blob: e18beb5018ad4e5c3420afdad7bc5faf1e5187b1 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53 cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56 cl::desc("Pop up a window to show sched dags as they are processed"));
Dan Gohman134c5b62007-08-28 20:32:58 +000057static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59 cl::desc("Pop up a window to show SUnit dags after they are processed"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060#else
Dan Gohman134c5b62007-08-28 20:32:58 +000061static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77 cl::opt<RegisterScheduler::FunctionPassCtor, false,
78 RegisterPassParser<RegisterScheduler> >
79 ISHeuristic("pre-RA-sched",
80 cl::init(&createDefaultScheduler),
81 cl::desc("Instruction schedulers available (before register allocation):"));
82
83 static RegisterScheduler
84 defaultListDAGScheduler("default", " Best scheduler for the target",
85 createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91 /// RegsForValue - This struct represents the physical registers that a
92 /// particular value is assigned and the type information about the value.
93 /// This is needed because values can be promoted into larger registers and
94 /// expanded into multiple smaller registers than the value.
95 struct VISIBILITY_HIDDEN RegsForValue {
96 /// Regs - This list holds the register (for legal and promoted values)
97 /// or register set (for expanded values) that the value should be assigned
98 /// to.
99 std::vector<unsigned> Regs;
100
101 /// RegVT - The value type of each register.
102 ///
103 MVT::ValueType RegVT;
104
105 /// ValueVT - The value type of the LLVM value, which may be promoted from
106 /// RegVT or made from merging the two expanded parts.
107 MVT::ValueType ValueVT;
108
109 RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111 RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112 : RegVT(regvt), ValueVT(valuevt) {
113 Regs.push_back(Reg);
114 }
115 RegsForValue(const std::vector<unsigned> &regs,
116 MVT::ValueType regvt, MVT::ValueType valuevt)
117 : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118 }
119
120 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121 /// this value and returns the result as a ValueVT value. This uses
122 /// Chain/Flag as the input and updates them for the output Chain/Flag.
123 /// If the Flag pointer is NULL, no flag is used.
124 SDOperand getCopyFromRegs(SelectionDAG &DAG,
125 SDOperand &Chain, SDOperand *Flag) const;
126
127 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128 /// specified value into the registers specified by this object. This uses
129 /// Chain/Flag as the input and updates them for the output Chain/Flag.
130 /// If the Flag pointer is NULL, no flag is used.
131 void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132 SDOperand &Chain, SDOperand *Flag) const;
133
134 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135 /// operand list. This adds the code marker and includes the number of
136 /// values added into it.
137 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138 std::vector<SDOperand> &Ops) const;
139 };
140}
141
142namespace llvm {
143 //===--------------------------------------------------------------------===//
144 /// createDefaultScheduler - This creates an instruction scheduler appropriate
145 /// for the target.
146 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147 SelectionDAG *DAG,
148 MachineBasicBlock *BB) {
149 TargetLowering &TLI = IS->getTargetLowering();
150
151 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152 return createTDListDAGScheduler(IS, DAG, BB);
153 } else {
154 assert(TLI.getSchedulingPreference() ==
155 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156 return createBURRListDAGScheduler(IS, DAG, BB);
157 }
158 }
159
160
161 //===--------------------------------------------------------------------===//
162 /// FunctionLoweringInfo - This contains information that is global to a
163 /// function that is used when lowering a region of the function.
164 class FunctionLoweringInfo {
165 public:
166 TargetLowering &TLI;
167 Function &Fn;
168 MachineFunction &MF;
169 SSARegMap *RegMap;
170
171 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176 /// ValueMap - Since we emit code for the function a basic block at a time,
177 /// we must remember which virtual registers hold the values for
178 /// cross-basic-block values.
179 DenseMap<const Value*, unsigned> ValueMap;
180
181 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182 /// the entry block. This allows the allocas to be efficiently referenced
183 /// anywhere in the function.
184 std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187 SmallSet<Instruction*, 8> CatchInfoLost;
188 SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191 unsigned MakeReg(MVT::ValueType VT) {
192 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193 }
194
195 /// isExportedInst - Return true if the specified value is an instruction
196 /// exported from its block.
197 bool isExportedInst(const Value *V) {
198 return ValueMap.count(V);
199 }
200
201 unsigned CreateRegForValue(const Value *V);
202
203 unsigned InitializeRegForValue(const Value *V) {
204 unsigned &R = ValueMap[V];
205 assert(R == 0 && "Already initialized this value register!");
206 return R = CreateRegForValue(V);
207 }
208 };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Anton Korobeynikov94c46a02007-09-07 11:39:35 +0000215 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216 II->getIntrinsicID() == Intrinsic::eh_selector_i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224 if (isa<PHINode>(I)) return true;
225 BasicBlock *BB = I->getParent();
226 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228 // FIXME: Remove switchinst special case.
229 isa<SwitchInst>(*UI))
230 return true;
231 return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true. This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238 BasicBlock *Entry = A->getParent()->begin();
239 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241 return false; // Use not in entry block.
242 return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246 Function &fn, MachineFunction &mf)
247 : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249 // Create a vreg for each argument register that is not dead and is used
250 // outside of the entry block for the function.
251 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252 AI != E; ++AI)
253 if (!isOnlyUsedInEntryBlock(AI))
254 InitializeRegForValue(AI);
255
256 // Initialize the mapping of values to registers. This is only set up for
257 // instruction values that are used outside of the block that defines
258 // them.
259 Function::iterator BB = Fn.begin(), EB = Fn.end();
260 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263 const Type *Ty = AI->getAllocatedType();
264 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
265 unsigned Align =
266 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267 AI->getAlignment());
268
269 TySize *= CUI->getZExtValue(); // Get total allocated size.
270 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271 StaticAllocaMap[AI] =
272 MF.getFrameInfo()->CreateStackObject(TySize, Align);
273 }
274
275 for (; BB != EB; ++BB)
276 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278 if (!isa<AllocaInst>(I) ||
279 !StaticAllocaMap.count(cast<AllocaInst>(I)))
280 InitializeRegForValue(I);
281
282 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
283 // also creates the initial PHI MachineInstrs, though none of the input
284 // operands are populated.
285 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286 MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287 MBBMap[BB] = MBB;
288 MF.getBasicBlockList().push_back(MBB);
289
290 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291 // appropriate.
292 PHINode *PN;
293 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294 if (PN->use_empty()) continue;
295
296 MVT::ValueType VT = TLI.getValueType(PN->getType());
297 unsigned NumRegisters = TLI.getNumRegisters(VT);
298 unsigned PHIReg = ValueMap[PN];
299 assert(PHIReg && "PHI node does not have an assigned virtual register!");
300 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301 for (unsigned i = 0; i != NumRegisters; ++i)
302 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303 }
304 }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types. Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311 MVT::ValueType VT = TLI.getValueType(V->getType());
312
313 unsigned NumRegisters = TLI.getNumRegisters(VT);
314 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316 unsigned R = MakeReg(RegisterVT);
317 for (unsigned i = 1; i != NumRegisters; ++i)
318 MakeReg(RegisterVT);
319
320 return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330 MachineBasicBlock *CurMBB;
331
332 DenseMap<const Value*, SDOperand> NodeMap;
333
334 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
335 /// them up and then emit token factor nodes when possible. This allows us to
336 /// get simple disambiguation between loads without worrying about alias
337 /// analysis.
338 std::vector<SDOperand> PendingLoads;
339
340 /// Case - A struct to record the Value for a switch case, and the
341 /// case's target basic block.
342 struct Case {
343 Constant* Low;
344 Constant* High;
345 MachineBasicBlock* BB;
346
347 Case() : Low(0), High(0), BB(0) { }
348 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349 Low(low), High(high), BB(bb) { }
350 uint64_t size() const {
351 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
353 return (rHigh - rLow + 1ULL);
354 }
355 };
356
357 struct CaseBits {
358 uint64_t Mask;
359 MachineBasicBlock* BB;
360 unsigned Bits;
361
362 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363 Mask(mask), BB(bb), Bits(bits) { }
364 };
365
366 typedef std::vector<Case> CaseVector;
367 typedef std::vector<CaseBits> CaseBitsVector;
368 typedef CaseVector::iterator CaseItr;
369 typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372 /// of conditional branches.
373 struct CaseRec {
374 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377 /// CaseBB - The MBB in which to emit the compare and branch
378 MachineBasicBlock *CaseBB;
379 /// LT, GE - If nonzero, we know the current case value must be less-than or
380 /// greater-than-or-equal-to these Constants.
381 Constant *LT;
382 Constant *GE;
383 /// Range - A pair of iterators representing the range of case values to be
384 /// processed at this point in the binary search tree.
385 CaseRange Range;
386 };
387
388 typedef std::vector<CaseRec> CaseRecVector;
389
390 /// The comparison function for sorting the switch case values in the vector.
391 /// WARNING: Case ranges should be disjoint!
392 struct CaseCmp {
393 bool operator () (const Case& C1, const Case& C2) {
394 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397 return CI1->getValue().slt(CI2->getValue());
398 }
399 };
400
401 struct CaseBitsCmp {
402 bool operator () (const CaseBits& C1, const CaseBits& C2) {
403 return C1.Bits > C2.Bits;
404 }
405 };
406
407 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410 // TLI - This is information that describes the available target features we
411 // need for lowering. This indicates when operations are unavailable,
412 // implemented with a libcall, etc.
413 TargetLowering &TLI;
414 SelectionDAG &DAG;
415 const TargetData *TD;
Dan Gohmancc863aa2007-08-27 16:26:13 +0000416 AliasAnalysis &AA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417
418 /// SwitchCases - Vector of CaseBlock structures used to communicate
419 /// SwitchInst code generation information.
420 std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421 /// JTCases - Vector of JumpTable structures used to communicate
422 /// SwitchInst code generation information.
423 std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426 /// FuncInfo - Information about the function as a whole.
427 ///
428 FunctionLoweringInfo &FuncInfo;
429
430 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
Dan Gohmancc863aa2007-08-27 16:26:13 +0000431 AliasAnalysis &aa,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 FunctionLoweringInfo &funcinfo)
Dan Gohmancc863aa2007-08-27 16:26:13 +0000433 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 FuncInfo(funcinfo) {
435 }
436
437 /// getRoot - Return the current virtual root of the Selection DAG.
438 ///
439 SDOperand getRoot() {
440 if (PendingLoads.empty())
441 return DAG.getRoot();
442
443 if (PendingLoads.size() == 1) {
444 SDOperand Root = PendingLoads[0];
445 DAG.setRoot(Root);
446 PendingLoads.clear();
447 return Root;
448 }
449
450 // Otherwise, we have to make a token factor node.
451 SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452 &PendingLoads[0], PendingLoads.size());
453 PendingLoads.clear();
454 DAG.setRoot(Root);
455 return Root;
456 }
457
458 SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460 void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462 void visit(unsigned Opcode, User &I) {
463 // Note: this doesn't use InstVisitor, because it has to work with
464 // ConstantExpr's in addition to instructions.
465 switch (Opcode) {
466 default: assert(0 && "Unknown instruction type encountered!");
467 abort();
468 // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472 }
473 }
474
475 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477 SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478 const Value *SV, SDOperand Root,
479 bool isVolatile, unsigned Alignment);
480
481 SDOperand getIntPtrConstant(uint64_t Val) {
482 return DAG.getConstant(Val, TLI.getPointerTy());
483 }
484
485 SDOperand getValue(const Value *V);
486
487 void setValue(const Value *V, SDOperand NewN) {
488 SDOperand &N = NodeMap[V];
489 assert(N.Val == 0 && "Already set a value for this node!");
490 N = NewN;
491 }
492
493 void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494 std::set<unsigned> &OutputRegs,
495 std::set<unsigned> &InputRegs);
496
497 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499 unsigned Opc);
500 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501 void ExportFromCurrentBlock(Value *V);
502 void LowerCallTo(Instruction &I,
503 const Type *CalledValueTy, unsigned CallingConv,
504 bool IsTailCall, SDOperand Callee, unsigned OpIdx,
505 MachineBasicBlock *LandingPad = NULL);
506
507 // Terminator instructions.
508 void visitRet(ReturnInst &I);
509 void visitBr(BranchInst &I);
510 void visitSwitch(SwitchInst &I);
511 void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513 // Helpers for visitSwitch
514 bool handleSmallSwitchRange(CaseRec& CR,
515 CaseRecVector& WorkList,
516 Value* SV,
517 MachineBasicBlock* Default);
518 bool handleJTSwitchCase(CaseRec& CR,
519 CaseRecVector& WorkList,
520 Value* SV,
521 MachineBasicBlock* Default);
522 bool handleBTSplitSwitchCase(CaseRec& CR,
523 CaseRecVector& WorkList,
524 Value* SV,
525 MachineBasicBlock* Default);
526 bool handleBitTestsSwitchCase(CaseRec& CR,
527 CaseRecVector& WorkList,
528 Value* SV,
529 MachineBasicBlock* Default);
530 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532 void visitBitTestCase(MachineBasicBlock* NextMBB,
533 unsigned Reg,
534 SelectionDAGISel::BitTestCase &B);
535 void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537 SelectionDAGISel::JumpTableHeader &JTH);
538
539 // These all get lowered before this pass.
540 void visitInvoke(InvokeInst &I);
541 void visitUnwind(UnwindInst &I);
542
543 void visitBinary(User &I, unsigned OpCode);
544 void visitShift(User &I, unsigned Opcode);
545 void visitAdd(User &I) {
546 if (I.getType()->isFPOrFPVector())
547 visitBinary(I, ISD::FADD);
548 else
549 visitBinary(I, ISD::ADD);
550 }
551 void visitSub(User &I);
552 void visitMul(User &I) {
553 if (I.getType()->isFPOrFPVector())
554 visitBinary(I, ISD::FMUL);
555 else
556 visitBinary(I, ISD::MUL);
557 }
558 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565 void visitOr (User &I) { visitBinary(I, ISD::OR); }
566 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567 void visitShl (User &I) { visitShift(I, ISD::SHL); }
568 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570 void visitICmp(User &I);
571 void visitFCmp(User &I);
572 // Visit the conversion instructions
573 void visitTrunc(User &I);
574 void visitZExt(User &I);
575 void visitSExt(User &I);
576 void visitFPTrunc(User &I);
577 void visitFPExt(User &I);
578 void visitFPToUI(User &I);
579 void visitFPToSI(User &I);
580 void visitUIToFP(User &I);
581 void visitSIToFP(User &I);
582 void visitPtrToInt(User &I);
583 void visitIntToPtr(User &I);
584 void visitBitCast(User &I);
585
586 void visitExtractElement(User &I);
587 void visitInsertElement(User &I);
588 void visitShuffleVector(User &I);
589
590 void visitGetElementPtr(User &I);
591 void visitSelect(User &I);
592
593 void visitMalloc(MallocInst &I);
594 void visitFree(FreeInst &I);
595 void visitAlloca(AllocaInst &I);
596 void visitLoad(LoadInst &I);
597 void visitStore(StoreInst &I);
598 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599 void visitCall(CallInst &I);
600 void visitInlineAsm(CallInst &I);
601 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604 void visitVAStart(CallInst &I);
605 void visitVAArg(VAArgInst &I);
606 void visitVAEnd(CallInst &I);
607 void visitVACopy(CallInst &I);
608
609 void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611 void visitUserOp1(Instruction &I) {
612 assert(0 && "UserOp1 should not exist at instruction selection time!");
613 abort();
614 }
615 void visitUserOp2(Instruction &I) {
616 assert(0 && "UserOp2 should not exist at instruction selection time!");
617 abort();
618 }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626 const SDOperand *Parts,
627 unsigned NumParts,
628 MVT::ValueType PartVT,
629 MVT::ValueType ValueVT,
630 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631 if (!MVT::isVector(ValueVT) || NumParts == 1) {
632 SDOperand Val = Parts[0];
633
634 // If the value was expanded, copy from the top part.
635 if (NumParts > 1) {
636 assert(NumParts == 2 &&
637 "Cannot expand to more than 2 elts yet!");
638 SDOperand Hi = Parts[1];
639 if (!DAG.getTargetLoweringInfo().isLittleEndian())
640 std::swap(Val, Hi);
641 return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642 }
643
644 // Otherwise, if the value was promoted or extended, truncate it to the
645 // appropriate type.
646 if (PartVT == ValueVT)
647 return Val;
648
649 if (MVT::isVector(PartVT)) {
650 assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
651 return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
652 }
653
654 if (MVT::isInteger(PartVT) &&
655 MVT::isInteger(ValueVT)) {
656 if (ValueVT < PartVT) {
657 // For a truncate, see if we have any information to
658 // indicate whether the truncated bits will always be
659 // zero or sign-extension.
660 if (AssertOp != ISD::DELETED_NODE)
661 Val = DAG.getNode(AssertOp, PartVT, Val,
662 DAG.getValueType(ValueVT));
663 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
664 } else {
665 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
666 }
667 }
668
669 if (MVT::isFloatingPoint(PartVT) &&
670 MVT::isFloatingPoint(ValueVT))
671 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
672
673 if (MVT::getSizeInBits(PartVT) ==
674 MVT::getSizeInBits(ValueVT))
675 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
676
677 assert(0 && "Unknown mismatch!");
678 }
679
680 // Handle a multi-element vector.
681 MVT::ValueType IntermediateVT, RegisterVT;
682 unsigned NumIntermediates;
683 unsigned NumRegs =
684 DAG.getTargetLoweringInfo()
685 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
686 RegisterVT);
687
688 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
689 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
690 assert(RegisterVT == Parts[0].getValueType() &&
691 "Part type doesn't match part!");
692
693 // Assemble the parts into intermediate operands.
694 SmallVector<SDOperand, 8> Ops(NumIntermediates);
695 if (NumIntermediates == NumParts) {
696 // If the register was not expanded, truncate or copy the value,
697 // as appropriate.
698 for (unsigned i = 0; i != NumParts; ++i)
699 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
700 PartVT, IntermediateVT);
701 } else if (NumParts > 0) {
702 // If the intermediate type was expanded, build the intermediate operands
703 // from the parts.
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000704 assert(NumParts % NumIntermediates == 0 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 "Must expand into a divisible number of parts!");
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000706 unsigned Factor = NumParts / NumIntermediates;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 for (unsigned i = 0; i != NumIntermediates; ++i)
708 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
709 PartVT, IntermediateVT);
710 }
711
712 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
713 // operands.
714 return DAG.getNode(MVT::isVector(IntermediateVT) ?
715 ISD::CONCAT_VECTORS :
716 ISD::BUILD_VECTOR,
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000717 ValueVT, &Ops[0], NumIntermediates);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000718}
719
720/// getCopyToParts - Create a series of nodes that contain the
721/// specified value split into legal parts.
722static void getCopyToParts(SelectionDAG &DAG,
723 SDOperand Val,
724 SDOperand *Parts,
725 unsigned NumParts,
726 MVT::ValueType PartVT) {
Dan Gohmanf7b05132007-08-10 14:59:38 +0000727 TargetLowering &TLI = DAG.getTargetLoweringInfo();
728 MVT::ValueType PtrVT = TLI.getPointerTy();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729 MVT::ValueType ValueVT = Val.getValueType();
730
731 if (!MVT::isVector(ValueVT) || NumParts == 1) {
732 // If the value was expanded, copy from the parts.
733 if (NumParts > 1) {
734 for (unsigned i = 0; i != NumParts; ++i)
735 Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000736 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 if (!DAG.getTargetLoweringInfo().isLittleEndian())
738 std::reverse(Parts, Parts + NumParts);
739 return;
740 }
741
742 // If there is a single part and the types differ, this must be
743 // a promotion.
744 if (PartVT != ValueVT) {
745 if (MVT::isVector(PartVT)) {
746 assert(MVT::isVector(ValueVT) &&
747 "Not a vector-vector cast?");
748 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
749 } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
750 if (PartVT < ValueVT)
751 Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
752 else
753 Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
754 } else if (MVT::isFloatingPoint(PartVT) &&
755 MVT::isFloatingPoint(ValueVT)) {
756 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
757 } else if (MVT::getSizeInBits(PartVT) ==
758 MVT::getSizeInBits(ValueVT)) {
759 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
760 } else {
761 assert(0 && "Unknown mismatch!");
762 }
763 }
764 Parts[0] = Val;
765 return;
766 }
767
768 // Handle a multi-element vector.
769 MVT::ValueType IntermediateVT, RegisterVT;
770 unsigned NumIntermediates;
771 unsigned NumRegs =
772 DAG.getTargetLoweringInfo()
773 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
774 RegisterVT);
775 unsigned NumElements = MVT::getVectorNumElements(ValueVT);
776
777 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
778 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
779
780 // Split the vector into intermediate operands.
781 SmallVector<SDOperand, 8> Ops(NumIntermediates);
782 for (unsigned i = 0; i != NumIntermediates; ++i)
783 if (MVT::isVector(IntermediateVT))
784 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
785 IntermediateVT, Val,
786 DAG.getConstant(i * (NumElements / NumIntermediates),
Dan Gohmanf7b05132007-08-10 14:59:38 +0000787 PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 else
789 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
790 IntermediateVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000791 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792
793 // Split the intermediate operands into legal parts.
794 if (NumParts == NumIntermediates) {
795 // If the register was not expanded, promote or copy the value,
796 // as appropriate.
797 for (unsigned i = 0; i != NumParts; ++i)
798 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
799 } else if (NumParts > 0) {
800 // If the intermediate type was expanded, split each the value into
801 // legal parts.
802 assert(NumParts % NumIntermediates == 0 &&
803 "Must expand into a divisible number of parts!");
804 unsigned Factor = NumParts / NumIntermediates;
805 for (unsigned i = 0; i != NumIntermediates; ++i)
806 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
807 }
808}
809
810
811SDOperand SelectionDAGLowering::getValue(const Value *V) {
812 SDOperand &N = NodeMap[V];
813 if (N.Val) return N;
814
815 const Type *VTy = V->getType();
816 MVT::ValueType VT = TLI.getValueType(VTy);
817 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
818 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
819 visit(CE->getOpcode(), *CE);
820 SDOperand N1 = NodeMap[V];
821 assert(N1.Val && "visit didn't populate the ValueMap!");
822 return N1;
823 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
824 return N = DAG.getGlobalAddress(GV, VT);
825 } else if (isa<ConstantPointerNull>(C)) {
826 return N = DAG.getConstant(0, TLI.getPointerTy());
827 } else if (isa<UndefValue>(C)) {
828 if (!isa<VectorType>(VTy))
829 return N = DAG.getNode(ISD::UNDEF, VT);
830
831 // Create a BUILD_VECTOR of undef nodes.
832 const VectorType *PTy = cast<VectorType>(VTy);
833 unsigned NumElements = PTy->getNumElements();
834 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
835
836 SmallVector<SDOperand, 8> Ops;
837 Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
838
839 // Create a VConstant node with generic Vector type.
840 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
841 return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
842 &Ops[0], Ops.size());
843 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000844 return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000845 } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
846 unsigned NumElements = PTy->getNumElements();
847 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
848
849 // Now that we know the number and type of the elements, push a
850 // Constant or ConstantFP node onto the ops list for each element of
851 // the vector constant.
852 SmallVector<SDOperand, 8> Ops;
853 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
854 for (unsigned i = 0; i != NumElements; ++i)
855 Ops.push_back(getValue(CP->getOperand(i)));
856 } else {
857 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
858 SDOperand Op;
859 if (MVT::isFloatingPoint(PVT))
860 Op = DAG.getConstantFP(0, PVT);
861 else
862 Op = DAG.getConstant(0, PVT);
863 Ops.assign(NumElements, Op);
864 }
865
866 // Create a BUILD_VECTOR node.
867 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
868 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
869 Ops.size());
870 } else {
871 // Canonicalize all constant ints to be unsigned.
872 return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
873 }
874 }
875
876 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
877 std::map<const AllocaInst*, int>::iterator SI =
878 FuncInfo.StaticAllocaMap.find(AI);
879 if (SI != FuncInfo.StaticAllocaMap.end())
880 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
881 }
882
883 unsigned InReg = FuncInfo.ValueMap[V];
884 assert(InReg && "Value not in map!");
885
886 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
887 unsigned NumRegs = TLI.getNumRegisters(VT);
888
889 std::vector<unsigned> Regs(NumRegs);
890 for (unsigned i = 0; i != NumRegs; ++i)
891 Regs[i] = InReg + i;
892
893 RegsForValue RFV(Regs, RegisterVT, VT);
894 SDOperand Chain = DAG.getEntryNode();
895
896 return RFV.getCopyFromRegs(DAG, Chain, NULL);
897}
898
899
900void SelectionDAGLowering::visitRet(ReturnInst &I) {
901 if (I.getNumOperands() == 0) {
902 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
903 return;
904 }
905 SmallVector<SDOperand, 8> NewValues;
906 NewValues.push_back(getRoot());
907 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
908 SDOperand RetOp = getValue(I.getOperand(i));
909
910 // If this is an integer return value, we need to promote it ourselves to
911 // the full width of a register, since getCopyToParts and Legalize will use
912 // ANY_EXTEND rather than sign/zero.
913 // FIXME: C calling convention requires the return type to be promoted to
914 // at least 32-bit. But this is not necessary for non-C calling conventions.
915 if (MVT::isInteger(RetOp.getValueType()) &&
916 RetOp.getValueType() < MVT::i64) {
917 MVT::ValueType TmpVT;
918 if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
919 TmpVT = TLI.getTypeToTransformTo(MVT::i32);
920 else
921 TmpVT = MVT::i32;
922 const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
923 const ParamAttrsList *Attrs = FTy->getParamAttrs();
924 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
925 if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
926 ExtendKind = ISD::SIGN_EXTEND;
927 if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
928 ExtendKind = ISD::ZERO_EXTEND;
929 RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
930 NewValues.push_back(RetOp);
931 NewValues.push_back(DAG.getConstant(false, MVT::i32));
932 } else {
933 MVT::ValueType VT = RetOp.getValueType();
934 unsigned NumParts = TLI.getNumRegisters(VT);
935 MVT::ValueType PartVT = TLI.getRegisterType(VT);
936 SmallVector<SDOperand, 4> Parts(NumParts);
937 getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
938 for (unsigned i = 0; i < NumParts; ++i) {
939 NewValues.push_back(Parts[i]);
940 NewValues.push_back(DAG.getConstant(false, MVT::i32));
941 }
942 }
943 }
944 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
945 &NewValues[0], NewValues.size()));
946}
947
948/// ExportFromCurrentBlock - If this condition isn't known to be exported from
949/// the current basic block, add it to ValueMap now so that we'll get a
950/// CopyTo/FromReg.
951void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
952 // No need to export constants.
953 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
954
955 // Already exported?
956 if (FuncInfo.isExportedInst(V)) return;
957
958 unsigned Reg = FuncInfo.InitializeRegForValue(V);
959 PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
960}
961
962bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
963 const BasicBlock *FromBB) {
964 // The operands of the setcc have to be in this block. We don't know
965 // how to export them from some other block.
966 if (Instruction *VI = dyn_cast<Instruction>(V)) {
967 // Can export from current BB.
968 if (VI->getParent() == FromBB)
969 return true;
970
971 // Is already exported, noop.
972 return FuncInfo.isExportedInst(V);
973 }
974
975 // If this is an argument, we can export it if the BB is the entry block or
976 // if it is already exported.
977 if (isa<Argument>(V)) {
978 if (FromBB == &FromBB->getParent()->getEntryBlock())
979 return true;
980
981 // Otherwise, can only export this if it is already exported.
982 return FuncInfo.isExportedInst(V);
983 }
984
985 // Otherwise, constants can always be exported.
986 return true;
987}
988
989static bool InBlock(const Value *V, const BasicBlock *BB) {
990 if (const Instruction *I = dyn_cast<Instruction>(V))
991 return I->getParent() == BB;
992 return true;
993}
994
995/// FindMergedConditions - If Cond is an expression like
996void SelectionDAGLowering::FindMergedConditions(Value *Cond,
997 MachineBasicBlock *TBB,
998 MachineBasicBlock *FBB,
999 MachineBasicBlock *CurBB,
1000 unsigned Opc) {
1001 // If this node is not part of the or/and tree, emit it as a branch.
1002 Instruction *BOp = dyn_cast<Instruction>(Cond);
1003
1004 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1005 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1006 BOp->getParent() != CurBB->getBasicBlock() ||
1007 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1008 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1009 const BasicBlock *BB = CurBB->getBasicBlock();
1010
1011 // If the leaf of the tree is a comparison, merge the condition into
1012 // the caseblock.
1013 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1014 // The operands of the cmp have to be in this block. We don't know
1015 // how to export them from some other block. If this is the first block
1016 // of the sequence, no exporting is needed.
1017 (CurBB == CurMBB ||
1018 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1019 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1020 BOp = cast<Instruction>(Cond);
1021 ISD::CondCode Condition;
1022 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1023 switch (IC->getPredicate()) {
1024 default: assert(0 && "Unknown icmp predicate opcode!");
1025 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1026 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1027 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1028 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1029 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1030 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1031 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1032 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1033 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1034 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1035 }
1036 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1037 ISD::CondCode FPC, FOC;
1038 switch (FC->getPredicate()) {
1039 default: assert(0 && "Unknown fcmp predicate opcode!");
1040 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1041 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1042 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1043 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1044 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1045 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1046 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1047 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
1048 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
1049 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1050 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1051 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1052 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1053 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1054 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1055 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1056 }
1057 if (FiniteOnlyFPMath())
1058 Condition = FOC;
1059 else
1060 Condition = FPC;
1061 } else {
1062 Condition = ISD::SETEQ; // silence warning.
1063 assert(0 && "Unknown compare instruction");
1064 }
1065
1066 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1067 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1068 SwitchCases.push_back(CB);
1069 return;
1070 }
1071
1072 // Create a CaseBlock record representing this branch.
1073 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1074 NULL, TBB, FBB, CurBB);
1075 SwitchCases.push_back(CB);
1076 return;
1077 }
1078
1079
1080 // Create TmpBB after CurBB.
1081 MachineFunction::iterator BBI = CurBB;
1082 MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1083 CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1084
1085 if (Opc == Instruction::Or) {
1086 // Codegen X | Y as:
1087 // jmp_if_X TBB
1088 // jmp TmpBB
1089 // TmpBB:
1090 // jmp_if_Y TBB
1091 // jmp FBB
1092 //
1093
1094 // Emit the LHS condition.
1095 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1096
1097 // Emit the RHS condition into TmpBB.
1098 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1099 } else {
1100 assert(Opc == Instruction::And && "Unknown merge op!");
1101 // Codegen X & Y as:
1102 // jmp_if_X TmpBB
1103 // jmp FBB
1104 // TmpBB:
1105 // jmp_if_Y TBB
1106 // jmp FBB
1107 //
1108 // This requires creation of TmpBB after CurBB.
1109
1110 // Emit the LHS condition.
1111 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1112
1113 // Emit the RHS condition into TmpBB.
1114 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1115 }
1116}
1117
1118/// If the set of cases should be emitted as a series of branches, return true.
1119/// If we should emit this as a bunch of and/or'd together conditions, return
1120/// false.
1121static bool
1122ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1123 if (Cases.size() != 2) return true;
1124
1125 // If this is two comparisons of the same values or'd or and'd together, they
1126 // will get folded into a single comparison, so don't emit two blocks.
1127 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1128 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1129 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1130 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1131 return false;
1132 }
1133
1134 return true;
1135}
1136
1137void SelectionDAGLowering::visitBr(BranchInst &I) {
1138 // Update machine-CFG edges.
1139 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1140
1141 // Figure out which block is immediately after the current one.
1142 MachineBasicBlock *NextBlock = 0;
1143 MachineFunction::iterator BBI = CurMBB;
1144 if (++BBI != CurMBB->getParent()->end())
1145 NextBlock = BBI;
1146
1147 if (I.isUnconditional()) {
1148 // If this is not a fall-through branch, emit the branch.
1149 if (Succ0MBB != NextBlock)
1150 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1151 DAG.getBasicBlock(Succ0MBB)));
1152
1153 // Update machine-CFG edges.
1154 CurMBB->addSuccessor(Succ0MBB);
1155
1156 return;
1157 }
1158
1159 // If this condition is one of the special cases we handle, do special stuff
1160 // now.
1161 Value *CondVal = I.getCondition();
1162 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1163
1164 // If this is a series of conditions that are or'd or and'd together, emit
1165 // this as a sequence of branches instead of setcc's with and/or operations.
1166 // For example, instead of something like:
1167 // cmp A, B
1168 // C = seteq
1169 // cmp D, E
1170 // F = setle
1171 // or C, F
1172 // jnz foo
1173 // Emit:
1174 // cmp A, B
1175 // je foo
1176 // cmp D, E
1177 // jle foo
1178 //
1179 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1180 if (BOp->hasOneUse() &&
1181 (BOp->getOpcode() == Instruction::And ||
1182 BOp->getOpcode() == Instruction::Or)) {
1183 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1184 // If the compares in later blocks need to use values not currently
1185 // exported from this block, export them now. This block should always
1186 // be the first entry.
1187 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1188
1189 // Allow some cases to be rejected.
1190 if (ShouldEmitAsBranches(SwitchCases)) {
1191 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1192 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1193 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1194 }
1195
1196 // Emit the branch for this block.
1197 visitSwitchCase(SwitchCases[0]);
1198 SwitchCases.erase(SwitchCases.begin());
1199 return;
1200 }
1201
1202 // Okay, we decided not to do this, remove any inserted MBB's and clear
1203 // SwitchCases.
1204 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1205 CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1206
1207 SwitchCases.clear();
1208 }
1209 }
1210
1211 // Create a CaseBlock record representing this branch.
1212 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1213 NULL, Succ0MBB, Succ1MBB, CurMBB);
1214 // Use visitSwitchCase to actually insert the fast branch sequence for this
1215 // cond branch.
1216 visitSwitchCase(CB);
1217}
1218
1219/// visitSwitchCase - Emits the necessary code to represent a single node in
1220/// the binary search tree resulting from lowering a switch instruction.
1221void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1222 SDOperand Cond;
1223 SDOperand CondLHS = getValue(CB.CmpLHS);
1224
1225 // Build the setcc now.
1226 if (CB.CmpMHS == NULL) {
1227 // Fold "(X == true)" to X and "(X == false)" to !X to
1228 // handle common cases produced by branch lowering.
1229 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1230 Cond = CondLHS;
1231 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1232 SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1233 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1234 } else
1235 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1236 } else {
1237 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1238
1239 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1240 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1241
1242 SDOperand CmpOp = getValue(CB.CmpMHS);
1243 MVT::ValueType VT = CmpOp.getValueType();
1244
1245 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1246 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1247 } else {
1248 SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1249 Cond = DAG.getSetCC(MVT::i1, SUB,
1250 DAG.getConstant(High-Low, VT), ISD::SETULE);
1251 }
1252
1253 }
1254
1255 // Set NextBlock to be the MBB immediately after the current one, if any.
1256 // This is used to avoid emitting unnecessary branches to the next block.
1257 MachineBasicBlock *NextBlock = 0;
1258 MachineFunction::iterator BBI = CurMBB;
1259 if (++BBI != CurMBB->getParent()->end())
1260 NextBlock = BBI;
1261
1262 // If the lhs block is the next block, invert the condition so that we can
1263 // fall through to the lhs instead of the rhs block.
1264 if (CB.TrueBB == NextBlock) {
1265 std::swap(CB.TrueBB, CB.FalseBB);
1266 SDOperand True = DAG.getConstant(1, Cond.getValueType());
1267 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1268 }
1269 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1270 DAG.getBasicBlock(CB.TrueBB));
1271 if (CB.FalseBB == NextBlock)
1272 DAG.setRoot(BrCond);
1273 else
1274 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1275 DAG.getBasicBlock(CB.FalseBB)));
1276 // Update successor info
1277 CurMBB->addSuccessor(CB.TrueBB);
1278 CurMBB->addSuccessor(CB.FalseBB);
1279}
1280
1281/// visitJumpTable - Emit JumpTable node in the current MBB
1282void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1283 // Emit the code for the jump table
1284 assert(JT.Reg != -1U && "Should lower JT Header first!");
1285 MVT::ValueType PTy = TLI.getPointerTy();
1286 SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1287 SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1288 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1289 Table, Index));
1290 return;
1291}
1292
1293/// visitJumpTableHeader - This function emits necessary code to produce index
1294/// in the JumpTable from switch case.
1295void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1296 SelectionDAGISel::JumpTableHeader &JTH) {
1297 // Subtract the lowest switch case value from the value being switched on
1298 // and conditional branch to default mbb if the result is greater than the
1299 // difference between smallest and largest cases.
1300 SDOperand SwitchOp = getValue(JTH.SValue);
1301 MVT::ValueType VT = SwitchOp.getValueType();
1302 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1303 DAG.getConstant(JTH.First, VT));
1304
1305 // The SDNode we just created, which holds the value being switched on
1306 // minus the the smallest case value, needs to be copied to a virtual
1307 // register so it can be used as an index into the jump table in a
1308 // subsequent basic block. This value may be smaller or larger than the
1309 // target's pointer type, and therefore require extension or truncating.
1310 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1311 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1312 else
1313 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1314
1315 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1316 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1317 JT.Reg = JumpTableReg;
1318
1319 // Emit the range check for the jump table, and branch to the default
1320 // block for the switch statement if the value being switched on exceeds
1321 // the largest case in the switch.
1322 SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1323 DAG.getConstant(JTH.Last-JTH.First,VT),
1324 ISD::SETUGT);
1325
1326 // Set NextBlock to be the MBB immediately after the current one, if any.
1327 // This is used to avoid emitting unnecessary branches to the next block.
1328 MachineBasicBlock *NextBlock = 0;
1329 MachineFunction::iterator BBI = CurMBB;
1330 if (++BBI != CurMBB->getParent()->end())
1331 NextBlock = BBI;
1332
1333 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1334 DAG.getBasicBlock(JT.Default));
1335
1336 if (JT.MBB == NextBlock)
1337 DAG.setRoot(BrCond);
1338 else
1339 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1340 DAG.getBasicBlock(JT.MBB)));
1341
1342 return;
1343}
1344
1345/// visitBitTestHeader - This function emits necessary code to produce value
1346/// suitable for "bit tests"
1347void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1348 // Subtract the minimum value
1349 SDOperand SwitchOp = getValue(B.SValue);
1350 MVT::ValueType VT = SwitchOp.getValueType();
1351 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1352 DAG.getConstant(B.First, VT));
1353
1354 // Check range
1355 SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1356 DAG.getConstant(B.Range, VT),
1357 ISD::SETUGT);
1358
1359 SDOperand ShiftOp;
1360 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1361 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1362 else
1363 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1364
1365 // Make desired shift
1366 SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1367 DAG.getConstant(1, TLI.getPointerTy()),
1368 ShiftOp);
1369
1370 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1371 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1372 B.Reg = SwitchReg;
1373
1374 SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1375 DAG.getBasicBlock(B.Default));
1376
1377 // Set NextBlock to be the MBB immediately after the current one, if any.
1378 // This is used to avoid emitting unnecessary branches to the next block.
1379 MachineBasicBlock *NextBlock = 0;
1380 MachineFunction::iterator BBI = CurMBB;
1381 if (++BBI != CurMBB->getParent()->end())
1382 NextBlock = BBI;
1383
1384 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1385 if (MBB == NextBlock)
1386 DAG.setRoot(BrRange);
1387 else
1388 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1389 DAG.getBasicBlock(MBB)));
1390
1391 CurMBB->addSuccessor(B.Default);
1392 CurMBB->addSuccessor(MBB);
1393
1394 return;
1395}
1396
1397/// visitBitTestCase - this function produces one "bit test"
1398void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1399 unsigned Reg,
1400 SelectionDAGISel::BitTestCase &B) {
1401 // Emit bit tests and jumps
1402 SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1403
1404 SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1405 SwitchVal,
1406 DAG.getConstant(B.Mask,
1407 TLI.getPointerTy()));
1408 SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1409 DAG.getConstant(0, TLI.getPointerTy()),
1410 ISD::SETNE);
1411 SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1412 AndCmp, DAG.getBasicBlock(B.TargetBB));
1413
1414 // Set NextBlock to be the MBB immediately after the current one, if any.
1415 // This is used to avoid emitting unnecessary branches to the next block.
1416 MachineBasicBlock *NextBlock = 0;
1417 MachineFunction::iterator BBI = CurMBB;
1418 if (++BBI != CurMBB->getParent()->end())
1419 NextBlock = BBI;
1420
1421 if (NextMBB == NextBlock)
1422 DAG.setRoot(BrAnd);
1423 else
1424 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1425 DAG.getBasicBlock(NextMBB)));
1426
1427 CurMBB->addSuccessor(B.TargetBB);
1428 CurMBB->addSuccessor(NextMBB);
1429
1430 return;
1431}
1432
1433void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1434 // Retrieve successors.
1435 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1436 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1437
1438 LowerCallTo(I, I.getCalledValue()->getType(),
1439 I.getCallingConv(),
1440 false,
1441 getValue(I.getOperand(0)),
1442 3, LandingPad);
1443
1444 // If the value of the invoke is used outside of its defining block, make it
1445 // available as a virtual register.
1446 if (!I.use_empty()) {
1447 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1448 if (VMI != FuncInfo.ValueMap.end())
1449 DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1450 }
1451
1452 // Drop into normal successor.
1453 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1454 DAG.getBasicBlock(Return)));
1455
1456 // Update successor info
1457 CurMBB->addSuccessor(Return);
1458 CurMBB->addSuccessor(LandingPad);
1459}
1460
1461void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1462}
1463
1464/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1465/// small case ranges).
1466bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1467 CaseRecVector& WorkList,
1468 Value* SV,
1469 MachineBasicBlock* Default) {
1470 Case& BackCase = *(CR.Range.second-1);
1471
1472 // Size is the number of Cases represented by this range.
1473 unsigned Size = CR.Range.second - CR.Range.first;
1474 if (Size > 3)
1475 return false;
1476
1477 // Get the MachineFunction which holds the current MBB. This is used when
1478 // inserting any additional MBBs necessary to represent the switch.
1479 MachineFunction *CurMF = CurMBB->getParent();
1480
1481 // Figure out which block is immediately after the current one.
1482 MachineBasicBlock *NextBlock = 0;
1483 MachineFunction::iterator BBI = CR.CaseBB;
1484
1485 if (++BBI != CurMBB->getParent()->end())
1486 NextBlock = BBI;
1487
1488 // TODO: If any two of the cases has the same destination, and if one value
1489 // is the same as the other, but has one bit unset that the other has set,
1490 // use bit manipulation to do two compares at once. For example:
1491 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1492
1493 // Rearrange the case blocks so that the last one falls through if possible.
1494 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1495 // The last case block won't fall through into 'NextBlock' if we emit the
1496 // branches in this order. See if rearranging a case value would help.
1497 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1498 if (I->BB == NextBlock) {
1499 std::swap(*I, BackCase);
1500 break;
1501 }
1502 }
1503 }
1504
1505 // Create a CaseBlock record representing a conditional branch to
1506 // the Case's target mbb if the value being switched on SV is equal
1507 // to C.
1508 MachineBasicBlock *CurBlock = CR.CaseBB;
1509 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1510 MachineBasicBlock *FallThrough;
1511 if (I != E-1) {
1512 FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1513 CurMF->getBasicBlockList().insert(BBI, FallThrough);
1514 } else {
1515 // If the last case doesn't match, go to the default block.
1516 FallThrough = Default;
1517 }
1518
1519 Value *RHS, *LHS, *MHS;
1520 ISD::CondCode CC;
1521 if (I->High == I->Low) {
1522 // This is just small small case range :) containing exactly 1 case
1523 CC = ISD::SETEQ;
1524 LHS = SV; RHS = I->High; MHS = NULL;
1525 } else {
1526 CC = ISD::SETLE;
1527 LHS = I->Low; MHS = SV; RHS = I->High;
1528 }
1529 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1530 I->BB, FallThrough, CurBlock);
1531
1532 // If emitting the first comparison, just call visitSwitchCase to emit the
1533 // code into the current block. Otherwise, push the CaseBlock onto the
1534 // vector to be later processed by SDISel, and insert the node's MBB
1535 // before the next MBB.
1536 if (CurBlock == CurMBB)
1537 visitSwitchCase(CB);
1538 else
1539 SwitchCases.push_back(CB);
1540
1541 CurBlock = FallThrough;
1542 }
1543
1544 return true;
1545}
1546
1547static inline bool areJTsAllowed(const TargetLowering &TLI) {
1548 return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1549 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1550}
1551
1552/// handleJTSwitchCase - Emit jumptable for current switch case range
1553bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1554 CaseRecVector& WorkList,
1555 Value* SV,
1556 MachineBasicBlock* Default) {
1557 Case& FrontCase = *CR.Range.first;
1558 Case& BackCase = *(CR.Range.second-1);
1559
1560 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1561 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1562
1563 uint64_t TSize = 0;
1564 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1565 I!=E; ++I)
1566 TSize += I->size();
1567
1568 if (!areJTsAllowed(TLI) || TSize <= 3)
1569 return false;
1570
1571 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1572 if (Density < 0.4)
1573 return false;
1574
1575 DOUT << "Lowering jump table\n"
1576 << "First entry: " << First << ". Last entry: " << Last << "\n"
1577 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1578
1579 // Get the MachineFunction which holds the current MBB. This is used when
1580 // inserting any additional MBBs necessary to represent the switch.
1581 MachineFunction *CurMF = CurMBB->getParent();
1582
1583 // Figure out which block is immediately after the current one.
1584 MachineBasicBlock *NextBlock = 0;
1585 MachineFunction::iterator BBI = CR.CaseBB;
1586
1587 if (++BBI != CurMBB->getParent()->end())
1588 NextBlock = BBI;
1589
1590 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1591
1592 // Create a new basic block to hold the code for loading the address
1593 // of the jump table, and jumping to it. Update successor information;
1594 // we will either branch to the default case for the switch, or the jump
1595 // table.
1596 MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1597 CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1598 CR.CaseBB->addSuccessor(Default);
1599 CR.CaseBB->addSuccessor(JumpTableBB);
1600
1601 // Build a vector of destination BBs, corresponding to each target
1602 // of the jump table. If the value of the jump table slot corresponds to
1603 // a case statement, push the case's BB onto the vector, otherwise, push
1604 // the default BB.
1605 std::vector<MachineBasicBlock*> DestBBs;
1606 int64_t TEI = First;
1607 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1608 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1609 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1610
1611 if ((Low <= TEI) && (TEI <= High)) {
1612 DestBBs.push_back(I->BB);
1613 if (TEI==High)
1614 ++I;
1615 } else {
1616 DestBBs.push_back(Default);
1617 }
1618 }
1619
1620 // Update successor info. Add one edge to each unique successor.
1621 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1622 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1623 E = DestBBs.end(); I != E; ++I) {
1624 if (!SuccsHandled[(*I)->getNumber()]) {
1625 SuccsHandled[(*I)->getNumber()] = true;
1626 JumpTableBB->addSuccessor(*I);
1627 }
1628 }
1629
1630 // Create a jump table index for this jump table, or return an existing
1631 // one.
1632 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1633
1634 // Set the jump table information so that we can codegen it as a second
1635 // MachineBasicBlock
1636 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1637 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1638 (CR.CaseBB == CurMBB));
1639 if (CR.CaseBB == CurMBB)
1640 visitJumpTableHeader(JT, JTH);
1641
1642 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1643
1644 return true;
1645}
1646
1647/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1648/// 2 subtrees.
1649bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1650 CaseRecVector& WorkList,
1651 Value* SV,
1652 MachineBasicBlock* Default) {
1653 // Get the MachineFunction which holds the current MBB. This is used when
1654 // inserting any additional MBBs necessary to represent the switch.
1655 MachineFunction *CurMF = CurMBB->getParent();
1656
1657 // Figure out which block is immediately after the current one.
1658 MachineBasicBlock *NextBlock = 0;
1659 MachineFunction::iterator BBI = CR.CaseBB;
1660
1661 if (++BBI != CurMBB->getParent()->end())
1662 NextBlock = BBI;
1663
1664 Case& FrontCase = *CR.Range.first;
1665 Case& BackCase = *(CR.Range.second-1);
1666 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1667
1668 // Size is the number of Cases represented by this range.
1669 unsigned Size = CR.Range.second - CR.Range.first;
1670
1671 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1672 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1673 double FMetric = 0;
1674 CaseItr Pivot = CR.Range.first + Size/2;
1675
1676 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1677 // (heuristically) allow us to emit JumpTable's later.
1678 uint64_t TSize = 0;
1679 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1680 I!=E; ++I)
1681 TSize += I->size();
1682
1683 uint64_t LSize = FrontCase.size();
1684 uint64_t RSize = TSize-LSize;
1685 DOUT << "Selecting best pivot: \n"
1686 << "First: " << First << ", Last: " << Last <<"\n"
1687 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1688 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1689 J!=E; ++I, ++J) {
1690 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1691 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1692 assert((RBegin-LEnd>=1) && "Invalid case distance");
1693 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1694 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1695 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1696 // Should always split in some non-trivial place
1697 DOUT <<"=>Step\n"
1698 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1699 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1700 << "Metric: " << Metric << "\n";
1701 if (FMetric < Metric) {
1702 Pivot = J;
1703 FMetric = Metric;
1704 DOUT << "Current metric set to: " << FMetric << "\n";
1705 }
1706
1707 LSize += J->size();
1708 RSize -= J->size();
1709 }
1710 if (areJTsAllowed(TLI)) {
1711 // If our case is dense we *really* should handle it earlier!
1712 assert((FMetric > 0) && "Should handle dense range earlier!");
1713 } else {
1714 Pivot = CR.Range.first + Size/2;
1715 }
1716
1717 CaseRange LHSR(CR.Range.first, Pivot);
1718 CaseRange RHSR(Pivot, CR.Range.second);
1719 Constant *C = Pivot->Low;
1720 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1721
1722 // We know that we branch to the LHS if the Value being switched on is
1723 // less than the Pivot value, C. We use this to optimize our binary
1724 // tree a bit, by recognizing that if SV is greater than or equal to the
1725 // LHS's Case Value, and that Case Value is exactly one less than the
1726 // Pivot's Value, then we can branch directly to the LHS's Target,
1727 // rather than creating a leaf node for it.
1728 if ((LHSR.second - LHSR.first) == 1 &&
1729 LHSR.first->High == CR.GE &&
1730 cast<ConstantInt>(C)->getSExtValue() ==
1731 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1732 TrueBB = LHSR.first->BB;
1733 } else {
1734 TrueBB = new MachineBasicBlock(LLVMBB);
1735 CurMF->getBasicBlockList().insert(BBI, TrueBB);
1736 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1737 }
1738
1739 // Similar to the optimization above, if the Value being switched on is
1740 // known to be less than the Constant CR.LT, and the current Case Value
1741 // is CR.LT - 1, then we can branch directly to the target block for
1742 // the current Case Value, rather than emitting a RHS leaf node for it.
1743 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1744 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1745 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1746 FalseBB = RHSR.first->BB;
1747 } else {
1748 FalseBB = new MachineBasicBlock(LLVMBB);
1749 CurMF->getBasicBlockList().insert(BBI, FalseBB);
1750 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1751 }
1752
1753 // Create a CaseBlock record representing a conditional branch to
1754 // the LHS node if the value being switched on SV is less than C.
1755 // Otherwise, branch to LHS.
1756 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1757 TrueBB, FalseBB, CR.CaseBB);
1758
1759 if (CR.CaseBB == CurMBB)
1760 visitSwitchCase(CB);
1761 else
1762 SwitchCases.push_back(CB);
1763
1764 return true;
1765}
1766
1767/// handleBitTestsSwitchCase - if current case range has few destination and
1768/// range span less, than machine word bitwidth, encode case range into series
1769/// of masks and emit bit tests with these masks.
1770bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1771 CaseRecVector& WorkList,
1772 Value* SV,
1773 MachineBasicBlock* Default){
1774 unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1775
1776 Case& FrontCase = *CR.Range.first;
1777 Case& BackCase = *(CR.Range.second-1);
1778
1779 // Get the MachineFunction which holds the current MBB. This is used when
1780 // inserting any additional MBBs necessary to represent the switch.
1781 MachineFunction *CurMF = CurMBB->getParent();
1782
1783 unsigned numCmps = 0;
1784 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1785 I!=E; ++I) {
1786 // Single case counts one, case range - two.
1787 if (I->Low == I->High)
1788 numCmps +=1;
1789 else
1790 numCmps +=2;
1791 }
1792
1793 // Count unique destinations
1794 SmallSet<MachineBasicBlock*, 4> Dests;
1795 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1796 Dests.insert(I->BB);
1797 if (Dests.size() > 3)
1798 // Don't bother the code below, if there are too much unique destinations
1799 return false;
1800 }
1801 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1802 << "Total number of comparisons: " << numCmps << "\n";
1803
1804 // Compute span of values.
1805 Constant* minValue = FrontCase.Low;
1806 Constant* maxValue = BackCase.High;
1807 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1808 cast<ConstantInt>(minValue)->getSExtValue();
1809 DOUT << "Compare range: " << range << "\n"
1810 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1811 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1812
1813 if (range>=IntPtrBits ||
1814 (!(Dests.size() == 1 && numCmps >= 3) &&
1815 !(Dests.size() == 2 && numCmps >= 5) &&
1816 !(Dests.size() >= 3 && numCmps >= 6)))
1817 return false;
1818
1819 DOUT << "Emitting bit tests\n";
1820 int64_t lowBound = 0;
1821
1822 // Optimize the case where all the case values fit in a
1823 // word without having to subtract minValue. In this case,
1824 // we can optimize away the subtraction.
1825 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1826 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1827 range = cast<ConstantInt>(maxValue)->getSExtValue();
1828 } else {
1829 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1830 }
1831
1832 CaseBitsVector CasesBits;
1833 unsigned i, count = 0;
1834
1835 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1836 MachineBasicBlock* Dest = I->BB;
1837 for (i = 0; i < count; ++i)
1838 if (Dest == CasesBits[i].BB)
1839 break;
1840
1841 if (i == count) {
1842 assert((count < 3) && "Too much destinations to test!");
1843 CasesBits.push_back(CaseBits(0, Dest, 0));
1844 count++;
1845 }
1846
1847 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1848 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1849
1850 for (uint64_t j = lo; j <= hi; j++) {
1851 CasesBits[i].Mask |= 1ULL << j;
1852 CasesBits[i].Bits++;
1853 }
1854
1855 }
1856 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1857
1858 SelectionDAGISel::BitTestInfo BTC;
1859
1860 // Figure out which block is immediately after the current one.
1861 MachineFunction::iterator BBI = CR.CaseBB;
1862 ++BBI;
1863
1864 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1865
1866 DOUT << "Cases:\n";
1867 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1868 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1869 << ", BB: " << CasesBits[i].BB << "\n";
1870
1871 MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1872 CurMF->getBasicBlockList().insert(BBI, CaseBB);
1873 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1874 CaseBB,
1875 CasesBits[i].BB));
1876 }
1877
1878 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1879 -1U, (CR.CaseBB == CurMBB),
1880 CR.CaseBB, Default, BTC);
1881
1882 if (CR.CaseBB == CurMBB)
1883 visitBitTestHeader(BTB);
1884
1885 BitTestCases.push_back(BTB);
1886
1887 return true;
1888}
1889
1890
1891// Clusterify - Transform simple list of Cases into list of CaseRange's
1892unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1893 const SwitchInst& SI) {
1894 unsigned numCmps = 0;
1895
1896 // Start with "simple" cases
1897 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1898 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1899 Cases.push_back(Case(SI.getSuccessorValue(i),
1900 SI.getSuccessorValue(i),
1901 SMBB));
1902 }
1903 sort(Cases.begin(), Cases.end(), CaseCmp());
1904
1905 // Merge case into clusters
1906 if (Cases.size()>=2)
1907 // Must recompute end() each iteration because it may be
1908 // invalidated by erase if we hold on to it
1909 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1910 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1911 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1912 MachineBasicBlock* nextBB = J->BB;
1913 MachineBasicBlock* currentBB = I->BB;
1914
1915 // If the two neighboring cases go to the same destination, merge them
1916 // into a single case.
1917 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1918 I->High = J->High;
1919 J = Cases.erase(J);
1920 } else {
1921 I = J++;
1922 }
1923 }
1924
1925 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1926 if (I->Low != I->High)
1927 // A range counts double, since it requires two compares.
1928 ++numCmps;
1929 }
1930
1931 return numCmps;
1932}
1933
1934void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1935 // Figure out which block is immediately after the current one.
1936 MachineBasicBlock *NextBlock = 0;
1937 MachineFunction::iterator BBI = CurMBB;
1938
1939 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1940
1941 // If there is only the default destination, branch to it if it is not the
1942 // next basic block. Otherwise, just fall through.
1943 if (SI.getNumOperands() == 2) {
1944 // Update machine-CFG edges.
1945
1946 // If this is not a fall-through branch, emit the branch.
1947 if (Default != NextBlock)
1948 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1949 DAG.getBasicBlock(Default)));
1950
1951 CurMBB->addSuccessor(Default);
1952 return;
1953 }
1954
1955 // If there are any non-default case statements, create a vector of Cases
1956 // representing each one, and sort the vector so that we can efficiently
1957 // create a binary search tree from them.
1958 CaseVector Cases;
1959 unsigned numCmps = Clusterify(Cases, SI);
1960 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1961 << ". Total compares: " << numCmps << "\n";
1962
1963 // Get the Value to be switched on and default basic blocks, which will be
1964 // inserted into CaseBlock records, representing basic blocks in the binary
1965 // search tree.
1966 Value *SV = SI.getOperand(0);
1967
1968 // Push the initial CaseRec onto the worklist
1969 CaseRecVector WorkList;
1970 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1971
1972 while (!WorkList.empty()) {
1973 // Grab a record representing a case range to process off the worklist
1974 CaseRec CR = WorkList.back();
1975 WorkList.pop_back();
1976
1977 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1978 continue;
1979
1980 // If the range has few cases (two or less) emit a series of specific
1981 // tests.
1982 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1983 continue;
1984
1985 // If the switch has more than 5 blocks, and at least 40% dense, and the
1986 // target supports indirect branches, then emit a jump table rather than
1987 // lowering the switch to a binary tree of conditional branches.
1988 if (handleJTSwitchCase(CR, WorkList, SV, Default))
1989 continue;
1990
1991 // Emit binary tree. We need to pick a pivot, and push left and right ranges
1992 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1993 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1994 }
1995}
1996
1997
1998void SelectionDAGLowering::visitSub(User &I) {
1999 // -0.0 - X --> fneg
2000 const Type *Ty = I.getType();
2001 if (isa<VectorType>(Ty)) {
2002 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2003 const VectorType *DestTy = cast<VectorType>(I.getType());
2004 const Type *ElTy = DestTy->getElementType();
2005 if (ElTy->isFloatingPoint()) {
2006 unsigned VL = DestTy->getNumElements();
Dale Johannesenb9de9f02007-09-06 18:13:44 +00002007 std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy,
2008 ElTy==Type::FloatTy ? APFloat(-0.0f) : APFloat(-0.0)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002009 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2010 if (CV == CNZ) {
2011 SDOperand Op2 = getValue(I.getOperand(1));
2012 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2013 return;
2014 }
2015 }
2016 }
2017 }
2018 if (Ty->isFloatingPoint()) {
2019 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2020 if (CFP->isExactlyValue(-0.0)) {
2021 SDOperand Op2 = getValue(I.getOperand(1));
2022 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2023 return;
2024 }
2025 }
2026
2027 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2028}
2029
2030void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2031 SDOperand Op1 = getValue(I.getOperand(0));
2032 SDOperand Op2 = getValue(I.getOperand(1));
2033
2034 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2035}
2036
2037void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2038 SDOperand Op1 = getValue(I.getOperand(0));
2039 SDOperand Op2 = getValue(I.getOperand(1));
2040
2041 if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2042 MVT::getSizeInBits(Op2.getValueType()))
2043 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2044 else if (TLI.getShiftAmountTy() > Op2.getValueType())
2045 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2046
2047 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2048}
2049
2050void SelectionDAGLowering::visitICmp(User &I) {
2051 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2052 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2053 predicate = IC->getPredicate();
2054 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2055 predicate = ICmpInst::Predicate(IC->getPredicate());
2056 SDOperand Op1 = getValue(I.getOperand(0));
2057 SDOperand Op2 = getValue(I.getOperand(1));
2058 ISD::CondCode Opcode;
2059 switch (predicate) {
2060 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2061 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2062 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2063 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2064 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2065 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2066 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2067 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2068 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2069 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2070 default:
2071 assert(!"Invalid ICmp predicate value");
2072 Opcode = ISD::SETEQ;
2073 break;
2074 }
2075 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2076}
2077
2078void SelectionDAGLowering::visitFCmp(User &I) {
2079 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2080 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2081 predicate = FC->getPredicate();
2082 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2083 predicate = FCmpInst::Predicate(FC->getPredicate());
2084 SDOperand Op1 = getValue(I.getOperand(0));
2085 SDOperand Op2 = getValue(I.getOperand(1));
2086 ISD::CondCode Condition, FOC, FPC;
2087 switch (predicate) {
2088 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2089 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2090 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2091 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2092 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2093 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2094 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2095 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
2096 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
2097 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2098 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2099 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2100 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2101 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2102 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2103 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2104 default:
2105 assert(!"Invalid FCmp predicate value");
2106 FOC = FPC = ISD::SETFALSE;
2107 break;
2108 }
2109 if (FiniteOnlyFPMath())
2110 Condition = FOC;
2111 else
2112 Condition = FPC;
2113 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2114}
2115
2116void SelectionDAGLowering::visitSelect(User &I) {
2117 SDOperand Cond = getValue(I.getOperand(0));
2118 SDOperand TrueVal = getValue(I.getOperand(1));
2119 SDOperand FalseVal = getValue(I.getOperand(2));
2120 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2121 TrueVal, FalseVal));
2122}
2123
2124
2125void SelectionDAGLowering::visitTrunc(User &I) {
2126 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2127 SDOperand N = getValue(I.getOperand(0));
2128 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2129 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2130}
2131
2132void SelectionDAGLowering::visitZExt(User &I) {
2133 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2134 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2135 SDOperand N = getValue(I.getOperand(0));
2136 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2137 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2138}
2139
2140void SelectionDAGLowering::visitSExt(User &I) {
2141 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2142 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2143 SDOperand N = getValue(I.getOperand(0));
2144 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2145 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2146}
2147
2148void SelectionDAGLowering::visitFPTrunc(User &I) {
2149 // FPTrunc is never a no-op cast, no need to check
2150 SDOperand N = getValue(I.getOperand(0));
2151 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2152 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2153}
2154
2155void SelectionDAGLowering::visitFPExt(User &I){
2156 // FPTrunc is never a no-op cast, no need to check
2157 SDOperand N = getValue(I.getOperand(0));
2158 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2159 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2160}
2161
2162void SelectionDAGLowering::visitFPToUI(User &I) {
2163 // FPToUI is never a no-op cast, no need to check
2164 SDOperand N = getValue(I.getOperand(0));
2165 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2166 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2167}
2168
2169void SelectionDAGLowering::visitFPToSI(User &I) {
2170 // FPToSI is never a no-op cast, no need to check
2171 SDOperand N = getValue(I.getOperand(0));
2172 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2173 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2174}
2175
2176void SelectionDAGLowering::visitUIToFP(User &I) {
2177 // UIToFP is never a no-op cast, no need to check
2178 SDOperand N = getValue(I.getOperand(0));
2179 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2180 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2181}
2182
2183void SelectionDAGLowering::visitSIToFP(User &I){
2184 // UIToFP is never a no-op cast, no need to check
2185 SDOperand N = getValue(I.getOperand(0));
2186 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2187 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2188}
2189
2190void SelectionDAGLowering::visitPtrToInt(User &I) {
2191 // What to do depends on the size of the integer and the size of the pointer.
2192 // We can either truncate, zero extend, or no-op, accordingly.
2193 SDOperand N = getValue(I.getOperand(0));
2194 MVT::ValueType SrcVT = N.getValueType();
2195 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2196 SDOperand Result;
2197 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2198 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2199 else
2200 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2201 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2202 setValue(&I, Result);
2203}
2204
2205void SelectionDAGLowering::visitIntToPtr(User &I) {
2206 // What to do depends on the size of the integer and the size of the pointer.
2207 // We can either truncate, zero extend, or no-op, accordingly.
2208 SDOperand N = getValue(I.getOperand(0));
2209 MVT::ValueType SrcVT = N.getValueType();
2210 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2211 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2212 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2213 else
2214 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2215 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2216}
2217
2218void SelectionDAGLowering::visitBitCast(User &I) {
2219 SDOperand N = getValue(I.getOperand(0));
2220 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2221
2222 // BitCast assures us that source and destination are the same size so this
2223 // is either a BIT_CONVERT or a no-op.
2224 if (DestVT != N.getValueType())
2225 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2226 else
2227 setValue(&I, N); // noop cast.
2228}
2229
2230void SelectionDAGLowering::visitInsertElement(User &I) {
2231 SDOperand InVec = getValue(I.getOperand(0));
2232 SDOperand InVal = getValue(I.getOperand(1));
2233 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2234 getValue(I.getOperand(2)));
2235
2236 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2237 TLI.getValueType(I.getType()),
2238 InVec, InVal, InIdx));
2239}
2240
2241void SelectionDAGLowering::visitExtractElement(User &I) {
2242 SDOperand InVec = getValue(I.getOperand(0));
2243 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2244 getValue(I.getOperand(1)));
2245 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2246 TLI.getValueType(I.getType()), InVec, InIdx));
2247}
2248
2249void SelectionDAGLowering::visitShuffleVector(User &I) {
2250 SDOperand V1 = getValue(I.getOperand(0));
2251 SDOperand V2 = getValue(I.getOperand(1));
2252 SDOperand Mask = getValue(I.getOperand(2));
2253
2254 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2255 TLI.getValueType(I.getType()),
2256 V1, V2, Mask));
2257}
2258
2259
2260void SelectionDAGLowering::visitGetElementPtr(User &I) {
2261 SDOperand N = getValue(I.getOperand(0));
2262 const Type *Ty = I.getOperand(0)->getType();
2263
2264 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2265 OI != E; ++OI) {
2266 Value *Idx = *OI;
2267 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2268 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2269 if (Field) {
2270 // N = N + Offset
2271 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2272 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2273 getIntPtrConstant(Offset));
2274 }
2275 Ty = StTy->getElementType(Field);
2276 } else {
2277 Ty = cast<SequentialType>(Ty)->getElementType();
2278
2279 // If this is a constant subscript, handle it quickly.
2280 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2281 if (CI->getZExtValue() == 0) continue;
2282 uint64_t Offs =
2283 TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2284 N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2285 continue;
2286 }
2287
2288 // N = N + Idx * ElementSize;
2289 uint64_t ElementSize = TD->getTypeSize(Ty);
2290 SDOperand IdxN = getValue(Idx);
2291
2292 // If the index is smaller or larger than intptr_t, truncate or extend
2293 // it.
2294 if (IdxN.getValueType() < N.getValueType()) {
2295 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2296 } else if (IdxN.getValueType() > N.getValueType())
2297 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2298
2299 // If this is a multiply by a power of two, turn it into a shl
2300 // immediately. This is a very common case.
2301 if (isPowerOf2_64(ElementSize)) {
2302 unsigned Amt = Log2_64(ElementSize);
2303 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2304 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2305 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2306 continue;
2307 }
2308
2309 SDOperand Scale = getIntPtrConstant(ElementSize);
2310 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2311 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2312 }
2313 }
2314 setValue(&I, N);
2315}
2316
2317void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2318 // If this is a fixed sized alloca in the entry block of the function,
2319 // allocate it statically on the stack.
2320 if (FuncInfo.StaticAllocaMap.count(&I))
2321 return; // getValue will auto-populate this.
2322
2323 const Type *Ty = I.getAllocatedType();
2324 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2325 unsigned Align =
2326 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2327 I.getAlignment());
2328
2329 SDOperand AllocSize = getValue(I.getArraySize());
2330 MVT::ValueType IntPtr = TLI.getPointerTy();
2331 if (IntPtr < AllocSize.getValueType())
2332 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2333 else if (IntPtr > AllocSize.getValueType())
2334 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2335
2336 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2337 getIntPtrConstant(TySize));
2338
Evan Chenga31dc752007-08-16 23:46:29 +00002339 // Handle alignment. If the requested alignment is less than or equal to
2340 // the stack alignment, ignore it. If the size is greater than or equal to
2341 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002342 unsigned StackAlign =
2343 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
Evan Chenga31dc752007-08-16 23:46:29 +00002344 if (Align <= StackAlign)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345 Align = 0;
Evan Chenga31dc752007-08-16 23:46:29 +00002346
2347 // Round the size of the allocation up to the stack alignment size
2348 // by add SA-1 to the size.
2349 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2350 getIntPtrConstant(StackAlign-1));
2351 // Mask out the low bits for alignment purposes.
2352 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2353 getIntPtrConstant(~(uint64_t)(StackAlign-1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002354
2355 SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2356 const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2357 MVT::Other);
2358 SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2359 setValue(&I, DSA);
2360 DAG.setRoot(DSA.getValue(1));
2361
2362 // Inform the Frame Information that we have just allocated a variable-sized
2363 // object.
2364 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2365}
2366
2367void SelectionDAGLowering::visitLoad(LoadInst &I) {
2368 SDOperand Ptr = getValue(I.getOperand(0));
2369
2370 SDOperand Root;
2371 if (I.isVolatile())
2372 Root = getRoot();
2373 else {
2374 // Do not serialize non-volatile loads against each other.
2375 Root = DAG.getRoot();
2376 }
2377
2378 setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2379 Root, I.isVolatile(), I.getAlignment()));
2380}
2381
2382SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2383 const Value *SV, SDOperand Root,
2384 bool isVolatile,
2385 unsigned Alignment) {
2386 SDOperand L =
2387 DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2388 isVolatile, Alignment);
2389
2390 if (isVolatile)
2391 DAG.setRoot(L.getValue(1));
2392 else
2393 PendingLoads.push_back(L.getValue(1));
2394
2395 return L;
2396}
2397
2398
2399void SelectionDAGLowering::visitStore(StoreInst &I) {
2400 Value *SrcV = I.getOperand(0);
2401 SDOperand Src = getValue(SrcV);
2402 SDOperand Ptr = getValue(I.getOperand(1));
2403 DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2404 I.isVolatile(), I.getAlignment()));
2405}
2406
2407/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2408/// access memory and has no other side effects at all.
2409static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2410#define GET_NO_MEMORY_INTRINSICS
2411#include "llvm/Intrinsics.gen"
2412#undef GET_NO_MEMORY_INTRINSICS
2413 return false;
2414}
2415
2416// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2417// have any side-effects or if it only reads memory.
2418static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2419#define GET_SIDE_EFFECT_INFO
2420#include "llvm/Intrinsics.gen"
2421#undef GET_SIDE_EFFECT_INFO
2422 return false;
2423}
2424
2425/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2426/// node.
2427void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2428 unsigned Intrinsic) {
2429 bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2430 bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2431
2432 // Build the operand list.
2433 SmallVector<SDOperand, 8> Ops;
2434 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2435 if (OnlyLoad) {
2436 // We don't need to serialize loads against other loads.
2437 Ops.push_back(DAG.getRoot());
2438 } else {
2439 Ops.push_back(getRoot());
2440 }
2441 }
2442
2443 // Add the intrinsic ID as an integer operand.
2444 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2445
2446 // Add all operands of the call to the operand list.
2447 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2448 SDOperand Op = getValue(I.getOperand(i));
2449 assert(TLI.isTypeLegal(Op.getValueType()) &&
2450 "Intrinsic uses a non-legal type?");
2451 Ops.push_back(Op);
2452 }
2453
2454 std::vector<MVT::ValueType> VTs;
2455 if (I.getType() != Type::VoidTy) {
2456 MVT::ValueType VT = TLI.getValueType(I.getType());
2457 if (MVT::isVector(VT)) {
2458 const VectorType *DestTy = cast<VectorType>(I.getType());
2459 MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2460
2461 VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2462 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2463 }
2464
2465 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2466 VTs.push_back(VT);
2467 }
2468 if (HasChain)
2469 VTs.push_back(MVT::Other);
2470
2471 const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2472
2473 // Create the node.
2474 SDOperand Result;
2475 if (!HasChain)
2476 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2477 &Ops[0], Ops.size());
2478 else if (I.getType() != Type::VoidTy)
2479 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2480 &Ops[0], Ops.size());
2481 else
2482 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2483 &Ops[0], Ops.size());
2484
2485 if (HasChain) {
2486 SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2487 if (OnlyLoad)
2488 PendingLoads.push_back(Chain);
2489 else
2490 DAG.setRoot(Chain);
2491 }
2492 if (I.getType() != Type::VoidTy) {
2493 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2494 MVT::ValueType VT = TLI.getValueType(PTy);
2495 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2496 }
2497 setValue(&I, Result);
2498 }
2499}
2500
2501/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2502static GlobalVariable *ExtractTypeInfo (Value *V) {
2503 V = IntrinsicInst::StripPointerCasts(V);
2504 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2505 assert (GV || isa<ConstantPointerNull>(V) &&
2506 "TypeInfo must be a global variable or NULL");
2507 return GV;
2508}
2509
2510/// addCatchInfo - Extract the personality and type infos from an eh.selector
2511/// call, and add them to the specified machine basic block.
2512static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2513 MachineBasicBlock *MBB) {
2514 // Inform the MachineModuleInfo of the personality for this landing pad.
2515 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2516 assert(CE->getOpcode() == Instruction::BitCast &&
2517 isa<Function>(CE->getOperand(0)) &&
2518 "Personality should be a function");
2519 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2520
2521 // Gather all the type infos for this landing pad and pass them along to
2522 // MachineModuleInfo.
2523 std::vector<GlobalVariable *> TyInfo;
2524 unsigned N = I.getNumOperands();
2525
2526 for (unsigned i = N - 1; i > 2; --i) {
2527 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2528 unsigned FilterLength = CI->getZExtValue();
Duncan Sands923fdb12007-08-27 15:47:50 +00002529 unsigned FirstCatch = i + FilterLength + !FilterLength;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002530 assert (FirstCatch <= N && "Invalid filter length");
2531
2532 if (FirstCatch < N) {
2533 TyInfo.reserve(N - FirstCatch);
2534 for (unsigned j = FirstCatch; j < N; ++j)
2535 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2536 MMI->addCatchTypeInfo(MBB, TyInfo);
2537 TyInfo.clear();
2538 }
2539
Duncan Sands923fdb12007-08-27 15:47:50 +00002540 if (!FilterLength) {
2541 // Cleanup.
2542 MMI->addCleanup(MBB);
2543 } else {
2544 // Filter.
2545 TyInfo.reserve(FilterLength - 1);
2546 for (unsigned j = i + 1; j < FirstCatch; ++j)
2547 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2548 MMI->addFilterTypeInfo(MBB, TyInfo);
2549 TyInfo.clear();
2550 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551
2552 N = i;
2553 }
2554 }
2555
2556 if (N > 3) {
2557 TyInfo.reserve(N - 3);
2558 for (unsigned j = 3; j < N; ++j)
2559 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2560 MMI->addCatchTypeInfo(MBB, TyInfo);
2561 }
2562}
2563
2564/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
2565/// we want to emit this as a call to a named external function, return the name
2566/// otherwise lower it and return null.
2567const char *
2568SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2569 switch (Intrinsic) {
2570 default:
2571 // By default, turn this into a target intrinsic node.
2572 visitTargetIntrinsic(I, Intrinsic);
2573 return 0;
2574 case Intrinsic::vastart: visitVAStart(I); return 0;
2575 case Intrinsic::vaend: visitVAEnd(I); return 0;
2576 case Intrinsic::vacopy: visitVACopy(I); return 0;
2577 case Intrinsic::returnaddress:
2578 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2579 getValue(I.getOperand(1))));
2580 return 0;
2581 case Intrinsic::frameaddress:
2582 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2583 getValue(I.getOperand(1))));
2584 return 0;
2585 case Intrinsic::setjmp:
2586 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2587 break;
2588 case Intrinsic::longjmp:
2589 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2590 break;
2591 case Intrinsic::memcpy_i32:
2592 case Intrinsic::memcpy_i64:
2593 visitMemIntrinsic(I, ISD::MEMCPY);
2594 return 0;
2595 case Intrinsic::memset_i32:
2596 case Intrinsic::memset_i64:
2597 visitMemIntrinsic(I, ISD::MEMSET);
2598 return 0;
2599 case Intrinsic::memmove_i32:
2600 case Intrinsic::memmove_i64:
2601 visitMemIntrinsic(I, ISD::MEMMOVE);
2602 return 0;
2603
2604 case Intrinsic::dbg_stoppoint: {
2605 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2606 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2607 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2608 SDOperand Ops[5];
2609
2610 Ops[0] = getRoot();
2611 Ops[1] = getValue(SPI.getLineValue());
2612 Ops[2] = getValue(SPI.getColumnValue());
2613
2614 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2615 assert(DD && "Not a debug information descriptor");
2616 CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2617
2618 Ops[3] = DAG.getString(CompileUnit->getFileName());
2619 Ops[4] = DAG.getString(CompileUnit->getDirectory());
2620
2621 DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2622 }
2623
2624 return 0;
2625 }
2626 case Intrinsic::dbg_region_start: {
2627 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2628 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2629 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2630 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2631 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2632 DAG.getConstant(LabelID, MVT::i32)));
2633 }
2634
2635 return 0;
2636 }
2637 case Intrinsic::dbg_region_end: {
2638 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2639 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2640 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2641 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2642 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2643 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2644 }
2645
2646 return 0;
2647 }
2648 case Intrinsic::dbg_func_start: {
2649 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2650 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2651 if (MMI && FSI.getSubprogram() &&
2652 MMI->Verify(FSI.getSubprogram())) {
2653 unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2654 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2655 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2656 }
2657
2658 return 0;
2659 }
2660 case Intrinsic::dbg_declare: {
2661 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2662 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2663 if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2664 SDOperand AddressOp = getValue(DI.getAddress());
2665 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2666 MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2667 }
2668
2669 return 0;
2670 }
2671
2672 case Intrinsic::eh_exception: {
2673 if (ExceptionHandling) {
2674 if (!CurMBB->isLandingPad()) {
2675 // FIXME: Mark exception register as live in. Hack for PR1508.
2676 unsigned Reg = TLI.getExceptionAddressRegister();
2677 if (Reg) CurMBB->addLiveIn(Reg);
2678 }
2679 // Insert the EXCEPTIONADDR instruction.
2680 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2681 SDOperand Ops[1];
2682 Ops[0] = DAG.getRoot();
2683 SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2684 setValue(&I, Op);
2685 DAG.setRoot(Op.getValue(1));
2686 } else {
2687 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2688 }
2689 return 0;
2690 }
2691
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002692 case Intrinsic::eh_selector_i32:
2693 case Intrinsic::eh_selector_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002694 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002695 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2696 MVT::i32 : MVT::i64);
2697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698 if (ExceptionHandling && MMI) {
2699 if (CurMBB->isLandingPad())
2700 addCatchInfo(I, MMI, CurMBB);
2701 else {
2702#ifndef NDEBUG
2703 FuncInfo.CatchInfoLost.insert(&I);
2704#endif
2705 // FIXME: Mark exception selector register as live in. Hack for PR1508.
2706 unsigned Reg = TLI.getExceptionSelectorRegister();
2707 if (Reg) CurMBB->addLiveIn(Reg);
2708 }
2709
2710 // Insert the EHSELECTION instruction.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002711 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002712 SDOperand Ops[2];
2713 Ops[0] = getValue(I.getOperand(1));
2714 Ops[1] = getRoot();
2715 SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2716 setValue(&I, Op);
2717 DAG.setRoot(Op.getValue(1));
2718 } else {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002719 setValue(&I, DAG.getConstant(0, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002720 }
2721
2722 return 0;
2723 }
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002724
2725 case Intrinsic::eh_typeid_for_i32:
2726 case Intrinsic::eh_typeid_for_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002727 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002728 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2729 MVT::i32 : MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002730
2731 if (MMI) {
2732 // Find the type id for the given typeinfo.
2733 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2734
2735 unsigned TypeID = MMI->getTypeIDFor(GV);
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002736 setValue(&I, DAG.getConstant(TypeID, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002737 } else {
2738 // Return something different to eh_selector.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002739 setValue(&I, DAG.getConstant(1, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002740 }
2741
2742 return 0;
2743 }
2744
2745 case Intrinsic::eh_return: {
2746 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2747
2748 if (MMI && ExceptionHandling) {
2749 MMI->setCallsEHReturn(true);
2750 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2751 MVT::Other,
2752 getRoot(),
2753 getValue(I.getOperand(1)),
2754 getValue(I.getOperand(2))));
2755 } else {
2756 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2757 }
2758
2759 return 0;
2760 }
2761
2762 case Intrinsic::eh_unwind_init: {
2763 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2764 MMI->setCallsUnwindInit(true);
2765 }
2766
2767 return 0;
2768 }
2769
2770 case Intrinsic::eh_dwarf_cfa: {
2771 if (ExceptionHandling) {
2772 MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002773 SDOperand CfaArg;
2774 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2775 CfaArg = DAG.getNode(ISD::TRUNCATE,
2776 TLI.getPointerTy(), getValue(I.getOperand(1)));
2777 else
2778 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2779 TLI.getPointerTy(), getValue(I.getOperand(1)));
2780
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002781 SDOperand Offset = DAG.getNode(ISD::ADD,
2782 TLI.getPointerTy(),
2783 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002784 TLI.getPointerTy()),
2785 CfaArg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002786 setValue(&I, DAG.getNode(ISD::ADD,
2787 TLI.getPointerTy(),
2788 DAG.getNode(ISD::FRAMEADDR,
2789 TLI.getPointerTy(),
2790 DAG.getConstant(0,
2791 TLI.getPointerTy())),
2792 Offset));
2793 } else {
2794 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2795 }
2796
2797 return 0;
2798 }
2799
2800 case Intrinsic::sqrt_f32:
2801 case Intrinsic::sqrt_f64:
2802 setValue(&I, DAG.getNode(ISD::FSQRT,
2803 getValue(I.getOperand(1)).getValueType(),
2804 getValue(I.getOperand(1))));
2805 return 0;
2806 case Intrinsic::powi_f32:
2807 case Intrinsic::powi_f64:
2808 setValue(&I, DAG.getNode(ISD::FPOWI,
2809 getValue(I.getOperand(1)).getValueType(),
2810 getValue(I.getOperand(1)),
2811 getValue(I.getOperand(2))));
2812 return 0;
2813 case Intrinsic::pcmarker: {
2814 SDOperand Tmp = getValue(I.getOperand(1));
2815 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2816 return 0;
2817 }
2818 case Intrinsic::readcyclecounter: {
2819 SDOperand Op = getRoot();
2820 SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2821 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2822 &Op, 1);
2823 setValue(&I, Tmp);
2824 DAG.setRoot(Tmp.getValue(1));
2825 return 0;
2826 }
2827 case Intrinsic::part_select: {
2828 // Currently not implemented: just abort
2829 assert(0 && "part_select intrinsic not implemented");
2830 abort();
2831 }
2832 case Intrinsic::part_set: {
2833 // Currently not implemented: just abort
2834 assert(0 && "part_set intrinsic not implemented");
2835 abort();
2836 }
2837 case Intrinsic::bswap:
2838 setValue(&I, DAG.getNode(ISD::BSWAP,
2839 getValue(I.getOperand(1)).getValueType(),
2840 getValue(I.getOperand(1))));
2841 return 0;
2842 case Intrinsic::cttz: {
2843 SDOperand Arg = getValue(I.getOperand(1));
2844 MVT::ValueType Ty = Arg.getValueType();
2845 SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002846 setValue(&I, result);
2847 return 0;
2848 }
2849 case Intrinsic::ctlz: {
2850 SDOperand Arg = getValue(I.getOperand(1));
2851 MVT::ValueType Ty = Arg.getValueType();
2852 SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002853 setValue(&I, result);
2854 return 0;
2855 }
2856 case Intrinsic::ctpop: {
2857 SDOperand Arg = getValue(I.getOperand(1));
2858 MVT::ValueType Ty = Arg.getValueType();
2859 SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002860 setValue(&I, result);
2861 return 0;
2862 }
2863 case Intrinsic::stacksave: {
2864 SDOperand Op = getRoot();
2865 SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2866 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2867 setValue(&I, Tmp);
2868 DAG.setRoot(Tmp.getValue(1));
2869 return 0;
2870 }
2871 case Intrinsic::stackrestore: {
2872 SDOperand Tmp = getValue(I.getOperand(1));
2873 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2874 return 0;
2875 }
2876 case Intrinsic::prefetch:
2877 // FIXME: Currently discarding prefetches.
2878 return 0;
2879
2880 case Intrinsic::var_annotation:
2881 // Discard annotate attributes
2882 return 0;
Duncan Sands38947cd2007-07-27 12:58:54 +00002883
2884 case Intrinsic::adjust_trampoline: {
2885 SDOperand Arg = getValue(I.getOperand(1));
2886 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMP, TLI.getPointerTy(), Arg));
2887 return 0;
2888 }
2889
2890 case Intrinsic::init_trampoline: {
2891 const Function *F =
2892 cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2893
2894 SDOperand Ops[6];
2895 Ops[0] = getRoot();
2896 Ops[1] = getValue(I.getOperand(1));
2897 Ops[2] = getValue(I.getOperand(2));
2898 Ops[3] = getValue(I.getOperand(3));
2899 Ops[4] = DAG.getSrcValue(I.getOperand(1));
2900 Ops[5] = DAG.getSrcValue(F);
2901
2902 DAG.setRoot(DAG.getNode(ISD::TRAMPOLINE, MVT::Other, Ops, 6));
2903 return 0;
2904 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002905 }
2906}
2907
2908
2909void SelectionDAGLowering::LowerCallTo(Instruction &I,
2910 const Type *CalledValueTy,
2911 unsigned CallingConv,
2912 bool IsTailCall,
2913 SDOperand Callee, unsigned OpIdx,
2914 MachineBasicBlock *LandingPad) {
2915 const PointerType *PT = cast<PointerType>(CalledValueTy);
2916 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2917 const ParamAttrsList *Attrs = FTy->getParamAttrs();
2918 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2919 unsigned BeginLabel = 0, EndLabel = 0;
2920
2921 TargetLowering::ArgListTy Args;
2922 TargetLowering::ArgListEntry Entry;
2923 Args.reserve(I.getNumOperands());
2924 for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2925 Value *Arg = I.getOperand(i);
2926 SDOperand ArgNode = getValue(Arg);
2927 Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2928
2929 unsigned attrInd = i - OpIdx + 1;
2930 Entry.isSExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2931 Entry.isZExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2932 Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2933 Entry.isSRet = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
Duncan Sands38947cd2007-07-27 12:58:54 +00002934 Entry.isNest = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00002935 Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002936 Args.push_back(Entry);
2937 }
2938
Duncan Sands241a0c92007-09-05 11:27:52 +00002939 if (ExceptionHandling && MMI && LandingPad) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002940 // Insert a label before the invoke call to mark the try range. This can be
2941 // used to detect deletion of the invoke via the MachineModuleInfo.
2942 BeginLabel = MMI->NextLabelID();
2943 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2944 DAG.getConstant(BeginLabel, MVT::i32)));
2945 }
2946
2947 std::pair<SDOperand,SDOperand> Result =
2948 TLI.LowerCallTo(getRoot(), I.getType(),
2949 Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2950 FTy->isVarArg(), CallingConv, IsTailCall,
2951 Callee, Args, DAG);
2952 if (I.getType() != Type::VoidTy)
2953 setValue(&I, Result.first);
2954 DAG.setRoot(Result.second);
2955
Duncan Sands241a0c92007-09-05 11:27:52 +00002956 if (ExceptionHandling && MMI && LandingPad) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957 // Insert a label at the end of the invoke call to mark the try range. This
2958 // can be used to detect deletion of the invoke via the MachineModuleInfo.
2959 EndLabel = MMI->NextLabelID();
2960 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2961 DAG.getConstant(EndLabel, MVT::i32)));
2962
2963 // Inform MachineModuleInfo of range.
2964 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2965 }
2966}
2967
2968
2969void SelectionDAGLowering::visitCall(CallInst &I) {
2970 const char *RenameFn = 0;
2971 if (Function *F = I.getCalledFunction()) {
2972 if (F->isDeclaration())
2973 if (unsigned IID = F->getIntrinsicID()) {
2974 RenameFn = visitIntrinsicCall(I, IID);
2975 if (!RenameFn)
2976 return;
2977 } else { // Not an LLVM intrinsic.
2978 const std::string &Name = F->getName();
2979 if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2980 if (I.getNumOperands() == 3 && // Basic sanity checks.
2981 I.getOperand(1)->getType()->isFloatingPoint() &&
2982 I.getType() == I.getOperand(1)->getType() &&
2983 I.getType() == I.getOperand(2)->getType()) {
2984 SDOperand LHS = getValue(I.getOperand(1));
2985 SDOperand RHS = getValue(I.getOperand(2));
2986 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2987 LHS, RHS));
2988 return;
2989 }
2990 } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2991 if (I.getNumOperands() == 2 && // Basic sanity checks.
2992 I.getOperand(1)->getType()->isFloatingPoint() &&
2993 I.getType() == I.getOperand(1)->getType()) {
2994 SDOperand Tmp = getValue(I.getOperand(1));
2995 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2996 return;
2997 }
2998 } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2999 if (I.getNumOperands() == 2 && // Basic sanity checks.
3000 I.getOperand(1)->getType()->isFloatingPoint() &&
3001 I.getType() == I.getOperand(1)->getType()) {
3002 SDOperand Tmp = getValue(I.getOperand(1));
3003 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3004 return;
3005 }
3006 } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
3007 if (I.getNumOperands() == 2 && // Basic sanity checks.
3008 I.getOperand(1)->getType()->isFloatingPoint() &&
3009 I.getType() == I.getOperand(1)->getType()) {
3010 SDOperand Tmp = getValue(I.getOperand(1));
3011 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3012 return;
3013 }
3014 }
3015 }
3016 } else if (isa<InlineAsm>(I.getOperand(0))) {
3017 visitInlineAsm(I);
3018 return;
3019 }
3020
3021 SDOperand Callee;
3022 if (!RenameFn)
3023 Callee = getValue(I.getOperand(0));
3024 else
3025 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3026
3027 LowerCallTo(I, I.getCalledValue()->getType(),
3028 I.getCallingConv(),
3029 I.isTailCall(),
3030 Callee,
3031 1);
3032}
3033
3034
3035/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3036/// this value and returns the result as a ValueVT value. This uses
3037/// Chain/Flag as the input and updates them for the output Chain/Flag.
3038/// If the Flag pointer is NULL, no flag is used.
3039SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3040 SDOperand &Chain, SDOperand *Flag)const{
3041 // Copy the legal parts from the registers.
3042 unsigned NumParts = Regs.size();
3043 SmallVector<SDOperand, 8> Parts(NumParts);
3044 for (unsigned i = 0; i != NumParts; ++i) {
3045 SDOperand Part = Flag ?
3046 DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3047 DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3048 Chain = Part.getValue(1);
3049 if (Flag)
3050 *Flag = Part.getValue(2);
3051 Parts[i] = Part;
3052 }
3053
3054 // Assemble the legal parts into the final value.
3055 return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3056}
3057
3058/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3059/// specified value into the registers specified by this object. This uses
3060/// Chain/Flag as the input and updates them for the output Chain/Flag.
3061/// If the Flag pointer is NULL, no flag is used.
3062void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3063 SDOperand &Chain, SDOperand *Flag) const {
3064 // Get the list of the values's legal parts.
3065 unsigned NumParts = Regs.size();
3066 SmallVector<SDOperand, 8> Parts(NumParts);
3067 getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3068
3069 // Copy the parts into the registers.
3070 for (unsigned i = 0; i != NumParts; ++i) {
3071 SDOperand Part = Flag ?
3072 DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3073 DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3074 Chain = Part.getValue(0);
3075 if (Flag)
3076 *Flag = Part.getValue(1);
3077 }
3078}
3079
3080/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3081/// operand list. This adds the code marker and includes the number of
3082/// values added into it.
3083void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3084 std::vector<SDOperand> &Ops) const {
3085 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3086 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3087 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3088 Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3089}
3090
3091/// isAllocatableRegister - If the specified register is safe to allocate,
3092/// i.e. it isn't a stack pointer or some other special register, return the
3093/// register class for the register. Otherwise, return null.
3094static const TargetRegisterClass *
3095isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3096 const TargetLowering &TLI, const MRegisterInfo *MRI) {
3097 MVT::ValueType FoundVT = MVT::Other;
3098 const TargetRegisterClass *FoundRC = 0;
3099 for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3100 E = MRI->regclass_end(); RCI != E; ++RCI) {
3101 MVT::ValueType ThisVT = MVT::Other;
3102
3103 const TargetRegisterClass *RC = *RCI;
3104 // If none of the the value types for this register class are valid, we
3105 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3106 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3107 I != E; ++I) {
3108 if (TLI.isTypeLegal(*I)) {
3109 // If we have already found this register in a different register class,
3110 // choose the one with the largest VT specified. For example, on
3111 // PowerPC, we favor f64 register classes over f32.
3112 if (FoundVT == MVT::Other ||
3113 MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3114 ThisVT = *I;
3115 break;
3116 }
3117 }
3118 }
3119
3120 if (ThisVT == MVT::Other) continue;
3121
3122 // NOTE: This isn't ideal. In particular, this might allocate the
3123 // frame pointer in functions that need it (due to them not being taken
3124 // out of allocation, because a variable sized allocation hasn't been seen
3125 // yet). This is a slight code pessimization, but should still work.
3126 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3127 E = RC->allocation_order_end(MF); I != E; ++I)
3128 if (*I == Reg) {
3129 // We found a matching register class. Keep looking at others in case
3130 // we find one with larger registers that this physreg is also in.
3131 FoundRC = RC;
3132 FoundVT = ThisVT;
3133 break;
3134 }
3135 }
3136 return FoundRC;
3137}
3138
3139
3140namespace {
3141/// AsmOperandInfo - This contains information for each constraint that we are
3142/// lowering.
3143struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3144 /// ConstraintCode - This contains the actual string for the code, like "m".
3145 std::string ConstraintCode;
3146
3147 /// ConstraintType - Information about the constraint code, e.g. Register,
3148 /// RegisterClass, Memory, Other, Unknown.
3149 TargetLowering::ConstraintType ConstraintType;
3150
3151 /// CallOperand/CallOperandval - If this is the result output operand or a
3152 /// clobber, this is null, otherwise it is the incoming operand to the
3153 /// CallInst. This gets modified as the asm is processed.
3154 SDOperand CallOperand;
3155 Value *CallOperandVal;
3156
3157 /// ConstraintVT - The ValueType for the operand value.
3158 MVT::ValueType ConstraintVT;
3159
3160 /// AssignedRegs - If this is a register or register class operand, this
3161 /// contains the set of register corresponding to the operand.
3162 RegsForValue AssignedRegs;
3163
3164 AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3165 : InlineAsm::ConstraintInfo(info),
3166 ConstraintType(TargetLowering::C_Unknown),
3167 CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3168 }
3169
3170 void ComputeConstraintToUse(const TargetLowering &TLI);
3171
3172 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3173 /// busy in OutputRegs/InputRegs.
3174 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3175 std::set<unsigned> &OutputRegs,
3176 std::set<unsigned> &InputRegs) const {
3177 if (isOutReg)
3178 OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3179 if (isInReg)
3180 InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3181 }
3182};
3183} // end anon namespace.
3184
3185/// getConstraintGenerality - Return an integer indicating how general CT is.
3186static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3187 switch (CT) {
3188 default: assert(0 && "Unknown constraint type!");
3189 case TargetLowering::C_Other:
3190 case TargetLowering::C_Unknown:
3191 return 0;
3192 case TargetLowering::C_Register:
3193 return 1;
3194 case TargetLowering::C_RegisterClass:
3195 return 2;
3196 case TargetLowering::C_Memory:
3197 return 3;
3198 }
3199}
3200
3201void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3202 assert(!Codes.empty() && "Must have at least one constraint");
3203
3204 std::string *Current = &Codes[0];
3205 TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3206 if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
3207 ConstraintCode = *Current;
3208 ConstraintType = CurType;
3209 return;
3210 }
3211
3212 unsigned CurGenerality = getConstraintGenerality(CurType);
3213
3214 // If we have multiple constraints, try to pick the most general one ahead
3215 // of time. This isn't a wonderful solution, but handles common cases.
3216 for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3217 TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3218 unsigned ThisGenerality = getConstraintGenerality(ThisType);
3219 if (ThisGenerality > CurGenerality) {
3220 // This constraint letter is more general than the previous one,
3221 // use it.
3222 CurType = ThisType;
3223 Current = &Codes[j];
3224 CurGenerality = ThisGenerality;
3225 }
3226 }
3227
3228 ConstraintCode = *Current;
3229 ConstraintType = CurType;
3230}
3231
3232
3233void SelectionDAGLowering::
3234GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3235 std::set<unsigned> &OutputRegs,
3236 std::set<unsigned> &InputRegs) {
3237 // Compute whether this value requires an input register, an output register,
3238 // or both.
3239 bool isOutReg = false;
3240 bool isInReg = false;
3241 switch (OpInfo.Type) {
3242 case InlineAsm::isOutput:
3243 isOutReg = true;
3244
3245 // If this is an early-clobber output, or if there is an input
3246 // constraint that matches this, we need to reserve the input register
3247 // so no other inputs allocate to it.
3248 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3249 break;
3250 case InlineAsm::isInput:
3251 isInReg = true;
3252 isOutReg = false;
3253 break;
3254 case InlineAsm::isClobber:
3255 isOutReg = true;
3256 isInReg = true;
3257 break;
3258 }
3259
3260
3261 MachineFunction &MF = DAG.getMachineFunction();
3262 std::vector<unsigned> Regs;
3263
3264 // If this is a constraint for a single physreg, or a constraint for a
3265 // register class, find it.
3266 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3267 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3268 OpInfo.ConstraintVT);
3269
3270 unsigned NumRegs = 1;
3271 if (OpInfo.ConstraintVT != MVT::Other)
3272 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3273 MVT::ValueType RegVT;
3274 MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3275
3276
3277 // If this is a constraint for a specific physical register, like {r17},
3278 // assign it now.
3279 if (PhysReg.first) {
3280 if (OpInfo.ConstraintVT == MVT::Other)
3281 ValueVT = *PhysReg.second->vt_begin();
3282
3283 // Get the actual register value type. This is important, because the user
3284 // may have asked for (e.g.) the AX register in i32 type. We need to
3285 // remember that AX is actually i16 to get the right extension.
3286 RegVT = *PhysReg.second->vt_begin();
3287
3288 // This is a explicit reference to a physical register.
3289 Regs.push_back(PhysReg.first);
3290
3291 // If this is an expanded reference, add the rest of the regs to Regs.
3292 if (NumRegs != 1) {
3293 TargetRegisterClass::iterator I = PhysReg.second->begin();
3294 TargetRegisterClass::iterator E = PhysReg.second->end();
3295 for (; *I != PhysReg.first; ++I)
3296 assert(I != E && "Didn't find reg!");
3297
3298 // Already added the first reg.
3299 --NumRegs; ++I;
3300 for (; NumRegs; --NumRegs, ++I) {
3301 assert(I != E && "Ran out of registers to allocate!");
3302 Regs.push_back(*I);
3303 }
3304 }
3305 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3306 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3307 return;
3308 }
3309
3310 // Otherwise, if this was a reference to an LLVM register class, create vregs
3311 // for this reference.
3312 std::vector<unsigned> RegClassRegs;
3313 const TargetRegisterClass *RC = PhysReg.second;
3314 if (RC) {
3315 // If this is an early clobber or tied register, our regalloc doesn't know
3316 // how to maintain the constraint. If it isn't, go ahead and create vreg
3317 // and let the regalloc do the right thing.
3318 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3319 // If there is some other early clobber and this is an input register,
3320 // then we are forced to pre-allocate the input reg so it doesn't
3321 // conflict with the earlyclobber.
3322 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3323 RegVT = *PhysReg.second->vt_begin();
3324
3325 if (OpInfo.ConstraintVT == MVT::Other)
3326 ValueVT = RegVT;
3327
3328 // Create the appropriate number of virtual registers.
3329 SSARegMap *RegMap = MF.getSSARegMap();
3330 for (; NumRegs; --NumRegs)
3331 Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3332
3333 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3334 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3335 return;
3336 }
3337
3338 // Otherwise, we can't allocate it. Let the code below figure out how to
3339 // maintain these constraints.
3340 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3341
3342 } else {
3343 // This is a reference to a register class that doesn't directly correspond
3344 // to an LLVM register class. Allocate NumRegs consecutive, available,
3345 // registers from the class.
3346 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3347 OpInfo.ConstraintVT);
3348 }
3349
3350 const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3351 unsigned NumAllocated = 0;
3352 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3353 unsigned Reg = RegClassRegs[i];
3354 // See if this register is available.
3355 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
3356 (isInReg && InputRegs.count(Reg))) { // Already used.
3357 // Make sure we find consecutive registers.
3358 NumAllocated = 0;
3359 continue;
3360 }
3361
3362 // Check to see if this register is allocatable (i.e. don't give out the
3363 // stack pointer).
3364 if (RC == 0) {
3365 RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3366 if (!RC) { // Couldn't allocate this register.
3367 // Reset NumAllocated to make sure we return consecutive registers.
3368 NumAllocated = 0;
3369 continue;
3370 }
3371 }
3372
3373 // Okay, this register is good, we can use it.
3374 ++NumAllocated;
3375
3376 // If we allocated enough consecutive registers, succeed.
3377 if (NumAllocated == NumRegs) {
3378 unsigned RegStart = (i-NumAllocated)+1;
3379 unsigned RegEnd = i+1;
3380 // Mark all of the allocated registers used.
3381 for (unsigned i = RegStart; i != RegEnd; ++i)
3382 Regs.push_back(RegClassRegs[i]);
3383
3384 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3385 OpInfo.ConstraintVT);
3386 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3387 return;
3388 }
3389 }
3390
3391 // Otherwise, we couldn't allocate enough registers for this.
3392 return;
3393}
3394
3395
3396/// visitInlineAsm - Handle a call to an InlineAsm object.
3397///
3398void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3399 InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3400
3401 /// ConstraintOperands - Information about all of the constraints.
3402 std::vector<AsmOperandInfo> ConstraintOperands;
3403
3404 SDOperand Chain = getRoot();
3405 SDOperand Flag;
3406
3407 std::set<unsigned> OutputRegs, InputRegs;
3408
3409 // Do a prepass over the constraints, canonicalizing them, and building up the
3410 // ConstraintOperands list.
3411 std::vector<InlineAsm::ConstraintInfo>
3412 ConstraintInfos = IA->ParseConstraints();
3413
3414 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3415 // constraint. If so, we can't let the register allocator allocate any input
3416 // registers, because it will not know to avoid the earlyclobbered output reg.
3417 bool SawEarlyClobber = false;
3418
3419 unsigned OpNo = 1; // OpNo - The operand of the CallInst.
3420 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3421 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3422 AsmOperandInfo &OpInfo = ConstraintOperands.back();
3423
3424 MVT::ValueType OpVT = MVT::Other;
3425
3426 // Compute the value type for each operand.
3427 switch (OpInfo.Type) {
3428 case InlineAsm::isOutput:
3429 if (!OpInfo.isIndirect) {
3430 // The return value of the call is this value. As such, there is no
3431 // corresponding argument.
3432 assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3433 OpVT = TLI.getValueType(I.getType());
3434 } else {
3435 OpInfo.CallOperandVal = I.getOperand(OpNo++);
3436 }
3437 break;
3438 case InlineAsm::isInput:
3439 OpInfo.CallOperandVal = I.getOperand(OpNo++);
3440 break;
3441 case InlineAsm::isClobber:
3442 // Nothing to do.
3443 break;
3444 }
3445
3446 // If this is an input or an indirect output, process the call argument.
3447 if (OpInfo.CallOperandVal) {
3448 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3449 const Type *OpTy = OpInfo.CallOperandVal->getType();
3450 // If this is an indirect operand, the operand is a pointer to the
3451 // accessed type.
3452 if (OpInfo.isIndirect)
3453 OpTy = cast<PointerType>(OpTy)->getElementType();
3454
3455 // If OpTy is not a first-class value, it may be a struct/union that we
3456 // can tile with integers.
3457 if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3458 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3459 switch (BitSize) {
3460 default: break;
3461 case 1:
3462 case 8:
3463 case 16:
3464 case 32:
3465 case 64:
3466 OpTy = IntegerType::get(BitSize);
3467 break;
3468 }
3469 }
3470
3471 OpVT = TLI.getValueType(OpTy, true);
3472 }
3473
3474 OpInfo.ConstraintVT = OpVT;
3475
3476 // Compute the constraint code and ConstraintType to use.
3477 OpInfo.ComputeConstraintToUse(TLI);
3478
3479 // Keep track of whether we see an earlyclobber.
3480 SawEarlyClobber |= OpInfo.isEarlyClobber;
3481
3482 // If this is a memory input, and if the operand is not indirect, do what we
3483 // need to to provide an address for the memory input.
3484 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3485 !OpInfo.isIndirect) {
3486 assert(OpInfo.Type == InlineAsm::isInput &&
3487 "Can only indirectify direct input operands!");
3488
3489 // Memory operands really want the address of the value. If we don't have
3490 // an indirect input, put it in the constpool if we can, otherwise spill
3491 // it to a stack slot.
3492
3493 // If the operand is a float, integer, or vector constant, spill to a
3494 // constant pool entry to get its address.
3495 Value *OpVal = OpInfo.CallOperandVal;
3496 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3497 isa<ConstantVector>(OpVal)) {
3498 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3499 TLI.getPointerTy());
3500 } else {
3501 // Otherwise, create a stack slot and emit a store to it before the
3502 // asm.
3503 const Type *Ty = OpVal->getType();
3504 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3505 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3506 MachineFunction &MF = DAG.getMachineFunction();
3507 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3508 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3509 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3510 OpInfo.CallOperand = StackSlot;
3511 }
3512
3513 // There is no longer a Value* corresponding to this operand.
3514 OpInfo.CallOperandVal = 0;
3515 // It is now an indirect operand.
3516 OpInfo.isIndirect = true;
3517 }
3518
3519 // If this constraint is for a specific register, allocate it before
3520 // anything else.
3521 if (OpInfo.ConstraintType == TargetLowering::C_Register)
3522 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3523 }
3524 ConstraintInfos.clear();
3525
3526
3527 // Second pass - Loop over all of the operands, assigning virtual or physregs
3528 // to registerclass operands.
3529 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3530 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3531
3532 // C_Register operands have already been allocated, Other/Memory don't need
3533 // to be.
3534 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3535 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3536 }
3537
3538 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3539 std::vector<SDOperand> AsmNodeOperands;
3540 AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
3541 AsmNodeOperands.push_back(
3542 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3543
3544
3545 // Loop over all of the inputs, copying the operand values into the
3546 // appropriate registers and processing the output regs.
3547 RegsForValue RetValRegs;
3548
3549 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3550 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3551
3552 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3553 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3554
3555 switch (OpInfo.Type) {
3556 case InlineAsm::isOutput: {
3557 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3558 OpInfo.ConstraintType != TargetLowering::C_Register) {
3559 // Memory output, or 'other' output (e.g. 'X' constraint).
3560 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3561
3562 // Add information to the INLINEASM node to know about this output.
3563 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3564 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3565 TLI.getPointerTy()));
3566 AsmNodeOperands.push_back(OpInfo.CallOperand);
3567 break;
3568 }
3569
3570 // Otherwise, this is a register or register class output.
3571
3572 // Copy the output from the appropriate register. Find a register that
3573 // we can use.
3574 if (OpInfo.AssignedRegs.Regs.empty()) {
3575 cerr << "Couldn't allocate output reg for contraint '"
3576 << OpInfo.ConstraintCode << "'!\n";
3577 exit(1);
3578 }
3579
3580 if (!OpInfo.isIndirect) {
3581 // This is the result value of the call.
3582 assert(RetValRegs.Regs.empty() &&
3583 "Cannot have multiple output constraints yet!");
3584 assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3585 RetValRegs = OpInfo.AssignedRegs;
3586 } else {
3587 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3588 OpInfo.CallOperandVal));
3589 }
3590
3591 // Add information to the INLINEASM node to know that this register is
3592 // set.
3593 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3594 AsmNodeOperands);
3595 break;
3596 }
3597 case InlineAsm::isInput: {
3598 SDOperand InOperandVal = OpInfo.CallOperand;
3599
3600 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
3601 // If this is required to match an output register we have already set,
3602 // just use its register.
3603 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3604
3605 // Scan until we find the definition we already emitted of this operand.
3606 // When we find it, create a RegsForValue operand.
3607 unsigned CurOp = 2; // The first operand.
3608 for (; OperandNo; --OperandNo) {
3609 // Advance to the next operand.
3610 unsigned NumOps =
3611 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3612 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3613 (NumOps & 7) == 4 /*MEM*/) &&
3614 "Skipped past definitions?");
3615 CurOp += (NumOps>>3)+1;
3616 }
3617
3618 unsigned NumOps =
3619 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3620 if ((NumOps & 7) == 2 /*REGDEF*/) {
3621 // Add NumOps>>3 registers to MatchedRegs.
3622 RegsForValue MatchedRegs;
3623 MatchedRegs.ValueVT = InOperandVal.getValueType();
3624 MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
3625 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3626 unsigned Reg =
3627 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3628 MatchedRegs.Regs.push_back(Reg);
3629 }
3630
3631 // Use the produced MatchedRegs object to
3632 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3633 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3634 break;
3635 } else {
3636 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3637 assert(0 && "matching constraints for memory operands unimp");
3638 }
3639 }
3640
3641 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3642 assert(!OpInfo.isIndirect &&
3643 "Don't know how to handle indirect other inputs yet!");
3644
Chris Lattnera531abc2007-08-25 00:47:38 +00003645 std::vector<SDOperand> Ops;
3646 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3647 Ops, DAG);
3648 if (Ops.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003649 cerr << "Invalid operand for inline asm constraint '"
3650 << OpInfo.ConstraintCode << "'!\n";
3651 exit(1);
3652 }
3653
3654 // Add information to the INLINEASM node to know about this input.
Chris Lattnera531abc2007-08-25 00:47:38 +00003655 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003656 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3657 TLI.getPointerTy()));
Chris Lattnera531abc2007-08-25 00:47:38 +00003658 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003659 break;
3660 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3661 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3662 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3663 "Memory operands expect pointer values");
3664
3665 // Add information to the INLINEASM node to know about this input.
3666 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3667 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3668 TLI.getPointerTy()));
3669 AsmNodeOperands.push_back(InOperandVal);
3670 break;
3671 }
3672
3673 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3674 OpInfo.ConstraintType == TargetLowering::C_Register) &&
3675 "Unknown constraint type!");
3676 assert(!OpInfo.isIndirect &&
3677 "Don't know how to handle indirect register inputs yet!");
3678
3679 // Copy the input into the appropriate registers.
3680 assert(!OpInfo.AssignedRegs.Regs.empty() &&
3681 "Couldn't allocate input reg!");
3682
3683 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3684
3685 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3686 AsmNodeOperands);
3687 break;
3688 }
3689 case InlineAsm::isClobber: {
3690 // Add the clobbered value to the operand list, so that the register
3691 // allocator is aware that the physreg got clobbered.
3692 if (!OpInfo.AssignedRegs.Regs.empty())
3693 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3694 AsmNodeOperands);
3695 break;
3696 }
3697 }
3698 }
3699
3700 // Finish up input operands.
3701 AsmNodeOperands[0] = Chain;
3702 if (Flag.Val) AsmNodeOperands.push_back(Flag);
3703
3704 Chain = DAG.getNode(ISD::INLINEASM,
3705 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3706 &AsmNodeOperands[0], AsmNodeOperands.size());
3707 Flag = Chain.getValue(1);
3708
3709 // If this asm returns a register value, copy the result from that register
3710 // and set it as the value of the call.
3711 if (!RetValRegs.Regs.empty()) {
3712 SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3713
3714 // If the result of the inline asm is a vector, it may have the wrong
3715 // width/num elts. Make sure to convert it to the right type with
3716 // bit_convert.
3717 if (MVT::isVector(Val.getValueType())) {
3718 const VectorType *VTy = cast<VectorType>(I.getType());
3719 MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3720
3721 Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3722 }
3723
3724 setValue(&I, Val);
3725 }
3726
3727 std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3728
3729 // Process indirect outputs, first output all of the flagged copies out of
3730 // physregs.
3731 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3732 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3733 Value *Ptr = IndirectStoresToEmit[i].second;
3734 SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3735 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3736 }
3737
3738 // Emit the non-flagged stores from the physregs.
3739 SmallVector<SDOperand, 8> OutChains;
3740 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3741 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3742 getValue(StoresToEmit[i].second),
3743 StoresToEmit[i].second, 0));
3744 if (!OutChains.empty())
3745 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3746 &OutChains[0], OutChains.size());
3747 DAG.setRoot(Chain);
3748}
3749
3750
3751void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3752 SDOperand Src = getValue(I.getOperand(0));
3753
3754 MVT::ValueType IntPtr = TLI.getPointerTy();
3755
3756 if (IntPtr < Src.getValueType())
3757 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3758 else if (IntPtr > Src.getValueType())
3759 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3760
3761 // Scale the source by the type size.
3762 uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3763 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3764 Src, getIntPtrConstant(ElementSize));
3765
3766 TargetLowering::ArgListTy Args;
3767 TargetLowering::ArgListEntry Entry;
3768 Entry.Node = Src;
3769 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3770 Args.push_back(Entry);
3771
3772 std::pair<SDOperand,SDOperand> Result =
3773 TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3774 DAG.getExternalSymbol("malloc", IntPtr),
3775 Args, DAG);
3776 setValue(&I, Result.first); // Pointers always fit in registers
3777 DAG.setRoot(Result.second);
3778}
3779
3780void SelectionDAGLowering::visitFree(FreeInst &I) {
3781 TargetLowering::ArgListTy Args;
3782 TargetLowering::ArgListEntry Entry;
3783 Entry.Node = getValue(I.getOperand(0));
3784 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3785 Args.push_back(Entry);
3786 MVT::ValueType IntPtr = TLI.getPointerTy();
3787 std::pair<SDOperand,SDOperand> Result =
3788 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3789 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3790 DAG.setRoot(Result.second);
3791}
3792
3793// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3794// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
3795// instructions are special in various ways, which require special support to
3796// insert. The specified MachineInstr is created but not inserted into any
3797// basic blocks, and the scheduler passes ownership of it to this method.
3798MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3799 MachineBasicBlock *MBB) {
3800 cerr << "If a target marks an instruction with "
3801 << "'usesCustomDAGSchedInserter', it must implement "
3802 << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3803 abort();
3804 return 0;
3805}
3806
3807void SelectionDAGLowering::visitVAStart(CallInst &I) {
3808 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3809 getValue(I.getOperand(1)),
3810 DAG.getSrcValue(I.getOperand(1))));
3811}
3812
3813void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3814 SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3815 getValue(I.getOperand(0)),
3816 DAG.getSrcValue(I.getOperand(0)));
3817 setValue(&I, V);
3818 DAG.setRoot(V.getValue(1));
3819}
3820
3821void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3822 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3823 getValue(I.getOperand(1)),
3824 DAG.getSrcValue(I.getOperand(1))));
3825}
3826
3827void SelectionDAGLowering::visitVACopy(CallInst &I) {
3828 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3829 getValue(I.getOperand(1)),
3830 getValue(I.getOperand(2)),
3831 DAG.getSrcValue(I.getOperand(1)),
3832 DAG.getSrcValue(I.getOperand(2))));
3833}
3834
3835/// TargetLowering::LowerArguments - This is the default LowerArguments
3836/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
3837/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3838/// integrated into SDISel.
3839std::vector<SDOperand>
3840TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3841 const FunctionType *FTy = F.getFunctionType();
3842 const ParamAttrsList *Attrs = FTy->getParamAttrs();
3843 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3844 std::vector<SDOperand> Ops;
3845 Ops.push_back(DAG.getRoot());
3846 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3847 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3848
3849 // Add one result value for each formal argument.
3850 std::vector<MVT::ValueType> RetVals;
3851 unsigned j = 1;
3852 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3853 I != E; ++I, ++j) {
3854 MVT::ValueType VT = getValueType(I->getType());
3855 unsigned Flags = ISD::ParamFlags::NoFlagSet;
3856 unsigned OriginalAlignment =
3857 getTargetData()->getABITypeAlignment(I->getType());
3858
3859 // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3860 // that is zero extended!
3861 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3862 Flags &= ~(ISD::ParamFlags::SExt);
3863 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3864 Flags |= ISD::ParamFlags::SExt;
3865 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3866 Flags |= ISD::ParamFlags::InReg;
3867 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3868 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003869 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003870 Flags |= ISD::ParamFlags::ByVal;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003871 const PointerType *Ty = cast<PointerType>(I->getType());
3872 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00003873 unsigned StructAlign =
3874 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003875 unsigned StructSize = getTargetData()->getTypeSize(STy);
3876 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3877 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
3878 }
Duncan Sands38947cd2007-07-27 12:58:54 +00003879 if (Attrs && Attrs->paramHasAttr(j, ParamAttr::Nest))
3880 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003881 Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3882
3883 switch (getTypeAction(VT)) {
3884 default: assert(0 && "Unknown type action!");
3885 case Legal:
3886 RetVals.push_back(VT);
3887 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3888 break;
3889 case Promote:
3890 RetVals.push_back(getTypeToTransformTo(VT));
3891 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3892 break;
3893 case Expand: {
3894 // If this is an illegal type, it needs to be broken up to fit into
3895 // registers.
3896 MVT::ValueType RegisterVT = getRegisterType(VT);
3897 unsigned NumRegs = getNumRegisters(VT);
3898 for (unsigned i = 0; i != NumRegs; ++i) {
3899 RetVals.push_back(RegisterVT);
3900 // if it isn't first piece, alignment must be 1
3901 if (i > 0)
3902 Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3903 (1 << ISD::ParamFlags::OrigAlignmentOffs);
3904 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3905 }
3906 break;
3907 }
3908 }
3909 }
3910
3911 RetVals.push_back(MVT::Other);
3912
3913 // Create the node.
3914 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3915 DAG.getNodeValueTypes(RetVals), RetVals.size(),
3916 &Ops[0], Ops.size()).Val;
3917 unsigned NumArgRegs = Result->getNumValues() - 1;
3918 DAG.setRoot(SDOperand(Result, NumArgRegs));
3919
3920 // Set up the return result vector.
3921 Ops.clear();
3922 unsigned i = 0;
3923 unsigned Idx = 1;
3924 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3925 ++I, ++Idx) {
3926 MVT::ValueType VT = getValueType(I->getType());
3927
3928 switch (getTypeAction(VT)) {
3929 default: assert(0 && "Unknown type action!");
3930 case Legal:
3931 Ops.push_back(SDOperand(Result, i++));
3932 break;
3933 case Promote: {
3934 SDOperand Op(Result, i++);
3935 if (MVT::isInteger(VT)) {
3936 if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3937 Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3938 DAG.getValueType(VT));
3939 else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3940 Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3941 DAG.getValueType(VT));
3942 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3943 } else {
3944 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3945 Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3946 }
3947 Ops.push_back(Op);
3948 break;
3949 }
3950 case Expand: {
3951 MVT::ValueType PartVT = getRegisterType(VT);
3952 unsigned NumParts = getNumRegisters(VT);
3953 SmallVector<SDOperand, 4> Parts(NumParts);
3954 for (unsigned j = 0; j != NumParts; ++j)
3955 Parts[j] = SDOperand(Result, i++);
3956 Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3957 break;
3958 }
3959 }
3960 }
3961 assert(i == NumArgRegs && "Argument register count mismatch!");
3962 return Ops;
3963}
3964
3965
3966/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3967/// implementation, which just inserts an ISD::CALL node, which is later custom
3968/// lowered by the target to something concrete. FIXME: When all targets are
3969/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3970std::pair<SDOperand, SDOperand>
3971TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3972 bool RetTyIsSigned, bool isVarArg,
3973 unsigned CallingConv, bool isTailCall,
3974 SDOperand Callee,
3975 ArgListTy &Args, SelectionDAG &DAG) {
3976 SmallVector<SDOperand, 32> Ops;
3977 Ops.push_back(Chain); // Op#0 - Chain
3978 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3979 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
3980 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
3981 Ops.push_back(Callee);
3982
3983 // Handle all of the outgoing arguments.
3984 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3985 MVT::ValueType VT = getValueType(Args[i].Ty);
3986 SDOperand Op = Args[i].Node;
3987 unsigned Flags = ISD::ParamFlags::NoFlagSet;
3988 unsigned OriginalAlignment =
3989 getTargetData()->getABITypeAlignment(Args[i].Ty);
3990
3991 if (Args[i].isSExt)
3992 Flags |= ISD::ParamFlags::SExt;
3993 if (Args[i].isZExt)
3994 Flags |= ISD::ParamFlags::ZExt;
3995 if (Args[i].isInReg)
3996 Flags |= ISD::ParamFlags::InReg;
3997 if (Args[i].isSRet)
3998 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00003999 if (Args[i].isByVal) {
4000 Flags |= ISD::ParamFlags::ByVal;
4001 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4002 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00004003 unsigned StructAlign =
4004 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004005 unsigned StructSize = getTargetData()->getTypeSize(STy);
4006 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4007 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
4008 }
Duncan Sands38947cd2007-07-27 12:58:54 +00004009 if (Args[i].isNest)
4010 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004011 Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4012
4013 switch (getTypeAction(VT)) {
4014 default: assert(0 && "Unknown type action!");
4015 case Legal:
4016 Ops.push_back(Op);
4017 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4018 break;
4019 case Promote:
4020 if (MVT::isInteger(VT)) {
4021 unsigned ExtOp;
4022 if (Args[i].isSExt)
4023 ExtOp = ISD::SIGN_EXTEND;
4024 else if (Args[i].isZExt)
4025 ExtOp = ISD::ZERO_EXTEND;
4026 else
4027 ExtOp = ISD::ANY_EXTEND;
4028 Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4029 } else {
4030 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4031 Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4032 }
4033 Ops.push_back(Op);
4034 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4035 break;
4036 case Expand: {
4037 MVT::ValueType PartVT = getRegisterType(VT);
4038 unsigned NumParts = getNumRegisters(VT);
4039 SmallVector<SDOperand, 4> Parts(NumParts);
4040 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4041 for (unsigned i = 0; i != NumParts; ++i) {
4042 // if it isn't first piece, alignment must be 1
4043 unsigned MyFlags = Flags;
4044 if (i != 0)
4045 MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4046 (1 << ISD::ParamFlags::OrigAlignmentOffs);
4047
4048 Ops.push_back(Parts[i]);
4049 Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4050 }
4051 break;
4052 }
4053 }
4054 }
4055
4056 // Figure out the result value types.
4057 MVT::ValueType VT = getValueType(RetTy);
4058 MVT::ValueType RegisterVT = getRegisterType(VT);
4059 unsigned NumRegs = getNumRegisters(VT);
4060 SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4061 for (unsigned i = 0; i != NumRegs; ++i)
4062 RetTys[i] = RegisterVT;
4063
4064 RetTys.push_back(MVT::Other); // Always has a chain.
4065
4066 // Create the CALL node.
4067 SDOperand Res = DAG.getNode(ISD::CALL,
4068 DAG.getVTList(&RetTys[0], NumRegs + 1),
4069 &Ops[0], Ops.size());
Chris Lattnerbc1200c2007-08-02 18:08:16 +00004070 Chain = Res.getValue(NumRegs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004071
4072 // Gather up the call result into a single value.
4073 if (RetTy != Type::VoidTy) {
4074 ISD::NodeType AssertOp = ISD::AssertSext;
4075 if (!RetTyIsSigned)
4076 AssertOp = ISD::AssertZext;
4077 SmallVector<SDOperand, 4> Results(NumRegs);
4078 for (unsigned i = 0; i != NumRegs; ++i)
4079 Results[i] = Res.getValue(i);
4080 Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4081 }
4082
4083 return std::make_pair(Res, Chain);
4084}
4085
4086SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4087 assert(0 && "LowerOperation not implemented for this target!");
4088 abort();
4089 return SDOperand();
4090}
4091
4092SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4093 SelectionDAG &DAG) {
4094 assert(0 && "CustomPromoteOperation not implemented for this target!");
4095 abort();
4096 return SDOperand();
4097}
4098
4099/// getMemsetValue - Vectorized representation of the memset value
4100/// operand.
4101static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4102 SelectionDAG &DAG) {
4103 MVT::ValueType CurVT = VT;
4104 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4105 uint64_t Val = C->getValue() & 255;
4106 unsigned Shift = 8;
4107 while (CurVT != MVT::i8) {
4108 Val = (Val << Shift) | Val;
4109 Shift <<= 1;
4110 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4111 }
4112 return DAG.getConstant(Val, VT);
4113 } else {
4114 Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4115 unsigned Shift = 8;
4116 while (CurVT != MVT::i8) {
4117 Value =
4118 DAG.getNode(ISD::OR, VT,
4119 DAG.getNode(ISD::SHL, VT, Value,
4120 DAG.getConstant(Shift, MVT::i8)), Value);
4121 Shift <<= 1;
4122 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4123 }
4124
4125 return Value;
4126 }
4127}
4128
4129/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4130/// used when a memcpy is turned into a memset when the source is a constant
4131/// string ptr.
4132static SDOperand getMemsetStringVal(MVT::ValueType VT,
4133 SelectionDAG &DAG, TargetLowering &TLI,
4134 std::string &Str, unsigned Offset) {
4135 uint64_t Val = 0;
4136 unsigned MSB = MVT::getSizeInBits(VT) / 8;
4137 if (TLI.isLittleEndian())
4138 Offset = Offset + MSB - 1;
4139 for (unsigned i = 0; i != MSB; ++i) {
4140 Val = (Val << 8) | (unsigned char)Str[Offset];
4141 Offset += TLI.isLittleEndian() ? -1 : 1;
4142 }
4143 return DAG.getConstant(Val, VT);
4144}
4145
4146/// getMemBasePlusOffset - Returns base and offset node for the
4147static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4148 SelectionDAG &DAG, TargetLowering &TLI) {
4149 MVT::ValueType VT = Base.getValueType();
4150 return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4151}
4152
4153/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4154/// to replace the memset / memcpy is below the threshold. It also returns the
4155/// types of the sequence of memory ops to perform memset / memcpy.
4156static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4157 unsigned Limit, uint64_t Size,
4158 unsigned Align, TargetLowering &TLI) {
4159 MVT::ValueType VT;
4160
4161 if (TLI.allowsUnalignedMemoryAccesses()) {
4162 VT = MVT::i64;
4163 } else {
4164 switch (Align & 7) {
4165 case 0:
4166 VT = MVT::i64;
4167 break;
4168 case 4:
4169 VT = MVT::i32;
4170 break;
4171 case 2:
4172 VT = MVT::i16;
4173 break;
4174 default:
4175 VT = MVT::i8;
4176 break;
4177 }
4178 }
4179
4180 MVT::ValueType LVT = MVT::i64;
4181 while (!TLI.isTypeLegal(LVT))
4182 LVT = (MVT::ValueType)((unsigned)LVT - 1);
4183 assert(MVT::isInteger(LVT));
4184
4185 if (VT > LVT)
4186 VT = LVT;
4187
4188 unsigned NumMemOps = 0;
4189 while (Size != 0) {
4190 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4191 while (VTSize > Size) {
4192 VT = (MVT::ValueType)((unsigned)VT - 1);
4193 VTSize >>= 1;
4194 }
4195 assert(MVT::isInteger(VT));
4196
4197 if (++NumMemOps > Limit)
4198 return false;
4199 MemOps.push_back(VT);
4200 Size -= VTSize;
4201 }
4202
4203 return true;
4204}
4205
4206void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4207 SDOperand Op1 = getValue(I.getOperand(1));
4208 SDOperand Op2 = getValue(I.getOperand(2));
4209 SDOperand Op3 = getValue(I.getOperand(3));
4210 SDOperand Op4 = getValue(I.getOperand(4));
4211 unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4212 if (Align == 0) Align = 1;
4213
Dan Gohmancc863aa2007-08-27 16:26:13 +00004214 // If the source and destination are known to not be aliases, we can
4215 // lower memmove as memcpy.
4216 if (Op == ISD::MEMMOVE) {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00004217 uint64_t Size = -1ULL;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004218 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4219 Size = C->getValue();
4220 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4221 AliasAnalysis::NoAlias)
4222 Op = ISD::MEMCPY;
4223 }
4224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004225 if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4226 std::vector<MVT::ValueType> MemOps;
4227
4228 // Expand memset / memcpy to a series of load / store ops
4229 // if the size operand falls below a certain threshold.
4230 SmallVector<SDOperand, 8> OutChains;
4231 switch (Op) {
4232 default: break; // Do nothing for now.
4233 case ISD::MEMSET: {
4234 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4235 Size->getValue(), Align, TLI)) {
4236 unsigned NumMemOps = MemOps.size();
4237 unsigned Offset = 0;
4238 for (unsigned i = 0; i < NumMemOps; i++) {
4239 MVT::ValueType VT = MemOps[i];
4240 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4241 SDOperand Value = getMemsetValue(Op2, VT, DAG);
4242 SDOperand Store = DAG.getStore(getRoot(), Value,
4243 getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4244 I.getOperand(1), Offset);
4245 OutChains.push_back(Store);
4246 Offset += VTSize;
4247 }
4248 }
4249 break;
4250 }
4251 case ISD::MEMCPY: {
4252 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4253 Size->getValue(), Align, TLI)) {
4254 unsigned NumMemOps = MemOps.size();
4255 unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4256 GlobalAddressSDNode *G = NULL;
4257 std::string Str;
4258 bool CopyFromStr = false;
4259
4260 if (Op2.getOpcode() == ISD::GlobalAddress)
4261 G = cast<GlobalAddressSDNode>(Op2);
4262 else if (Op2.getOpcode() == ISD::ADD &&
4263 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4264 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4265 G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4266 SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4267 }
4268 if (G) {
4269 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4270 if (GV && GV->isConstant()) {
4271 Str = GV->getStringValue(false);
4272 if (!Str.empty()) {
4273 CopyFromStr = true;
4274 SrcOff += SrcDelta;
4275 }
4276 }
4277 }
4278
4279 for (unsigned i = 0; i < NumMemOps; i++) {
4280 MVT::ValueType VT = MemOps[i];
4281 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4282 SDOperand Value, Chain, Store;
4283
4284 if (CopyFromStr) {
4285 Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4286 Chain = getRoot();
4287 Store =
4288 DAG.getStore(Chain, Value,
4289 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4290 I.getOperand(1), DstOff);
4291 } else {
4292 Value = DAG.getLoad(VT, getRoot(),
4293 getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4294 I.getOperand(2), SrcOff);
4295 Chain = Value.getValue(1);
4296 Store =
4297 DAG.getStore(Chain, Value,
4298 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4299 I.getOperand(1), DstOff);
4300 }
4301 OutChains.push_back(Store);
4302 SrcOff += VTSize;
4303 DstOff += VTSize;
4304 }
4305 }
4306 break;
4307 }
4308 }
4309
4310 if (!OutChains.empty()) {
4311 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4312 &OutChains[0], OutChains.size()));
4313 return;
4314 }
4315 }
4316
4317 DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4318}
4319
4320//===----------------------------------------------------------------------===//
4321// SelectionDAGISel code
4322//===----------------------------------------------------------------------===//
4323
4324unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4325 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4326}
4327
4328void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4329 AU.addRequired<AliasAnalysis>();
4330 AU.setPreservesAll();
4331}
4332
4333
4334
4335bool SelectionDAGISel::runOnFunction(Function &Fn) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004336 // Get alias analysis for load/store combining.
4337 AA = &getAnalysis<AliasAnalysis>();
4338
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004339 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4340 RegMap = MF.getSSARegMap();
4341 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4342
4343 FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4344
4345 if (ExceptionHandling)
4346 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4347 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4348 // Mark landing pad.
4349 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4350
4351 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4352 SelectBasicBlock(I, MF, FuncInfo);
4353
4354 // Add function live-ins to entry block live-in set.
4355 BasicBlock *EntryBB = &Fn.getEntryBlock();
4356 BB = FuncInfo.MBBMap[EntryBB];
4357 if (!MF.livein_empty())
4358 for (MachineFunction::livein_iterator I = MF.livein_begin(),
4359 E = MF.livein_end(); I != E; ++I)
4360 BB->addLiveIn(I->first);
4361
4362#ifndef NDEBUG
4363 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4364 "Not all catch info was assigned to a landing pad!");
4365#endif
4366
4367 return true;
4368}
4369
4370SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4371 unsigned Reg) {
4372 SDOperand Op = getValue(V);
4373 assert((Op.getOpcode() != ISD::CopyFromReg ||
4374 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4375 "Copy from a reg to the same reg!");
4376
4377 MVT::ValueType SrcVT = Op.getValueType();
4378 MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4379 unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4380 SmallVector<SDOperand, 8> Regs(NumRegs);
4381 SmallVector<SDOperand, 8> Chains(NumRegs);
4382
4383 // Copy the value by legal parts into sequential virtual registers.
4384 getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4385 for (unsigned i = 0; i != NumRegs; ++i)
4386 Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4387 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4388}
4389
4390void SelectionDAGISel::
4391LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4392 std::vector<SDOperand> &UnorderedChains) {
4393 // If this is the entry block, emit arguments.
4394 Function &F = *LLVMBB->getParent();
4395 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4396 SDOperand OldRoot = SDL.DAG.getRoot();
4397 std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4398
4399 unsigned a = 0;
4400 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4401 AI != E; ++AI, ++a)
4402 if (!AI->use_empty()) {
4403 SDL.setValue(AI, Args[a]);
4404
4405 // If this argument is live outside of the entry block, insert a copy from
4406 // whereever we got it to the vreg that other BB's will reference it as.
4407 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4408 if (VMI != FuncInfo.ValueMap.end()) {
4409 SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4410 UnorderedChains.push_back(Copy);
4411 }
4412 }
4413
4414 // Finally, if the target has anything special to do, allow it to do so.
4415 // FIXME: this should insert code into the DAG!
4416 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4417}
4418
4419static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4420 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4421 assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4422 "Copying catch info out of a landing pad!");
4423 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4424 if (isSelector(I)) {
4425 // Apply the catch info to DestBB.
4426 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4427#ifndef NDEBUG
4428 FLI.CatchInfoFound.insert(I);
4429#endif
4430 }
4431}
4432
4433void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4434 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4435 FunctionLoweringInfo &FuncInfo) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004436 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004437
4438 std::vector<SDOperand> UnorderedChains;
4439
4440 // Lower any arguments needed in this block if this is the entry block.
4441 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4442 LowerArguments(LLVMBB, SDL, UnorderedChains);
4443
4444 BB = FuncInfo.MBBMap[LLVMBB];
4445 SDL.setCurrentBasicBlock(BB);
4446
4447 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4448
4449 if (ExceptionHandling && MMI && BB->isLandingPad()) {
4450 // Add a label to mark the beginning of the landing pad. Deletion of the
4451 // landing pad can thus be detected via the MachineModuleInfo.
4452 unsigned LabelID = MMI->addLandingPad(BB);
4453 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4454 DAG.getConstant(LabelID, MVT::i32)));
4455
4456 // Mark exception register as live in.
4457 unsigned Reg = TLI.getExceptionAddressRegister();
4458 if (Reg) BB->addLiveIn(Reg);
4459
4460 // Mark exception selector register as live in.
4461 Reg = TLI.getExceptionSelectorRegister();
4462 if (Reg) BB->addLiveIn(Reg);
4463
4464 // FIXME: Hack around an exception handling flaw (PR1508): the personality
4465 // function and list of typeids logically belong to the invoke (or, if you
4466 // like, the basic block containing the invoke), and need to be associated
4467 // with it in the dwarf exception handling tables. Currently however the
4468 // information is provided by an intrinsic (eh.selector) that can be moved
4469 // to unexpected places by the optimizers: if the unwind edge is critical,
4470 // then breaking it can result in the intrinsics being in the successor of
4471 // the landing pad, not the landing pad itself. This results in exceptions
4472 // not being caught because no typeids are associated with the invoke.
4473 // This may not be the only way things can go wrong, but it is the only way
4474 // we try to work around for the moment.
4475 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4476
4477 if (Br && Br->isUnconditional()) { // Critical edge?
4478 BasicBlock::iterator I, E;
4479 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4480 if (isSelector(I))
4481 break;
4482
4483 if (I == E)
4484 // No catch info found - try to extract some from the successor.
4485 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4486 }
4487 }
4488
4489 // Lower all of the non-terminator instructions.
4490 for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4491 I != E; ++I)
4492 SDL.visit(*I);
4493
4494 // Ensure that all instructions which are used outside of their defining
4495 // blocks are available as virtual registers. Invoke is handled elsewhere.
4496 for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4497 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4498 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4499 if (VMI != FuncInfo.ValueMap.end())
4500 UnorderedChains.push_back(
4501 SDL.CopyValueToVirtualRegister(I, VMI->second));
4502 }
4503
4504 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
4505 // ensure constants are generated when needed. Remember the virtual registers
4506 // that need to be added to the Machine PHI nodes as input. We cannot just
4507 // directly add them, because expansion might result in multiple MBB's for one
4508 // BB. As such, the start of the BB might correspond to a different MBB than
4509 // the end.
4510 //
4511 TerminatorInst *TI = LLVMBB->getTerminator();
4512
4513 // Emit constants only once even if used by multiple PHI nodes.
4514 std::map<Constant*, unsigned> ConstantsOut;
4515
4516 // Vector bool would be better, but vector<bool> is really slow.
4517 std::vector<unsigned char> SuccsHandled;
4518 if (TI->getNumSuccessors())
4519 SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4520
4521 // Check successor nodes' PHI nodes that expect a constant to be available
4522 // from this block.
4523 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4524 BasicBlock *SuccBB = TI->getSuccessor(succ);
4525 if (!isa<PHINode>(SuccBB->begin())) continue;
4526 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4527
4528 // If this terminator has multiple identical successors (common for
4529 // switches), only handle each succ once.
4530 unsigned SuccMBBNo = SuccMBB->getNumber();
4531 if (SuccsHandled[SuccMBBNo]) continue;
4532 SuccsHandled[SuccMBBNo] = true;
4533
4534 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4535 PHINode *PN;
4536
4537 // At this point we know that there is a 1-1 correspondence between LLVM PHI
4538 // nodes and Machine PHI nodes, but the incoming operands have not been
4539 // emitted yet.
4540 for (BasicBlock::iterator I = SuccBB->begin();
4541 (PN = dyn_cast<PHINode>(I)); ++I) {
4542 // Ignore dead phi's.
4543 if (PN->use_empty()) continue;
4544
4545 unsigned Reg;
4546 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4547
4548 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4549 unsigned &RegOut = ConstantsOut[C];
4550 if (RegOut == 0) {
4551 RegOut = FuncInfo.CreateRegForValue(C);
4552 UnorderedChains.push_back(
4553 SDL.CopyValueToVirtualRegister(C, RegOut));
4554 }
4555 Reg = RegOut;
4556 } else {
4557 Reg = FuncInfo.ValueMap[PHIOp];
4558 if (Reg == 0) {
4559 assert(isa<AllocaInst>(PHIOp) &&
4560 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4561 "Didn't codegen value into a register!??");
4562 Reg = FuncInfo.CreateRegForValue(PHIOp);
4563 UnorderedChains.push_back(
4564 SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4565 }
4566 }
4567
4568 // Remember that this register needs to added to the machine PHI node as
4569 // the input for this MBB.
4570 MVT::ValueType VT = TLI.getValueType(PN->getType());
4571 unsigned NumRegisters = TLI.getNumRegisters(VT);
4572 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4573 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4574 }
4575 }
4576 ConstantsOut.clear();
4577
4578 // Turn all of the unordered chains into one factored node.
4579 if (!UnorderedChains.empty()) {
4580 SDOperand Root = SDL.getRoot();
4581 if (Root.getOpcode() != ISD::EntryToken) {
4582 unsigned i = 0, e = UnorderedChains.size();
4583 for (; i != e; ++i) {
4584 assert(UnorderedChains[i].Val->getNumOperands() > 1);
4585 if (UnorderedChains[i].Val->getOperand(0) == Root)
4586 break; // Don't add the root if we already indirectly depend on it.
4587 }
4588
4589 if (i == e)
4590 UnorderedChains.push_back(Root);
4591 }
4592 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4593 &UnorderedChains[0], UnorderedChains.size()));
4594 }
4595
4596 // Lower the terminator after the copies are emitted.
4597 SDL.visit(*LLVMBB->getTerminator());
4598
4599 // Copy over any CaseBlock records that may now exist due to SwitchInst
4600 // lowering, as well as any jump table information.
4601 SwitchCases.clear();
4602 SwitchCases = SDL.SwitchCases;
4603 JTCases.clear();
4604 JTCases = SDL.JTCases;
4605 BitTestCases.clear();
4606 BitTestCases = SDL.BitTestCases;
4607
4608 // Make sure the root of the DAG is up-to-date.
4609 DAG.setRoot(SDL.getRoot());
4610}
4611
4612void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004613 // Run the DAG combiner in pre-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004614 DAG.Combine(false, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004615
4616 DOUT << "Lowered selection DAG:\n";
4617 DEBUG(DAG.dump());
4618
4619 // Second step, hack on the DAG until it only uses operations and types that
4620 // the target supports.
4621 DAG.Legalize();
4622
4623 DOUT << "Legalized selection DAG:\n";
4624 DEBUG(DAG.dump());
4625
4626 // Run the DAG combiner in post-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004627 DAG.Combine(true, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004628
4629 if (ViewISelDAGs) DAG.viewGraph();
4630
4631 // Third, instruction select all of the operations to machine code, adding the
4632 // code to the MachineBasicBlock.
4633 InstructionSelectBasicBlock(DAG);
4634
4635 DOUT << "Selected machine code:\n";
4636 DEBUG(BB->dump());
4637}
4638
4639void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4640 FunctionLoweringInfo &FuncInfo) {
4641 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4642 {
4643 SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4644 CurDAG = &DAG;
4645
4646 // First step, lower LLVM code to some DAG. This DAG may use operations and
4647 // types that are not supported by the target.
4648 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4649
4650 // Second step, emit the lowered DAG as machine code.
4651 CodeGenAndEmitDAG(DAG);
4652 }
4653
4654 DOUT << "Total amount of phi nodes to update: "
4655 << PHINodesToUpdate.size() << "\n";
4656 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4657 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4658 << ", " << PHINodesToUpdate[i].second << ")\n";);
4659
4660 // Next, now that we know what the last MBB the LLVM BB expanded is, update
4661 // PHI nodes in successors.
4662 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4663 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4664 MachineInstr *PHI = PHINodesToUpdate[i].first;
4665 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4666 "This is not a machine PHI node that we are updating!");
4667 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4668 PHI->addMachineBasicBlockOperand(BB);
4669 }
4670 return;
4671 }
4672
4673 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4674 // Lower header first, if it wasn't already lowered
4675 if (!BitTestCases[i].Emitted) {
4676 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4677 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004678 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004679 // Set the current basic block to the mbb we wish to insert the code into
4680 BB = BitTestCases[i].Parent;
4681 HSDL.setCurrentBasicBlock(BB);
4682 // Emit the code
4683 HSDL.visitBitTestHeader(BitTestCases[i]);
4684 HSDAG.setRoot(HSDL.getRoot());
4685 CodeGenAndEmitDAG(HSDAG);
4686 }
4687
4688 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4689 SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4690 CurDAG = &BSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004691 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004692 // Set the current basic block to the mbb we wish to insert the code into
4693 BB = BitTestCases[i].Cases[j].ThisBB;
4694 BSDL.setCurrentBasicBlock(BB);
4695 // Emit the code
4696 if (j+1 != ej)
4697 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4698 BitTestCases[i].Reg,
4699 BitTestCases[i].Cases[j]);
4700 else
4701 BSDL.visitBitTestCase(BitTestCases[i].Default,
4702 BitTestCases[i].Reg,
4703 BitTestCases[i].Cases[j]);
4704
4705
4706 BSDAG.setRoot(BSDL.getRoot());
4707 CodeGenAndEmitDAG(BSDAG);
4708 }
4709
4710 // Update PHI Nodes
4711 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4712 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4713 MachineBasicBlock *PHIBB = PHI->getParent();
4714 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4715 "This is not a machine PHI node that we are updating!");
4716 // This is "default" BB. We have two jumps to it. From "header" BB and
4717 // from last "case" BB.
4718 if (PHIBB == BitTestCases[i].Default) {
4719 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4720 PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4721 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4722 PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4723 }
4724 // One of "cases" BB.
4725 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4726 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4727 if (cBB->succ_end() !=
4728 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4729 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4730 PHI->addMachineBasicBlockOperand(cBB);
4731 }
4732 }
4733 }
4734 }
4735
4736 // If the JumpTable record is filled in, then we need to emit a jump table.
4737 // Updating the PHI nodes is tricky in this case, since we need to determine
4738 // whether the PHI is a successor of the range check MBB or the jump table MBB
4739 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4740 // Lower header first, if it wasn't already lowered
4741 if (!JTCases[i].first.Emitted) {
4742 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4743 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004744 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004745 // Set the current basic block to the mbb we wish to insert the code into
4746 BB = JTCases[i].first.HeaderBB;
4747 HSDL.setCurrentBasicBlock(BB);
4748 // Emit the code
4749 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4750 HSDAG.setRoot(HSDL.getRoot());
4751 CodeGenAndEmitDAG(HSDAG);
4752 }
4753
4754 SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4755 CurDAG = &JSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004756 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004757 // Set the current basic block to the mbb we wish to insert the code into
4758 BB = JTCases[i].second.MBB;
4759 JSDL.setCurrentBasicBlock(BB);
4760 // Emit the code
4761 JSDL.visitJumpTable(JTCases[i].second);
4762 JSDAG.setRoot(JSDL.getRoot());
4763 CodeGenAndEmitDAG(JSDAG);
4764
4765 // Update PHI Nodes
4766 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4767 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4768 MachineBasicBlock *PHIBB = PHI->getParent();
4769 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4770 "This is not a machine PHI node that we are updating!");
4771 // "default" BB. We can go there only from header BB.
4772 if (PHIBB == JTCases[i].second.Default) {
4773 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4774 PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4775 }
4776 // JT BB. Just iterate over successors here
4777 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4778 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4779 PHI->addMachineBasicBlockOperand(BB);
4780 }
4781 }
4782 }
4783
4784 // If the switch block involved a branch to one of the actual successors, we
4785 // need to update PHI nodes in that block.
4786 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4787 MachineInstr *PHI = PHINodesToUpdate[i].first;
4788 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4789 "This is not a machine PHI node that we are updating!");
4790 if (BB->isSuccessor(PHI->getParent())) {
4791 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4792 PHI->addMachineBasicBlockOperand(BB);
4793 }
4794 }
4795
4796 // If we generated any switch lowering information, build and codegen any
4797 // additional DAGs necessary.
4798 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4799 SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4800 CurDAG = &SDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004801 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004802
4803 // Set the current basic block to the mbb we wish to insert the code into
4804 BB = SwitchCases[i].ThisBB;
4805 SDL.setCurrentBasicBlock(BB);
4806
4807 // Emit the code
4808 SDL.visitSwitchCase(SwitchCases[i]);
4809 SDAG.setRoot(SDL.getRoot());
4810 CodeGenAndEmitDAG(SDAG);
4811
4812 // Handle any PHI nodes in successors of this chunk, as if we were coming
4813 // from the original BB before switch expansion. Note that PHI nodes can
4814 // occur multiple times in PHINodesToUpdate. We have to be very careful to
4815 // handle them the right number of times.
4816 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
4817 for (MachineBasicBlock::iterator Phi = BB->begin();
4818 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4819 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4820 for (unsigned pn = 0; ; ++pn) {
4821 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4822 if (PHINodesToUpdate[pn].first == Phi) {
4823 Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4824 Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4825 break;
4826 }
4827 }
4828 }
4829
4830 // Don't process RHS if same block as LHS.
4831 if (BB == SwitchCases[i].FalseBB)
4832 SwitchCases[i].FalseBB = 0;
4833
4834 // If we haven't handled the RHS, do so now. Otherwise, we're done.
4835 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4836 SwitchCases[i].FalseBB = 0;
4837 }
4838 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4839 }
4840}
4841
4842
4843//===----------------------------------------------------------------------===//
4844/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4845/// target node in the graph.
4846void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4847 if (ViewSchedDAGs) DAG.viewGraph();
4848
4849 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4850
4851 if (!Ctor) {
4852 Ctor = ISHeuristic;
4853 RegisterScheduler::setDefault(Ctor);
4854 }
4855
4856 ScheduleDAG *SL = Ctor(this, &DAG, BB);
4857 BB = SL->Run();
Dan Gohman134c5b62007-08-28 20:32:58 +00004858
4859 if (ViewSUnitDAGs) SL->viewGraph();
4860
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004861 delete SL;
4862}
4863
4864
4865HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4866 return new HazardRecognizer();
4867}
4868
4869//===----------------------------------------------------------------------===//
4870// Helper functions used by the generated instruction selector.
4871//===----------------------------------------------------------------------===//
4872// Calls to these methods are generated by tblgen.
4873
4874/// CheckAndMask - The isel is trying to match something like (and X, 255). If
4875/// the dag combiner simplified the 255, we still want to match. RHS is the
4876/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4877/// specified in the .td file (e.g. 255).
4878bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00004879 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004880 uint64_t ActualMask = RHS->getValue();
4881 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4882
4883 // If the actual mask exactly matches, success!
4884 if (ActualMask == DesiredMask)
4885 return true;
4886
4887 // If the actual AND mask is allowing unallowed bits, this doesn't match.
4888 if (ActualMask & ~DesiredMask)
4889 return false;
4890
4891 // Otherwise, the DAG Combiner may have proven that the value coming in is
4892 // either already zero or is not demanded. Check for known zero input bits.
4893 uint64_t NeededMask = DesiredMask & ~ActualMask;
4894 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4895 return true;
4896
4897 // TODO: check to see if missing bits are just not demanded.
4898
4899 // Otherwise, this pattern doesn't match.
4900 return false;
4901}
4902
4903/// CheckOrMask - The isel is trying to match something like (or X, 255). If
4904/// the dag combiner simplified the 255, we still want to match. RHS is the
4905/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4906/// specified in the .td file (e.g. 255).
4907bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00004908 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004909 uint64_t ActualMask = RHS->getValue();
4910 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4911
4912 // If the actual mask exactly matches, success!
4913 if (ActualMask == DesiredMask)
4914 return true;
4915
4916 // If the actual AND mask is allowing unallowed bits, this doesn't match.
4917 if (ActualMask & ~DesiredMask)
4918 return false;
4919
4920 // Otherwise, the DAG Combiner may have proven that the value coming in is
4921 // either already zero or is not demanded. Check for known zero input bits.
4922 uint64_t NeededMask = DesiredMask & ~ActualMask;
4923
4924 uint64_t KnownZero, KnownOne;
4925 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4926
4927 // If all the missing bits in the or are already known to be set, match!
4928 if ((NeededMask & KnownOne) == NeededMask)
4929 return true;
4930
4931 // TODO: check to see if missing bits are just not demanded.
4932
4933 // Otherwise, this pattern doesn't match.
4934 return false;
4935}
4936
4937
4938/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4939/// by tblgen. Others should not call it.
4940void SelectionDAGISel::
4941SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4942 std::vector<SDOperand> InOps;
4943 std::swap(InOps, Ops);
4944
4945 Ops.push_back(InOps[0]); // input chain.
4946 Ops.push_back(InOps[1]); // input asm string.
4947
4948 unsigned i = 2, e = InOps.size();
4949 if (InOps[e-1].getValueType() == MVT::Flag)
4950 --e; // Don't process a flag operand if it is here.
4951
4952 while (i != e) {
4953 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4954 if ((Flags & 7) != 4 /*MEM*/) {
4955 // Just skip over this operand, copying the operands verbatim.
4956 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4957 i += (Flags >> 3) + 1;
4958 } else {
4959 assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4960 // Otherwise, this is a memory operand. Ask the target to select it.
4961 std::vector<SDOperand> SelOps;
4962 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4963 cerr << "Could not match memory address. Inline asm failure!\n";
4964 exit(1);
4965 }
4966
4967 // Add this to the output node.
4968 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4969 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4970 IntPtrTy));
4971 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4972 i += 2;
4973 }
4974 }
4975
4976 // Add the flag input back if present.
4977 if (e != InOps.size())
4978 Ops.push_back(InOps.back());
4979}
4980
4981char SelectionDAGISel::ID = 0;