blob: 84ff640b40228e345126d946aafd4c18c18cbff5 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000036#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP , "Number of floating point instructions");
52
53namespace {
54 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55 static char ID;
56 FPS() : MachineFunctionPass((intptr_t)&ID) {}
57
58 virtual bool runOnMachineFunction(MachineFunction &MF);
59
60 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
61
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062 private:
63 const TargetInstrInfo *TII; // Machine instruction info.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 MachineBasicBlock *MBB; // Current basic block
65 unsigned Stack[8]; // FP<n> Registers in each stack slot...
66 unsigned RegMap[8]; // Track which stack slot contains each register
67 unsigned StackTop; // The current top of the FP stack.
68
69 void dumpStack() const {
70 cerr << "Stack contents:";
71 for (unsigned i = 0; i != StackTop; ++i) {
72 cerr << " FP" << Stack[i];
73 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
74 }
75 cerr << "\n";
76 }
77 private:
Chris Lattnerb56cc342008-03-11 03:23:40 +000078 /// isStackEmpty - Return true if the FP stack is empty.
79 bool isStackEmpty() const {
80 return StackTop == 0;
81 }
82
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 // getSlot - Return the stack slot number a particular register number is
Chris Lattnerb56cc342008-03-11 03:23:40 +000084 // in.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085 unsigned getSlot(unsigned RegNo) const {
86 assert(RegNo < 8 && "Regno out of range!");
87 return RegMap[RegNo];
88 }
89
Chris Lattnerb56cc342008-03-11 03:23:40 +000090 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091 unsigned getStackEntry(unsigned STi) const {
92 assert(STi < StackTop && "Access past stack top!");
93 return Stack[StackTop-1-STi];
94 }
95
96 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattnerb56cc342008-03-11 03:23:40 +000097 // FP<RegNo> register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098 unsigned getSTReg(unsigned RegNo) const {
99 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
100 }
101
Chris Lattnerb56cc342008-03-11 03:23:40 +0000102 // pushReg - Push the specified FP<n> register onto the stack.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 void pushReg(unsigned Reg) {
104 assert(Reg < 8 && "Register number out of range!");
105 assert(StackTop < 8 && "Stack overflow!");
106 Stack[StackTop] = Reg;
107 RegMap[Reg] = StackTop++;
108 }
109
110 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattnerb56cc342008-03-11 03:23:40 +0000111 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
112 if (isAtTop(RegNo)) return;
113
114 unsigned STReg = getSTReg(RegNo);
115 unsigned RegOnTop = getStackEntry(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116
Chris Lattnerb56cc342008-03-11 03:23:40 +0000117 // Swap the slots the regs are in.
118 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119
Chris Lattnerb56cc342008-03-11 03:23:40 +0000120 // Swap stack slot contents.
121 assert(RegMap[RegOnTop] < StackTop);
122 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123
Chris Lattnerb56cc342008-03-11 03:23:40 +0000124 // Emit an fxch to update the runtime processors version of the state.
125 BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
126 NumFXCH++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 }
128
129 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
130 unsigned STReg = getSTReg(RegNo);
131 pushReg(AsReg); // New register on top of stack
132
133 BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
134 }
135
136 // popStackAfter - Pop the current value off of the top of the FP stack
137 // after the specified instruction.
138 void popStackAfter(MachineBasicBlock::iterator &I);
139
140 // freeStackSlotAfter - Free the specified register from the register stack,
141 // so that it is no longer in a register. If the register is currently at
142 // the top of the stack, we just pop the current instruction, otherwise we
143 // store the current top-of-stack into the specified slot, then pop the top
144 // of stack.
145 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
146
147 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
148
149 void handleZeroArgFP(MachineBasicBlock::iterator &I);
150 void handleOneArgFP(MachineBasicBlock::iterator &I);
151 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
152 void handleTwoArgFP(MachineBasicBlock::iterator &I);
153 void handleCompareFP(MachineBasicBlock::iterator &I);
154 void handleCondMovFP(MachineBasicBlock::iterator &I);
155 void handleSpecialFP(MachineBasicBlock::iterator &I);
156 };
157 char FPS::ID = 0;
158}
159
160FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
161
Chris Lattner4b7054f2008-01-14 06:41:29 +0000162/// getFPReg - Return the X86::FPx register number for the specified operand.
163/// For example, this returns 3 for X86::FP3.
164static unsigned getFPReg(const MachineOperand &MO) {
165 assert(MO.isRegister() && "Expected an FP register!");
166 unsigned Reg = MO.getReg();
167 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
168 return Reg - X86::FP0;
169}
170
171
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000172/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
173/// register references into FP stack references.
174///
175bool FPS::runOnMachineFunction(MachineFunction &MF) {
176 // We only need to run this pass if there are any FP registers used in this
177 // function. If it is all integer, there is nothing for us to do!
178 bool FPIsUsed = false;
179
180 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
181 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner1b989192007-12-31 04:13:23 +0000182 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 FPIsUsed = true;
184 break;
185 }
186
187 // Early exit.
188 if (!FPIsUsed) return false;
189
190 TII = MF.getTarget().getInstrInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 StackTop = 0;
192
193 // Process the function in depth first order so that we process at least one
194 // of the predecessors for every reachable block in the function.
195 std::set<MachineBasicBlock*> Processed;
196 MachineBasicBlock *Entry = MF.begin();
197
198 bool Changed = false;
199 for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
200 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
201 I != E; ++I)
202 Changed |= processBasicBlock(MF, **I);
203
204 return Changed;
205}
206
207/// processBasicBlock - Loop over all of the instructions in the basic block,
208/// transforming FP instructions into their stack form.
209///
210bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
211 bool Changed = false;
212 MBB = &BB;
213
214 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
215 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000216 unsigned Flags = MI->getDesc().TSFlags;
Chris Lattner45b527c2008-03-11 19:50:13 +0000217
218 unsigned FPInstClass = Flags & X86II::FPTypeMask;
219 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
220 FPInstClass = X86II::SpecialFP;
221
222 if (FPInstClass == X86II::NotFP)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223 continue; // Efficiently ignore non-fp insts!
224
225 MachineInstr *PrevMI = 0;
226 if (I != BB.begin())
Chris Lattner5d294e52008-03-09 07:05:32 +0000227 PrevMI = prior(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228
229 ++NumFP; // Keep track of # of pseudo instrs
230 DOUT << "\nFPInst:\t" << *MI;
231
232 // Get dead variables list now because the MI pointer may be deleted as part
233 // of processing!
234 SmallVector<unsigned, 8> DeadRegs;
235 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
236 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman38a9a9f2007-09-14 20:33:02 +0000237 if (MO.isRegister() && MO.isDead())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 DeadRegs.push_back(MO.getReg());
239 }
240
Chris Lattner45b527c2008-03-11 19:50:13 +0000241 switch (FPInstClass) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
243 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
244 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
245 case X86II::TwoArgFP: handleTwoArgFP(I); break;
246 case X86II::CompareFP: handleCompareFP(I); break;
247 case X86II::CondMovFP: handleCondMovFP(I); break;
248 case X86II::SpecialFP: handleSpecialFP(I); break;
249 default: assert(0 && "Unknown FP Type!");
250 }
251
252 // Check to see if any of the values defined by this instruction are dead
253 // after definition. If so, pop them.
254 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
255 unsigned Reg = DeadRegs[i];
256 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
257 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
258 freeStackSlotAfter(I, Reg-X86::FP0);
259 }
260 }
261
262 // Print out all of the instructions expanded to if -debug
263 DEBUG(
264 MachineBasicBlock::iterator PrevI(PrevMI);
265 if (I == PrevI) {
266 cerr << "Just deleted pseudo instruction\n";
267 } else {
268 MachineBasicBlock::iterator Start = I;
269 // Rewind to first instruction newly inserted.
270 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
271 cerr << "Inserted instructions:\n\t";
272 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sandsfe279782007-09-11 12:30:25 +0000273 while (++Start != next(I)) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 }
275 dumpStack();
276 );
277
278 Changed = true;
279 }
280
Chris Lattnerb56cc342008-03-11 03:23:40 +0000281 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282 return Changed;
283}
284
285//===----------------------------------------------------------------------===//
286// Efficient Lookup Table Support
287//===----------------------------------------------------------------------===//
288
289namespace {
290 struct TableEntry {
291 unsigned from;
292 unsigned to;
293 bool operator<(const TableEntry &TE) const { return from < TE.from; }
294 friend bool operator<(const TableEntry &TE, unsigned V) {
295 return TE.from < V;
296 }
297 friend bool operator<(unsigned V, const TableEntry &TE) {
298 return V < TE.from;
299 }
300 };
301}
302
303static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
304 for (unsigned i = 0; i != NumEntries-1; ++i)
305 if (!(Table[i] < Table[i+1])) return false;
306 return true;
307}
308
309static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
310 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
311 if (I != Table+N && I->from == Opcode)
312 return I->to;
313 return -1;
314}
315
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316#ifdef NDEBUG
317#define ASSERT_SORTED(TABLE)
318#else
319#define ASSERT_SORTED(TABLE) \
320 { static bool TABLE##Checked = false; \
321 if (!TABLE##Checked) { \
Owen Anderson1636de92007-09-07 04:06:50 +0000322 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323 "All lookup tables must be sorted for efficient access!"); \
324 TABLE##Checked = true; \
325 } \
326 }
327#endif
328
329//===----------------------------------------------------------------------===//
330// Register File -> Register Stack Mapping Methods
331//===----------------------------------------------------------------------===//
332
333// OpcodeTable - Sorted map of register instructions to their stack version.
334// The first element is an register file pseudo instruction, the second is the
335// concrete X86 instruction which uses the register stack.
336//
337static const TableEntry OpcodeTable[] = {
338 { X86::ABS_Fp32 , X86::ABS_F },
339 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000340 { X86::ABS_Fp80 , X86::ABS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341 { X86::ADD_Fp32m , X86::ADD_F32m },
342 { X86::ADD_Fp64m , X86::ADD_F64m },
343 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000344 { X86::ADD_Fp80m32 , X86::ADD_F32m },
345 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
347 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000348 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
350 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000351 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 { X86::CHS_Fp32 , X86::CHS_F },
353 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000354 { X86::CHS_Fp80 , X86::CHS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000355 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
356 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000357 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000358 { X86::CMOVB_Fp32 , X86::CMOVB_F },
359 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000360 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000361 { X86::CMOVE_Fp32 , X86::CMOVE_F },
362 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000363 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000364 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
365 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000366 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000367 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
368 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000369 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
371 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000372 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
374 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000375 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 { X86::CMOVP_Fp32 , X86::CMOVP_F },
377 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000378 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 { X86::COS_Fp32 , X86::COS_F },
380 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000381 { X86::COS_Fp80 , X86::COS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 { X86::DIVR_Fp32m , X86::DIVR_F32m },
383 { X86::DIVR_Fp64m , X86::DIVR_F64m },
384 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000385 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
386 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
388 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000389 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000390 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
391 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000392 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 { X86::DIV_Fp32m , X86::DIV_F32m },
394 { X86::DIV_Fp64m , X86::DIV_F64m },
395 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000396 { X86::DIV_Fp80m32 , X86::DIV_F32m },
397 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
399 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000400 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000401 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
402 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000403 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 { X86::ILD_Fp16m32 , X86::ILD_F16m },
405 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000406 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407 { X86::ILD_Fp32m32 , X86::ILD_F32m },
408 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000409 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000410 { X86::ILD_Fp64m32 , X86::ILD_F64m },
411 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000412 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
414 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000415 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000416 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
417 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000418 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000419 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
420 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000421 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000422 { X86::IST_Fp16m32 , X86::IST_F16m },
423 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000424 { X86::IST_Fp16m80 , X86::IST_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000425 { X86::IST_Fp32m32 , X86::IST_F32m },
426 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000427 { X86::IST_Fp32m80 , X86::IST_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 { X86::IST_Fp64m32 , X86::IST_FP64m },
429 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000430 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000431 { X86::LD_Fp032 , X86::LD_F0 },
432 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000433 { X86::LD_Fp080 , X86::LD_F0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 { X86::LD_Fp132 , X86::LD_F1 },
435 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000436 { X86::LD_Fp180 , X86::LD_F1 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000437 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000438 { X86::LD_Fp32m64 , X86::LD_F32m },
439 { X86::LD_Fp32m80 , X86::LD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000441 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000442 { X86::LD_Fp80m , X86::LD_F80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 { X86::MUL_Fp32m , X86::MUL_F32m },
444 { X86::MUL_Fp64m , X86::MUL_F64m },
445 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000446 { X86::MUL_Fp80m32 , X86::MUL_F32m },
447 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
449 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000450 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000451 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
452 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000453 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 { X86::SIN_Fp32 , X86::SIN_F },
455 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000456 { X86::SIN_Fp80 , X86::SIN_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000457 { X86::SQRT_Fp32 , X86::SQRT_F },
458 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000459 { X86::SQRT_Fp80 , X86::SQRT_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000460 { X86::ST_Fp32m , X86::ST_F32m },
461 { X86::ST_Fp64m , X86::ST_F64m },
462 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000463 { X86::ST_Fp80m32 , X86::ST_F32m },
464 { X86::ST_Fp80m64 , X86::ST_F64m },
465 { X86::ST_FpP80m , X86::ST_FP80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000466 { X86::SUBR_Fp32m , X86::SUBR_F32m },
467 { X86::SUBR_Fp64m , X86::SUBR_F64m },
468 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000469 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
470 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
472 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000473 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000474 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
475 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000476 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 { X86::SUB_Fp32m , X86::SUB_F32m },
478 { X86::SUB_Fp64m , X86::SUB_F64m },
479 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000480 { X86::SUB_Fp80m32 , X86::SUB_F32m },
481 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000482 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
483 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000484 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000485 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
486 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000487 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000488 { X86::TST_Fp32 , X86::TST_F },
489 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000490 { X86::TST_Fp80 , X86::TST_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000491 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
492 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000493 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000494 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
495 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000496 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000497};
498
499static unsigned getConcreteOpcode(unsigned Opcode) {
500 ASSERT_SORTED(OpcodeTable);
Owen Anderson1636de92007-09-07 04:06:50 +0000501 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
503 return Opc;
504}
505
506//===----------------------------------------------------------------------===//
507// Helper Methods
508//===----------------------------------------------------------------------===//
509
510// PopTable - Sorted map of instructions to their popping version. The first
511// element is an instruction, the second is the version which pops.
512//
513static const TableEntry PopTable[] = {
514 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
515
516 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
517 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
518
519 { X86::IST_F16m , X86::IST_FP16m },
520 { X86::IST_F32m , X86::IST_FP32m },
521
522 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
523
524 { X86::ST_F32m , X86::ST_FP32m },
525 { X86::ST_F64m , X86::ST_FP64m },
526 { X86::ST_Frr , X86::ST_FPrr },
527
528 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
529 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
530
531 { X86::UCOM_FIr , X86::UCOM_FIPr },
532
533 { X86::UCOM_FPr , X86::UCOM_FPPr },
534 { X86::UCOM_Fr , X86::UCOM_FPr },
535};
536
537/// popStackAfter - Pop the current value off of the top of the FP stack after
538/// the specified instruction. This attempts to be sneaky and combine the pop
539/// into the instruction itself if possible. The iterator is left pointing to
540/// the last instruction, be it a new pop instruction inserted, or the old
541/// instruction if it was modified in place.
542///
543void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
544 ASSERT_SORTED(PopTable);
545 assert(StackTop > 0 && "Cannot pop empty stack!");
546 RegMap[Stack[--StackTop]] = ~0; // Update state
547
548 // Check to see if there is a popping version of this instruction...
Owen Anderson1636de92007-09-07 04:06:50 +0000549 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000550 if (Opcode != -1) {
Chris Lattner86bb02f2008-01-11 18:10:50 +0000551 I->setDesc(TII->get(Opcode));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000552 if (Opcode == X86::UCOM_FPPr)
553 I->RemoveOperand(0);
554 } else { // Insert an explicit pop
555 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
556 }
557}
558
559/// freeStackSlotAfter - Free the specified register from the register stack, so
560/// that it is no longer in a register. If the register is currently at the top
561/// of the stack, we just pop the current instruction, otherwise we store the
562/// current top-of-stack into the specified slot, then pop the top of stack.
563void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
564 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
565 popStackAfter(I);
566 return;
567 }
568
569 // Otherwise, store the top of stack into the dead slot, killing the operand
570 // without having to add in an explicit xchg then pop.
571 //
572 unsigned STReg = getSTReg(FPRegNo);
573 unsigned OldSlot = getSlot(FPRegNo);
574 unsigned TopReg = Stack[StackTop-1];
575 Stack[OldSlot] = TopReg;
576 RegMap[TopReg] = OldSlot;
577 RegMap[FPRegNo] = ~0;
578 Stack[--StackTop] = ~0;
579 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
580}
581
582
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583//===----------------------------------------------------------------------===//
584// Instruction transformation implementation
585//===----------------------------------------------------------------------===//
586
587/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
588///
589void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
590 MachineInstr *MI = I;
591 unsigned DestReg = getFPReg(MI->getOperand(0));
592
593 // Change from the pseudo instruction to the concrete instruction.
594 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000595 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000596
597 // Result gets pushed on the stack.
598 pushReg(DestReg);
599}
600
601/// handleOneArgFP - fst <mem>, ST(0)
602///
603void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
604 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000605 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000606 assert((NumOps == 5 || NumOps == 1) &&
607 "Can only handle fst* & ftst instructions!");
608
609 // Is this the last use of the source register?
610 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000611 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612
613 // FISTP64m is strange because there isn't a non-popping versions.
614 // If we have one _and_ we don't want to pop the operand, duplicate the value
615 // on the stack instead of moving it. This ensure that popping the value is
616 // always ok.
Dale Johannesenb1064a52007-09-17 20:15:38 +0000617 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618 //
619 if (!KillsSrc &&
620 (MI->getOpcode() == X86::IST_Fp64m32 ||
621 MI->getOpcode() == X86::ISTT_Fp16m32 ||
622 MI->getOpcode() == X86::ISTT_Fp32m32 ||
623 MI->getOpcode() == X86::ISTT_Fp64m32 ||
624 MI->getOpcode() == X86::IST_Fp64m64 ||
625 MI->getOpcode() == X86::ISTT_Fp16m64 ||
626 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000627 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen0a6bdef2007-09-20 01:27:54 +0000628 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000629 MI->getOpcode() == X86::ISTT_Fp16m80 ||
630 MI->getOpcode() == X86::ISTT_Fp32m80 ||
631 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000632 MI->getOpcode() == X86::ST_FpP80m)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000633 duplicateToTop(Reg, 7 /*temp register*/, I);
634 } else {
635 moveToTop(Reg, I); // Move to the top of the stack...
636 }
637
638 // Convert from the pseudo instruction to the concrete instruction.
639 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000640 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641
642 if (MI->getOpcode() == X86::IST_FP64m ||
643 MI->getOpcode() == X86::ISTT_FP16m ||
644 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesenb71720f2007-08-06 19:50:32 +0000645 MI->getOpcode() == X86::ISTT_FP64m ||
646 MI->getOpcode() == X86::ST_FP80m) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000647 assert(StackTop > 0 && "Stack empty??");
648 --StackTop;
649 } else if (KillsSrc) { // Last use of operand?
650 popStackAfter(I);
651 }
652}
653
654
655/// handleOneArgFPRW: Handle instructions that read from the top of stack and
656/// replace the value with a newly computed value. These instructions may have
657/// non-fp operands after their FP operands.
658///
659/// Examples:
660/// R1 = fchs R2
661/// R1 = fadd R2, [mem]
662///
663void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
664 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000665 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000666 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
667
668 // Is this the last use of the source register?
669 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000670 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000671
672 if (KillsSrc) {
673 // If this is the last use of the source register, just make sure it's on
674 // the top of the stack.
675 moveToTop(Reg, I);
676 assert(StackTop > 0 && "Stack cannot be empty!");
677 --StackTop;
678 pushReg(getFPReg(MI->getOperand(0)));
679 } else {
680 // If this is not the last use of the source register, _copy_ it to the top
681 // of the stack.
682 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
683 }
684
685 // Change from the pseudo instruction to the concrete instruction.
686 MI->RemoveOperand(1); // Drop the source operand.
687 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner86bb02f2008-01-11 18:10:50 +0000688 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689}
690
691
692//===----------------------------------------------------------------------===//
693// Define tables of various ways to map pseudo instructions
694//
695
696// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
697static const TableEntry ForwardST0Table[] = {
698 { X86::ADD_Fp32 , X86::ADD_FST0r },
699 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000700 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701 { X86::DIV_Fp32 , X86::DIV_FST0r },
702 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000703 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 { X86::MUL_Fp32 , X86::MUL_FST0r },
705 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000706 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 { X86::SUB_Fp32 , X86::SUB_FST0r },
708 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000709 { X86::SUB_Fp80 , X86::SUB_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710};
711
712// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
713static const TableEntry ReverseST0Table[] = {
714 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
715 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000716 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 { X86::DIV_Fp32 , X86::DIVR_FST0r },
718 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000719 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
721 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000722 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723 { X86::SUB_Fp32 , X86::SUBR_FST0r },
724 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000725 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726};
727
728// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
729static const TableEntry ForwardSTiTable[] = {
730 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
731 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000732 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000733 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
734 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000735 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
737 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000738 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
740 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000741 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742};
743
744// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
745static const TableEntry ReverseSTiTable[] = {
746 { X86::ADD_Fp32 , X86::ADD_FrST0 },
747 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000748 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749 { X86::DIV_Fp32 , X86::DIV_FrST0 },
750 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000751 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000752 { X86::MUL_Fp32 , X86::MUL_FrST0 },
753 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000754 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 { X86::SUB_Fp32 , X86::SUB_FrST0 },
756 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000757 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758};
759
760
761/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
762/// instructions which need to be simplified and possibly transformed.
763///
764/// Result: ST(0) = fsub ST(0), ST(i)
765/// ST(i) = fsub ST(0), ST(i)
766/// ST(0) = fsubr ST(0), ST(i)
767/// ST(i) = fsubr ST(0), ST(i)
768///
769void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
770 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
771 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
772 MachineInstr *MI = I;
773
Chris Lattner5b930372008-01-07 07:27:27 +0000774 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
776 unsigned Dest = getFPReg(MI->getOperand(0));
777 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
778 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000779 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
780 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781
782 unsigned TOS = getStackEntry(0);
783
784 // One of our operands must be on the top of the stack. If neither is yet, we
785 // need to move one.
786 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
787 // We can choose to move either operand to the top of the stack. If one of
788 // the operands is killed by this instruction, we want that one so that we
789 // can update right on top of the old version.
790 if (KillsOp0) {
791 moveToTop(Op0, I); // Move dead operand to TOS.
792 TOS = Op0;
793 } else if (KillsOp1) {
794 moveToTop(Op1, I);
795 TOS = Op1;
796 } else {
797 // All of the operands are live after this instruction executes, so we
798 // cannot update on top of any operand. Because of this, we must
799 // duplicate one of the stack elements to the top. It doesn't matter
800 // which one we pick.
801 //
802 duplicateToTop(Op0, Dest, I);
803 Op0 = TOS = Dest;
804 KillsOp0 = true;
805 }
806 } else if (!KillsOp0 && !KillsOp1) {
807 // If we DO have one of our operands at the top of the stack, but we don't
808 // have a dead operand, we must duplicate one of the operands to a new slot
809 // on the stack.
810 duplicateToTop(Op0, Dest, I);
811 Op0 = TOS = Dest;
812 KillsOp0 = true;
813 }
814
815 // Now we know that one of our operands is on the top of the stack, and at
816 // least one of our operands is killed by this instruction.
817 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
818 "Stack conditions not set up right!");
819
820 // We decide which form to use based on what is on the top of the stack, and
821 // which operand is killed by this instruction.
822 const TableEntry *InstTable;
823 bool isForward = TOS == Op0;
824 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
825 if (updateST0) {
826 if (isForward)
827 InstTable = ForwardST0Table;
828 else
829 InstTable = ReverseST0Table;
830 } else {
831 if (isForward)
832 InstTable = ForwardSTiTable;
833 else
834 InstTable = ReverseSTiTable;
835 }
836
Owen Anderson1636de92007-09-07 04:06:50 +0000837 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
838 MI->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
840
841 // NotTOS - The register which is not on the top of stack...
842 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
843
844 // Replace the old instruction with a new instruction
845 MBB->remove(I++);
846 I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
847
848 // If both operands are killed, pop one off of the stack in addition to
849 // overwriting the other one.
850 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
851 assert(!updateST0 && "Should have updated other operand!");
852 popStackAfter(I); // Pop the top of stack
853 }
854
855 // Update stack information so that we know the destination register is now on
856 // the stack.
857 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
858 assert(UpdatedSlot < StackTop && Dest < 7);
859 Stack[UpdatedSlot] = Dest;
860 RegMap[Dest] = UpdatedSlot;
861 delete MI; // Remove the old instruction
862}
863
864/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
865/// register arguments and no explicit destinations.
866///
867void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
868 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
869 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
870 MachineInstr *MI = I;
871
Chris Lattner5b930372008-01-07 07:27:27 +0000872 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000873 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
874 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
875 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000876 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
877 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000878
879 // Make sure the first operand is on the top of stack, the other one can be
880 // anywhere.
881 moveToTop(Op0, I);
882
883 // Change from the pseudo instruction to the concrete instruction.
884 MI->getOperand(0).setReg(getSTReg(Op1));
885 MI->RemoveOperand(1);
Chris Lattner86bb02f2008-01-11 18:10:50 +0000886 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000887
888 // If any of the operands are killed by this instruction, free them.
889 if (KillsOp0) freeStackSlotAfter(I, Op0);
890 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
891}
892
893/// handleCondMovFP - Handle two address conditional move instructions. These
894/// instructions move a st(i) register to st(0) iff a condition is true. These
895/// instructions require that the first operand is at the top of the stack, but
896/// otherwise don't modify the stack at all.
897void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
898 MachineInstr *MI = I;
899
900 unsigned Op0 = getFPReg(MI->getOperand(0));
901 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000902 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000903
904 // The first operand *must* be on the top of the stack.
905 moveToTop(Op0, I);
906
907 // Change the second operand to the stack register that the operand is in.
908 // Change from the pseudo instruction to the concrete instruction.
909 MI->RemoveOperand(0);
910 MI->RemoveOperand(1);
911 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner86bb02f2008-01-11 18:10:50 +0000912 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000913
914 // If we kill the second operand, make sure to pop it from the stack.
915 if (Op0 != Op1 && KillsOp1) {
916 // Get this value off of the register stack.
917 freeStackSlotAfter(I, Op1);
918 }
919}
920
921
922/// handleSpecialFP - Handle special instructions which behave unlike other
923/// floating point instructions. This is primarily intended for use by pseudo
924/// instructions.
925///
926void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
927 MachineInstr *MI = I;
928 switch (MI->getOpcode()) {
929 default: assert(0 && "Unknown SpecialFP instruction!");
Chris Lattner5d294e52008-03-09 07:05:32 +0000930 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
931 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
932 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 assert(StackTop == 0 && "Stack should be empty after a call!");
934 pushReg(getFPReg(MI->getOperand(0)));
935 break;
Chris Lattner60d14d82008-03-21 06:38:26 +0000936 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
937 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
938 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
939 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
940 // The pattern we expect is:
941 // CALL
942 // FP1 = FpGET_ST0
943 // FP4 = FpGET_ST1
944 //
945 // At this point, we've pushed FP1 on the top of stack, so it should be
946 // present if it isn't dead. If it was dead, we already emitted a pop to
947 // remove it from the stack and StackTop = 0.
948
949 // Push FP4 as top of stack next.
950 pushReg(getFPReg(MI->getOperand(0)));
951
952 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
953 // dead. In this case, the ST(1) value is the only thing that is live, so
954 // it should be on the TOS (after the pop that was emitted) and is. Just
955 // continue in this case.
956 if (StackTop == 1)
957 break;
958
959 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
960 // elements so that our accounting is correct.
961 unsigned RegOnTop = getStackEntry(0);
962 unsigned RegNo = getStackEntry(1);
963
964 // Swap the slots the regs are in.
965 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
966
967 // Swap stack slot contents.
968 assert(RegMap[RegOnTop] < StackTop);
969 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
970 break;
971 }
Chris Lattneraaef8dc2008-03-09 07:08:44 +0000972 case X86::FpSET_ST0_32:
973 case X86::FpSET_ST0_64:
974 case X86::FpSET_ST0_80:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000975 assert(StackTop == 1 && "Stack should have one element on it to return!");
976 --StackTop; // "Forget" we have something on the top of stack!
977 break;
978 case X86::MOV_Fp3232:
979 case X86::MOV_Fp3264:
980 case X86::MOV_Fp6432:
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000981 case X86::MOV_Fp6464:
982 case X86::MOV_Fp3280:
983 case X86::MOV_Fp6480:
984 case X86::MOV_Fp8032:
985 case X86::MOV_Fp8064:
986 case X86::MOV_Fp8080: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000987 unsigned SrcReg = getFPReg(MI->getOperand(1));
988 unsigned DestReg = getFPReg(MI->getOperand(0));
989
Evan Chengc7daf1f2008-03-05 00:59:57 +0000990 if (MI->killsRegister(X86::FP0+SrcReg)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 // If the input operand is killed, we can just change the owner of the
992 // incoming stack slot into the result.
993 unsigned Slot = getSlot(SrcReg);
994 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
995 Stack[Slot] = DestReg;
996 RegMap[DestReg] = Slot;
997
998 } else {
999 // For FMOV we just duplicate the specified value to a new stack slot.
1000 // This could be made better, but would require substantial changes.
1001 duplicateToTop(SrcReg, DestReg, I);
1002 }
Nick Lewycky052a31f2008-03-11 05:56:09 +00001003 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004 break;
Chris Lattner45b527c2008-03-11 19:50:13 +00001005 case TargetInstrInfo::INLINEASM: {
1006 // The inline asm MachineInstr currently only *uses* FP registers for the
1007 // 'f' constraint. These should be turned into the current ST(x) register
1008 // in the machine instr. Also, any kills should be explicitly popped after
1009 // the inline asm.
1010 unsigned Kills[7];
1011 unsigned NumKills = 0;
1012 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1013 MachineOperand &Op = MI->getOperand(i);
1014 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1015 continue;
1016 assert(Op.isUse() && "Only handle inline asm uses right now");
1017
1018 unsigned FPReg = getFPReg(Op);
1019 Op.setReg(getSTReg(FPReg));
1020
1021 // If we kill this operand, make sure to pop it from the stack after the
1022 // asm. We just remember it for now, and pop them all off at the end in
1023 // a batch.
1024 if (Op.isKill())
1025 Kills[NumKills++] = FPReg;
1026 }
1027
1028 // If this asm kills any FP registers (is the last use of them) we must
1029 // explicitly emit pop instructions for them. Do this now after the asm has
1030 // executed so that the ST(x) numbers are not off (which would happen if we
1031 // did this inline with operand rewriting).
1032 //
1033 // Note: this might be a non-optimal pop sequence. We might be able to do
1034 // better by trying to pop in stack order or something.
1035 MachineBasicBlock::iterator InsertPt = MI;
1036 while (NumKills)
1037 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1038
1039 // Don't delete the inline asm!
1040 return;
1041 }
1042
Chris Lattnerb56cc342008-03-11 03:23:40 +00001043 case X86::RET:
1044 case X86::RETI:
1045 // If RET has an FP register use operand, pass the first one in ST(0) and
1046 // the second one in ST(1).
1047 if (isStackEmpty()) return; // Quick check to see if any are possible.
1048
1049 // Find the register operands.
1050 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1051
1052 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1053 MachineOperand &Op = MI->getOperand(i);
1054 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1055 continue;
Chris Lattner853e6a92008-03-21 06:01:05 +00001056// assert(Op.isUse() && Op.isKill() &&
1057// "Ret only defs operands, and values aren't live beyond it");
Chris Lattnerb56cc342008-03-11 03:23:40 +00001058
1059 if (FirstFPRegOp == ~0U)
1060 FirstFPRegOp = getFPReg(Op);
1061 else {
1062 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1063 SecondFPRegOp = getFPReg(Op);
1064 }
1065
1066 // Remove the operand so that later passes don't see it.
1067 MI->RemoveOperand(i);
1068 --i, --e;
1069 }
1070
1071 // There are only four possibilities here:
1072 // 1) we are returning a single FP value. In this case, it has to be in
1073 // ST(0) already, so just declare success by removing the value from the
1074 // FP Stack.
1075 if (SecondFPRegOp == ~0U) {
1076 // Assert that the top of stack contains the right FP register.
1077 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1078 "Top of stack not the right register for RET!");
1079
1080 // Ok, everything is good, mark the value as not being on the stack
1081 // anymore so that our assertion about the stack being empty at end of
1082 // block doesn't fire.
1083 StackTop = 0;
1084 return;
1085 }
1086
Chris Lattnerb56cc342008-03-11 03:23:40 +00001087 // Otherwise, we are returning two values:
1088 // 2) If returning the same value for both, we only have one thing in the FP
1089 // stack. Consider: RET FP1, FP1
1090 if (StackTop == 1) {
1091 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1092 "Stack misconfiguration for RET!");
1093
1094 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1095 // register to hold it.
1096 unsigned NewReg = (FirstFPRegOp+1)%7;
1097 duplicateToTop(FirstFPRegOp, NewReg, MI);
1098 FirstFPRegOp = NewReg;
1099 }
1100
1101 /// Okay we know we have two different FPx operands now:
1102 assert(StackTop == 2 && "Must have two values live!");
1103
1104 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1105 /// in ST(1). In this case, emit an fxch.
1106 if (getStackEntry(0) == SecondFPRegOp) {
1107 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1108 moveToTop(FirstFPRegOp, MI);
1109 }
1110
1111 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1112 /// ST(1). Just remove both from our understanding of the stack and return.
1113 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner6bac50e2008-03-21 05:57:20 +00001114 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattnerb56cc342008-03-11 03:23:40 +00001115 StackTop = 0;
1116 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001117 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118
1119 I = MBB->erase(I); // Remove the pseudo instruction
1120 --I;
1121}