blob: abda44011cab14a629855bd4f463d8b3a515c1ba [file] [log] [blame]
Erick Tryzelaar35295ff2008-03-31 08:44:50 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
7 construction</title>
8 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
9 <meta name="author" content="Chris Lattner">
10 <meta name="author" content="Erick Tryzelaar">
11 <link rel="stylesheet" href="../llvm.css" type="text/css">
12</head>
13
14<body>
15
16<div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
17
18<ul>
19<li><a href="index.html">Up to Tutorial Index</a></li>
20<li>Chapter 7
21 <ol>
22 <li><a href="#intro">Chapter 7 Introduction</a></li>
23 <li><a href="#why">Why is this a hard problem?</a></li>
24 <li><a href="#memory">Memory in LLVM</a></li>
25 <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
26 <li><a href="#adjustments">Adjusting Existing Variables for
27 Mutation</a></li>
28 <li><a href="#assignment">New Assignment Operator</a></li>
29 <li><a href="#localvars">User-defined Local Variables</a></li>
30 <li><a href="#code">Full Code Listing</a></li>
31 </ol>
32</li>
33<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
34 tidbits</li>
35</ul>
36
37<div class="doc_author">
38 <p>
39 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
40 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
41 </p>
42</div>
43
44<!-- *********************************************************************** -->
45<div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
46<!-- *********************************************************************** -->
47
48<div class="doc_text">
49
50<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
51with LLVM</a>" tutorial. In chapters 1 through 6, we've built a very
52respectable, albeit simple, <a
53href="http://en.wikipedia.org/wiki/Functional_programming">functional
54programming language</a>. In our journey, we learned some parsing techniques,
55how to build and represent an AST, how to build LLVM IR, and how to optimize
56the resultant code as well as JIT compile it.</p>
57
58<p>While Kaleidoscope is interesting as a functional language, the fact that it
59is functional makes it "too easy" to generate LLVM IR for it. In particular, a
60functional language makes it very easy to build LLVM IR directly in <a
61href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
62Since LLVM requires that the input code be in SSA form, this is a very nice
63property and it is often unclear to newcomers how to generate code for an
64imperative language with mutable variables.</p>
65
66<p>The short (and happy) summary of this chapter is that there is no need for
67your front-end to build SSA form: LLVM provides highly tuned and well tested
68support for this, though the way it works is a bit unexpected for some.</p>
69
70</div>
71
72<!-- *********************************************************************** -->
73<div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
74<!-- *********************************************************************** -->
75
76<div class="doc_text">
77
78<p>
79To understand why mutable variables cause complexities in SSA construction,
80consider this extremely simple C example:
81</p>
82
83<div class="doc_code">
84<pre>
85int G, H;
86int test(_Bool Condition) {
87 int X;
88 if (Condition)
89 X = G;
90 else
91 X = H;
92 return X;
93}
94</pre>
95</div>
96
97<p>In this case, we have the variable "X", whose value depends on the path
98executed in the program. Because there are two different possible values for X
99before the return instruction, a PHI node is inserted to merge the two values.
100The LLVM IR that we want for this example looks like this:</p>
101
102<div class="doc_code">
103<pre>
104@G = weak global i32 0 ; type of @G is i32*
105@H = weak global i32 0 ; type of @H is i32*
106
107define i32 @test(i1 %Condition) {
108entry:
109 br i1 %Condition, label %cond_true, label %cond_false
110
111cond_true:
112 %X.0 = load i32* @G
113 br label %cond_next
114
115cond_false:
116 %X.1 = load i32* @H
117 br label %cond_next
118
119cond_next:
120 %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
121 ret i32 %X.2
122}
123</pre>
124</div>
125
126<p>In this example, the loads from the G and H global variables are explicit in
127the LLVM IR, and they live in the then/else branches of the if statement
128(cond_true/cond_false). In order to merge the incoming values, the X.2 phi node
129in the cond_next block selects the right value to use based on where control
130flow is coming from: if control flow comes from the cond_false block, X.2 gets
131the value of X.1. Alternatively, if control flow comes from cond_true, it gets
132the value of X.0. The intent of this chapter is not to explain the details of
133SSA form. For more information, see one of the many <a
134href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online
135references</a>.</p>
136
137<p>The question for this article is "who places the phi nodes when lowering
138assignments to mutable variables?". The issue here is that LLVM
139<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
140However, SSA construction requires non-trivial algorithms and data structures,
141so it is inconvenient and wasteful for every front-end to have to reproduce this
142logic.</p>
143
144</div>
145
146<!-- *********************************************************************** -->
147<div class="doc_section"><a name="memory">Memory in LLVM</a></div>
148<!-- *********************************************************************** -->
149
150<div class="doc_text">
151
152<p>The 'trick' here is that while LLVM does require all register values to be
153in SSA form, it does not require (or permit) memory objects to be in SSA form.
154In the example above, note that the loads from G and H are direct accesses to
155G and H: they are not renamed or versioned. This differs from some other
156compiler systems, which do try to version memory objects. In LLVM, instead of
157encoding dataflow analysis of memory into the LLVM IR, it is handled with <a
158href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
159demand.</p>
160
161<p>
162With this in mind, the high-level idea is that we want to make a stack variable
163(which lives in memory, because it is on the stack) for each mutable object in
164a function. To take advantage of this trick, we need to talk about how LLVM
165represents stack variables.
166</p>
167
168<p>In LLVM, all memory accesses are explicit with load/store instructions, and
169it is carefully designed not to have (or need) an "address-of" operator. Notice
170how the type of the @G/@H global variables is actually "i32*" even though the
171variable is defined as "i32". What this means is that @G defines <em>space</em>
172for an i32 in the global data area, but its <em>name</em> actually refers to the
173address for that space. Stack variables work the same way, except that instead of
174being declared with global variable definitions, they are declared with the
175<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
176
177<div class="doc_code">
178<pre>
179define i32 @example() {
180entry:
181 %X = alloca i32 ; type of %X is i32*.
182 ...
183 %tmp = load i32* %X ; load the stack value %X from the stack.
184 %tmp2 = add i32 %tmp, 1 ; increment it
185 store i32 %tmp2, i32* %X ; store it back
186 ...
187</pre>
188</div>
189
190<p>This code shows an example of how you can declare and manipulate a stack
191variable in the LLVM IR. Stack memory allocated with the alloca instruction is
192fully general: you can pass the address of the stack slot to functions, you can
193store it in other variables, etc. In our example above, we could rewrite the
194example to use the alloca technique to avoid using a PHI node:</p>
195
196<div class="doc_code">
197<pre>
198@G = weak global i32 0 ; type of @G is i32*
199@H = weak global i32 0 ; type of @H is i32*
200
201define i32 @test(i1 %Condition) {
202entry:
203 %X = alloca i32 ; type of %X is i32*.
204 br i1 %Condition, label %cond_true, label %cond_false
205
206cond_true:
207 %X.0 = load i32* @G
208 store i32 %X.0, i32* %X ; Update X
209 br label %cond_next
210
211cond_false:
212 %X.1 = load i32* @H
213 store i32 %X.1, i32* %X ; Update X
214 br label %cond_next
215
216cond_next:
217 %X.2 = load i32* %X ; Read X
218 ret i32 %X.2
219}
220</pre>
221</div>
222
223<p>With this, we have discovered a way to handle arbitrary mutable variables
224without the need to create Phi nodes at all:</p>
225
226<ol>
227<li>Each mutable variable becomes a stack allocation.</li>
228<li>Each read of the variable becomes a load from the stack.</li>
229<li>Each update of the variable becomes a store to the stack.</li>
230<li>Taking the address of a variable just uses the stack address directly.</li>
231</ol>
232
233<p>While this solution has solved our immediate problem, it introduced another
234one: we have now apparently introduced a lot of stack traffic for very simple
235and common operations, a major performance problem. Fortunately for us, the
236LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
237this case, promoting allocas like this into SSA registers, inserting Phi nodes
238as appropriate. If you run this example through the pass, for example, you'll
239get:</p>
240
241<div class="doc_code">
242<pre>
243$ <b>llvm-as &lt; example.ll | opt -mem2reg | llvm-dis</b>
244@G = weak global i32 0
245@H = weak global i32 0
246
247define i32 @test(i1 %Condition) {
248entry:
249 br i1 %Condition, label %cond_true, label %cond_false
250
251cond_true:
252 %X.0 = load i32* @G
253 br label %cond_next
254
255cond_false:
256 %X.1 = load i32* @H
257 br label %cond_next
258
259cond_next:
260 %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
261 ret i32 %X.01
262}
263</pre>
264</div>
265
266<p>The mem2reg pass implements the standard "iterated dominance frontier"
267algorithm for constructing SSA form and has a number of optimizations that speed
268up (very common) degenerate cases. The mem2reg optimization pass is the answer
269to dealing with mutable variables, and we highly recommend that you depend on
270it. Note that mem2reg only works on variables in certain circumstances:</p>
271
272<ol>
273<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
274promotes them. It does not apply to global variables or heap allocations.</li>
275
276<li>mem2reg only looks for alloca instructions in the entry block of the
277function. Being in the entry block guarantees that the alloca is only executed
278once, which makes analysis simpler.</li>
279
280<li>mem2reg only promotes allocas whose uses are direct loads and stores. If
281the address of the stack object is passed to a function, or if any funny pointer
282arithmetic is involved, the alloca will not be promoted.</li>
283
284<li>mem2reg only works on allocas of <a
285href="../LangRef.html#t_classifications">first class</a>
286values (such as pointers, scalars and vectors), and only if the array size
287of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of
288promoting structs or arrays to registers. Note that the "scalarrepl" pass is
289more powerful and can promote structs, "unions", and arrays in many cases.</li>
290
291</ol>
292
293<p>
294All of these properties are easy to satisfy for most imperative languages, and
295we'll illustrate it below with Kaleidoscope. The final question you may be
296asking is: should I bother with this nonsense for my front-end? Wouldn't it be
297better if I just did SSA construction directly, avoiding use of the mem2reg
298optimization pass? In short, we strongly recommend that you use this technique
299for building SSA form, unless there is an extremely good reason not to. Using
300this technique is:</p>
301
302<ul>
303<li>Proven and well tested: llvm-gcc and clang both use this technique for local
304mutable variables. As such, the most common clients of LLVM are using this to
305handle a bulk of their variables. You can be sure that bugs are found fast and
306fixed early.</li>
307
308<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
309common cases as well as fully general. For example, it has fast-paths for
310variables that are only used in a single block, variables that only have one
311assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
312</li>
313
314<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
315Debug information in LLVM</a> relies on having the address of the variable
316exposed so that debug info can be attached to it. This technique dovetails
317very naturally with this style of debug info.</li>
318</ul>
319
320<p>If nothing else, this makes it much easier to get your front-end up and
321running, and is very simple to implement. Lets extend Kaleidoscope with mutable
322variables now!
323</p>
324
325</div>
326
327<!-- *********************************************************************** -->
328<div class="doc_section"><a name="kalvars">Mutable Variables in
329Kaleidoscope</a></div>
330<!-- *********************************************************************** -->
331
332<div class="doc_text">
333
334<p>Now that we know the sort of problem we want to tackle, lets see what this
335looks like in the context of our little Kaleidoscope language. We're going to
336add two features:</p>
337
338<ol>
339<li>The ability to mutate variables with the '=' operator.</li>
340<li>The ability to define new variables.</li>
341</ol>
342
343<p>While the first item is really what this is about, we only have variables
344for incoming arguments as well as for induction variables, and redefining those only
345goes so far :). Also, the ability to define new variables is a
346useful thing regardless of whether you will be mutating them. Here's a
347motivating example that shows how we could use these:</p>
348
349<div class="doc_code">
350<pre>
351# Define ':' for sequencing: as a low-precedence operator that ignores operands
352# and just returns the RHS.
353def binary : 1 (x y) y;
354
355# Recursive fib, we could do this before.
356def fib(x)
357 if (x &lt; 3) then
358 1
359 else
360 fib(x-1)+fib(x-2);
361
362# Iterative fib.
363def fibi(x)
364 <b>var a = 1, b = 1, c in</b>
365 (for i = 3, i &lt; x in
366 <b>c = a + b</b> :
367 <b>a = b</b> :
368 <b>b = c</b>) :
369 b;
370
371# Call it.
372fibi(10);
373</pre>
374</div>
375
376<p>
377In order to mutate variables, we have to change our existing variables to use
378the "alloca trick". Once we have that, we'll add our new operator, then extend
379Kaleidoscope to support new variable definitions.
380</p>
381
382</div>
383
384<!-- *********************************************************************** -->
385<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
386Mutation</a></div>
387<!-- *********************************************************************** -->
388
389<div class="doc_text">
390
391<p>
392The symbol table in Kaleidoscope is managed at code generation time by the
393'<tt>named_values</tt>' map. This map currently keeps track of the LLVM
394"Value*" that holds the double value for the named variable. In order to
395support mutation, we need to change this slightly, so that it
396<tt>named_values</tt> holds the <em>memory location</em> of the variable in
397question. Note that this change is a refactoring: it changes the structure of
398the code, but does not (by itself) change the behavior of the compiler. All of
399these changes are isolated in the Kaleidoscope code generator.</p>
400
401<p>
402At this point in Kaleidoscope's development, it only supports variables for two
403things: incoming arguments to functions and the induction variable of 'for'
404loops. For consistency, we'll allow mutation of these variables in addition to
405other user-defined variables. This means that these will both need memory
406locations.
407</p>
408
409<p>To start our transformation of Kaleidoscope, we'll change the
410<tt>named_values</tt> map so that it maps to AllocaInst* instead of Value*.
411Once we do this, the C++ compiler will tell us what parts of the code we need to
412update:</p>
413
414<p><b>Note:</b> the ocaml bindings currently model both <tt>Value*</tt>s and
415<tt>AllocInst*</tt>s as <tt>Llvm.llvalue</tt>s, but this may change in the
416future to be more type safe.</p>
417
418<div class="doc_code">
419<pre>
420let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
421</pre>
422</div>
423
424<p>Also, since we will need to create these alloca's, we'll use a helper
425function that ensures that the allocas are created in the entry block of the
426function:</p>
427
428<div class="doc_code">
429<pre>
430(* Create an alloca instruction in the entry block of the function. This
431 * is used for mutable variables etc. *)
432let create_entry_block_alloca the_function var_name =
433 let builder = builder_at (instr_begin (entry_block the_function)) in
434 build_alloca double_type var_name builder
435</pre>
436</div>
437
438<p>This funny looking code creates an <tt>Llvm.llbuilder</tt> object that is
439pointing at the first instruction of the entry block. It then creates an alloca
440with the expected name and returns it. Because all values in Kaleidoscope are
441doubles, there is no need to pass in a type to use.</p>
442
443<p>With this in place, the first functionality change we want to make is to
444variable references. In our new scheme, variables live on the stack, so code
445generating a reference to them actually needs to produce a load from the stack
446slot:</p>
447
448<div class="doc_code">
449<pre>
450let rec codegen_expr = function
451 ...
452 | Ast.Variable name -&gt;
453 let v = try Hashtbl.find named_values name with
454 | Not_found -&gt; raise (Error "unknown variable name")
455 in
456 <b>(* Load the value. *)
457 build_load v name builder</b>
458</pre>
459</div>
460
461<p>As you can see, this is pretty straightforward. Now we need to update the
462things that define the variables to set up the alloca. We'll start with
463<tt>codegen_expr Ast.For ...</tt> (see the <a href="#code">full code listing</a>
464for the unabridged code):</p>
465
466<div class="doc_code">
467<pre>
468 | Ast.For (var_name, start, end_, step, body) -&gt;
469 let the_function = block_parent (insertion_block builder) in
470
471 (* Create an alloca for the variable in the entry block. *)
472 <b>let alloca = create_entry_block_alloca the_function var_name in</b>
473
474 (* Emit the start code first, without 'variable' in scope. *)
475 let start_val = codegen_expr start in
476
477 <b>(* Store the value into the alloca. *)
478 ignore(build_store start_val alloca builder);</b>
479
480 ...
481
482 (* Within the loop, the variable is defined equal to the PHI node. If it
483 * shadows an existing variable, we have to restore it, so save it
484 * now. *)
485 let old_val =
486 try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
487 in
488 <b>Hashtbl.add named_values var_name alloca;</b>
489
490 ...
491
492 (* Compute the end condition. *)
493 let end_cond = codegen_expr end_ in
494
495 <b>(* Reload, increment, and restore the alloca. This handles the case where
496 * the body of the loop mutates the variable. *)
497 let cur_var = build_load alloca var_name builder in
498 let next_var = build_add cur_var step_val "nextvar" builder in
499 ignore(build_store next_var alloca builder);</b>
500 ...
501</pre>
502</div>
503
504<p>This code is virtually identical to the code <a
505href="OCamlLangImpl5.html#forcodegen">before we allowed mutable variables</a>.
506The big difference is that we no longer have to construct a PHI node, and we use
507load/store to access the variable as needed.</p>
508
509<p>To support mutable argument variables, we need to also make allocas for them.
510The code for this is also pretty simple:</p>
511
512<div class="doc_code">
513<pre>
514(* Create an alloca for each argument and register the argument in the symbol
515 * table so that references to it will succeed. *)
516let create_argument_allocas the_function proto =
517 let args = match proto with
518 | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
519 in
520 Array.iteri (fun i ai -&gt;
521 let var_name = args.(i) in
522 (* Create an alloca for this variable. *)
523 let alloca = create_entry_block_alloca the_function var_name in
524
525 (* Store the initial value into the alloca. *)
526 ignore(build_store ai alloca builder);
527
528 (* Add arguments to variable symbol table. *)
529 Hashtbl.add named_values var_name alloca;
530 ) (params the_function)
531</pre>
532</div>
533
534<p>For each argument, we make an alloca, store the input value to the function
535into the alloca, and register the alloca as the memory location for the
536argument. This method gets invoked by <tt>Codegen.codegen_func</tt> right after
537it sets up the entry block for the function.</p>
538
539<p>The final missing piece is adding the mem2reg pass, which allows us to get
540good codegen once again:</p>
541
542<div class="doc_code">
543<pre>
544let main () =
545 ...
546 let the_fpm = PassManager.create_function the_module_provider in
547
548 (* Set up the optimizer pipeline. Start with registering info about how the
549 * target lays out data structures. *)
550 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
551
552 <b>(* Promote allocas to registers. *)
553 add_memory_to_register_promotion the_fpm;</b>
554
555 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
556 add_instruction_combining the_fpm;
557
558 (* reassociate expressions. *)
559 add_reassociation the_fpm;
560</pre>
561</div>
562
563<p>It is interesting to see what the code looks like before and after the
564mem2reg optimization runs. For example, this is the before/after code for our
565recursive fib function. Before the optimization:</p>
566
567<div class="doc_code">
568<pre>
569define double @fib(double %x) {
570entry:
571 <b>%x1 = alloca double
572 store double %x, double* %x1
573 %x2 = load double* %x1</b>
574 %cmptmp = fcmp ult double %x2, 3.000000e+00
575 %booltmp = uitofp i1 %cmptmp to double
576 %ifcond = fcmp one double %booltmp, 0.000000e+00
577 br i1 %ifcond, label %then, label %else
578
579then: ; preds = %entry
580 br label %ifcont
581
582else: ; preds = %entry
583 <b>%x3 = load double* %x1</b>
584 %subtmp = sub double %x3, 1.000000e+00
585 %calltmp = call double @fib( double %subtmp )
586 <b>%x4 = load double* %x1</b>
587 %subtmp5 = sub double %x4, 2.000000e+00
588 %calltmp6 = call double @fib( double %subtmp5 )
589 %addtmp = add double %calltmp, %calltmp6
590 br label %ifcont
591
592ifcont: ; preds = %else, %then
593 %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
594 ret double %iftmp
595}
596</pre>
597</div>
598
599<p>Here there is only one variable (x, the input argument) but you can still
600see the extremely simple-minded code generation strategy we are using. In the
601entry block, an alloca is created, and the initial input value is stored into
602it. Each reference to the variable does a reload from the stack. Also, note
603that we didn't modify the if/then/else expression, so it still inserts a PHI
604node. While we could make an alloca for it, it is actually easier to create a
605PHI node for it, so we still just make the PHI.</p>
606
607<p>Here is the code after the mem2reg pass runs:</p>
608
609<div class="doc_code">
610<pre>
611define double @fib(double %x) {
612entry:
613 %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
614 %booltmp = uitofp i1 %cmptmp to double
615 %ifcond = fcmp one double %booltmp, 0.000000e+00
616 br i1 %ifcond, label %then, label %else
617
618then:
619 br label %ifcont
620
621else:
622 %subtmp = sub double <b>%x</b>, 1.000000e+00
623 %calltmp = call double @fib( double %subtmp )
624 %subtmp5 = sub double <b>%x</b>, 2.000000e+00
625 %calltmp6 = call double @fib( double %subtmp5 )
626 %addtmp = add double %calltmp, %calltmp6
627 br label %ifcont
628
629ifcont: ; preds = %else, %then
630 %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
631 ret double %iftmp
632}
633</pre>
634</div>
635
636<p>This is a trivial case for mem2reg, since there are no redefinitions of the
637variable. The point of showing this is to calm your tension about inserting
638such blatent inefficiencies :).</p>
639
640<p>After the rest of the optimizers run, we get:</p>
641
642<div class="doc_code">
643<pre>
644define double @fib(double %x) {
645entry:
646 %cmptmp = fcmp ult double %x, 3.000000e+00
647 %booltmp = uitofp i1 %cmptmp to double
648 %ifcond = fcmp ueq double %booltmp, 0.000000e+00
649 br i1 %ifcond, label %else, label %ifcont
650
651else:
652 %subtmp = sub double %x, 1.000000e+00
653 %calltmp = call double @fib( double %subtmp )
654 %subtmp5 = sub double %x, 2.000000e+00
655 %calltmp6 = call double @fib( double %subtmp5 )
656 %addtmp = add double %calltmp, %calltmp6
657 ret double %addtmp
658
659ifcont:
660 ret double 1.000000e+00
661}
662</pre>
663</div>
664
665<p>Here we see that the simplifycfg pass decided to clone the return instruction
666into the end of the 'else' block. This allowed it to eliminate some branches
667and the PHI node.</p>
668
669<p>Now that all symbol table references are updated to use stack variables,
670we'll add the assignment operator.</p>
671
672</div>
673
674<!-- *********************************************************************** -->
675<div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
676<!-- *********************************************************************** -->
677
678<div class="doc_text">
679
680<p>With our current framework, adding a new assignment operator is really
681simple. We will parse it just like any other binary operator, but handle it
682internally (instead of allowing the user to define it). The first step is to
683set a precedence:</p>
684
685<div class="doc_code">
686<pre>
687let main () =
688 (* Install standard binary operators.
689 * 1 is the lowest precedence. *)
690 <b>Hashtbl.add Parser.binop_precedence '=' 2;</b>
691 Hashtbl.add Parser.binop_precedence '&lt;' 10;
692 Hashtbl.add Parser.binop_precedence '+' 20;
693 Hashtbl.add Parser.binop_precedence '-' 20;
694 ...
695</pre>
696</div>
697
698<p>Now that the parser knows the precedence of the binary operator, it takes
699care of all the parsing and AST generation. We just need to implement codegen
700for the assignment operator. This looks like:</p>
701
702<div class="doc_code">
703<pre>
704let rec codegen_expr = function
705 begin match op with
706 | '=' -&gt;
707 (* Special case '=' because we don't want to emit the LHS as an
708 * expression. *)
709 let name =
710 match lhs with
711 | Ast.Variable name -&gt; name
712 | _ -&gt; raise (Error "destination of '=' must be a variable")
713 in
714</pre>
715</div>
716
717<p>Unlike the rest of the binary operators, our assignment operator doesn't
718follow the "emit LHS, emit RHS, do computation" model. As such, it is handled
719as a special case before the other binary operators are handled. The other
720strange thing is that it requires the LHS to be a variable. It is invalid to
721have "(x+1) = expr" - only things like "x = expr" are allowed.
722</p>
723
724
725<div class="doc_code">
726<pre>
727 (* Codegen the rhs. *)
728 let val_ = codegen_expr rhs in
729
730 (* Lookup the name. *)
731 let variable = try Hashtbl.find named_values name with
732 | Not_found -&gt; raise (Error "unknown variable name")
733 in
734 ignore(build_store val_ variable builder);
735 val_
736 | _ -&gt;
737 ...
738</pre>
739</div>
740
741<p>Once we have the variable, codegen'ing the assignment is straightforward:
742we emit the RHS of the assignment, create a store, and return the computed
743value. Returning a value allows for chained assignments like "X = (Y = Z)".</p>
744
745<p>Now that we have an assignment operator, we can mutate loop variables and
746arguments. For example, we can now run code like this:</p>
747
748<div class="doc_code">
749<pre>
750# Function to print a double.
751extern printd(x);
752
753# Define ':' for sequencing: as a low-precedence operator that ignores operands
754# and just returns the RHS.
755def binary : 1 (x y) y;
756
757def test(x)
758 printd(x) :
759 x = 4 :
760 printd(x);
761
762test(123);
763</pre>
764</div>
765
766<p>When run, this example prints "123" and then "4", showing that we did
767actually mutate the value! Okay, we have now officially implemented our goal:
768getting this to work requires SSA construction in the general case. However,
769to be really useful, we want the ability to define our own local variables, lets
770add this next!
771</p>
772
773</div>
774
775<!-- *********************************************************************** -->
776<div class="doc_section"><a name="localvars">User-defined Local
777Variables</a></div>
778<!-- *********************************************************************** -->
779
780<div class="doc_text">
781
782<p>Adding var/in is just like any other other extensions we made to
783Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
784The first step for adding our new 'var/in' construct is to extend the lexer.
785As before, this is pretty trivial, the code looks like this:</p>
786
787<div class="doc_code">
788<pre>
789type token =
790 ...
791 <b>(* var definition *)
792 | Var</b>
793
794...
795
796and lex_ident buffer = parser
797 ...
798 | "in" -&gt; [&lt; 'Token.In; stream &gt;]
799 | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
800 | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
801 <b>| "var" -&gt; [&lt; 'Token.Var; stream &gt;]</b>
802 ...
803</pre>
804</div>
805
806<p>The next step is to define the AST node that we will construct. For var/in,
807it looks like this:</p>
808
809<div class="doc_code">
810<pre>
811type expr =
812 ...
813 (* variant for var/in. *)
814 | Var of (string * expr option) array * expr
815 ...
816</pre>
817</div>
818
819<p>var/in allows a list of names to be defined all at once, and each name can
820optionally have an initializer value. As such, we capture this information in
821the VarNames vector. Also, var/in has a body, this body is allowed to access
822the variables defined by the var/in.</p>
823
824<p>With this in place, we can define the parser pieces. The first thing we do
825is add it as a primary expression:</p>
826
827<div class="doc_code">
828<pre>
829(* primary
830 * ::= identifier
831 * ::= numberexpr
832 * ::= parenexpr
833 * ::= ifexpr
834 * ::= forexpr
835 <b>* ::= varexpr</b> *)
836let rec parse_primary = parser
837 ...
838 <b>(* varexpr
839 * ::= 'var' identifier ('=' expression?
840 * (',' identifier ('=' expression)?)* 'in' expression *)
841 | [&lt; 'Token.Var;
842 (* At least one variable name is required. *)
843 'Token.Ident id ?? "expected identifier after var";
844 init=parse_var_init;
845 var_names=parse_var_names [(id, init)];
846 (* At this point, we have to have 'in'. *)
847 'Token.In ?? "expected 'in' keyword after 'var'";
848 body=parse_expr &gt;] -&gt;
849 Ast.Var (Array.of_list (List.rev var_names), body)</b>
850
851...
852
853and parse_var_init = parser
854 (* read in the optional initializer. *)
855 | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
856 | [&lt; &gt;] -&gt; None
857
858and parse_var_names accumulator = parser
859 | [&lt; 'Token.Kwd ',';
860 'Token.Ident id ?? "expected identifier list after var";
861 init=parse_var_init;
862 e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
863 | [&lt; &gt;] -&gt; accumulator
864</pre>
865</div>
866
867<p>Now that we can parse and represent the code, we need to support emission of
868LLVM IR for it. This code starts out with:</p>
869
870<div class="doc_code">
871<pre>
872let rec codegen_expr = function
873 ...
874 | Ast.Var (var_names, body)
875 let old_bindings = ref [] in
876
877 let the_function = block_parent (insertion_block builder) in
878
879 (* Register all variables and emit their initializer. *)
880 Array.iter (fun (var_name, init) -&gt;
881</pre>
882</div>
883
884<p>Basically it loops over all the variables, installing them one at a time.
885For each variable we put into the symbol table, we remember the previous value
886that we replace in OldBindings.</p>
887
888<div class="doc_code">
889<pre>
890 (* Emit the initializer before adding the variable to scope, this
891 * prevents the initializer from referencing the variable itself, and
892 * permits stuff like this:
893 * var a = 1 in
894 * var a = a in ... # refers to outer 'a'. *)
895 let init_val =
896 match init with
897 | Some init -&gt; codegen_expr init
898 (* If not specified, use 0.0. *)
899 | None -&gt; const_float double_type 0.0
900 in
901
902 let alloca = create_entry_block_alloca the_function var_name in
903 ignore(build_store init_val alloca builder);
904
905 (* Remember the old variable binding so that we can restore the binding
906 * when we unrecurse. *)
907
908 begin
909 try
910 let old_value = Hashtbl.find named_values var_name in
911 old_bindings := (var_name, old_value) :: !old_bindings;
912 with Not_found &gt; ()
913 end;
914
915 (* Remember this binding. *)
916 Hashtbl.add named_values var_name alloca;
917 ) var_names;
918</pre>
919</div>
920
921<p>There are more comments here than code. The basic idea is that we emit the
922initializer, create the alloca, then update the symbol table to point to it.
923Once all the variables are installed in the symbol table, we evaluate the body
924of the var/in expression:</p>
925
926<div class="doc_code">
927<pre>
928 (* Codegen the body, now that all vars are in scope. *)
929 let body_val = codegen_expr body in
930</pre>
931</div>
932
933<p>Finally, before returning, we restore the previous variable bindings:</p>
934
935<div class="doc_code">
936<pre>
937 (* Pop all our variables from scope. *)
938 List.iter (fun (var_name, old_value) -&gt;
939 Hashtbl.add named_values var_name old_value
940 ) !old_bindings;
941
942 (* Return the body computation. *)
943 body_val
944</pre>
945</div>
946
947<p>The end result of all of this is that we get properly scoped variable
948definitions, and we even (trivially) allow mutation of them :).</p>
949
950<p>With this, we completed what we set out to do. Our nice iterative fib
951example from the intro compiles and runs just fine. The mem2reg pass optimizes
952all of our stack variables into SSA registers, inserting PHI nodes where needed,
953and our front-end remains simple: no "iterated dominance frontier" computation
954anywhere in sight.</p>
955
956</div>
957
958<!-- *********************************************************************** -->
959<div class="doc_section"><a name="code">Full Code Listing</a></div>
960<!-- *********************************************************************** -->
961
962<div class="doc_text">
963
964<p>
965Here is the complete code listing for our running example, enhanced with mutable
966variables and var/in support. To build this example, use:
967</p>
968
969<div class="doc_code">
970<pre>
971# Compile
972ocamlbuild toy.byte
973# Run
974./toy.byte
975</pre>
976</div>
977
978<p>Here is the code:</p>
979
980<dl>
981<dt>_tags:</dt>
982<dd class="doc_code">
983<pre>
984&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
985&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
986&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
987&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
988</pre>
989</dd>
990
991<dt>myocamlbuild.ml:</dt>
992<dd class="doc_code">
993<pre>
994open Ocamlbuild_plugin;;
995
996ocaml_lib ~extern:true "llvm";;
997ocaml_lib ~extern:true "llvm_analysis";;
998ocaml_lib ~extern:true "llvm_executionengine";;
999ocaml_lib ~extern:true "llvm_target";;
1000ocaml_lib ~extern:true "llvm_scalar_opts";;
1001
1002flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
1003dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
1004</pre>
1005</dd>
1006
1007<dt>token.ml:</dt>
1008<dd class="doc_code">
1009<pre>
1010(*===----------------------------------------------------------------------===
1011 * Lexer Tokens
1012 *===----------------------------------------------------------------------===*)
1013
1014(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
1015 * these others for known things. *)
1016type token =
1017 (* commands *)
1018 | Def | Extern
1019
1020 (* primary *)
1021 | Ident of string | Number of float
1022
1023 (* unknown *)
1024 | Kwd of char
1025
1026 (* control *)
1027 | If | Then | Else
1028 | For | In
1029
1030 (* operators *)
1031 | Binary | Unary
1032
1033 (* var definition *)
1034 | Var
1035</pre>
1036</dd>
1037
1038<dt>lexer.ml:</dt>
1039<dd class="doc_code">
1040<pre>
1041(*===----------------------------------------------------------------------===
1042 * Lexer
1043 *===----------------------------------------------------------------------===*)
1044
1045let rec lex = parser
1046 (* Skip any whitespace. *)
1047 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
1048
1049 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
1050 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
1051 let buffer = Buffer.create 1 in
1052 Buffer.add_char buffer c;
1053 lex_ident buffer stream
1054
1055 (* number: [0-9.]+ *)
1056 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
1057 let buffer = Buffer.create 1 in
1058 Buffer.add_char buffer c;
1059 lex_number buffer stream
1060
1061 (* Comment until end of line. *)
1062 | [&lt; ' ('#'); stream &gt;] -&gt;
1063 lex_comment stream
1064
1065 (* Otherwise, just return the character as its ascii value. *)
1066 | [&lt; 'c; stream &gt;] -&gt;
1067 [&lt; 'Token.Kwd c; lex stream &gt;]
1068
1069 (* end of stream. *)
1070 | [&lt; &gt;] -&gt; [&lt; &gt;]
1071
1072and lex_number buffer = parser
1073 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
1074 Buffer.add_char buffer c;
1075 lex_number buffer stream
1076 | [&lt; stream=lex &gt;] -&gt;
1077 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
1078
1079and lex_ident buffer = parser
1080 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
1081 Buffer.add_char buffer c;
1082 lex_ident buffer stream
1083 | [&lt; stream=lex &gt;] -&gt;
1084 match Buffer.contents buffer with
1085 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
1086 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
1087 | "if" -&gt; [&lt; 'Token.If; stream &gt;]
1088 | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
1089 | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
1090 | "for" -&gt; [&lt; 'Token.For; stream &gt;]
1091 | "in" -&gt; [&lt; 'Token.In; stream &gt;]
1092 | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
1093 | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
1094 | "var" -&gt; [&lt; 'Token.Var; stream &gt;]
1095 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
1096
1097and lex_comment = parser
1098 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
1099 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
1100 | [&lt; &gt;] -&gt; [&lt; &gt;]
1101</pre>
1102</dd>
1103
1104<dt>ast.ml:</dt>
1105<dd class="doc_code">
1106<pre>
1107(*===----------------------------------------------------------------------===
1108 * Abstract Syntax Tree (aka Parse Tree)
1109 *===----------------------------------------------------------------------===*)
1110
1111(* expr - Base type for all expression nodes. *)
1112type expr =
1113 (* variant for numeric literals like "1.0". *)
1114 | Number of float
1115
1116 (* variant for referencing a variable, like "a". *)
1117 | Variable of string
1118
1119 (* variant for a unary operator. *)
1120 | Unary of char * expr
1121
1122 (* variant for a binary operator. *)
1123 | Binary of char * expr * expr
1124
1125 (* variant for function calls. *)
1126 | Call of string * expr array
1127
1128 (* variant for if/then/else. *)
1129 | If of expr * expr * expr
1130
1131 (* variant for for/in. *)
1132 | For of string * expr * expr * expr option * expr
1133
1134 (* variant for var/in. *)
1135 | Var of (string * expr option) array * expr
1136
1137(* proto - This type represents the "prototype" for a function, which captures
1138 * its name, and its argument names (thus implicitly the number of arguments the
1139 * function takes). *)
1140type proto =
1141 | Prototype of string * string array
1142 | BinOpPrototype of string * string array * int
1143
1144(* func - This type represents a function definition itself. *)
1145type func = Function of proto * expr
1146</pre>
1147</dd>
1148
1149<dt>parser.ml:</dt>
1150<dd class="doc_code">
1151<pre>
1152(*===---------------------------------------------------------------------===
1153 * Parser
1154 *===---------------------------------------------------------------------===*)
1155
1156(* binop_precedence - This holds the precedence for each binary operator that is
1157 * defined *)
1158let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
1159
1160(* precedence - Get the precedence of the pending binary operator token. *)
1161let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
1162
1163(* primary
1164 * ::= identifier
1165 * ::= numberexpr
1166 * ::= parenexpr
1167 * ::= ifexpr
1168 * ::= forexpr
1169 * ::= varexpr *)
1170let rec parse_primary = parser
1171 (* numberexpr ::= number *)
1172 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
1173
1174 (* parenexpr ::= '(' expression ')' *)
1175 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
1176
1177 (* identifierexpr
1178 * ::= identifier
1179 * ::= identifier '(' argumentexpr ')' *)
1180 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
1181 let rec parse_args accumulator = parser
1182 | [&lt; e=parse_expr; stream &gt;] -&gt;
1183 begin parser
1184 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
1185 | [&lt; &gt;] -&gt; e :: accumulator
1186 end stream
1187 | [&lt; &gt;] -&gt; accumulator
1188 in
1189 let rec parse_ident id = parser
1190 (* Call. *)
1191 | [&lt; 'Token.Kwd '(';
1192 args=parse_args [];
1193 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
1194 Ast.Call (id, Array.of_list (List.rev args))
1195
1196 (* Simple variable ref. *)
1197 | [&lt; &gt;] -&gt; Ast.Variable id
1198 in
1199 parse_ident id stream
1200
1201 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
1202 | [&lt; 'Token.If; c=parse_expr;
1203 'Token.Then ?? "expected 'then'"; t=parse_expr;
1204 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
1205 Ast.If (c, t, e)
1206
1207 (* forexpr
1208 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
1209 | [&lt; 'Token.For;
1210 'Token.Ident id ?? "expected identifier after for";
1211 'Token.Kwd '=' ?? "expected '=' after for";
1212 stream &gt;] -&gt;
1213 begin parser
1214 | [&lt;
1215 start=parse_expr;
1216 'Token.Kwd ',' ?? "expected ',' after for";
1217 end_=parse_expr;
1218 stream &gt;] -&gt;
1219 let step =
1220 begin parser
1221 | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
1222 | [&lt; &gt;] -&gt; None
1223 end stream
1224 in
1225 begin parser
1226 | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
1227 Ast.For (id, start, end_, step, body)
1228 | [&lt; &gt;] -&gt;
1229 raise (Stream.Error "expected 'in' after for")
1230 end stream
1231 | [&lt; &gt;] -&gt;
1232 raise (Stream.Error "expected '=' after for")
1233 end stream
1234
1235 (* varexpr
1236 * ::= 'var' identifier ('=' expression?
1237 * (',' identifier ('=' expression)?)* 'in' expression *)
1238 | [&lt; 'Token.Var;
1239 (* At least one variable name is required. *)
1240 'Token.Ident id ?? "expected identifier after var";
1241 init=parse_var_init;
1242 var_names=parse_var_names [(id, init)];
1243 (* At this point, we have to have 'in'. *)
1244 'Token.In ?? "expected 'in' keyword after 'var'";
1245 body=parse_expr &gt;] -&gt;
1246 Ast.Var (Array.of_list (List.rev var_names), body)
1247
1248 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
1249
1250(* unary
1251 * ::= primary
1252 * ::= '!' unary *)
1253and parse_unary = parser
1254 (* If this is a unary operator, read it. *)
1255 | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
1256 Ast.Unary (op, operand)
1257
1258 (* If the current token is not an operator, it must be a primary expr. *)
1259 | [&lt; stream &gt;] -&gt; parse_primary stream
1260
1261(* binoprhs
1262 * ::= ('+' primary)* *)
1263and parse_bin_rhs expr_prec lhs stream =
1264 match Stream.peek stream with
1265 (* If this is a binop, find its precedence. *)
1266 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
1267 let token_prec = precedence c in
1268
1269 (* If this is a binop that binds at least as tightly as the current binop,
1270 * consume it, otherwise we are done. *)
1271 if token_prec &lt; expr_prec then lhs else begin
1272 (* Eat the binop. *)
1273 Stream.junk stream;
1274
1275 (* Parse the primary expression after the binary operator. *)
1276 let rhs = parse_unary stream in
1277
1278 (* Okay, we know this is a binop. *)
1279 let rhs =
1280 match Stream.peek stream with
1281 | Some (Token.Kwd c2) -&gt;
1282 (* If BinOp binds less tightly with rhs than the operator after
1283 * rhs, let the pending operator take rhs as its lhs. *)
1284 let next_prec = precedence c2 in
1285 if token_prec &lt; next_prec
1286 then parse_bin_rhs (token_prec + 1) rhs stream
1287 else rhs
1288 | _ -&gt; rhs
1289 in
1290
1291 (* Merge lhs/rhs. *)
1292 let lhs = Ast.Binary (c, lhs, rhs) in
1293 parse_bin_rhs expr_prec lhs stream
1294 end
1295 | _ -&gt; lhs
1296
1297and parse_var_init = parser
1298 (* read in the optional initializer. *)
1299 | [&lt; 'Token.Kwd '='; e=parse_expr &gt;] -&gt; Some e
1300 | [&lt; &gt;] -&gt; None
1301
1302and parse_var_names accumulator = parser
1303 | [&lt; 'Token.Kwd ',';
1304 'Token.Ident id ?? "expected identifier list after var";
1305 init=parse_var_init;
1306 e=parse_var_names ((id, init) :: accumulator) &gt;] -&gt; e
1307 | [&lt; &gt;] -&gt; accumulator
1308
1309(* expression
1310 * ::= primary binoprhs *)
1311and parse_expr = parser
1312 | [&lt; lhs=parse_unary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
1313
1314(* prototype
1315 * ::= id '(' id* ')'
1316 * ::= binary LETTER number? (id, id)
1317 * ::= unary LETTER number? (id) *)
1318let parse_prototype =
1319 let rec parse_args accumulator = parser
1320 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
1321 | [&lt; &gt;] -&gt; accumulator
1322 in
1323 let parse_operator = parser
1324 | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
1325 | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
1326 in
1327 let parse_binary_precedence = parser
1328 | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
1329 | [&lt; &gt;] -&gt; 30
1330 in
1331 parser
1332 | [&lt; 'Token.Ident id;
1333 'Token.Kwd '(' ?? "expected '(' in prototype";
1334 args=parse_args [];
1335 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
1336 (* success. *)
1337 Ast.Prototype (id, Array.of_list (List.rev args))
1338 | [&lt; (prefix, kind)=parse_operator;
1339 'Token.Kwd op ?? "expected an operator";
1340 (* Read the precedence if present. *)
1341 binary_precedence=parse_binary_precedence;
1342 'Token.Kwd '(' ?? "expected '(' in prototype";
1343 args=parse_args [];
1344 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
1345 let name = prefix ^ (String.make 1 op) in
1346 let args = Array.of_list (List.rev args) in
1347
1348 (* Verify right number of arguments for operator. *)
1349 if Array.length args != kind
1350 then raise (Stream.Error "invalid number of operands for operator")
1351 else
1352 if kind == 1 then
1353 Ast.Prototype (name, args)
1354 else
1355 Ast.BinOpPrototype (name, args, binary_precedence)
1356 | [&lt; &gt;] -&gt;
1357 raise (Stream.Error "expected function name in prototype")
1358
1359(* definition ::= 'def' prototype expression *)
1360let parse_definition = parser
1361 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
1362 Ast.Function (p, e)
1363
1364(* toplevelexpr ::= expression *)
1365let parse_toplevel = parser
1366 | [&lt; e=parse_expr &gt;] -&gt;
1367 (* Make an anonymous proto. *)
1368 Ast.Function (Ast.Prototype ("", [||]), e)
1369
1370(* external ::= 'extern' prototype *)
1371let parse_extern = parser
1372 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
1373</pre>
1374</dd>
1375
1376<dt>codegen.ml:</dt>
1377<dd class="doc_code">
1378<pre>
1379(*===----------------------------------------------------------------------===
1380 * Code Generation
1381 *===----------------------------------------------------------------------===*)
1382
1383open Llvm
1384
1385exception Error of string
1386
1387let the_module = create_module "my cool jit"
1388let builder = builder ()
1389let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
1390
1391(* Create an alloca instruction in the entry block of the function. This
1392 * is used for mutable variables etc. *)
1393let create_entry_block_alloca the_function var_name =
1394 let builder = builder_at (instr_begin (entry_block the_function)) in
1395 build_alloca double_type var_name builder
1396
1397let rec codegen_expr = function
1398 | Ast.Number n -&gt; const_float double_type n
1399 | Ast.Variable name -&gt;
1400 let v = try Hashtbl.find named_values name with
1401 | Not_found -&gt; raise (Error "unknown variable name")
1402 in
1403 (* Load the value. *)
1404 build_load v name builder
1405 | Ast.Unary (op, operand) -&gt;
1406 let operand = codegen_expr operand in
1407 let callee = "unary" ^ (String.make 1 op) in
1408 let callee =
1409 match lookup_function callee the_module with
1410 | Some callee -&gt; callee
1411 | None -&gt; raise (Error "unknown unary operator")
1412 in
1413 build_call callee [|operand|] "unop" builder
1414 | Ast.Binary (op, lhs, rhs) -&gt;
1415 begin match op with
1416 | '=' -&gt;
1417 (* Special case '=' because we don't want to emit the LHS as an
1418 * expression. *)
1419 let name =
1420 match lhs with
1421 | Ast.Variable name -&gt; name
1422 | _ -&gt; raise (Error "destination of '=' must be a variable")
1423 in
1424
1425 (* Codegen the rhs. *)
1426 let val_ = codegen_expr rhs in
1427
1428 (* Lookup the name. *)
1429 let variable = try Hashtbl.find named_values name with
1430 | Not_found -&gt; raise (Error "unknown variable name")
1431 in
1432 ignore(build_store val_ variable builder);
1433 val_
1434 | _ -&gt;
1435 let lhs_val = codegen_expr lhs in
1436 let rhs_val = codegen_expr rhs in
1437 begin
1438 match op with
1439 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
1440 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
1441 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
1442 | '&lt;' -&gt;
1443 (* Convert bool 0/1 to double 0.0 or 1.0 *)
1444 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
1445 build_uitofp i double_type "booltmp" builder
1446 | _ -&gt;
1447 (* If it wasn't a builtin binary operator, it must be a user defined
1448 * one. Emit a call to it. *)
1449 let callee = "binary" ^ (String.make 1 op) in
1450 let callee =
1451 match lookup_function callee the_module with
1452 | Some callee -&gt; callee
1453 | None -&gt; raise (Error "binary operator not found!")
1454 in
1455 build_call callee [|lhs_val; rhs_val|] "binop" builder
1456 end
1457 end
1458 | Ast.Call (callee, args) -&gt;
1459 (* Look up the name in the module table. *)
1460 let callee =
1461 match lookup_function callee the_module with
1462 | Some callee -&gt; callee
1463 | None -&gt; raise (Error "unknown function referenced")
1464 in
1465 let params = params callee in
1466
1467 (* If argument mismatch error. *)
1468 if Array.length params == Array.length args then () else
1469 raise (Error "incorrect # arguments passed");
1470 let args = Array.map codegen_expr args in
1471 build_call callee args "calltmp" builder
1472 | Ast.If (cond, then_, else_) -&gt;
1473 let cond = codegen_expr cond in
1474
1475 (* Convert condition to a bool by comparing equal to 0.0 *)
1476 let zero = const_float double_type 0.0 in
1477 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
1478
1479 (* Grab the first block so that we might later add the conditional branch
1480 * to it at the end of the function. *)
1481 let start_bb = insertion_block builder in
1482 let the_function = block_parent start_bb in
1483
1484 let then_bb = append_block "then" the_function in
1485
1486 (* Emit 'then' value. *)
1487 position_at_end then_bb builder;
1488 let then_val = codegen_expr then_ in
1489
1490 (* Codegen of 'then' can change the current block, update then_bb for the
1491 * phi. We create a new name because one is used for the phi node, and the
1492 * other is used for the conditional branch. *)
1493 let new_then_bb = insertion_block builder in
1494
1495 (* Emit 'else' value. *)
1496 let else_bb = append_block "else" the_function in
1497 position_at_end else_bb builder;
1498 let else_val = codegen_expr else_ in
1499
1500 (* Codegen of 'else' can change the current block, update else_bb for the
1501 * phi. *)
1502 let new_else_bb = insertion_block builder in
1503
1504 (* Emit merge block. *)
1505 let merge_bb = append_block "ifcont" the_function in
1506 position_at_end merge_bb builder;
1507 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
1508 let phi = build_phi incoming "iftmp" builder in
1509
1510 (* Return to the start block to add the conditional branch. *)
1511 position_at_end start_bb builder;
1512 ignore (build_cond_br cond_val then_bb else_bb builder);
1513
1514 (* Set a unconditional branch at the end of the 'then' block and the
1515 * 'else' block to the 'merge' block. *)
1516 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
1517 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
1518
1519 (* Finally, set the builder to the end of the merge block. *)
1520 position_at_end merge_bb builder;
1521
1522 phi
1523 | Ast.For (var_name, start, end_, step, body) -&gt;
1524 (* Output this as:
1525 * var = alloca double
1526 * ...
1527 * start = startexpr
1528 * store start -&gt; var
1529 * goto loop
1530 * loop:
1531 * ...
1532 * bodyexpr
1533 * ...
1534 * loopend:
1535 * step = stepexpr
1536 * endcond = endexpr
1537 *
1538 * curvar = load var
1539 * nextvar = curvar + step
1540 * store nextvar -&gt; var
1541 * br endcond, loop, endloop
1542 * outloop: *)
1543
1544 let the_function = block_parent (insertion_block builder) in
1545
1546 (* Create an alloca for the variable in the entry block. *)
1547 let alloca = create_entry_block_alloca the_function var_name in
1548
1549 (* Emit the start code first, without 'variable' in scope. *)
1550 let start_val = codegen_expr start in
1551
1552 (* Store the value into the alloca. *)
1553 ignore(build_store start_val alloca builder);
1554
1555 (* Make the new basic block for the loop header, inserting after current
1556 * block. *)
1557 let loop_bb = append_block "loop" the_function in
1558
1559 (* Insert an explicit fall through from the current block to the
1560 * loop_bb. *)
1561 ignore (build_br loop_bb builder);
1562
1563 (* Start insertion in loop_bb. *)
1564 position_at_end loop_bb builder;
1565
1566 (* Within the loop, the variable is defined equal to the PHI node. If it
1567 * shadows an existing variable, we have to restore it, so save it
1568 * now. *)
1569 let old_val =
1570 try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
1571 in
1572 Hashtbl.add named_values var_name alloca;
1573
1574 (* Emit the body of the loop. This, like any other expr, can change the
1575 * current BB. Note that we ignore the value computed by the body, but
1576 * don't allow an error *)
1577 ignore (codegen_expr body);
1578
1579 (* Emit the step value. *)
1580 let step_val =
1581 match step with
1582 | Some step -&gt; codegen_expr step
1583 (* If not specified, use 1.0. *)
1584 | None -&gt; const_float double_type 1.0
1585 in
1586
1587 (* Compute the end condition. *)
1588 let end_cond = codegen_expr end_ in
1589
1590 (* Reload, increment, and restore the alloca. This handles the case where
1591 * the body of the loop mutates the variable. *)
1592 let cur_var = build_load alloca var_name builder in
1593 let next_var = build_add cur_var step_val "nextvar" builder in
1594 ignore(build_store next_var alloca builder);
1595
1596 (* Convert condition to a bool by comparing equal to 0.0. *)
1597 let zero = const_float double_type 0.0 in
1598 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
1599
1600 (* Create the "after loop" block and insert it. *)
1601 let after_bb = append_block "afterloop" the_function in
1602
1603 (* Insert the conditional branch into the end of loop_end_bb. *)
1604 ignore (build_cond_br end_cond loop_bb after_bb builder);
1605
1606 (* Any new code will be inserted in after_bb. *)
1607 position_at_end after_bb builder;
1608
1609 (* Restore the unshadowed variable. *)
1610 begin match old_val with
1611 | Some old_val -&gt; Hashtbl.add named_values var_name old_val
1612 | None -&gt; ()
1613 end;
1614
1615 (* for expr always returns 0.0. *)
1616 const_null double_type
1617 | Ast.Var (var_names, body) -&gt;
1618 let old_bindings = ref [] in
1619
1620 let the_function = block_parent (insertion_block builder) in
1621
1622 (* Register all variables and emit their initializer. *)
1623 Array.iter (fun (var_name, init) -&gt;
1624 (* Emit the initializer before adding the variable to scope, this
1625 * prevents the initializer from referencing the variable itself, and
1626 * permits stuff like this:
1627 * var a = 1 in
1628 * var a = a in ... # refers to outer 'a'. *)
1629 let init_val =
1630 match init with
1631 | Some init -&gt; codegen_expr init
1632 (* If not specified, use 0.0. *)
1633 | None -&gt; const_float double_type 0.0
1634 in
1635
1636 let alloca = create_entry_block_alloca the_function var_name in
1637 ignore(build_store init_val alloca builder);
1638
1639 (* Remember the old variable binding so that we can restore the binding
1640 * when we unrecurse. *)
1641 begin
1642 try
1643 let old_value = Hashtbl.find named_values var_name in
1644 old_bindings := (var_name, old_value) :: !old_bindings;
1645 with Not_found -&gt; ()
1646 end;
1647
1648 (* Remember this binding. *)
1649 Hashtbl.add named_values var_name alloca;
1650 ) var_names;
1651
1652 (* Codegen the body, now that all vars are in scope. *)
1653 let body_val = codegen_expr body in
1654
1655 (* Pop all our variables from scope. *)
1656 List.iter (fun (var_name, old_value) -&gt;
1657 Hashtbl.add named_values var_name old_value
1658 ) !old_bindings;
1659
1660 (* Return the body computation. *)
1661 body_val
1662
1663let codegen_proto = function
1664 | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -&gt;
1665 (* Make the function type: double(double,double) etc. *)
1666 let doubles = Array.make (Array.length args) double_type in
1667 let ft = function_type double_type doubles in
1668 let f =
1669 match lookup_function name the_module with
1670 | None -&gt; declare_function name ft the_module
1671
1672 (* If 'f' conflicted, there was already something named 'name'. If it
1673 * has a body, don't allow redefinition or reextern. *)
1674 | Some f -&gt;
1675 (* If 'f' already has a body, reject this. *)
1676 if block_begin f &lt;&gt; At_end f then
1677 raise (Error "redefinition of function");
1678
1679 (* If 'f' took a different number of arguments, reject. *)
1680 if element_type (type_of f) &lt;&gt; ft then
1681 raise (Error "redefinition of function with different # args");
1682 f
1683 in
1684
1685 (* Set names for all arguments. *)
1686 Array.iteri (fun i a -&gt;
1687 let n = args.(i) in
1688 set_value_name n a;
1689 Hashtbl.add named_values n a;
1690 ) (params f);
1691 f
1692
1693(* Create an alloca for each argument and register the argument in the symbol
1694 * table so that references to it will succeed. *)
1695let create_argument_allocas the_function proto =
1696 let args = match proto with
1697 | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -&gt; args
1698 in
1699 Array.iteri (fun i ai -&gt;
1700 let var_name = args.(i) in
1701 (* Create an alloca for this variable. *)
1702 let alloca = create_entry_block_alloca the_function var_name in
1703
1704 (* Store the initial value into the alloca. *)
1705 ignore(build_store ai alloca builder);
1706
1707 (* Add arguments to variable symbol table. *)
1708 Hashtbl.add named_values var_name alloca;
1709 ) (params the_function)
1710
1711let codegen_func the_fpm = function
1712 | Ast.Function (proto, body) -&gt;
1713 Hashtbl.clear named_values;
1714 let the_function = codegen_proto proto in
1715
1716 (* If this is an operator, install it. *)
1717 begin match proto with
1718 | Ast.BinOpPrototype (name, args, prec) -&gt;
1719 let op = name.[String.length name - 1] in
1720 Hashtbl.add Parser.binop_precedence op prec;
1721 | _ -&gt; ()
1722 end;
1723
1724 (* Create a new basic block to start insertion into. *)
1725 let bb = append_block "entry" the_function in
1726 position_at_end bb builder;
1727
1728 try
1729 (* Add all arguments to the symbol table and create their allocas. *)
1730 create_argument_allocas the_function proto;
1731
1732 let ret_val = codegen_expr body in
1733
1734 (* Finish off the function. *)
1735 let _ = build_ret ret_val builder in
1736
1737 (* Validate the generated code, checking for consistency. *)
1738 Llvm_analysis.assert_valid_function the_function;
1739
1740 (* Optimize the function. *)
1741 let _ = PassManager.run_function the_function the_fpm in
1742
1743 the_function
1744 with e -&gt;
1745 delete_function the_function;
1746 raise e
1747</pre>
1748</dd>
1749
1750<dt>toplevel.ml:</dt>
1751<dd class="doc_code">
1752<pre>
1753(*===----------------------------------------------------------------------===
1754 * Top-Level parsing and JIT Driver
1755 *===----------------------------------------------------------------------===*)
1756
1757open Llvm
1758open Llvm_executionengine
1759
1760(* top ::= definition | external | expression | ';' *)
1761let rec main_loop the_fpm the_execution_engine stream =
1762 match Stream.peek stream with
1763 | None -&gt; ()
1764
1765 (* ignore top-level semicolons. *)
1766 | Some (Token.Kwd ';') -&gt;
1767 Stream.junk stream;
1768 main_loop the_fpm the_execution_engine stream
1769
1770 | Some token -&gt;
1771 begin
1772 try match token with
1773 | Token.Def -&gt;
1774 let e = Parser.parse_definition stream in
1775 print_endline "parsed a function definition.";
1776 dump_value (Codegen.codegen_func the_fpm e);
1777 | Token.Extern -&gt;
1778 let e = Parser.parse_extern stream in
1779 print_endline "parsed an extern.";
1780 dump_value (Codegen.codegen_proto e);
1781 | _ -&gt;
1782 (* Evaluate a top-level expression into an anonymous function. *)
1783 let e = Parser.parse_toplevel stream in
1784 print_endline "parsed a top-level expr";
1785 let the_function = Codegen.codegen_func the_fpm e in
1786 dump_value the_function;
1787
1788 (* JIT the function, returning a function pointer. *)
1789 let result = ExecutionEngine.run_function the_function [||]
1790 the_execution_engine in
1791
1792 print_string "Evaluated to ";
1793 print_float (GenericValue.as_float double_type result);
1794 print_newline ();
1795 with Stream.Error s | Codegen.Error s -&gt;
1796 (* Skip token for error recovery. *)
1797 Stream.junk stream;
1798 print_endline s;
1799 end;
1800 print_string "ready&gt; "; flush stdout;
1801 main_loop the_fpm the_execution_engine stream
1802</pre>
1803</dd>
1804
1805<dt>toy.ml:</dt>
1806<dd class="doc_code">
1807<pre>
1808(*===----------------------------------------------------------------------===
1809 * Main driver code.
1810 *===----------------------------------------------------------------------===*)
1811
1812open Llvm
1813open Llvm_executionengine
1814open Llvm_target
1815open Llvm_scalar_opts
1816
1817let main () =
1818 (* Install standard binary operators.
1819 * 1 is the lowest precedence. *)
1820 Hashtbl.add Parser.binop_precedence '=' 2;
1821 Hashtbl.add Parser.binop_precedence '&lt;' 10;
1822 Hashtbl.add Parser.binop_precedence '+' 20;
1823 Hashtbl.add Parser.binop_precedence '-' 20;
1824 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
1825
1826 (* Prime the first token. *)
1827 print_string "ready&gt; "; flush stdout;
1828 let stream = Lexer.lex (Stream.of_channel stdin) in
1829
1830 (* Create the JIT. *)
1831 let the_module_provider = ModuleProvider.create Codegen.the_module in
1832 let the_execution_engine = ExecutionEngine.create the_module_provider in
1833 let the_fpm = PassManager.create_function the_module_provider in
1834
1835 (* Set up the optimizer pipeline. Start with registering info about how the
1836 * target lays out data structures. *)
1837 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
1838
1839 (* Promote allocas to registers. *)
1840 add_memory_to_register_promotion the_fpm;
1841
1842 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
1843 add_instruction_combining the_fpm;
1844
1845 (* reassociate expressions. *)
1846 add_reassociation the_fpm;
1847
1848 (* Eliminate Common SubExpressions. *)
1849 add_gvn the_fpm;
1850
1851 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
1852 add_cfg_simplification the_fpm;
1853
1854 (* Run the main "interpreter loop" now. *)
1855 Toplevel.main_loop the_fpm the_execution_engine stream;
1856
1857 (* Print out all the generated code. *)
1858 dump_module Codegen.the_module
1859;;
1860
1861main ()
1862</pre>
1863</dd>
1864
1865<dt>bindings.c</dt>
1866<dd class="doc_code">
1867<pre>
1868#include &lt;stdio.h&gt;
1869
1870/* putchard - putchar that takes a double and returns 0. */
1871extern double putchard(double X) {
1872 putchar((char)X);
1873 return 0;
1874}
1875
1876/* printd - printf that takes a double prints it as "%f\n", returning 0. */
1877extern double printd(double X) {
1878 printf("%f\n", X);
1879 return 0;
1880}
1881</pre>
1882</dd>
1883</dl>
1884
1885<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
1886</div>
1887
1888<!-- *********************************************************************** -->
1889<hr>
1890<address>
1891 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1892 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1893 <a href="http://validator.w3.org/check/referer"><img
1894 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1895
1896 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1897 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1898 <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1899 Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
1900</address>
1901</body>
1902</html>