Evan Cheng | b1290a6 | 2008-10-02 18:29:27 +0000 | [diff] [blame^] | 1 | //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based |
| 11 | // register allocator for LLVM. This allocator works by constructing a PBQP |
| 12 | // problem representing the register allocation problem under consideration, |
| 13 | // solving this using a PBQP solver, and mapping the solution back to a |
| 14 | // register assignment. If any variables are selected for spilling then spill |
| 15 | // code is inserted and the process repeated. |
| 16 | // |
| 17 | // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned |
| 18 | // for register allocation. For more information on PBQP for register |
| 19 | // allocation see the following papers: |
| 20 | // |
| 21 | // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with |
| 22 | // PBQP. In Proceedings of the 7th Joint Modular Languages Conference |
| 23 | // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. |
| 24 | // |
| 25 | // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular |
| 26 | // architectures. In Proceedings of the Joint Conference on Languages, |
| 27 | // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, |
| 28 | // NY, USA, 139-148. |
| 29 | // |
| 30 | // Author: Lang Hames |
| 31 | // Email: lhames@gmail.com |
| 32 | // |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | |
| 35 | // TODO: |
| 36 | // |
| 37 | // * Use of std::set in constructPBQPProblem destroys allocation order preference. |
| 38 | // Switch to an order preserving container. |
| 39 | // |
| 40 | // * Coalescing support. |
| 41 | |
| 42 | #define DEBUG_TYPE "regalloc" |
| 43 | |
| 44 | #include "PBQP.h" |
| 45 | #include "VirtRegMap.h" |
| 46 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 47 | #include "llvm/CodeGen/RegAllocRegistry.h" |
| 48 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| 49 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 50 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 51 | #include "llvm/Target/TargetMachine.h" |
| 52 | #include "llvm/Target/TargetInstrInfo.h" |
| 53 | #include "llvm/Support/Debug.h" |
| 54 | #include <memory> |
| 55 | #include <map> |
| 56 | #include <set> |
| 57 | #include <vector> |
| 58 | #include <limits> |
| 59 | |
| 60 | using namespace llvm; |
| 61 | |
| 62 | static RegisterRegAlloc |
| 63 | registerPBQPRepAlloc("pbqp", " PBQP register allocator", |
| 64 | createPBQPRegisterAllocator); |
| 65 | |
| 66 | |
| 67 | namespace { |
| 68 | |
| 69 | //! |
| 70 | //! PBQP based allocators solve the register allocation problem by mapping |
| 71 | //! register allocation problems to Partitioned Boolean Quadratic |
| 72 | //! Programming problems. |
| 73 | class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass { |
| 74 | public: |
| 75 | |
| 76 | static char ID; |
| 77 | |
| 78 | //! Construct a PBQP register allocator. |
| 79 | PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {} |
| 80 | |
| 81 | //! Return the pass name. |
| 82 | virtual const char* getPassName() const throw() { |
| 83 | return "PBQP Register Allocator"; |
| 84 | } |
| 85 | |
| 86 | //! PBQP analysis usage. |
| 87 | virtual void getAnalysisUsage(AnalysisUsage &au) const { |
| 88 | au.addRequired<LiveIntervals>(); |
| 89 | au.addRequired<MachineLoopInfo>(); |
| 90 | MachineFunctionPass::getAnalysisUsage(au); |
| 91 | } |
| 92 | |
| 93 | //! Perform register allocation |
| 94 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 95 | |
| 96 | private: |
| 97 | typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; |
| 98 | typedef std::vector<const LiveInterval*> Node2LIMap; |
| 99 | typedef std::vector<unsigned> AllowedSet; |
| 100 | typedef std::vector<AllowedSet> AllowedSetMap; |
| 101 | typedef std::set<unsigned> IgnoreSet; |
| 102 | |
| 103 | MachineFunction *mf; |
| 104 | const TargetMachine *tm; |
| 105 | const TargetRegisterInfo *tri; |
| 106 | const TargetInstrInfo *tii; |
| 107 | const MachineLoopInfo *loopInfo; |
| 108 | MachineRegisterInfo *mri; |
| 109 | |
| 110 | LiveIntervals *li; |
| 111 | VirtRegMap *vrm; |
| 112 | |
| 113 | LI2NodeMap li2Node; |
| 114 | Node2LIMap node2LI; |
| 115 | AllowedSetMap allowedSets; |
| 116 | IgnoreSet ignoreSet; |
| 117 | |
| 118 | //! Builds a PBQP cost vector. |
| 119 | template <typename Container> |
| 120 | PBQPVector* buildCostVector(const Container &allowed, |
| 121 | PBQPNum spillCost) const; |
| 122 | |
| 123 | //! \brief Builds a PBQP interfernce matrix. |
| 124 | //! |
| 125 | //! @return Either a pointer to a non-zero PBQP matrix representing the |
| 126 | //! allocation option costs, or a null pointer for a zero matrix. |
| 127 | //! |
| 128 | //! Expects allowed sets for two interfering LiveIntervals. These allowed |
| 129 | //! sets should contain only allocable registers from the LiveInterval's |
| 130 | //! register class, with any interfering pre-colored registers removed. |
| 131 | template <typename Container> |
| 132 | PBQPMatrix* buildInterferenceMatrix(const Container &allowed1, |
| 133 | const Container &allowed2) const; |
| 134 | |
| 135 | //! |
| 136 | //! Expects allowed sets for two potentially coalescable LiveIntervals, |
| 137 | //! and an estimated benefit due to coalescing. The allowed sets should |
| 138 | //! contain only allocable registers from the LiveInterval's register |
| 139 | //! classes, with any interfering pre-colored registers removed. |
| 140 | template <typename Container> |
| 141 | PBQPMatrix* buildCoalescingMatrix(const Container &allowed1, |
| 142 | const Container &allowed2, |
| 143 | PBQPNum cBenefit) const; |
| 144 | |
| 145 | //! \brief Helper functior for constructInitialPBQPProblem(). |
| 146 | //! |
| 147 | //! This function iterates over the Function we are about to allocate for |
| 148 | //! and computes spill costs. |
| 149 | void calcSpillCosts(); |
| 150 | |
| 151 | //! \brief Scans the MachineFunction being allocated to find coalescing |
| 152 | // opportunities. |
| 153 | void findCoalescingOpportunities(); |
| 154 | |
| 155 | //! \brief Constructs a PBQP problem representation of the register |
| 156 | //! allocation problem for this function. |
| 157 | //! |
| 158 | //! @return a PBQP solver object for the register allocation problem. |
| 159 | pbqp* constructPBQPProblem(); |
| 160 | |
| 161 | //! \brief Given a solved PBQP problem maps this solution back to a register |
| 162 | //! assignment. |
| 163 | bool mapPBQPToRegAlloc(pbqp *problem); |
| 164 | |
| 165 | }; |
| 166 | |
| 167 | char PBQPRegAlloc::ID = 0; |
| 168 | } |
| 169 | |
| 170 | |
| 171 | template <typename Container> |
| 172 | PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed, |
| 173 | PBQPNum spillCost) const { |
| 174 | |
| 175 | // Allocate vector. Additional element (0th) used for spill option |
| 176 | PBQPVector *v = new PBQPVector(allowed.size() + 1); |
| 177 | |
| 178 | (*v)[0] = spillCost; |
| 179 | |
| 180 | return v; |
| 181 | } |
| 182 | |
| 183 | template <typename Container> |
| 184 | PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix( |
| 185 | const Container &allowed1, const Container &allowed2) const { |
| 186 | |
| 187 | typedef typename Container::const_iterator ContainerIterator; |
| 188 | |
| 189 | // Construct a PBQP matrix representing the cost of allocation options. The |
| 190 | // rows and columns correspond to the allocation options for the two live |
| 191 | // intervals. Elements will be infinite where corresponding registers alias, |
| 192 | // since we cannot allocate aliasing registers to interfering live intervals. |
| 193 | // All other elements (non-aliasing combinations) will have zero cost. Note |
| 194 | // that the spill option (element 0,0) has zero cost, since we can allocate |
| 195 | // both intervals to memory safely (the cost for each individual allocation |
| 196 | // to memory is accounted for by the cost vectors for each live interval). |
| 197 | PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1); |
| 198 | |
| 199 | // Assume this is a zero matrix until proven otherwise. Zero matrices occur |
| 200 | // between interfering live ranges with non-overlapping register sets (e.g. |
| 201 | // non-overlapping reg classes, or disjoint sets of allowed regs within the |
| 202 | // same class). The term "overlapping" is used advisedly: sets which do not |
| 203 | // intersect, but contain registers which alias, will have non-zero matrices. |
| 204 | // We optimize zero matrices away to improve solver speed. |
| 205 | bool isZeroMatrix = true; |
| 206 | |
| 207 | |
| 208 | // Row index. Starts at 1, since the 0th row is for the spill option, which |
| 209 | // is always zero. |
| 210 | unsigned ri = 1; |
| 211 | |
| 212 | // Iterate over allowed sets, insert infinities where required. |
| 213 | for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); |
| 214 | a1Itr != a1End; ++a1Itr) { |
| 215 | |
| 216 | // Column index, starts at 1 as for row index. |
| 217 | unsigned ci = 1; |
| 218 | unsigned reg1 = *a1Itr; |
| 219 | |
| 220 | for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); |
| 221 | a2Itr != a2End; ++a2Itr) { |
| 222 | |
| 223 | unsigned reg2 = *a2Itr; |
| 224 | |
| 225 | // If the row/column regs are identical or alias insert an infinity. |
| 226 | if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) { |
| 227 | (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity(); |
| 228 | isZeroMatrix = false; |
| 229 | } |
| 230 | |
| 231 | ++ci; |
| 232 | } |
| 233 | |
| 234 | ++ri; |
| 235 | } |
| 236 | |
| 237 | // If this turns out to be a zero matrix... |
| 238 | if (isZeroMatrix) { |
| 239 | // free it and return null. |
| 240 | delete m; |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | // ...otherwise return the cost matrix. |
| 245 | return m; |
| 246 | } |
| 247 | |
| 248 | void PBQPRegAlloc::calcSpillCosts() { |
| 249 | |
| 250 | // Calculate the spill cost for each live interval by iterating over the |
| 251 | // function counting loads and stores, with loop depth taken into account. |
| 252 | for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end(); |
| 253 | bbItr != bbEnd; ++bbItr) { |
| 254 | |
| 255 | const MachineBasicBlock *mbb = &*bbItr; |
| 256 | float loopDepth = loopInfo->getLoopDepth(mbb); |
| 257 | |
| 258 | for (MachineBasicBlock::const_iterator |
| 259 | iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) { |
| 260 | |
| 261 | const MachineInstr *instr = &*iItr; |
| 262 | |
| 263 | for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) { |
| 264 | |
| 265 | const MachineOperand &mo = instr->getOperand(opNo); |
| 266 | |
| 267 | // We're not interested in non-registers... |
| 268 | if (!mo.isRegister()) |
| 269 | continue; |
| 270 | |
| 271 | unsigned moReg = mo.getReg(); |
| 272 | |
| 273 | // ...Or invalid registers... |
| 274 | if (moReg == 0) |
| 275 | continue; |
| 276 | |
| 277 | // ...Or physical registers... |
| 278 | if (TargetRegisterInfo::isPhysicalRegister(moReg)) |
| 279 | continue; |
| 280 | |
| 281 | assert ((mo.isUse() || mo.isDef()) && |
| 282 | "Not a use, not a def, what is it?"); |
| 283 | |
| 284 | //... Just the virtual registers. We treat loads and stores as equal. |
| 285 | li->getInterval(moReg).weight += powf(10.0f, loopDepth); |
| 286 | } |
| 287 | |
| 288 | } |
| 289 | |
| 290 | } |
| 291 | |
| 292 | } |
| 293 | |
| 294 | pbqp* PBQPRegAlloc::constructPBQPProblem() { |
| 295 | |
| 296 | typedef std::vector<const LiveInterval*> LIVector; |
| 297 | typedef std::set<unsigned> RegSet; |
| 298 | |
| 299 | // These will store the physical & virtual intervals, respectively. |
| 300 | LIVector physIntervals, virtIntervals; |
| 301 | |
| 302 | // Start by clearing the old node <-> live interval mappings & allowed sets |
| 303 | li2Node.clear(); |
| 304 | node2LI.clear(); |
| 305 | allowedSets.clear(); |
| 306 | |
| 307 | // Iterate over intervals classifying them as physical or virtual, and |
| 308 | // constructing live interval <-> node number mappings. |
| 309 | for (LiveIntervals::iterator itr = li->begin(), end = li->end(); |
| 310 | itr != end; ++itr) { |
| 311 | |
| 312 | if (itr->second->getNumValNums() != 0) { |
| 313 | DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n"; |
| 314 | } |
| 315 | |
| 316 | if (TargetRegisterInfo::isPhysicalRegister(itr->first)) { |
| 317 | physIntervals.push_back(itr->second); |
| 318 | mri->setPhysRegUsed(itr->second->reg); |
| 319 | } |
| 320 | else { |
| 321 | |
| 322 | // If we've allocated this virtual register interval a stack slot on a |
| 323 | // previous round then it's not an allocation candidate |
| 324 | if (ignoreSet.find(itr->first) != ignoreSet.end()) |
| 325 | continue; |
| 326 | |
| 327 | li2Node[itr->second] = node2LI.size(); |
| 328 | node2LI.push_back(itr->second); |
| 329 | virtIntervals.push_back(itr->second); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | // Early out if there's no regs to allocate for. |
| 334 | if (virtIntervals.empty()) |
| 335 | return 0; |
| 336 | |
| 337 | // Construct a PBQP solver for this problem |
| 338 | pbqp *solver = alloc_pbqp(virtIntervals.size()); |
| 339 | |
| 340 | // Resize allowedSets container appropriately. |
| 341 | allowedSets.resize(virtIntervals.size()); |
| 342 | |
| 343 | // Iterate over virtual register intervals to compute allowed sets... |
| 344 | for (unsigned node = 0; node < node2LI.size(); ++node) { |
| 345 | |
| 346 | // Grab pointers to the interval and its register class. |
| 347 | const LiveInterval *li = node2LI[node]; |
| 348 | const TargetRegisterClass *liRC = mri->getRegClass(li->reg); |
| 349 | |
| 350 | // Start by assuming all allocable registers in the class are allowed... |
| 351 | RegSet liAllowed(liRC->allocation_order_begin(*mf), |
| 352 | liRC->allocation_order_end(*mf)); |
| 353 | |
| 354 | // If this range is non-empty then eliminate the physical registers which |
| 355 | // overlap with this range, along with all their aliases. |
| 356 | if (!li->empty()) { |
| 357 | for (LIVector::iterator pItr = physIntervals.begin(), |
| 358 | pEnd = physIntervals.end(); pItr != pEnd; ++pItr) { |
| 359 | |
| 360 | if (li->overlaps(**pItr)) { |
| 361 | |
| 362 | unsigned pReg = (*pItr)->reg; |
| 363 | |
| 364 | // Remove the overlapping reg... |
| 365 | liAllowed.erase(pReg); |
| 366 | |
| 367 | const unsigned *aliasItr = tri->getAliasSet(pReg); |
| 368 | |
| 369 | if (aliasItr != 0) { |
| 370 | // ...and its aliases. |
| 371 | for (; *aliasItr != 0; ++aliasItr) { |
| 372 | liAllowed.erase(*aliasItr); |
| 373 | } |
| 374 | |
| 375 | } |
| 376 | |
| 377 | } |
| 378 | |
| 379 | } |
| 380 | |
| 381 | } |
| 382 | |
| 383 | // Copy the allowed set into a member vector for use when constructing cost |
| 384 | // vectors & matrices, and mapping PBQP solutions back to assignments. |
| 385 | allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end()); |
| 386 | |
| 387 | // Set the spill cost to the interval weight, or epsilon if the |
| 388 | // interval weight is zero |
| 389 | PBQPNum spillCost = (li->weight != 0.0) ? |
| 390 | li->weight : std::numeric_limits<PBQPNum>::min(); |
| 391 | |
| 392 | // Build a cost vector for this interval. |
| 393 | add_pbqp_nodecosts(solver, node, |
| 394 | buildCostVector(allowedSets[node], spillCost)); |
| 395 | |
| 396 | } |
| 397 | |
| 398 | // Now add the cost matrices... |
| 399 | for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) { |
| 400 | |
| 401 | const LiveInterval *li = node2LI[node1]; |
| 402 | |
| 403 | if (li->empty()) |
| 404 | continue; |
| 405 | |
| 406 | // Test for live range overlaps and insert interference matrices. |
| 407 | for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) { |
| 408 | const LiveInterval *li2 = node2LI[node2]; |
| 409 | |
| 410 | if (li2->empty()) |
| 411 | continue; |
| 412 | |
| 413 | if (li->overlaps(*li2)) { |
| 414 | PBQPMatrix *m = |
| 415 | buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]); |
| 416 | |
| 417 | if (m != 0) { |
| 418 | add_pbqp_edgecosts(solver, node1, node2, m); |
| 419 | delete m; |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | // We're done, PBQP problem constructed - return it. |
| 426 | return solver; |
| 427 | } |
| 428 | |
| 429 | bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) { |
| 430 | |
| 431 | // Set to true if we have any spills |
| 432 | bool anotherRoundNeeded = false; |
| 433 | |
| 434 | // Clear the existing allocation. |
| 435 | vrm->clearAllVirt(); |
| 436 | |
| 437 | // Iterate over the nodes mapping the PBQP solution to a register assignment. |
| 438 | for (unsigned node = 0; node < node2LI.size(); ++node) { |
| 439 | unsigned symReg = node2LI[node]->reg, |
| 440 | allocSelection = get_pbqp_solution(problem, node); |
| 441 | |
| 442 | // If the PBQP solution is non-zero it's a physical register... |
| 443 | if (allocSelection != 0) { |
| 444 | // Get the physical reg, subtracting 1 to account for the spill option. |
| 445 | unsigned physReg = allowedSets[node][allocSelection - 1]; |
| 446 | |
| 447 | // Add to the virt reg map and update the used phys regs. |
| 448 | vrm->assignVirt2Phys(symReg, physReg); |
| 449 | mri->setPhysRegUsed(physReg); |
| 450 | } |
| 451 | // ...Otherwise it's a spill. |
| 452 | else { |
| 453 | |
| 454 | // Make sure we ignore this virtual reg on the next round |
| 455 | // of allocation |
| 456 | ignoreSet.insert(node2LI[node]->reg); |
| 457 | |
| 458 | float SSWeight; |
| 459 | |
| 460 | // Insert spill ranges for this live range |
| 461 | SmallVector<LiveInterval*, 8> spillIs; |
| 462 | std::vector<LiveInterval*> newSpills = |
| 463 | li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm, |
| 464 | SSWeight); |
| 465 | |
| 466 | // We need another round if spill intervals were added. |
| 467 | anotherRoundNeeded |= !newSpills.empty(); |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | return !anotherRoundNeeded; |
| 472 | } |
| 473 | |
| 474 | bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) { |
| 475 | |
| 476 | mf = &MF; |
| 477 | tm = &mf->getTarget(); |
| 478 | tri = tm->getRegisterInfo(); |
| 479 | mri = &mf->getRegInfo(); |
| 480 | |
| 481 | li = &getAnalysis<LiveIntervals>(); |
| 482 | loopInfo = &getAnalysis<MachineLoopInfo>(); |
| 483 | |
| 484 | std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf)); |
| 485 | vrm = vrmAutoPtr.get(); |
| 486 | |
| 487 | // Allocator main loop: |
| 488 | // |
| 489 | // * Map current regalloc problem to a PBQP problem |
| 490 | // * Solve the PBQP problem |
| 491 | // * Map the solution back to a register allocation |
| 492 | // * Spill if necessary |
| 493 | // |
| 494 | // This process is continued till no more spills are generated. |
| 495 | |
| 496 | bool regallocComplete = false; |
| 497 | |
| 498 | // Calculate spill costs for intervals |
| 499 | calcSpillCosts(); |
| 500 | |
| 501 | while (!regallocComplete) { |
| 502 | pbqp *problem = constructPBQPProblem(); |
| 503 | |
| 504 | // Fast out if there's no problem to solve. |
| 505 | if (problem == 0) |
| 506 | return true; |
| 507 | |
| 508 | solve_pbqp(problem); |
| 509 | |
| 510 | regallocComplete = mapPBQPToRegAlloc(problem); |
| 511 | |
| 512 | free_pbqp(problem); |
| 513 | } |
| 514 | |
| 515 | ignoreSet.clear(); |
| 516 | |
| 517 | std::auto_ptr<Spiller> spiller(createSpiller()); |
| 518 | |
| 519 | spiller->runOnMachineFunction(*mf, *vrm); |
| 520 | |
| 521 | return true; |
| 522 | } |
| 523 | |
| 524 | FunctionPass* llvm::createPBQPRegisterAllocator() { |
| 525 | return new PBQPRegAlloc(); |
| 526 | } |
| 527 | |
| 528 | |
| 529 | #undef DEBUG_TYPE |