | Sivs.reset(SJ); |
| 3456 | } |
| 3457 | if (Changed) { |
| 3458 | // propagate, possibly creating new SIVs and ZIVs |
| 3459 | DEBUG(dbgs() << " propagating\n"); |
| 3460 | DEBUG(dbgs() << "\tMivs = "); |
| 3461 | DEBUG(dumpSmallBitVector(Mivs)); |
| 3462 | for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { |
| 3463 | // SJ is an MIV subscript that's part of the current coupled group |
| 3464 | DEBUG(dbgs() << "\tSJ = " << SJ << "\n"); |
| 3465 | if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, |
| 3466 | Constraints, Result.Consistent)) { |
| 3467 | DEBUG(dbgs() << "\t Changed\n"); |
| 3468 | ++DeltaPropagations; |
| 3469 | Pair[SJ].Classification = |
| 3470 | classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), |
| 3471 | Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), |
| 3472 | Pair[SJ].Loops); |
| 3473 | switch (Pair[SJ].Classification) { |
| 3474 | case Subscript::ZIV: |
| 3475 | DEBUG(dbgs() << "ZIV\n"); |
| 3476 | if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) |
| 3477 | return NULL; |
| 3478 | Mivs.reset(SJ); |
| 3479 | break; |
| 3480 | case Subscript::SIV: |
| 3481 | Sivs.set(SJ); |
| 3482 | Mivs.reset(SJ); |
| 3483 | break; |
| 3484 | case Subscript::RDIV: |
| 3485 | case Subscript::MIV: |
| 3486 | break; |
| 3487 | default: |
| 3488 | llvm_unreachable("bad subscript classification"); |
| 3489 | } |
| 3490 | } |
| 3491 | } |
| 3492 | } |
| 3493 | } |
| 3494 | |
| 3495 | // test & propagate remaining RDIVs |
| 3496 | for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { |
| 3497 | if (Pair[SJ].Classification == Subscript::RDIV) { |
| 3498 | DEBUG(dbgs() << "RDIV test\n"); |
| 3499 | if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) |
| 3500 | return NULL; |
| 3501 | // I don't yet understand how to propagate RDIV results |
| 3502 | Mivs.reset(SJ); |
| 3503 | } |
| 3504 | } |
| 3505 | |
| 3506 | // test remaining MIVs |
| 3507 | // This code is temporary. |
| 3508 | // Better to somehow test all remaining subscripts simultaneously. |
| 3509 | for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { |
| 3510 | if (Pair[SJ].Classification == Subscript::MIV) { |
| 3511 | DEBUG(dbgs() << "MIV test\n"); |
| 3512 | if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result)) |
| 3513 | return NULL; |
| 3514 | } |
| 3515 | else |
| 3516 | llvm_unreachable("expected only MIV subscripts at this point"); |
| 3517 | } |
| 3518 | |
| 3519 | // update Result.DV from constraint vector |
| 3520 | DEBUG(dbgs() << " updating\n"); |
| 3521 | for (int SJ = ConstrainedLevels.find_first(); |
| 3522 | SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) { |
| 3523 | updateDirection(Result.DV[SJ - 1], Constraints[SJ]); |
| 3524 | if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE) |
| 3525 | return NULL; |
| 3526 | } |
| 3527 | } |
| 3528 | } |
| 3529 | |
| 3530 | // make sure Scalar flags are set correctly |
| 3531 | SmallBitVector CompleteLoops(MaxLevels + 1); |
| 3532 | for (unsigned SI = 0; SI < Pairs; ++SI) |
| 3533 | CompleteLoops |= Pair[SI].Loops; |
| 3534 | for (unsigned II = 1; II <= CommonLevels; ++II) |
| 3535 | if (CompleteLoops[II]) |
| 3536 | Result.DV[II - 1].Scalar = false; |
| 3537 | |
| 3538 | // make sure loopIndepent flag is set correctly |
| 3539 | if (PossiblyLoopIndependent) { |
| 3540 | for (unsigned II = 1; II <= CommonLevels; ++II) { |
| 3541 | if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) { |
| 3542 | Result.LoopIndependent = false; |
| 3543 | break; |
| 3544 | } |
| 3545 | } |
| 3546 | } |
| 3547 | |
| 3548 | FullDependence *Final = new FullDependence(Result); |
| 3549 | Result.DV = NULL; |
| 3550 | return Final; |
| 3551 | } |
| 3552 | |
| 3553 | |
| 3554 | |
| 3555 | //===----------------------------------------------------------------------===// |
| 3556 | // getSplitIteration - |
| 3557 | // Rather than spend rarely-used space recording the splitting iteration |
| 3558 | // during the Weak-Crossing SIV test, we re-compute it on demand. |
| 3559 | // The re-computation is basically a repeat of the entire dependence test, |
| 3560 | // though simplified since we know that the dependence exists. |
| 3561 | // It's tedious, since we must go through all propagations, etc. |
| 3562 | // |
| 3563 | // Care is required to keep this code up to date w.r.t. the code above. |
| 3564 | // |
| 3565 | // Generally, the dependence analyzer will be used to build |
| 3566 | // a dependence graph for a function (basically a map from instructions |
| 3567 | // to dependences). Looking for cycles in the graph shows us loops |
| 3568 | // that cannot be trivially vectorized/parallelized. |
| 3569 | // |
| 3570 | // We can try to improve the situation by examining all the dependences |
| 3571 | // that make up the cycle, looking for ones we can break. |
| 3572 | // Sometimes, peeling the first or last iteration of a loop will break |
| 3573 | // dependences, and we've got flags for those possibilities. |
| 3574 | // Sometimes, splitting a loop at some other iteration will do the trick, |
| 3575 | // and we've got a flag for that case. Rather than waste the space to |
| 3576 | // record the exact iteration (since we rarely know), we provide |
| 3577 | // a method that calculates the iteration. It's a drag that it must work |
| 3578 | // from scratch, but wonderful in that it's possible. |
| 3579 | // |
| 3580 | // Here's an example: |
| 3581 | // |
| 3582 | // for (i = 0; i < 10; i++) |
| 3583 | // A[i] = ... |
| 3584 | // ... = A[11 - i] |
| 3585 | // |
| 3586 | // There's a loop-carried flow dependence from the store to the load, |
| 3587 | // found by the weak-crossing SIV test. The dependence will have a flag, |
| 3588 | // indicating that the dependence can be broken by splitting the loop. |
| 3589 | // Calling getSplitIteration will return 5. |
| 3590 | // Splitting the loop breaks the dependence, like so: |
| 3591 | // |
| 3592 | // for (i = 0; i <= 5; i++) |
| 3593 | // A[i] = ... |
| 3594 | // ... = A[11 - i] |
| 3595 | // for (i = 6; i < 10; i++) |
| 3596 | // A[i] = ... |
| 3597 | // ... = A[11 - i] |
| 3598 | // |
| 3599 | // breaks the dependence and allows us to vectorize/parallelize |
| 3600 | // both loops. |
| 3601 | const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep, |
| 3602 | unsigned SplitLevel) { |
| 3603 | assert(Dep && "expected a pointer to a Dependence"); |
| 3604 | assert(Dep->isSplitable(SplitLevel) && |
| 3605 | "Dep should be splitable at SplitLevel"); |
| 3606 | const Instruction *Src = Dep->getSrc(); |
| 3607 | const Instruction *Dst = Dep->getDst(); |
| 3608 | assert(Src->mayReadFromMemory() || Src->mayWriteToMemory()); |
| 3609 | assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory()); |
| 3610 | assert(isLoadOrStore(Src)); |
| 3611 | assert(isLoadOrStore(Dst)); |
| 3612 | const Value *SrcPtr = getPointerOperand(Src); |
| 3613 | const Value *DstPtr = getPointerOperand(Dst); |
| 3614 | assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) == |
| 3615 | AliasAnalysis::MustAlias); |
| 3616 | const GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr); |
| 3617 | const GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr); |
| 3618 | assert(SrcGEP); |
| 3619 | assert(DstGEP); |
| 3620 | assert(SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()); |
| 3621 | |
| 3622 | // establish loop nesting levels |
| 3623 | establishNestingLevels(Src, Dst); |
| 3624 | |
| 3625 | FullDependence Result(Src, Dst, false, CommonLevels); |
| 3626 | |
| 3627 | // classify subscript pairs |
| 3628 | unsigned Pairs = SrcGEP->idx_end() - SrcGEP->idx_begin(); |
| 3629 | SmallVector<Subscript, 4> Pair(Pairs); |
| 3630 | for (unsigned SI = 0; SI < Pairs; ++SI) { |
| 3631 | Pair[SI].Loops.resize(MaxLevels + 1); |
| 3632 | Pair[SI].GroupLoops.resize(MaxLevels + 1); |
| 3633 | Pair[SI].Group.resize(Pairs); |
| 3634 | } |
| 3635 | Pairs = 0; |
| 3636 | for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(), |
| 3637 | SrcEnd = SrcGEP->idx_end(), |
| 3638 | DstIdx = DstGEP->idx_begin(), |
| 3639 | DstEnd = DstGEP->idx_end(); |
| 3640 | SrcIdx != SrcEnd && DstIdx != DstEnd; |
| 3641 | ++SrcIdx, ++DstIdx, ++Pairs) { |
| 3642 | Pair[Pairs].Src = SE->getSCEV(*SrcIdx); |
| 3643 | Pair[Pairs].Dst = SE->getSCEV(*DstIdx); |
| 3644 | Pair[Pairs].Classification = |
| 3645 | classifyPair(Pair[Pairs].Src, LI->getLoopFor(Src->getParent()), |
| 3646 | Pair[Pairs].Dst, LI->getLoopFor(Dst->getParent()), |
| 3647 | Pair[Pairs].Loops); |
| 3648 | Pair[Pairs].GroupLoops = Pair[Pairs].Loops; |
| 3649 | Pair[Pairs].Group.set(Pairs); |
| 3650 | } |
| 3651 | |
| 3652 | SmallBitVector Separable(Pairs); |
| 3653 | SmallBitVector Coupled(Pairs); |
| 3654 | |
| 3655 | // partition subscripts into separable and minimally-coupled groups |
| 3656 | for (unsigned SI = 0; SI < Pairs; ++SI) { |
| 3657 | if (Pair[SI].Classification == Subscript::NonLinear) { |
| 3658 | // ignore these, but collect loops for later |
| 3659 | collectCommonLoops(Pair[SI].Src, |
| 3660 | LI->getLoopFor(Src->getParent()), |
| 3661 | Pair[SI].Loops); |
| 3662 | collectCommonLoops(Pair[SI].Dst, |
| 3663 | LI->getLoopFor(Dst->getParent()), |
| 3664 | Pair[SI].Loops); |
| 3665 | Result.Consistent = false; |
| 3666 | } |
| 3667 | else if (Pair[SI].Classification == Subscript::ZIV) |
| 3668 | Separable.set(SI); |
| 3669 | else { |
| 3670 | // SIV, RDIV, or MIV, so check for coupled group |
| 3671 | bool Done = true; |
| 3672 | for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { |
| 3673 | SmallBitVector Intersection = Pair[SI].GroupLoops; |
| 3674 | Intersection &= Pair[SJ].GroupLoops; |
| 3675 | if (Intersection.any()) { |
| 3676 | // accumulate set of all the loops in group |
| 3677 | Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; |
| 3678 | // accumulate set of all subscripts in group |
| 3679 | Pair[SJ].Group |= Pair[SI].Group; |
| 3680 | Done = false; |
| 3681 | } |
| 3682 | } |
| 3683 | if (Done) { |
| 3684 | if (Pair[SI].Group.count() == 1) |
| 3685 | Separable.set(SI); |
| 3686 | else |
| 3687 | Coupled.set(SI); |
| 3688 | } |
| 3689 | } |
| 3690 | } |
| 3691 | |
| 3692 | Constraint NewConstraint; |
| 3693 | NewConstraint.setAny(SE); |
| 3694 | |
| 3695 | // test separable subscripts |
| 3696 | for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) { |
| 3697 | switch (Pair[SI].Classification) { |
| 3698 | case Subscript::SIV: { |
| 3699 | unsigned Level; |
| 3700 | const SCEV *SplitIter = NULL; |
| 3701 | (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level, |
| 3702 | Result, NewConstraint, SplitIter); |
| 3703 | if (Level == SplitLevel) { |
| 3704 | assert(SplitIter != NULL); |
| 3705 | return SplitIter; |
| 3706 | } |
| 3707 | break; |
| 3708 | } |
| 3709 | case Subscript::ZIV: |
| 3710 | case Subscript::RDIV: |
| 3711 | case Subscript::MIV: |
| 3712 | break; |
| 3713 | default: |
| 3714 | llvm_unreachable("subscript has unexpected classification"); |
| 3715 | } |
| 3716 | } |
| 3717 | |
| 3718 | if (Coupled.count()) { |
| 3719 | // test coupled subscript groups |
| 3720 | SmallVector<Constraint, 4> Constraints(MaxLevels + 1); |
| 3721 | for (unsigned II = 0; II <= MaxLevels; ++II) |
| 3722 | Constraints[II].setAny(SE); |
| 3723 | for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) { |
| 3724 | SmallBitVector Group(Pair[SI].Group); |
| 3725 | SmallBitVector Sivs(Pairs); |
| 3726 | SmallBitVector Mivs(Pairs); |
| 3727 | SmallBitVector ConstrainedLevels(MaxLevels + 1); |
| 3728 | for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) { |
| 3729 | if (Pair[SJ].Classification == Subscript::SIV) |
| 3730 | Sivs.set(SJ); |
| 3731 | else |
| 3732 | Mivs.set(SJ); |
| 3733 | } |
| 3734 | while (Sivs.any()) { |
| 3735 | bool Changed = false; |
| 3736 | for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) { |
| 3737 | // SJ is an SIV subscript that's part of the current coupled group |
| 3738 | unsigned Level; |
| 3739 | const SCEV *SplitIter = NULL; |
| 3740 | (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, |
| 3741 | Result, NewConstraint, SplitIter); |
| 3742 | if (Level == SplitLevel && SplitIter) |
| 3743 | return SplitIter; |
| 3744 | ConstrainedLevels.set(Level); |
| 3745 | if (intersectConstraints(&Constraints[Level], &NewConstraint)) |
| 3746 | Changed = true; |
| 3747 | Sivs.reset(SJ); |
| 3748 | } |
| 3749 | if (Changed) { |
| 3750 | // propagate, possibly creating new SIVs and ZIVs |
| 3751 | for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) { |
| 3752 | // SJ is an MIV subscript that's part of the current coupled group |
| 3753 | if (propagate(Pair[SJ].Src, Pair[SJ].Dst, |
| 3754 | Pair[SJ].Loops, Constraints, Result.Consistent)) { |
| 3755 | Pair[SJ].Classification = |
| 3756 | classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), |
| 3757 | Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), |
| 3758 | Pair[SJ].Loops); |
| 3759 | switch (Pair[SJ].Classification) { |
| 3760 | case Subscript::ZIV: |
| 3761 | Mivs.reset(SJ); |
| 3762 | break; |
| 3763 | case Subscript::SIV: |
| 3764 | Sivs.set(SJ); |
| 3765 | Mivs.reset(SJ); |
| 3766 | break; |
| 3767 | case Subscript::RDIV: |
| 3768 | case Subscript::MIV: |
| 3769 | break; |
| 3770 | default: |
| 3771 | llvm_unreachable("bad subscript classification"); |
| 3772 | } |
| 3773 | } |
| 3774 | } |
| 3775 | } |
| 3776 | } |
| 3777 | } |
| 3778 | } |
| 3779 | llvm_unreachable("somehow reached end of routine"); |
| 3780 | return NULL; |
| 3781 | } |