blob: 07e58ba171cc3c2a24319bce3d86144db982ce3a [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattnercb533582003-08-03 21:14:38 +000015#define DEBUG_TYPE "fp"
Chris Lattnera960d952003-01-13 01:01:59 +000016#include "X86.h"
17#include "X86InstrInfo.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/LiveVariables.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000021#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000022#include "llvm/Target/TargetMachine.h"
Chris Lattnera11136b2003-08-01 22:21:34 +000023#include "Support/Debug.h"
Chris Lattnera960d952003-01-13 01:01:59 +000024#include "Support/Statistic.h"
25#include <algorithm>
26#include <iostream>
27
28namespace {
29 Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
30 Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
31
32 struct FPS : public MachineFunctionPass {
33 virtual bool runOnMachineFunction(MachineFunction &MF);
34
35 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
36
37 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
38 AU.addRequired<LiveVariables>();
39 MachineFunctionPass::getAnalysisUsage(AU);
40 }
41 private:
42 LiveVariables *LV; // Live variable info for current function...
43 MachineBasicBlock *MBB; // Current basic block
44 unsigned Stack[8]; // FP<n> Registers in each stack slot...
45 unsigned RegMap[8]; // Track which stack slot contains each register
46 unsigned StackTop; // The current top of the FP stack.
47
48 void dumpStack() const {
49 std::cerr << "Stack contents:";
50 for (unsigned i = 0; i != StackTop; ++i) {
51 std::cerr << " FP" << Stack[i];
52 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
53 }
54 std::cerr << "\n";
55 }
56 private:
57 // getSlot - Return the stack slot number a particular register number is
58 // in...
59 unsigned getSlot(unsigned RegNo) const {
60 assert(RegNo < 8 && "Regno out of range!");
61 return RegMap[RegNo];
62 }
63
64 // getStackEntry - Return the X86::FP<n> register in register ST(i)
65 unsigned getStackEntry(unsigned STi) const {
66 assert(STi < StackTop && "Access past stack top!");
67 return Stack[StackTop-1-STi];
68 }
69
70 // getSTReg - Return the X86::ST(i) register which contains the specified
71 // FP<RegNo> register
72 unsigned getSTReg(unsigned RegNo) const {
73 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
74 }
75
76 // pushReg - Push the specifiex FP<n> register onto the stack
77 void pushReg(unsigned Reg) {
78 assert(Reg < 8 && "Register number out of range!");
79 assert(StackTop < 8 && "Stack overflow!");
80 Stack[StackTop] = Reg;
81 RegMap[Reg] = StackTop++;
82 }
83
84 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
85 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
86 if (!isAtTop(RegNo)) {
87 unsigned Slot = getSlot(RegNo);
88 unsigned STReg = getSTReg(RegNo);
89 unsigned RegOnTop = getStackEntry(0);
90
91 // Swap the slots the regs are in
92 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
93
94 // Swap stack slot contents
95 assert(RegMap[RegOnTop] < StackTop);
96 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
97
98 // Emit an fxch to update the runtime processors version of the state
99 MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
100 I = 1+MBB->insert(I, MI);
101 NumFXCH++;
102 }
103 }
104
105 void duplicateToTop(unsigned RegNo, unsigned AsReg,
106 MachineBasicBlock::iterator &I) {
107 unsigned STReg = getSTReg(RegNo);
108 pushReg(AsReg); // New register on top of stack
109
110 MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
111 I = 1+MBB->insert(I, MI);
112 }
113
114 // popStackAfter - Pop the current value off of the top of the FP stack
115 // after the specified instruction.
116 void popStackAfter(MachineBasicBlock::iterator &I);
117
118 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
119
120 void handleZeroArgFP(MachineBasicBlock::iterator &I);
121 void handleOneArgFP(MachineBasicBlock::iterator &I);
122 void handleTwoArgFP(MachineBasicBlock::iterator &I);
123 void handleSpecialFP(MachineBasicBlock::iterator &I);
124 };
125}
126
Brian Gaeke19df3872003-08-13 18:18:15 +0000127FunctionPass *createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000128
129/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
130/// register references into FP stack references.
131///
132bool FPS::runOnMachineFunction(MachineFunction &MF) {
133 LV = &getAnalysis<LiveVariables>();
134 StackTop = 0;
135
136 bool Changed = false;
137 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
138 Changed |= processBasicBlock(MF, *I);
139 return Changed;
140}
141
142/// processBasicBlock - Loop over all of the instructions in the basic block,
143/// transforming FP instructions into their stack form.
144///
145bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
146 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
147 bool Changed = false;
148 MBB = &BB;
149
150 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
151 MachineInstr *MI = *I;
152 MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
153 unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
154
155 if ((Flags & X86II::FPTypeMask) == 0) continue; // Ignore non-fp insts!
156
157 ++NumFP; // Keep track of # of pseudo instrs
158 DEBUG(std::cerr << "\nFPInst:\t";
159 MI->print(std::cerr, MF.getTarget()));
160
161 // Get dead variables list now because the MI pointer may be deleted as part
162 // of processing!
163 LiveVariables::killed_iterator IB = LV->dead_begin(MI);
164 LiveVariables::killed_iterator IE = LV->dead_end(MI);
165
166 DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
167 LiveVariables::killed_iterator I = LV->killed_begin(MI);
168 LiveVariables::killed_iterator E = LV->killed_end(MI);
169 if (I != E) {
170 std::cerr << "Killed Operands:";
171 for (; I != E; ++I)
172 std::cerr << " %" << MRI->getName(I->second);
173 std::cerr << "\n";
174 });
175
176 switch (Flags & X86II::FPTypeMask) {
177 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
178 case X86II::OneArgFP: handleOneArgFP(I); break;
179
180 case X86II::OneArgFPRW: // ST(0) = fsqrt(ST(0))
181 assert(0 && "FP instr type not handled yet!");
182
183 case X86II::TwoArgFP: handleTwoArgFP(I); break;
184 case X86II::SpecialFP: handleSpecialFP(I); break;
185 default: assert(0 && "Unknown FP Type!");
186 }
187
188 // Check to see if any of the values defined by this instruction are dead
189 // after definition. If so, pop them.
190 for (; IB != IE; ++IB) {
191 unsigned Reg = IB->second;
192 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
193 DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
194 ++I; // Insert fxch AFTER the instruction
Misha Brukman5560c9d2003-08-18 14:43:39 +0000195 moveToTop(Reg-X86::FP0, I); // Insert fxch if necessary
Chris Lattnera960d952003-01-13 01:01:59 +0000196 --I; // Move to fxch or old instruction
197 popStackAfter(I); // Pop the top of the stack, killing value
198 }
199 }
200
201 // Print out all of the instructions expanded to if -debug
202 DEBUG(if (*I == PrevMI) {
203 std::cerr<< "Just deleted pseudo instruction\n";
204 } else {
205 MachineBasicBlock::iterator Start = I;
206 // Rewind to first instruction newly inserted.
207 while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
Brian Gaeked7908f62003-06-27 00:00:48 +0000208 std::cerr << "Inserted instructions:\n\t";
209 (*Start)->print(std::cerr, MF.getTarget());
Chris Lattnera960d952003-01-13 01:01:59 +0000210 while (++Start != I+1);
211 }
212 dumpStack();
213 );
214
215 Changed = true;
216 }
217
218 assert(StackTop == 0 && "Stack not empty at end of basic block?");
219 return Changed;
220}
221
222//===----------------------------------------------------------------------===//
223// Efficient Lookup Table Support
224//===----------------------------------------------------------------------===//
225
226struct TableEntry {
227 unsigned from;
228 unsigned to;
229 bool operator<(const TableEntry &TE) const { return from < TE.from; }
230 bool operator<(unsigned V) const { return from < V; }
231};
232
233static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
234 for (unsigned i = 0; i != NumEntries-1; ++i)
235 if (!(Table[i] < Table[i+1])) return false;
236 return true;
237}
238
239static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
240 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
241 if (I != Table+N && I->from == Opcode)
242 return I->to;
243 return -1;
244}
245
246#define ARRAY_SIZE(TABLE) \
247 (sizeof(TABLE)/sizeof(TABLE[0]))
248
249#ifdef NDEBUG
250#define ASSERT_SORTED(TABLE)
251#else
252#define ASSERT_SORTED(TABLE) \
253 { static bool TABLE##Checked = false; \
254 if (!TABLE##Checked) \
255 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
256 "All lookup tables must be sorted for efficient access!"); \
257 }
258#endif
259
260
261//===----------------------------------------------------------------------===//
262// Helper Methods
263//===----------------------------------------------------------------------===//
264
265// PopTable - Sorted map of instructions to their popping version. The first
266// element is an instruction, the second is the version which pops.
267//
268static const TableEntry PopTable[] = {
Chris Lattner113455b2003-08-03 21:56:36 +0000269 { X86::FADDrST0 , X86::FADDPrST0 },
270
271 { X86::FDIVRrST0, X86::FDIVRPrST0 },
272 { X86::FDIVrST0 , X86::FDIVPrST0 },
273
Chris Lattnera960d952003-01-13 01:01:59 +0000274 { X86::FISTr16 , X86::FISTPr16 },
275 { X86::FISTr32 , X86::FISTPr32 },
276
Chris Lattnera960d952003-01-13 01:01:59 +0000277 { X86::FMULrST0 , X86::FMULPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000278
Chris Lattner113455b2003-08-03 21:56:36 +0000279 { X86::FSTr32 , X86::FSTPr32 },
280 { X86::FSTr64 , X86::FSTPr64 },
281 { X86::FSTrr , X86::FSTPrr },
282
283 { X86::FSUBRrST0, X86::FSUBRPrST0 },
284 { X86::FSUBrST0 , X86::FSUBPrST0 },
285
Chris Lattnera960d952003-01-13 01:01:59 +0000286 { X86::FUCOMPr , X86::FUCOMPPr },
Chris Lattner113455b2003-08-03 21:56:36 +0000287 { X86::FUCOMr , X86::FUCOMPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000288};
289
290/// popStackAfter - Pop the current value off of the top of the FP stack after
291/// the specified instruction. This attempts to be sneaky and combine the pop
292/// into the instruction itself if possible. The iterator is left pointing to
293/// the last instruction, be it a new pop instruction inserted, or the old
294/// instruction if it was modified in place.
295///
296void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
297 ASSERT_SORTED(PopTable);
298 assert(StackTop > 0 && "Cannot pop empty stack!");
299 RegMap[Stack[--StackTop]] = ~0; // Update state
300
301 // Check to see if there is a popping version of this instruction...
302 int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
303 if (Opcode != -1) {
304 (*I)->setOpcode(Opcode);
305 if (Opcode == X86::FUCOMPPr)
306 (*I)->RemoveOperand(0);
307
308 } else { // Insert an explicit pop
309 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
310 I = MBB->insert(I+1, MI);
311 }
312}
313
314static unsigned getFPReg(const MachineOperand &MO) {
315 assert(MO.isPhysicalRegister() && "Expected an FP register!");
316 unsigned Reg = MO.getReg();
317 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
318 return Reg - X86::FP0;
319}
320
321
322//===----------------------------------------------------------------------===//
323// Instruction transformation implementation
324//===----------------------------------------------------------------------===//
325
326/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
327//
328void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
329 MachineInstr *MI = *I;
330 unsigned DestReg = getFPReg(MI->getOperand(0));
331 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
332
333 // Result gets pushed on the stack...
334 pushReg(DestReg);
335}
336
337/// handleOneArgFP - fst ST(0), <mem>
338//
339void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
340 MachineInstr *MI = *I;
341 assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
342
343 unsigned Reg = getFPReg(MI->getOperand(4));
344 bool KillsSrc = false;
345 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
346 E = LV->killed_end(MI); KI != E; ++KI)
347 KillsSrc |= KI->second == X86::FP0+Reg;
348
349 // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
350 // If we have one _and_ we don't want to pop the operand, duplicate the value
351 // on the stack instead of moving it. This ensure that popping the value is
352 // always ok.
353 //
354 if ((MI->getOpcode() == X86::FSTPr80 ||
355 MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
356 duplicateToTop(Reg, 7 /*temp register*/, I);
357 } else {
358 moveToTop(Reg, I); // Move to the top of the stack...
359 }
360 MI->RemoveOperand(4); // Remove explicit ST(0) operand
361
362 if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
363 assert(StackTop > 0 && "Stack empty??");
364 --StackTop;
365 } else if (KillsSrc) { // Last use of operand?
366 popStackAfter(I);
367 }
368}
369
370//===----------------------------------------------------------------------===//
371// Define tables of various ways to map pseudo instructions
372//
373
374// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
375static const TableEntry ForwardST0Table[] = {
376 { X86::FpADD, X86::FADDST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000377 { X86::FpDIV, X86::FDIVST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000378 { X86::FpMUL, X86::FMULST0r },
379 { X86::FpSUB, X86::FSUBST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000380 { X86::FpUCOM, X86::FUCOMr },
381};
382
383// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
384static const TableEntry ReverseST0Table[] = {
385 { X86::FpADD, X86::FADDST0r }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000386 { X86::FpDIV, X86::FDIVRST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000387 { X86::FpMUL, X86::FMULST0r }, // commutative
388 { X86::FpSUB, X86::FSUBRST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000389 { X86::FpUCOM, ~0 },
390};
391
392// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
393static const TableEntry ForwardSTiTable[] = {
394 { X86::FpADD, X86::FADDrST0 }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000395 { X86::FpDIV, X86::FDIVRrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000396 { X86::FpMUL, X86::FMULrST0 }, // commutative
397 { X86::FpSUB, X86::FSUBRrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000398 { X86::FpUCOM, X86::FUCOMr },
399};
400
401// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
402static const TableEntry ReverseSTiTable[] = {
403 { X86::FpADD, X86::FADDrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000404 { X86::FpDIV, X86::FDIVrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000405 { X86::FpMUL, X86::FMULrST0 },
406 { X86::FpSUB, X86::FSUBrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000407 { X86::FpUCOM, ~0 },
408};
409
410
411/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
412/// instructions which need to be simplified and possibly transformed.
413///
414/// Result: ST(0) = fsub ST(0), ST(i)
415/// ST(i) = fsub ST(0), ST(i)
416/// ST(0) = fsubr ST(0), ST(i)
417/// ST(i) = fsubr ST(0), ST(i)
418///
419/// In addition to three address instructions, this also handles the FpUCOM
420/// instruction which only has two operands, but no destination. This
421/// instruction is also annoying because there is no "reverse" form of it
422/// available.
423///
424void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
425 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
426 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
427 MachineInstr *MI = *I;
428
429 unsigned NumOperands = MI->getNumOperands();
430 assert(NumOperands == 3 ||
431 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
432 "Illegal TwoArgFP instruction!");
433 unsigned Dest = getFPReg(MI->getOperand(0));
434 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
435 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
436 bool KillsOp0 = false, KillsOp1 = false;
437
438 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
439 E = LV->killed_end(MI); KI != E; ++KI) {
440 KillsOp0 |= (KI->second == X86::FP0+Op0);
441 KillsOp1 |= (KI->second == X86::FP0+Op1);
442 }
443
444 // If this is an FpUCOM instruction, we must make sure the first operand is on
445 // the top of stack, the other one can be anywhere...
446 if (MI->getOpcode() == X86::FpUCOM)
447 moveToTop(Op0, I);
448
449 unsigned TOS = getStackEntry(0);
450
451 // One of our operands must be on the top of the stack. If neither is yet, we
452 // need to move one.
453 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
454 // We can choose to move either operand to the top of the stack. If one of
455 // the operands is killed by this instruction, we want that one so that we
456 // can update right on top of the old version.
457 if (KillsOp0) {
458 moveToTop(Op0, I); // Move dead operand to TOS.
459 TOS = Op0;
460 } else if (KillsOp1) {
461 moveToTop(Op1, I);
462 TOS = Op1;
463 } else {
464 // All of the operands are live after this instruction executes, so we
465 // cannot update on top of any operand. Because of this, we must
466 // duplicate one of the stack elements to the top. It doesn't matter
467 // which one we pick.
468 //
469 duplicateToTop(Op0, Dest, I);
470 Op0 = TOS = Dest;
471 KillsOp0 = true;
472 }
473 } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
474 // If we DO have one of our operands at the top of the stack, but we don't
475 // have a dead operand, we must duplicate one of the operands to a new slot
476 // on the stack.
477 duplicateToTop(Op0, Dest, I);
478 Op0 = TOS = Dest;
479 KillsOp0 = true;
480 }
481
482 // Now we know that one of our operands is on the top of the stack, and at
483 // least one of our operands is killed by this instruction.
484 assert((TOS == Op0 || TOS == Op1) &&
485 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
486 "Stack conditions not set up right!");
487
488 // We decide which form to use based on what is on the top of the stack, and
489 // which operand is killed by this instruction.
490 const TableEntry *InstTable;
491 bool isForward = TOS == Op0;
492 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
493 if (updateST0) {
494 if (isForward)
495 InstTable = ForwardST0Table;
496 else
497 InstTable = ReverseST0Table;
498 } else {
499 if (isForward)
500 InstTable = ForwardSTiTable;
501 else
502 InstTable = ReverseSTiTable;
503 }
504
505 int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
506 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
507
508 // NotTOS - The register which is not on the top of stack...
509 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
510
511 // Replace the old instruction with a new instruction
512 *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
513
514 // If both operands are killed, pop one off of the stack in addition to
515 // overwriting the other one.
516 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
517 assert(!updateST0 && "Should have updated other operand!");
518 popStackAfter(I); // Pop the top of stack
519 }
520
521 // Insert an explicit pop of the "updated" operand for FUCOM
522 if (MI->getOpcode() == X86::FpUCOM) {
523 if (KillsOp0 && !KillsOp1)
524 popStackAfter(I); // If we kill the first operand, pop it!
525 else if (KillsOp1 && Op0 != Op1) {
526 if (getStackEntry(0) == Op1) {
527 popStackAfter(I); // If it's right at the top of stack, just pop it
528 } else {
529 // Otherwise, move the top of stack into the dead slot, killing the
530 // operand without having to add in an explicit xchg then pop.
531 //
532 unsigned STReg = getSTReg(Op1);
533 unsigned OldSlot = getSlot(Op1);
534 unsigned TopReg = Stack[StackTop-1];
535 Stack[OldSlot] = TopReg;
536 RegMap[TopReg] = OldSlot;
537 RegMap[Op1] = ~0;
538 Stack[--StackTop] = ~0;
539
540 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
541 I = MBB->insert(I+1, MI);
542 }
543 }
544 }
545
546 // Update stack information so that we know the destination register is now on
547 // the stack.
548 if (MI->getOpcode() != X86::FpUCOM) {
549 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
550 assert(UpdatedSlot < StackTop && Dest < 7);
551 Stack[UpdatedSlot] = Dest;
552 RegMap[Dest] = UpdatedSlot;
553 }
554 delete MI; // Remove the old instruction
555}
556
557
558/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000559/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000560/// instructions.
561///
562void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
563 MachineInstr *MI = *I;
564 switch (MI->getOpcode()) {
565 default: assert(0 && "Unknown SpecialFP instruction!");
566 case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
567 assert(StackTop == 0 && "Stack should be empty after a call!");
568 pushReg(getFPReg(MI->getOperand(0)));
569 break;
570 case X86::FpSETRESULT:
571 assert(StackTop == 1 && "Stack should have one element on it to return!");
572 --StackTop; // "Forget" we have something on the top of stack!
573 break;
574 case X86::FpMOV: {
575 unsigned SrcReg = getFPReg(MI->getOperand(1));
576 unsigned DestReg = getFPReg(MI->getOperand(0));
577 bool KillsSrc = false;
578 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
579 E = LV->killed_end(MI); KI != E; ++KI)
580 KillsSrc |= KI->second == X86::FP0+SrcReg;
581
582 if (KillsSrc) {
583 // If the input operand is killed, we can just change the owner of the
584 // incoming stack slot into the result.
585 unsigned Slot = getSlot(SrcReg);
586 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
587 Stack[Slot] = DestReg;
588 RegMap[DestReg] = Slot;
589
590 } else {
591 // For FMOV we just duplicate the specified value to a new stack slot.
592 // This could be made better, but would require substantial changes.
593 duplicateToTop(SrcReg, DestReg, I);
594 }
595 break;
596 }
597 }
598
599 I = MBB->erase(I)-1; // Remove the pseudo instruction
600}