blob: 4cca313101f8e48d5a3c93445c88b77d3801449a [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000018#include "llvm/GlobalVariable.h"
Chris Lattner173234a2008-06-02 01:18:21 +000019#include "llvm/IntrinsicInst.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000020#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000021#include "llvm/Operator.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000022#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000023#include "llvm/Support/GetElementPtrTypeIterator.h"
24#include "llvm/Support/MathExtras.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000025#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000026using namespace llvm;
27
Chris Lattner173234a2008-06-02 01:18:21 +000028/// ComputeMaskedBits - Determine which of the bits specified in Mask are
29/// known to be either zero or one and return them in the KnownZero/KnownOne
30/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
31/// processing.
32/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
33/// we cannot optimize based on the assumption that it is zero without changing
34/// it to be an explicit zero. If we don't change it to zero, other code could
35/// optimized based on the contradictory assumption that it is non-zero.
36/// Because instcombine aggressively folds operations with undef args anyway,
37/// this won't lose us code quality.
38void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
39 APInt &KnownZero, APInt &KnownOne,
40 TargetData *TD, unsigned Depth) {
Dan Gohman9004c8a2009-05-21 02:28:33 +000041 const unsigned MaxDepth = 6;
Chris Lattner173234a2008-06-02 01:18:21 +000042 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000043 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000044 unsigned BitWidth = Mask.getBitWidth();
Dan Gohman6de29f82009-06-15 22:12:54 +000045 assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
Chris Lattner173234a2008-06-02 01:18:21 +000046 "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +000047 assert((!TD ||
48 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
49 (!V->getType()->isIntOrIntVector() ||
50 V->getType()->getScalarSizeInBits() == BitWidth) &&
Chris Lattner173234a2008-06-02 01:18:21 +000051 KnownZero.getBitWidth() == BitWidth &&
52 KnownOne.getBitWidth() == BitWidth &&
53 "V, Mask, KnownOne and KnownZero should have same BitWidth");
54
55 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
56 // We know all of the bits for a constant!
57 KnownOne = CI->getValue() & Mask;
58 KnownZero = ~KnownOne & Mask;
59 return;
60 }
Dan Gohman6de29f82009-06-15 22:12:54 +000061 // Null and aggregate-zero are all-zeros.
62 if (isa<ConstantPointerNull>(V) ||
63 isa<ConstantAggregateZero>(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +000064 KnownOne.clear();
65 KnownZero = Mask;
66 return;
67 }
Dan Gohman6de29f82009-06-15 22:12:54 +000068 // Handle a constant vector by taking the intersection of the known bits of
69 // each element.
70 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
71 KnownZero.set(); KnownOne.set();
72 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
73 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
74 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
75 TD, Depth);
76 KnownZero &= KnownZero2;
77 KnownOne &= KnownOne2;
78 }
79 return;
80 }
Chris Lattner173234a2008-06-02 01:18:21 +000081 // The address of an aligned GlobalValue has trailing zeros.
82 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
83 unsigned Align = GV->getAlignment();
84 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
85 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
86 if (Align > 0)
87 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
88 CountTrailingZeros_32(Align));
89 else
90 KnownZero.clear();
91 KnownOne.clear();
92 return;
93 }
94
95 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
96
Dan Gohman9004c8a2009-05-21 02:28:33 +000097 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +000098 return; // Limit search depth.
99
Dan Gohmanca178902009-07-17 20:47:02 +0000100 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000101 if (!I) return;
102
103 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000104 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000105 default: break;
106 case Instruction::And: {
107 // If either the LHS or the RHS are Zero, the result is zero.
108 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
109 APInt Mask2(Mask & ~KnownZero);
110 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
111 Depth+1);
112 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
113 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
114
115 // Output known-1 bits are only known if set in both the LHS & RHS.
116 KnownOne &= KnownOne2;
117 // Output known-0 are known to be clear if zero in either the LHS | RHS.
118 KnownZero |= KnownZero2;
119 return;
120 }
121 case Instruction::Or: {
122 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
123 APInt Mask2(Mask & ~KnownOne);
124 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
125 Depth+1);
126 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
127 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
128
129 // Output known-0 bits are only known if clear in both the LHS & RHS.
130 KnownZero &= KnownZero2;
131 // Output known-1 are known to be set if set in either the LHS | RHS.
132 KnownOne |= KnownOne2;
133 return;
134 }
135 case Instruction::Xor: {
136 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
137 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
138 Depth+1);
139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142 // Output known-0 bits are known if clear or set in both the LHS & RHS.
143 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
144 // Output known-1 are known to be set if set in only one of the LHS, RHS.
145 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
146 KnownZero = KnownZeroOut;
147 return;
148 }
149 case Instruction::Mul: {
150 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
151 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
152 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
153 Depth+1);
154 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
155 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
156
157 // If low bits are zero in either operand, output low known-0 bits.
158 // Also compute a conserative estimate for high known-0 bits.
159 // More trickiness is possible, but this is sufficient for the
160 // interesting case of alignment computation.
161 KnownOne.clear();
162 unsigned TrailZ = KnownZero.countTrailingOnes() +
163 KnownZero2.countTrailingOnes();
164 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
165 KnownZero2.countLeadingOnes(),
166 BitWidth) - BitWidth;
167
168 TrailZ = std::min(TrailZ, BitWidth);
169 LeadZ = std::min(LeadZ, BitWidth);
170 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
171 APInt::getHighBitsSet(BitWidth, LeadZ);
172 KnownZero &= Mask;
173 return;
174 }
175 case Instruction::UDiv: {
176 // For the purposes of computing leading zeros we can conservatively
177 // treat a udiv as a logical right shift by the power of 2 known to
178 // be less than the denominator.
179 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
180 ComputeMaskedBits(I->getOperand(0),
181 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
182 unsigned LeadZ = KnownZero2.countLeadingOnes();
183
184 KnownOne2.clear();
185 KnownZero2.clear();
186 ComputeMaskedBits(I->getOperand(1),
187 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
188 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
189 if (RHSUnknownLeadingOnes != BitWidth)
190 LeadZ = std::min(BitWidth,
191 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
192
193 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
194 return;
195 }
196 case Instruction::Select:
197 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
198 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
199 Depth+1);
200 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
201 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
202
203 // Only known if known in both the LHS and RHS.
204 KnownOne &= KnownOne2;
205 KnownZero &= KnownZero2;
206 return;
207 case Instruction::FPTrunc:
208 case Instruction::FPExt:
209 case Instruction::FPToUI:
210 case Instruction::FPToSI:
211 case Instruction::SIToFP:
212 case Instruction::UIToFP:
213 return; // Can't work with floating point.
214 case Instruction::PtrToInt:
215 case Instruction::IntToPtr:
216 // We can't handle these if we don't know the pointer size.
217 if (!TD) return;
218 // FALL THROUGH and handle them the same as zext/trunc.
219 case Instruction::ZExt:
220 case Instruction::Trunc: {
221 // Note that we handle pointer operands here because of inttoptr/ptrtoint
222 // which fall through here.
223 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner79abedb2009-01-20 18:22:57 +0000224 unsigned SrcBitWidth = TD ?
Chris Lattner173234a2008-06-02 01:18:21 +0000225 TD->getTypeSizeInBits(SrcTy) :
Dan Gohman6de29f82009-06-15 22:12:54 +0000226 SrcTy->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000227 APInt MaskIn(Mask);
228 MaskIn.zextOrTrunc(SrcBitWidth);
229 KnownZero.zextOrTrunc(SrcBitWidth);
230 KnownOne.zextOrTrunc(SrcBitWidth);
231 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
232 Depth+1);
233 KnownZero.zextOrTrunc(BitWidth);
234 KnownOne.zextOrTrunc(BitWidth);
235 // Any top bits are known to be zero.
236 if (BitWidth > SrcBitWidth)
237 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
238 return;
239 }
240 case Instruction::BitCast: {
241 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000242 if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
243 // TODO: For now, not handling conversions like:
244 // (bitcast i64 %x to <2 x i32>)
245 !isa<VectorType>(I->getType())) {
Chris Lattner173234a2008-06-02 01:18:21 +0000246 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
247 Depth+1);
248 return;
249 }
250 break;
251 }
252 case Instruction::SExt: {
253 // Compute the bits in the result that are not present in the input.
254 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Chris Lattner79abedb2009-01-20 18:22:57 +0000255 unsigned SrcBitWidth = SrcTy->getBitWidth();
Chris Lattner173234a2008-06-02 01:18:21 +0000256
257 APInt MaskIn(Mask);
258 MaskIn.trunc(SrcBitWidth);
259 KnownZero.trunc(SrcBitWidth);
260 KnownOne.trunc(SrcBitWidth);
261 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
262 Depth+1);
263 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
264 KnownZero.zext(BitWidth);
265 KnownOne.zext(BitWidth);
266
267 // If the sign bit of the input is known set or clear, then we know the
268 // top bits of the result.
269 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
270 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
271 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
272 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
273 return;
274 }
275 case Instruction::Shl:
276 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
277 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
278 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
279 APInt Mask2(Mask.lshr(ShiftAmt));
280 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
281 Depth+1);
282 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
283 KnownZero <<= ShiftAmt;
284 KnownOne <<= ShiftAmt;
285 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
286 return;
287 }
288 break;
289 case Instruction::LShr:
290 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
291 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
292 // Compute the new bits that are at the top now.
293 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
294
295 // Unsigned shift right.
296 APInt Mask2(Mask.shl(ShiftAmt));
297 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
298 Depth+1);
299 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
300 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
301 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
302 // high bits known zero.
303 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
304 return;
305 }
306 break;
307 case Instruction::AShr:
308 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
309 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
310 // Compute the new bits that are at the top now.
311 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
312
313 // Signed shift right.
314 APInt Mask2(Mask.shl(ShiftAmt));
315 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
316 Depth+1);
317 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
318 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
319 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
320
321 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
322 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
323 KnownZero |= HighBits;
324 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
325 KnownOne |= HighBits;
326 return;
327 }
328 break;
329 case Instruction::Sub: {
330 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
331 // We know that the top bits of C-X are clear if X contains less bits
332 // than C (i.e. no wrap-around can happen). For example, 20-X is
333 // positive if we can prove that X is >= 0 and < 16.
334 if (!CLHS->getValue().isNegative()) {
335 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
336 // NLZ can't be BitWidth with no sign bit
337 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
338 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
339 TD, Depth+1);
340
341 // If all of the MaskV bits are known to be zero, then we know the
342 // output top bits are zero, because we now know that the output is
343 // from [0-C].
344 if ((KnownZero2 & MaskV) == MaskV) {
345 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
346 // Top bits known zero.
347 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
348 }
349 }
350 }
351 }
352 // fall through
353 case Instruction::Add: {
Dan Gohman39250432009-05-24 18:02:35 +0000354 // If one of the operands has trailing zeros, than the bits that the
355 // other operand has in those bit positions will be preserved in the
356 // result. For an add, this works with either operand. For a subtract,
357 // this only works if the known zeros are in the right operand.
358 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
359 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
360 BitWidth - Mask.countLeadingZeros());
361 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000362 Depth+1);
Dan Gohman39250432009-05-24 18:02:35 +0000363 assert((LHSKnownZero & LHSKnownOne) == 0 &&
364 "Bits known to be one AND zero?");
365 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000366
367 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
368 Depth+1);
369 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Dan Gohman39250432009-05-24 18:02:35 +0000370 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000371
Dan Gohman39250432009-05-24 18:02:35 +0000372 // Determine which operand has more trailing zeros, and use that
373 // many bits from the other operand.
374 if (LHSKnownZeroOut > RHSKnownZeroOut) {
Dan Gohmanca178902009-07-17 20:47:02 +0000375 if (I->getOpcode() == Instruction::Add) {
Dan Gohman39250432009-05-24 18:02:35 +0000376 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
377 KnownZero |= KnownZero2 & Mask;
378 KnownOne |= KnownOne2 & Mask;
379 } else {
380 // If the known zeros are in the left operand for a subtract,
381 // fall back to the minimum known zeros in both operands.
382 KnownZero |= APInt::getLowBitsSet(BitWidth,
383 std::min(LHSKnownZeroOut,
384 RHSKnownZeroOut));
385 }
386 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
387 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
388 KnownZero |= LHSKnownZero & Mask;
389 KnownOne |= LHSKnownOne & Mask;
390 }
Chris Lattner173234a2008-06-02 01:18:21 +0000391 return;
392 }
393 case Instruction::SRem:
394 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
395 APInt RA = Rem->getValue();
396 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
397 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
398 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
399 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
400 Depth+1);
401
Dan Gohmana60832b2008-08-13 23:12:35 +0000402 // If the sign bit of the first operand is zero, the sign bit of
403 // the result is zero. If the first operand has no one bits below
404 // the second operand's single 1 bit, its sign will be zero.
Chris Lattner173234a2008-06-02 01:18:21 +0000405 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
406 KnownZero2 |= ~LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000407
408 KnownZero |= KnownZero2 & Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000409
410 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
411 }
412 }
413 break;
414 case Instruction::URem: {
415 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
416 APInt RA = Rem->getValue();
417 if (RA.isPowerOf2()) {
418 APInt LowBits = (RA - 1);
419 APInt Mask2 = LowBits & Mask;
420 KnownZero |= ~LowBits & Mask;
421 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
422 Depth+1);
423 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
424 break;
425 }
426 }
427
428 // Since the result is less than or equal to either operand, any leading
429 // zero bits in either operand must also exist in the result.
430 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
431 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
432 TD, Depth+1);
433 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
434 TD, Depth+1);
435
Chris Lattner79abedb2009-01-20 18:22:57 +0000436 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000437 KnownZero2.countLeadingOnes());
438 KnownOne.clear();
439 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
440 break;
441 }
442
443 case Instruction::Alloca:
444 case Instruction::Malloc: {
445 AllocationInst *AI = cast<AllocationInst>(V);
446 unsigned Align = AI->getAlignment();
447 if (Align == 0 && TD) {
448 if (isa<AllocaInst>(AI))
Chris Lattner0f2831c2009-01-08 19:28:38 +0000449 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000450 else if (isa<MallocInst>(AI)) {
451 // Malloc returns maximally aligned memory.
452 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
453 Align =
454 std::max(Align,
455 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
456 Align =
457 std::max(Align,
458 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
459 }
460 }
461
462 if (Align > 0)
463 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
464 CountTrailingZeros_32(Align));
465 break;
466 }
467 case Instruction::GetElementPtr: {
468 // Analyze all of the subscripts of this getelementptr instruction
469 // to determine if we can prove known low zero bits.
470 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
471 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
472 ComputeMaskedBits(I->getOperand(0), LocalMask,
473 LocalKnownZero, LocalKnownOne, TD, Depth+1);
474 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
475
476 gep_type_iterator GTI = gep_type_begin(I);
477 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
478 Value *Index = I->getOperand(i);
479 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
480 // Handle struct member offset arithmetic.
481 if (!TD) return;
482 const StructLayout *SL = TD->getStructLayout(STy);
483 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
484 uint64_t Offset = SL->getElementOffset(Idx);
485 TrailZ = std::min(TrailZ,
486 CountTrailingZeros_64(Offset));
487 } else {
488 // Handle array index arithmetic.
489 const Type *IndexedTy = GTI.getIndexedType();
490 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000491 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000492 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000493 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
494 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
495 ComputeMaskedBits(Index, LocalMask,
496 LocalKnownZero, LocalKnownOne, TD, Depth+1);
497 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000498 unsigned(CountTrailingZeros_64(TypeSize) +
499 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000500 }
501 }
502
503 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
504 break;
505 }
506 case Instruction::PHI: {
507 PHINode *P = cast<PHINode>(I);
508 // Handle the case of a simple two-predecessor recurrence PHI.
509 // There's a lot more that could theoretically be done here, but
510 // this is sufficient to catch some interesting cases.
511 if (P->getNumIncomingValues() == 2) {
512 for (unsigned i = 0; i != 2; ++i) {
513 Value *L = P->getIncomingValue(i);
514 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000515 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000516 if (!LU)
517 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000518 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000519 // Check for operations that have the property that if
520 // both their operands have low zero bits, the result
521 // will have low zero bits.
522 if (Opcode == Instruction::Add ||
523 Opcode == Instruction::Sub ||
524 Opcode == Instruction::And ||
525 Opcode == Instruction::Or ||
526 Opcode == Instruction::Mul) {
527 Value *LL = LU->getOperand(0);
528 Value *LR = LU->getOperand(1);
529 // Find a recurrence.
530 if (LL == I)
531 L = LR;
532 else if (LR == I)
533 L = LL;
534 else
535 break;
536 // Ok, we have a PHI of the form L op= R. Check for low
537 // zero bits.
538 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
539 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
540 Mask2 = APInt::getLowBitsSet(BitWidth,
541 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000542
543 // We need to take the minimum number of known bits
544 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
545 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
546
Chris Lattner173234a2008-06-02 01:18:21 +0000547 KnownZero = Mask &
548 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000549 std::min(KnownZero2.countTrailingOnes(),
550 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000551 break;
552 }
553 }
554 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000555
556 // Otherwise take the unions of the known bit sets of the operands,
557 // taking conservative care to avoid excessive recursion.
558 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
559 KnownZero = APInt::getAllOnesValue(BitWidth);
560 KnownOne = APInt::getAllOnesValue(BitWidth);
561 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
562 // Skip direct self references.
563 if (P->getIncomingValue(i) == P) continue;
564
565 KnownZero2 = APInt(BitWidth, 0);
566 KnownOne2 = APInt(BitWidth, 0);
567 // Recurse, but cap the recursion to one level, because we don't
568 // want to waste time spinning around in loops.
569 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
570 KnownZero2, KnownOne2, TD, MaxDepth-1);
571 KnownZero &= KnownZero2;
572 KnownOne &= KnownOne2;
573 // If all bits have been ruled out, there's no need to check
574 // more operands.
575 if (!KnownZero && !KnownOne)
576 break;
577 }
578 }
Chris Lattner173234a2008-06-02 01:18:21 +0000579 break;
580 }
581 case Instruction::Call:
582 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
583 switch (II->getIntrinsicID()) {
584 default: break;
585 case Intrinsic::ctpop:
586 case Intrinsic::ctlz:
587 case Intrinsic::cttz: {
588 unsigned LowBits = Log2_32(BitWidth)+1;
589 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
590 break;
591 }
592 }
593 }
594 break;
595 }
596}
597
598/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
599/// this predicate to simplify operations downstream. Mask is known to be zero
600/// for bits that V cannot have.
601bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
602 TargetData *TD, unsigned Depth) {
603 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
604 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
605 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
606 return (KnownZero & Mask) == Mask;
607}
608
609
610
611/// ComputeNumSignBits - Return the number of times the sign bit of the
612/// register is replicated into the other bits. We know that at least 1 bit
613/// is always equal to the sign bit (itself), but other cases can give us
614/// information. For example, immediately after an "ashr X, 2", we know that
615/// the top 3 bits are all equal to each other, so we return 3.
616///
617/// 'Op' must have a scalar integer type.
618///
619unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000620 assert((TD || V->getType()->isIntOrIntVector()) &&
621 "ComputeNumSignBits requires a TargetData object to operate "
622 "on non-integer values!");
Dan Gohman6de29f82009-06-15 22:12:54 +0000623 const Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000624 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
625 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000626 unsigned Tmp, Tmp2;
627 unsigned FirstAnswer = 1;
628
Chris Lattnerd82e5112008-06-02 18:39:07 +0000629 // Note that ConstantInt is handled by the general ComputeMaskedBits case
630 // below.
631
Chris Lattner173234a2008-06-02 01:18:21 +0000632 if (Depth == 6)
633 return 1; // Limit search depth.
634
Dan Gohmanca178902009-07-17 20:47:02 +0000635 Operator *U = dyn_cast<Operator>(V);
636 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000637 default: break;
638 case Instruction::SExt:
639 Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
640 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
641
642 case Instruction::AShr:
643 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
644 // ashr X, C -> adds C sign bits.
645 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
646 Tmp += C->getZExtValue();
647 if (Tmp > TyBits) Tmp = TyBits;
648 }
649 return Tmp;
650 case Instruction::Shl:
651 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
652 // shl destroys sign bits.
653 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
654 if (C->getZExtValue() >= TyBits || // Bad shift.
655 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
656 return Tmp - C->getZExtValue();
657 }
658 break;
659 case Instruction::And:
660 case Instruction::Or:
661 case Instruction::Xor: // NOT is handled here.
662 // Logical binary ops preserve the number of sign bits at the worst.
663 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
664 if (Tmp != 1) {
665 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
666 FirstAnswer = std::min(Tmp, Tmp2);
667 // We computed what we know about the sign bits as our first
668 // answer. Now proceed to the generic code that uses
669 // ComputeMaskedBits, and pick whichever answer is better.
670 }
671 break;
672
673 case Instruction::Select:
674 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
675 if (Tmp == 1) return 1; // Early out.
676 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
677 return std::min(Tmp, Tmp2);
678
679 case Instruction::Add:
680 // Add can have at most one carry bit. Thus we know that the output
681 // is, at worst, one more bit than the inputs.
682 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
683 if (Tmp == 1) return 1; // Early out.
684
685 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +0000686 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +0000687 if (CRHS->isAllOnesValue()) {
688 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
689 APInt Mask = APInt::getAllOnesValue(TyBits);
690 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
691 Depth+1);
692
693 // If the input is known to be 0 or 1, the output is 0/-1, which is all
694 // sign bits set.
695 if ((KnownZero | APInt(TyBits, 1)) == Mask)
696 return TyBits;
697
698 // If we are subtracting one from a positive number, there is no carry
699 // out of the result.
700 if (KnownZero.isNegative())
701 return Tmp;
702 }
703
704 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
705 if (Tmp2 == 1) return 1;
706 return std::min(Tmp, Tmp2)-1;
707 break;
708
709 case Instruction::Sub:
710 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
711 if (Tmp2 == 1) return 1;
712
713 // Handle NEG.
714 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
715 if (CLHS->isNullValue()) {
716 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
717 APInt Mask = APInt::getAllOnesValue(TyBits);
718 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
719 TD, Depth+1);
720 // If the input is known to be 0 or 1, the output is 0/-1, which is all
721 // sign bits set.
722 if ((KnownZero | APInt(TyBits, 1)) == Mask)
723 return TyBits;
724
725 // If the input is known to be positive (the sign bit is known clear),
726 // the output of the NEG has the same number of sign bits as the input.
727 if (KnownZero.isNegative())
728 return Tmp2;
729
730 // Otherwise, we treat this like a SUB.
731 }
732
733 // Sub can have at most one carry bit. Thus we know that the output
734 // is, at worst, one more bit than the inputs.
735 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
736 if (Tmp == 1) return 1; // Early out.
737 return std::min(Tmp, Tmp2)-1;
738 break;
739 case Instruction::Trunc:
740 // FIXME: it's tricky to do anything useful for this, but it is an important
741 // case for targets like X86.
742 break;
743 }
744
745 // Finally, if we can prove that the top bits of the result are 0's or 1's,
746 // use this information.
747 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
748 APInt Mask = APInt::getAllOnesValue(TyBits);
749 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
750
751 if (KnownZero.isNegative()) { // sign bit is 0
752 Mask = KnownZero;
753 } else if (KnownOne.isNegative()) { // sign bit is 1;
754 Mask = KnownOne;
755 } else {
756 // Nothing known.
757 return FirstAnswer;
758 }
759
760 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
761 // the number of identical bits in the top of the input value.
762 Mask = ~Mask;
763 Mask <<= Mask.getBitWidth()-TyBits;
764 // Return # leading zeros. We use 'min' here in case Val was zero before
765 // shifting. We don't want to return '64' as for an i32 "0".
766 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
767}
Chris Lattner833f25d2008-06-02 01:29:46 +0000768
769/// CannotBeNegativeZero - Return true if we can prove that the specified FP
770/// value is never equal to -0.0.
771///
772/// NOTE: this function will need to be revisited when we support non-default
773/// rounding modes!
774///
775bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
776 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
777 return !CFP->getValueAPF().isNegZero();
778
779 if (Depth == 6)
780 return 1; // Limit search depth.
781
Dan Gohmanca178902009-07-17 20:47:02 +0000782 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +0000783 if (I == 0) return false;
784
785 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000786 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +0000787 isa<ConstantFP>(I->getOperand(1)) &&
788 cast<ConstantFP>(I->getOperand(1))->isNullValue())
789 return true;
790
791 // sitofp and uitofp turn into +0.0 for zero.
792 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
793 return true;
794
795 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
796 // sqrt(-0.0) = -0.0, no other negative results are possible.
797 if (II->getIntrinsicID() == Intrinsic::sqrt)
798 return CannotBeNegativeZero(II->getOperand(1), Depth+1);
799
800 if (const CallInst *CI = dyn_cast<CallInst>(I))
801 if (const Function *F = CI->getCalledFunction()) {
802 if (F->isDeclaration()) {
803 switch (F->getNameLen()) {
804 case 3: // abs(x) != -0.0
805 if (!strcmp(F->getNameStart(), "abs")) return true;
806 break;
807 case 4: // abs[lf](x) != -0.0
808 if (!strcmp(F->getNameStart(), "absf")) return true;
809 if (!strcmp(F->getNameStart(), "absl")) return true;
810 break;
811 }
812 }
813 }
814
815 return false;
816}
817
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000818// This is the recursive version of BuildSubAggregate. It takes a few different
819// arguments. Idxs is the index within the nested struct From that we are
820// looking at now (which is of type IndexedType). IdxSkip is the number of
821// indices from Idxs that should be left out when inserting into the resulting
822// struct. To is the result struct built so far, new insertvalue instructions
823// build on that.
824Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
825 SmallVector<unsigned, 10> &Idxs,
826 unsigned IdxSkip,
Owen Anderson07cf79e2009-07-06 23:00:19 +0000827 LLVMContext *Context,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000828 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000829 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
830 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000831 // Save the original To argument so we can modify it
832 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000833 // General case, the type indexed by Idxs is a struct
834 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
835 // Process each struct element recursively
836 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000837 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000838 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Owen Anderson76f600b2009-07-06 22:37:39 +0000839 Context, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000840 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000841 if (!To) {
842 // Couldn't find any inserted value for this index? Cleanup
843 while (PrevTo != OrigTo) {
844 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
845 PrevTo = Del->getAggregateOperand();
846 Del->eraseFromParent();
847 }
848 // Stop processing elements
849 break;
850 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000851 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000852 // If we succesfully found a value for each of our subaggregates
853 if (To)
854 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000855 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000856 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
857 // the struct's elements had a value that was inserted directly. In the latter
858 // case, perhaps we can't determine each of the subelements individually, but
859 // we might be able to find the complete struct somewhere.
860
861 // Find the value that is at that particular spot
Owen Anderson76f600b2009-07-06 22:37:39 +0000862 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000863
864 if (!V)
865 return NULL;
866
867 // Insert the value in the new (sub) aggregrate
868 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
869 Idxs.end(), "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000870}
871
872// This helper takes a nested struct and extracts a part of it (which is again a
873// struct) into a new value. For example, given the struct:
874// { a, { b, { c, d }, e } }
875// and the indices "1, 1" this returns
876// { c, d }.
877//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000878// It does this by inserting an insertvalue for each element in the resulting
879// struct, as opposed to just inserting a single struct. This will only work if
880// each of the elements of the substruct are known (ie, inserted into From by an
881// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000882//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000883// All inserted insertvalue instructions are inserted before InsertBefore
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000884Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
Owen Anderson76f600b2009-07-06 22:37:39 +0000885 const unsigned *idx_end, LLVMContext *Context,
886 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000887 assert(InsertBefore && "Must have someplace to insert!");
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000888 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
889 idx_begin,
890 idx_end);
Owen Anderson76f600b2009-07-06 22:37:39 +0000891 Value *To = Context->getUndef(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000892 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
893 unsigned IdxSkip = Idxs.size();
894
Owen Anderson76f600b2009-07-06 22:37:39 +0000895 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
896 Context, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000897}
898
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000899/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
900/// the scalar value indexed is already around as a register, for example if it
901/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000902///
903/// If InsertBefore is not null, this function will duplicate (modified)
904/// insertvalues when a part of a nested struct is extracted.
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000905Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
Owen Anderson07cf79e2009-07-06 23:00:19 +0000906 const unsigned *idx_end, LLVMContext *Context,
Owen Anderson76f600b2009-07-06 22:37:39 +0000907 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000908 // Nothing to index? Just return V then (this is useful at the end of our
909 // recursion)
910 if (idx_begin == idx_end)
911 return V;
912 // We have indices, so V should have an indexable type
913 assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
914 && "Not looking at a struct or array?");
915 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
916 && "Invalid indices for type?");
917 const CompositeType *PTy = cast<CompositeType>(V->getType());
Owen Anderson76f600b2009-07-06 22:37:39 +0000918
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000919 if (isa<UndefValue>(V))
Owen Anderson76f600b2009-07-06 22:37:39 +0000920 return Context->getUndef(ExtractValueInst::getIndexedType(PTy,
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000921 idx_begin,
922 idx_end));
923 else if (isa<ConstantAggregateZero>(V))
Owen Anderson76f600b2009-07-06 22:37:39 +0000924 return Context->getNullValue(ExtractValueInst::getIndexedType(PTy,
925 idx_begin,
926 idx_end));
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000927 else if (Constant *C = dyn_cast<Constant>(V)) {
928 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
929 // Recursively process this constant
Owen Anderson76f600b2009-07-06 22:37:39 +0000930 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
931 idx_end, Context, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000932 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
933 // Loop the indices for the insertvalue instruction in parallel with the
934 // requested indices
935 const unsigned *req_idx = idx_begin;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000936 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
937 i != e; ++i, ++req_idx) {
Duncan Sands9954c762008-06-19 08:47:31 +0000938 if (req_idx == idx_end) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000939 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000940 // The requested index identifies a part of a nested aggregate. Handle
941 // this specially. For example,
942 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
943 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
944 // %C = extractvalue {i32, { i32, i32 } } %B, 1
945 // This can be changed into
946 // %A = insertvalue {i32, i32 } undef, i32 10, 0
947 // %C = insertvalue {i32, i32 } %A, i32 11, 1
948 // which allows the unused 0,0 element from the nested struct to be
949 // removed.
Owen Anderson76f600b2009-07-06 22:37:39 +0000950 return BuildSubAggregate(V, idx_begin, req_idx,
951 Context, InsertBefore);
Matthijs Kooijman97728912008-06-16 13:28:31 +0000952 else
953 // We can't handle this without inserting insertvalues
954 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +0000955 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000956
957 // This insert value inserts something else than what we are looking for.
958 // See if the (aggregrate) value inserted into has the value we are
959 // looking for, then.
960 if (*req_idx != *i)
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000961 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
Owen Anderson76f600b2009-07-06 22:37:39 +0000962 Context, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000963 }
964 // If we end up here, the indices of the insertvalue match with those
965 // requested (though possibly only partially). Now we recursively look at
966 // the inserted value, passing any remaining indices.
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000967 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
Owen Anderson76f600b2009-07-06 22:37:39 +0000968 Context, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000969 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
970 // If we're extracting a value from an aggregrate that was extracted from
971 // something else, we can extract from that something else directly instead.
972 // However, we will need to chain I's indices with the requested indices.
973
974 // Calculate the number of indices required
975 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
976 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000977 SmallVector<unsigned, 5> Idxs;
978 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000979 // Add indices from the extract value instruction
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000980 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000981 i != e; ++i)
982 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000983
984 // Add requested indices
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000985 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
986 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000987
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000988 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000989 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000990
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000991 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
Owen Anderson76f600b2009-07-06 22:37:39 +0000992 Context, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000993 }
994 // Otherwise, we don't know (such as, extracting from a function return value
995 // or load instruction)
996 return 0;
997}
Evan Cheng0ff39b32008-06-30 07:31:25 +0000998
999/// GetConstantStringInfo - This function computes the length of a
1000/// null-terminated C string pointed to by V. If successful, it returns true
1001/// and returns the string in Str. If unsuccessful, it returns false.
Bill Wendling0582ae92009-03-13 04:39:26 +00001002bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
1003 bool StopAtNul) {
1004 // If V is NULL then return false;
1005 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001006
1007 // Look through bitcast instructions.
1008 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +00001009 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1010
Evan Cheng0ff39b32008-06-30 07:31:25 +00001011 // If the value is not a GEP instruction nor a constant expression with a
1012 // GEP instruction, then return false because ConstantArray can't occur
1013 // any other way
1014 User *GEP = 0;
1015 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1016 GEP = GEPI;
1017 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1018 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +00001019 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1020 if (CE->getOpcode() != Instruction::GetElementPtr)
1021 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001022 GEP = CE;
1023 }
1024
1025 if (GEP) {
1026 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001027 if (GEP->getNumOperands() != 3)
1028 return false;
1029
Evan Cheng0ff39b32008-06-30 07:31:25 +00001030 // Make sure the index-ee is a pointer to array of i8.
1031 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1032 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Bill Wendling0582ae92009-03-13 04:39:26 +00001033 if (AT == 0 || AT->getElementType() != Type::Int8Ty)
1034 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001035
1036 // Check to make sure that the first operand of the GEP is an integer and
1037 // has value 0 so that we are sure we're indexing into the initializer.
1038 ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001039 if (FirstIdx == 0 || !FirstIdx->isZero())
1040 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001041
1042 // If the second index isn't a ConstantInt, then this is a variable index
1043 // into the array. If this occurs, we can't say anything meaningful about
1044 // the string.
1045 uint64_t StartIdx = 0;
Bill Wendling0582ae92009-03-13 04:39:26 +00001046 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001047 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001048 else
1049 return false;
1050 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001051 StopAtNul);
1052 }
1053
1054 // The GEP instruction, constant or instruction, must reference a global
1055 // variable that is a constant and is initialized. The referenced constant
1056 // initializer is the array that we'll use for optimization.
1057 GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Bill Wendling0582ae92009-03-13 04:39:26 +00001058 if (!GV || !GV->isConstant() || !GV->hasInitializer())
1059 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001060 Constant *GlobalInit = GV->getInitializer();
1061
1062 // Handle the ConstantAggregateZero case
Bill Wendling0582ae92009-03-13 04:39:26 +00001063 if (isa<ConstantAggregateZero>(GlobalInit)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001064 // This is a degenerate case. The initializer is constant zero so the
1065 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001066 Str.clear();
1067 return true;
1068 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001069
1070 // Must be a Constant Array
1071 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Bill Wendling0582ae92009-03-13 04:39:26 +00001072 if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
1073 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001074
1075 // Get the number of elements in the array
1076 uint64_t NumElts = Array->getType()->getNumElements();
1077
Bill Wendling0582ae92009-03-13 04:39:26 +00001078 if (Offset > NumElts)
1079 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001080
1081 // Traverse the constant array from 'Offset' which is the place the GEP refers
1082 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001083 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001084 for (unsigned i = Offset; i != NumElts; ++i) {
1085 Constant *Elt = Array->getOperand(i);
1086 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001087 if (!CI) // This array isn't suitable, non-int initializer.
1088 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001089 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001090 return true; // we found end of string, success!
1091 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001092 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001093
Evan Cheng0ff39b32008-06-30 07:31:25 +00001094 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001095 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001096}