blob: 0c9ef445964b9bda5b052507623e0711904f0013 [file] [log] [blame]
Johnny Chenb68a3ee2010-04-02 22:27:38 +00001//===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is part of the ARM Disassembler.
11// It contains the tablegen backend that emits the decoder functions for ARM and
12// Thumb. The disassembler core includes the auto-generated file, invokes the
13// decoder functions, and builds up the MCInst based on the decoded Opcode.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "arm-decoder-emitter"
18
19#include "ARMDecoderEmitter.h"
20#include "CodeGenTarget.h"
21#include "Record.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25
26#include <vector>
27#include <map>
28#include <string>
29
30using namespace llvm;
31
32/////////////////////////////////////////////////////
33// //
34// Enums and Utilities for ARM Instruction Format //
35// //
36/////////////////////////////////////////////////////
37
38#define ARM_FORMATS \
39 ENTRY(ARM_FORMAT_PSEUDO, 0) \
40 ENTRY(ARM_FORMAT_MULFRM, 1) \
41 ENTRY(ARM_FORMAT_BRFRM, 2) \
42 ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
43 ENTRY(ARM_FORMAT_DPFRM, 4) \
44 ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \
45 ENTRY(ARM_FORMAT_LDFRM, 6) \
46 ENTRY(ARM_FORMAT_STFRM, 7) \
47 ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
48 ENTRY(ARM_FORMAT_STMISCFRM, 9) \
49 ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
50 ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \
51 ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \
52 ENTRY(ARM_FORMAT_EXTFRM, 13) \
53 ENTRY(ARM_FORMAT_VFPUNARYFRM, 14) \
54 ENTRY(ARM_FORMAT_VFPBINARYFRM, 15) \
55 ENTRY(ARM_FORMAT_VFPCONV1FRM, 16) \
56 ENTRY(ARM_FORMAT_VFPCONV2FRM, 17) \
57 ENTRY(ARM_FORMAT_VFPCONV3FRM, 18) \
58 ENTRY(ARM_FORMAT_VFPCONV4FRM, 19) \
59 ENTRY(ARM_FORMAT_VFPCONV5FRM, 20) \
60 ENTRY(ARM_FORMAT_VFPLDSTFRM, 21) \
61 ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 22) \
62 ENTRY(ARM_FORMAT_VFPMISCFRM, 23) \
63 ENTRY(ARM_FORMAT_THUMBFRM, 24) \
64 ENTRY(ARM_FORMAT_NEONFRM, 25) \
65 ENTRY(ARM_FORMAT_NEONGETLNFRM, 26) \
66 ENTRY(ARM_FORMAT_NEONSETLNFRM, 27) \
67 ENTRY(ARM_FORMAT_NEONDUPFRM, 28) \
68 ENTRY(ARM_FORMAT_MISCFRM, 29) \
69 ENTRY(ARM_FORMAT_THUMBMISCFRM, 30) \
70 ENTRY(ARM_FORMAT_NLdSt, 31) \
71 ENTRY(ARM_FORMAT_N1RegModImm, 32) \
72 ENTRY(ARM_FORMAT_N2Reg, 33) \
73 ENTRY(ARM_FORMAT_NVCVT, 34) \
74 ENTRY(ARM_FORMAT_NVecDupLn, 35) \
75 ENTRY(ARM_FORMAT_N2RegVecShL, 36) \
76 ENTRY(ARM_FORMAT_N2RegVecShR, 37) \
77 ENTRY(ARM_FORMAT_N3Reg, 38) \
78 ENTRY(ARM_FORMAT_N3RegVecSh, 39) \
79 ENTRY(ARM_FORMAT_NVecExtract, 40) \
80 ENTRY(ARM_FORMAT_NVecMulScalar, 41) \
81 ENTRY(ARM_FORMAT_NVTBL, 42)
82
83// ARM instruction format specifies the encoding used by the instruction.
84#define ENTRY(n, v) n = v,
85typedef enum {
86 ARM_FORMATS
87 ARM_FORMAT_NA
88} ARMFormat;
89#undef ENTRY
90
91// Converts enum to const char*.
92static const char *stringForARMFormat(ARMFormat form) {
93#define ENTRY(n, v) case n: return #n;
94 switch(form) {
95 ARM_FORMATS
96 case ARM_FORMAT_NA:
97 default:
98 return "";
99 }
100#undef ENTRY
101}
102
103typedef enum {
104 IndexModeNone = 0,
105 IndexModePre = 1,
106 IndexModePost = 2,
107 IndexModeUpd = 3
108};
109
110/////////////////////////
111// //
112// Utility functions //
113// //
114/////////////////////////
115
116/// byteFromBitsInit - Return the byte value from a BitsInit.
117/// Called from getByteField().
118static uint8_t byteFromBitsInit(BitsInit &init) {
119 int width = init.getNumBits();
120
121 assert(width <= 8 && "Field is too large for uint8_t!");
122
123 int index;
124 uint8_t mask = 0x01;
125
126 uint8_t ret = 0;
127
128 for (index = 0; index < width; index++) {
129 if (static_cast<BitInit*>(init.getBit(index))->getValue())
130 ret |= mask;
131
132 mask <<= 1;
133 }
134
135 return ret;
136}
137
138static uint8_t getByteField(const Record &def, const char *str) {
139 BitsInit *bits = def.getValueAsBitsInit(str);
140 return byteFromBitsInit(*bits);
141}
142
143static BitsInit &getBitsField(const Record &def, const char *str) {
144 BitsInit *bits = def.getValueAsBitsInit(str);
145 return *bits;
146}
147
148/// sameStringExceptSuffix - Return true if the two strings differ only in RHS's
149/// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true.
150static
151bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS,
152 const StringRef Suffix) {
153
154 if (RHS.startswith(LHS) && RHS.endswith(Suffix))
155 return RHS.size() == LHS.size() + Suffix.size();
156
157 return false;
158}
159
160/// thumbInstruction - Determine whether we have a Thumb instruction.
161/// See also ARMInstrFormats.td.
162static bool thumbInstruction(uint8_t Form) {
163 return Form == ARM_FORMAT_THUMBFRM;
164}
165
166// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
167// for a bit value.
168//
169// BIT_UNFILTERED is used as the init value for a filter position. It is used
170// only for filter processings.
171typedef enum {
172 BIT_TRUE, // '1'
173 BIT_FALSE, // '0'
174 BIT_UNSET, // '?'
175 BIT_UNFILTERED // unfiltered
176} bit_value_t;
177
178static bool ValueSet(bit_value_t V) {
179 return (V == BIT_TRUE || V == BIT_FALSE);
180}
181static bool ValueNotSet(bit_value_t V) {
182 return (V == BIT_UNSET);
183}
184static int Value(bit_value_t V) {
185 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
186}
187static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
188 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
189 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
190
191 // The bit is uninitialized.
192 return BIT_UNSET;
193}
194// Prints the bit value for each position.
195static void dumpBits(raw_ostream &o, BitsInit &bits) {
196 unsigned index;
197
198 for (index = bits.getNumBits(); index > 0; index--) {
199 switch (bitFromBits(bits, index - 1)) {
200 case BIT_TRUE:
201 o << "1";
202 break;
203 case BIT_FALSE:
204 o << "0";
205 break;
206 case BIT_UNSET:
207 o << "_";
208 break;
209 default:
210 assert(0 && "unexpected return value from bitFromBits");
211 }
212 }
213}
214
215// Enums for the available target names.
216typedef enum {
217 TARGET_ARM = 0,
218 TARGET_THUMB
219} TARGET_NAME_t;
220
221// FIXME: Possibly auto-detected?
222#define BIT_WIDTH 32
223
224// Forward declaration.
225class FilterChooser;
226
227// Representation of the instruction to work on.
228typedef bit_value_t insn_t[BIT_WIDTH];
229
230/// Filter - Filter works with FilterChooser to produce the decoding tree for
231/// the ISA.
232///
233/// It is useful to think of a Filter as governing the switch stmts of the
234/// decoding tree in a certain level. Each case stmt delegates to an inferior
235/// FilterChooser to decide what further decoding logic to employ, or in another
236/// words, what other remaining bits to look at. The FilterChooser eventually
237/// chooses a best Filter to do its job.
238///
239/// This recursive scheme ends when the number of Opcodes assigned to the
240/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
241/// the Filter/FilterChooser combo does not know how to distinguish among the
242/// Opcodes assigned.
243///
244/// An example of a conflcit is
245///
246/// Conflict:
247/// 111101000.00........00010000....
248/// 111101000.00........0001........
249/// 1111010...00........0001........
250/// 1111010...00....................
251/// 1111010.........................
252/// 1111............................
253/// ................................
254/// VST4q8a 111101000_00________00010000____
255/// VST4q8b 111101000_00________00010000____
256///
257/// The Debug output shows the path that the decoding tree follows to reach the
258/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
259/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
260///
261/// The encoding info in the .td files does not specify this meta information,
262/// which could have been used by the decoder to resolve the conflict. The
263/// decoder could try to decode the even/odd register numbering and assign to
264/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
265/// version and return the Opcode since the two have the same Asm format string.
266class Filter {
267protected:
268 FilterChooser *Owner; // points to the FilterChooser who owns this filter
269 unsigned StartBit; // the starting bit position
270 unsigned NumBits; // number of bits to filter
271 bool Mixed; // a mixed region contains both set and unset bits
272
273 // Map of well-known segment value to the set of uid's with that value.
274 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
275
276 // Set of uid's with non-constant segment values.
277 std::vector<unsigned> VariableInstructions;
278
279 // Map of well-known segment value to its delegate.
280 std::map<unsigned, FilterChooser*> FilterChooserMap;
281
282 // Number of instructions which fall under FilteredInstructions category.
283 unsigned NumFiltered;
284
285 // Keeps track of the last opcode in the filtered bucket.
286 unsigned LastOpcFiltered;
287
288 // Number of instructions which fall under VariableInstructions category.
289 unsigned NumVariable;
290
291public:
292 unsigned getNumFiltered() { return NumFiltered; }
293 unsigned getNumVariable() { return NumVariable; }
294 unsigned getSingletonOpc() {
295 assert(NumFiltered == 1);
296 return LastOpcFiltered;
297 }
298 // Return the filter chooser for the group of instructions without constant
299 // segment values.
300 FilterChooser &getVariableFC() {
301 assert(NumFiltered == 1);
302 assert(FilterChooserMap.size() == 1);
303 return *(FilterChooserMap.find(-1)->second);
304 }
305
306 Filter(const Filter &f);
307 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
308
309 ~Filter();
310
311 // Divides the decoding task into sub tasks and delegates them to the
312 // inferior FilterChooser's.
313 //
314 // A special case arises when there's only one entry in the filtered
315 // instructions. In order to unambiguously decode the singleton, we need to
316 // match the remaining undecoded encoding bits against the singleton.
317 void recurse();
318
319 // Emit code to decode instructions given a segment or segments of bits.
320 void emit(raw_ostream &o, unsigned &Indentation);
321
322 // Returns the number of fanout produced by the filter. More fanout implies
323 // the filter distinguishes more categories of instructions.
324 unsigned usefulness() const;
325}; // End of class Filter
326
327// These are states of our finite state machines used in FilterChooser's
328// filterProcessor() which produces the filter candidates to use.
329typedef enum {
330 ATTR_NONE,
331 ATTR_FILTERED,
332 ATTR_ALL_SET,
333 ATTR_ALL_UNSET,
334 ATTR_MIXED
335} bitAttr_t;
336
337/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
338/// in order to perform the decoding of instructions at the current level.
339///
340/// Decoding proceeds from the top down. Based on the well-known encoding bits
341/// of instructions available, FilterChooser builds up the possible Filters that
342/// can further the task of decoding by distinguishing among the remaining
343/// candidate instructions.
344///
345/// Once a filter has been chosen, it is called upon to divide the decoding task
346/// into sub-tasks and delegates them to its inferior FilterChoosers for further
347/// processings.
348///
349/// It is useful to think of a Filter as governing the switch stmts of the
350/// decoding tree. And each case is delegated to an inferior FilterChooser to
351/// decide what further remaining bits to look at.
352class FilterChooser {
353 static TARGET_NAME_t TargetName;
354
355protected:
356 friend class Filter;
357
358 // Vector of codegen instructions to choose our filter.
359 const std::vector<const CodeGenInstruction*> &AllInstructions;
360
361 // Vector of uid's for this filter chooser to work on.
362 const std::vector<unsigned> Opcodes;
363
364 // Vector of candidate filters.
365 std::vector<Filter> Filters;
366
367 // Array of bit values passed down from our parent.
368 // Set to all BIT_UNFILTERED's for Parent == NULL.
369 bit_value_t FilterBitValues[BIT_WIDTH];
370
371 // Links to the FilterChooser above us in the decoding tree.
372 FilterChooser *Parent;
373
374 // Index of the best filter from Filters.
375 int BestIndex;
376
377public:
378 static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
379
380 FilterChooser(const FilterChooser &FC) :
381 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
382 Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) {
383 memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
384 }
385
386 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
387 const std::vector<unsigned> &IDs) :
388 AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL),
389 BestIndex(-1) {
390 for (unsigned i = 0; i < BIT_WIDTH; ++i)
391 FilterBitValues[i] = BIT_UNFILTERED;
392
393 doFilter();
394 }
395
396 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
397 const std::vector<unsigned> &IDs,
398 bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
399 FilterChooser &parent) :
400 AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent),
401 BestIndex(-1) {
402 for (unsigned i = 0; i < BIT_WIDTH; ++i)
403 FilterBitValues[i] = ParentFilterBitValues[i];
404
405 doFilter();
406 }
407
408 // The top level filter chooser has NULL as its parent.
409 bool isTopLevel() { return Parent == NULL; }
410
411 // This provides an opportunity for target specific code emission.
412 void emitTopHook(raw_ostream &o);
413
414 // Emit the top level typedef and decodeInstruction() function.
415 void emitTop(raw_ostream &o, unsigned &Indentation);
416
417 // This provides an opportunity for target specific code emission after
418 // emitTop().
419 void emitBot(raw_ostream &o, unsigned &Indentation);
420
421protected:
422 // Populates the insn given the uid.
423 void insnWithID(insn_t &Insn, unsigned Opcode) const {
424 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
425
426 for (unsigned i = 0; i < BIT_WIDTH; ++i)
427 Insn[i] = bitFromBits(Bits, i);
428
429 // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd.
430 if (getByteField(*AllInstructions[Opcode]->TheDef, "IndexModeBits")
431 == IndexModeUpd)
432 Insn[21] = BIT_TRUE;
433 }
434
435 // Returns the record name.
436 const std::string &nameWithID(unsigned Opcode) const {
437 return AllInstructions[Opcode]->TheDef->getName();
438 }
439
440 // Populates the field of the insn given the start position and the number of
441 // consecutive bits to scan for.
442 //
443 // Returns false if there exists any uninitialized bit value in the range.
444 // Returns true, otherwise.
445 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
446 unsigned NumBits) const;
447
448 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
449 /// filter array as a series of chars.
450 void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
451
452 /// dumpStack - dumpStack traverses the filter chooser chain and calls
453 /// dumpFilterArray on each filter chooser up to the top level one.
454 void dumpStack(raw_ostream &o, const char *prefix);
455
456 Filter &bestFilter() {
457 assert(BestIndex != -1 && "BestIndex not set");
458 return Filters[BestIndex];
459 }
460
461 // Called from Filter::recurse() when singleton exists. For debug purpose.
462 void SingletonExists(unsigned Opc);
463
464 bool PositionFiltered(unsigned i) {
465 return ValueSet(FilterBitValues[i]);
466 }
467
468 // Calculates the island(s) needed to decode the instruction.
469 // This returns a lit of undecoded bits of an instructions, for example,
470 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
471 // decoded bits in order to verify that the instruction matches the Opcode.
472 unsigned getIslands(std::vector<unsigned> &StartBits,
473 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
474 insn_t &Insn);
475
476 // The purpose of this function is for the API client to detect possible
477 // Load/Store Coprocessor instructions. If the coprocessor number is of
478 // the instruction is either 10 or 11, the decoder should not report the
479 // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or
480 // VFP instructions.
481 bool LdStCopEncoding1(unsigned Opc) {
482 const std::string &Name = nameWithID(Opc);
483 if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
484 Name == "LDC_POST" || Name == "LDC_PRE" ||
485 Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
486 Name == "LDCL_POST" || Name == "LDCL_PRE" ||
487 Name == "STC_OFFSET" || Name == "STC_OPTION" ||
488 Name == "STC_POST" || Name == "STC_PRE" ||
489 Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
490 Name == "STCL_POST" || Name == "STCL_PRE")
491 return true;
492 else
493 return false;
494 }
495
496 // Emits code to decode the singleton. Return true if we have matched all the
497 // well-known bits.
498 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
499
500 // Emits code to decode the singleton, and then to decode the rest.
501 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
502
503 // Assign a single filter and run with it.
504 void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
505 bool mixed);
506
507 // reportRegion is a helper function for filterProcessor to mark a region as
508 // eligible for use as a filter region.
509 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
510 bool AllowMixed);
511
512 // FilterProcessor scans the well-known encoding bits of the instructions and
513 // builds up a list of candidate filters. It chooses the best filter and
514 // recursively descends down the decoding tree.
515 bool filterProcessor(bool AllowMixed, bool Greedy = true);
516
517 // Decides on the best configuration of filter(s) to use in order to decode
518 // the instructions. A conflict of instructions may occur, in which case we
519 // dump the conflict set to the standard error.
520 void doFilter();
521
522 // Emits code to decode our share of instructions. Returns true if the
523 // emitted code causes a return, which occurs if we know how to decode
524 // the instruction at this level or the instruction is not decodeable.
525 bool emit(raw_ostream &o, unsigned &Indentation);
526};
527
528///////////////////////////
529// //
530// Filter Implmenetation //
531// //
532///////////////////////////
533
534Filter::Filter(const Filter &f) :
535 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
536 FilteredInstructions(f.FilteredInstructions),
537 VariableInstructions(f.VariableInstructions),
538 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
539 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
540}
541
542Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
543 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
544 Mixed(mixed) {
545 assert(StartBit + NumBits - 1 < BIT_WIDTH);
546
547 NumFiltered = 0;
548 LastOpcFiltered = 0;
549 NumVariable = 0;
550
551 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
552 insn_t Insn;
553
554 // Populates the insn given the uid.
555 Owner->insnWithID(Insn, Owner->Opcodes[i]);
556
557 uint64_t Field;
558 // Scans the segment for possibly well-specified encoding bits.
559 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
560
561 if (ok) {
562 // The encoding bits are well-known. Lets add the uid of the
563 // instruction into the bucket keyed off the constant field value.
564 LastOpcFiltered = Owner->Opcodes[i];
565 FilteredInstructions[Field].push_back(LastOpcFiltered);
566 ++NumFiltered;
567 } else {
568 // Some of the encoding bit(s) are unspecfied. This contributes to
569 // one additional member of "Variable" instructions.
570 VariableInstructions.push_back(Owner->Opcodes[i]);
571 ++NumVariable;
572 }
573 }
574
575 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
576 && "Filter returns no instruction categories");
577}
578
579Filter::~Filter() {
580 std::map<unsigned, FilterChooser*>::iterator filterIterator;
581 for (filterIterator = FilterChooserMap.begin();
582 filterIterator != FilterChooserMap.end();
583 filterIterator++) {
584 delete filterIterator->second;
585 }
586}
587
588// Divides the decoding task into sub tasks and delegates them to the
589// inferior FilterChooser's.
590//
591// A special case arises when there's only one entry in the filtered
592// instructions. In order to unambiguously decode the singleton, we need to
593// match the remaining undecoded encoding bits against the singleton.
594void Filter::recurse() {
595 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
596
597 bit_value_t BitValueArray[BIT_WIDTH];
598 // Starts by inheriting our parent filter chooser's filter bit values.
599 memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
600
601 unsigned bitIndex;
602
603 if (VariableInstructions.size()) {
604 // Conservatively marks each segment position as BIT_UNSET.
605 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
606 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
607
608 // Delegates to an inferior filter chooser for futher processing on this
609 // group of instructions whose segment values are variable.
610 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
611 (unsigned)-1,
612 new FilterChooser(Owner->AllInstructions,
613 VariableInstructions,
614 BitValueArray,
615 *Owner)
616 ));
617 }
618
619 // No need to recurse for a singleton filtered instruction.
620 // See also Filter::emit().
621 if (getNumFiltered() == 1) {
622 //Owner->SingletonExists(LastOpcFiltered);
623 assert(FilterChooserMap.size() == 1);
624 return;
625 }
626
627 // Otherwise, create sub choosers.
628 for (mapIterator = FilteredInstructions.begin();
629 mapIterator != FilteredInstructions.end();
630 mapIterator++) {
631
632 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
633 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
634 if (mapIterator->first & (1 << bitIndex))
635 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
636 else
637 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
638 }
639
640 // Delegates to an inferior filter chooser for futher processing on this
641 // category of instructions.
642 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
643 mapIterator->first,
644 new FilterChooser(Owner->AllInstructions,
645 mapIterator->second,
646 BitValueArray,
647 *Owner)
648 ));
649 }
650}
651
652// Emit code to decode instructions given a segment or segments of bits.
653void Filter::emit(raw_ostream &o, unsigned &Indentation) {
654 o.indent(Indentation) << "// Check Inst{";
655
656 if (NumBits > 1)
657 o << (StartBit + NumBits - 1) << '-';
658
659 o << StartBit << "} ...\n";
660
661 o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
662 << StartBit << ", " << NumBits << ")) {\n";
663
664 std::map<unsigned, FilterChooser*>::iterator filterIterator;
665
666 bool DefaultCase = false;
667 for (filterIterator = FilterChooserMap.begin();
668 filterIterator != FilterChooserMap.end();
669 filterIterator++) {
670
671 // Field value -1 implies a non-empty set of variable instructions.
672 // See also recurse().
673 if (filterIterator->first == (unsigned)-1) {
674 DefaultCase = true;
675
676 o.indent(Indentation) << "default:\n";
677 o.indent(Indentation) << " break; // fallthrough\n";
678
679 // Closing curly brace for the switch statement.
680 // This is unconventional because we want the default processing to be
681 // performed for the fallthrough cases as well, i.e., when the "cases"
682 // did not prove a decoded instruction.
683 o.indent(Indentation) << "}\n";
684
685 } else
686 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
687
688 // We arrive at a category of instructions with the same segment value.
689 // Now delegate to the sub filter chooser for further decodings.
690 // The case may fallthrough, which happens if the remaining well-known
691 // encoding bits do not match exactly.
692 if (!DefaultCase) { ++Indentation; ++Indentation; }
693
694 bool finished = filterIterator->second->emit(o, Indentation);
695 // For top level default case, there's no need for a break statement.
696 if (Owner->isTopLevel() && DefaultCase)
697 break;
698 if (!finished)
699 o.indent(Indentation) << "break;\n";
700
701 if (!DefaultCase) { --Indentation; --Indentation; }
702 }
703
704 // If there is no default case, we still need to supply a closing brace.
705 if (!DefaultCase) {
706 // Closing curly brace for the switch statement.
707 o.indent(Indentation) << "}\n";
708 }
709}
710
711// Returns the number of fanout produced by the filter. More fanout implies
712// the filter distinguishes more categories of instructions.
713unsigned Filter::usefulness() const {
714 if (VariableInstructions.size())
715 return FilteredInstructions.size();
716 else
717 return FilteredInstructions.size() + 1;
718}
719
720//////////////////////////////////
721// //
722// Filterchooser Implementation //
723// //
724//////////////////////////////////
725
726// Define the symbol here.
727TARGET_NAME_t FilterChooser::TargetName;
728
729// This provides an opportunity for target specific code emission.
730void FilterChooser::emitTopHook(raw_ostream &o) {
731 if (TargetName == TARGET_ARM) {
732 // Emit code that references the ARMFormat data type.
733 o << "static const ARMFormat ARMFormats[] = {\n";
734 for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
735 const Record &Def = *(AllInstructions[i]->TheDef);
736 const std::string &Name = Def.getName();
737 if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
738 o.indent(2) <<
739 stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
740 else
741 o << " ARM_FORMAT_NA";
742
743 o << ",\t// Inst #" << i << " = " << Name << '\n';
744 }
745 o << " ARM_FORMAT_NA\t// Unreachable.\n";
746 o << "};\n\n";
747 }
748}
749
750// Emit the top level typedef and decodeInstruction() function.
751void FilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
752 // Run the target specific emit hook.
753 emitTopHook(o);
754
755 switch (BIT_WIDTH) {
756 case 8:
757 o.indent(Indentation) << "typedef uint8_t field_t;\n";
758 break;
759 case 16:
760 o.indent(Indentation) << "typedef uint16_t field_t;\n";
761 break;
762 case 32:
763 o.indent(Indentation) << "typedef uint32_t field_t;\n";
764 break;
765 case 64:
766 o.indent(Indentation) << "typedef uint64_t field_t;\n";
767 break;
768 default:
769 assert(0 && "Unexpected instruction size!");
770 }
771
772 o << '\n';
773
774 o.indent(Indentation) << "static field_t " <<
775 "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
776
777 o.indent(Indentation) << "{\n";
778
779 ++Indentation; ++Indentation;
780 o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
781 << " && \"Instruction field out of bounds!\");\n";
782 o << '\n';
783 o.indent(Indentation) << "field_t fieldMask;\n";
784 o << '\n';
785 o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
786
787 ++Indentation; ++Indentation;
788 o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
789 --Indentation; --Indentation;
790
791 o.indent(Indentation) << "else\n";
792
793 ++Indentation; ++Indentation;
794 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
795 --Indentation; --Indentation;
796
797 o << '\n';
798 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
799 --Indentation; --Indentation;
800
801 o.indent(Indentation) << "}\n";
802
803 o << '\n';
804
805 o.indent(Indentation) << "static uint16_t decodeInstruction(field_t insn) {\n";
806
807 ++Indentation; ++Indentation;
808 // Emits code to decode the instructions.
809 emit(o, Indentation);
810
811 o << '\n';
812 o.indent(Indentation) << "return 0;\n";
813 --Indentation; --Indentation;
814
815 o.indent(Indentation) << "}\n";
816
817 o << '\n';
818}
819
820// This provides an opportunity for target specific code emission after
821// emitTop().
822void FilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
823 if (TargetName != TARGET_THUMB) return;
824
825 // Emit code that decodes the Thumb ISA.
826 o.indent(Indentation)
827 << "static uint16_t decodeThumbInstruction(field_t insn) {\n";
828
829 ++Indentation; ++Indentation;
830
831 // Emits code to decode the instructions.
832 emit(o, Indentation);
833
834 o << '\n';
835 o.indent(Indentation) << "return 0;\n";
836
837 --Indentation; --Indentation;
838
839 o.indent(Indentation) << "}\n";
840}
841
842// Populates the field of the insn given the start position and the number of
843// consecutive bits to scan for.
844//
845// Returns false if and on the first uninitialized bit value encountered.
846// Returns true, otherwise.
847bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
848 unsigned StartBit, unsigned NumBits) const {
849 Field = 0;
850
851 for (unsigned i = 0; i < NumBits; ++i) {
852 if (Insn[StartBit + i] == BIT_UNSET)
853 return false;
854
855 if (Insn[StartBit + i] == BIT_TRUE)
856 Field = Field | (1 << i);
857 }
858
859 return true;
860}
861
862/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
863/// filter array as a series of chars.
864void FilterChooser::dumpFilterArray(raw_ostream &o,
865 bit_value_t (&filter)[BIT_WIDTH]) {
866 unsigned bitIndex;
867
868 for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
869 switch (filter[bitIndex - 1]) {
870 case BIT_UNFILTERED:
871 o << ".";
872 break;
873 case BIT_UNSET:
874 o << "_";
875 break;
876 case BIT_TRUE:
877 o << "1";
878 break;
879 case BIT_FALSE:
880 o << "0";
881 break;
882 }
883 }
884}
885
886/// dumpStack - dumpStack traverses the filter chooser chain and calls
887/// dumpFilterArray on each filter chooser up to the top level one.
888void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
889 FilterChooser *current = this;
890
891 while (current) {
892 o << prefix;
893 dumpFilterArray(o, current->FilterBitValues);
894 o << '\n';
895 current = current->Parent;
896 }
897}
898
899// Called from Filter::recurse() when singleton exists. For debug purpose.
900void FilterChooser::SingletonExists(unsigned Opc) {
901 insn_t Insn0;
902 insnWithID(Insn0, Opc);
903
904 errs() << "Singleton exists: " << nameWithID(Opc)
905 << " with its decoding dominating ";
906 for (unsigned i = 0; i < Opcodes.size(); ++i) {
907 if (Opcodes[i] == Opc) continue;
908 errs() << nameWithID(Opcodes[i]) << ' ';
909 }
910 errs() << '\n';
911
912 dumpStack(errs(), "\t\t");
913 for (unsigned i = 0; i < Opcodes.size(); i++) {
914 const std::string &Name = nameWithID(Opcodes[i]);
915
916 errs() << '\t' << Name << " ";
917 dumpBits(errs(),
918 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
919 errs() << '\n';
920 }
921}
922
923// Calculates the island(s) needed to decode the instruction.
924// This returns a list of undecoded bits of an instructions, for example,
925// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
926// decoded bits in order to verify that the instruction matches the Opcode.
927unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
928 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
929 insn_t &Insn) {
930 unsigned Num, BitNo;
931 Num = BitNo = 0;
932
933 uint64_t FieldVal = 0;
934
935 // 0: Init
936 // 1: Water (the bit value does not affect decoding)
937 // 2: Island (well-known bit value needed for decoding)
938 int State = 0;
939 int Val = -1;
940
941 for (unsigned i = 0; i < BIT_WIDTH; ++i) {
942 Val = Value(Insn[i]);
943 bool Filtered = PositionFiltered(i);
944 switch (State) {
945 default:
946 assert(0 && "Unreachable code!");
947 break;
948 case 0:
949 case 1:
950 if (Filtered || Val == -1)
951 State = 1; // Still in Water
952 else {
953 State = 2; // Into the Island
954 BitNo = 0;
955 StartBits.push_back(i);
956 FieldVal = Val;
957 }
958 break;
959 case 2:
960 if (Filtered || Val == -1) {
961 State = 1; // Into the Water
962 EndBits.push_back(i - 1);
963 FieldVals.push_back(FieldVal);
964 ++Num;
965 } else {
966 State = 2; // Still in Island
967 ++BitNo;
968 FieldVal = FieldVal | Val << BitNo;
969 }
970 break;
971 }
972 }
973 // If we are still in Island after the loop, do some housekeeping.
974 if (State == 2) {
975 EndBits.push_back(BIT_WIDTH - 1);
976 FieldVals.push_back(FieldVal);
977 ++Num;
978 }
979
980 assert(StartBits.size() == Num && EndBits.size() == Num &&
981 FieldVals.size() == Num);
982 return Num;
983}
984
985// Emits code to decode the singleton. Return true if we have matched all the
986// well-known bits.
987bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
988 unsigned Opc) {
989 std::vector<unsigned> StartBits;
990 std::vector<unsigned> EndBits;
991 std::vector<uint64_t> FieldVals;
992 insn_t Insn;
993 insnWithID(Insn, Opc);
994
995 // This provides a good opportunity to check for possible Ld/St Coprocessor
996 // Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP
997 // instruction is disguise.
998 if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
999 o.indent(Indentation);
1000 // A8.6.51 & A8.6.188
1001 // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
1002 o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
1003 }
1004
1005 // Look for islands of undecoded bits of the singleton.
1006 getIslands(StartBits, EndBits, FieldVals, Insn);
1007
1008 unsigned Size = StartBits.size();
1009 unsigned I, NumBits;
1010
1011 // If we have matched all the well-known bits, just issue a return.
1012 if (Size == 0) {
1013 o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc)
1014 << '\n';
1015 return true;
1016 }
1017
1018 // Otherwise, there are more decodings to be done!
1019
1020 // Emit code to match the island(s) for the singleton.
1021 o.indent(Indentation) << "// Check ";
1022
1023 for (I = Size; I != 0; --I) {
1024 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
1025 if (I > 1)
1026 o << "&& ";
1027 else
1028 o << "for singleton decoding...\n";
1029 }
1030
1031 o.indent(Indentation) << "if (";
1032
1033 for (I = Size; I != 0; --I) {
1034 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1035 o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
1036 << ") == " << FieldVals[I-1];
1037 if (I > 1)
1038 o << " && ";
1039 else
1040 o << ")\n";
1041 }
1042
1043 o.indent(Indentation) << " return " << Opc << "; // " << nameWithID(Opc)
1044 << '\n';
1045
1046 return false;
1047}
1048
1049// Emits code to decode the singleton, and then to decode the rest.
1050void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
1051 Filter &Best) {
1052
1053 unsigned Opc = Best.getSingletonOpc();
1054
1055 emitSingletonDecoder(o, Indentation, Opc);
1056
1057 // Emit code for the rest.
1058 o.indent(Indentation) << "else\n";
1059
1060 Indentation += 2;
1061 Best.getVariableFC().emit(o, Indentation);
1062 Indentation -= 2;
1063}
1064
1065// Assign a single filter and run with it. Top level API client can initialize
1066// with a single filter to start the filtering process.
1067void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
1068 unsigned numBit, bool mixed) {
1069 Filters.clear();
1070 Filter F(*this, startBit, numBit, true);
1071 Filters.push_back(F);
1072 BestIndex = 0; // Sole Filter instance to choose from.
1073 bestFilter().recurse();
1074}
1075
1076// reportRegion is a helper function for filterProcessor to mark a region as
1077// eligible for use as a filter region.
1078void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1079 unsigned BitIndex, bool AllowMixed) {
1080 if (RA == ATTR_MIXED && AllowMixed)
1081 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
1082 else if (RA == ATTR_ALL_SET && !AllowMixed)
1083 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
1084}
1085
1086// FilterProcessor scans the well-known encoding bits of the instructions and
1087// builds up a list of candidate filters. It chooses the best filter and
1088// recursively descends down the decoding tree.
1089bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1090 Filters.clear();
1091 BestIndex = -1;
1092 unsigned numInstructions = Opcodes.size();
1093
1094 assert(numInstructions && "Filter created with no instructions");
1095
1096 // No further filtering is necessary.
1097 if (numInstructions == 1)
1098 return true;
1099
1100 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1101 // instructions is 3.
1102 if (AllowMixed && !Greedy) {
1103 assert(numInstructions == 3);
1104
1105 for (unsigned i = 0; i < Opcodes.size(); ++i) {
1106 std::vector<unsigned> StartBits;
1107 std::vector<unsigned> EndBits;
1108 std::vector<uint64_t> FieldVals;
1109 insn_t Insn;
1110
1111 insnWithID(Insn, Opcodes[i]);
1112
1113 // Look for islands of undecoded bits of any instruction.
1114 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1115 // Found an instruction with island(s). Now just assign a filter.
1116 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
1117 true);
1118 return true;
1119 }
1120 }
1121 }
1122
1123 unsigned BitIndex, InsnIndex;
1124
1125 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1126 // The automaton consumes the corresponding bit from each
1127 // instruction.
1128 //
1129 // Input symbols: 0, 1, and _ (unset).
1130 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1131 // Initial state: NONE.
1132 //
1133 // (NONE) ------- [01] -> (ALL_SET)
1134 // (NONE) ------- _ ----> (ALL_UNSET)
1135 // (ALL_SET) ---- [01] -> (ALL_SET)
1136 // (ALL_SET) ---- _ ----> (MIXED)
1137 // (ALL_UNSET) -- [01] -> (MIXED)
1138 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1139 // (MIXED) ------ . ----> (MIXED)
1140 // (FILTERED)---- . ----> (FILTERED)
1141
1142 bitAttr_t bitAttrs[BIT_WIDTH];
1143
1144 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1145 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1146 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
1147 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1148 FilterBitValues[BitIndex] == BIT_FALSE)
1149 bitAttrs[BitIndex] = ATTR_FILTERED;
1150 else
1151 bitAttrs[BitIndex] = ATTR_NONE;
1152
1153 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1154 insn_t insn;
1155
1156 insnWithID(insn, Opcodes[InsnIndex]);
1157
1158 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
1159 switch (bitAttrs[BitIndex]) {
1160 case ATTR_NONE:
1161 if (insn[BitIndex] == BIT_UNSET)
1162 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1163 else
1164 bitAttrs[BitIndex] = ATTR_ALL_SET;
1165 break;
1166 case ATTR_ALL_SET:
1167 if (insn[BitIndex] == BIT_UNSET)
1168 bitAttrs[BitIndex] = ATTR_MIXED;
1169 break;
1170 case ATTR_ALL_UNSET:
1171 if (insn[BitIndex] != BIT_UNSET)
1172 bitAttrs[BitIndex] = ATTR_MIXED;
1173 break;
1174 case ATTR_MIXED:
1175 case ATTR_FILTERED:
1176 break;
1177 }
1178 }
1179 }
1180
1181 // The regionAttr automaton consumes the bitAttrs automatons' state,
1182 // lowest-to-highest.
1183 //
1184 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1185 // States: NONE, ALL_SET, MIXED
1186 // Initial state: NONE
1187 //
1188 // (NONE) ----- F --> (NONE)
1189 // (NONE) ----- S --> (ALL_SET) ; and set region start
1190 // (NONE) ----- U --> (NONE)
1191 // (NONE) ----- M --> (MIXED) ; and set region start
1192 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1193 // (ALL_SET) -- S --> (ALL_SET)
1194 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1195 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1196 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1197 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1198 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1199 // (MIXED) ---- M --> (MIXED)
1200
1201 bitAttr_t RA = ATTR_NONE;
1202 unsigned StartBit = 0;
1203
1204 for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
1205 bitAttr_t bitAttr = bitAttrs[BitIndex];
1206
1207 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1208
1209 switch (RA) {
1210 case ATTR_NONE:
1211 switch (bitAttr) {
1212 case ATTR_FILTERED:
1213 break;
1214 case ATTR_ALL_SET:
1215 StartBit = BitIndex;
1216 RA = ATTR_ALL_SET;
1217 break;
1218 case ATTR_ALL_UNSET:
1219 break;
1220 case ATTR_MIXED:
1221 StartBit = BitIndex;
1222 RA = ATTR_MIXED;
1223 break;
1224 default:
1225 assert(0 && "Unexpected bitAttr!");
1226 }
1227 break;
1228 case ATTR_ALL_SET:
1229 switch (bitAttr) {
1230 case ATTR_FILTERED:
1231 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1232 RA = ATTR_NONE;
1233 break;
1234 case ATTR_ALL_SET:
1235 break;
1236 case ATTR_ALL_UNSET:
1237 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1238 RA = ATTR_NONE;
1239 break;
1240 case ATTR_MIXED:
1241 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1242 StartBit = BitIndex;
1243 RA = ATTR_MIXED;
1244 break;
1245 default:
1246 assert(0 && "Unexpected bitAttr!");
1247 }
1248 break;
1249 case ATTR_MIXED:
1250 switch (bitAttr) {
1251 case ATTR_FILTERED:
1252 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1253 StartBit = BitIndex;
1254 RA = ATTR_NONE;
1255 break;
1256 case ATTR_ALL_SET:
1257 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1258 StartBit = BitIndex;
1259 RA = ATTR_ALL_SET;
1260 break;
1261 case ATTR_ALL_UNSET:
1262 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1263 RA = ATTR_NONE;
1264 break;
1265 case ATTR_MIXED:
1266 break;
1267 default:
1268 assert(0 && "Unexpected bitAttr!");
1269 }
1270 break;
1271 case ATTR_ALL_UNSET:
1272 assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1273 case ATTR_FILTERED:
1274 assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1275 }
1276 }
1277
1278 // At the end, if we're still in ALL_SET or MIXED states, report a region
1279 switch (RA) {
1280 case ATTR_NONE:
1281 break;
1282 case ATTR_FILTERED:
1283 break;
1284 case ATTR_ALL_SET:
1285 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1286 break;
1287 case ATTR_ALL_UNSET:
1288 break;
1289 case ATTR_MIXED:
1290 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1291 break;
1292 }
1293
1294 // We have finished with the filter processings. Now it's time to choose
1295 // the best performing filter.
1296 BestIndex = 0;
1297 bool AllUseless = true;
1298 unsigned BestScore = 0;
1299
1300 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1301 unsigned Usefulness = Filters[i].usefulness();
1302
1303 if (Usefulness)
1304 AllUseless = false;
1305
1306 if (Usefulness > BestScore) {
1307 BestIndex = i;
1308 BestScore = Usefulness;
1309 }
1310 }
1311
1312 if (!AllUseless)
1313 bestFilter().recurse();
1314
1315 return !AllUseless;
1316} // end of FilterChooser::filterProcessor(bool)
1317
1318// Decides on the best configuration of filter(s) to use in order to decode
1319// the instructions. A conflict of instructions may occur, in which case we
1320// dump the conflict set to the standard error.
1321void FilterChooser::doFilter() {
1322 unsigned Num = Opcodes.size();
1323 assert(Num && "FilterChooser created with no instructions");
1324
1325 // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
1326 if (TargetName == TARGET_ARM && Parent == NULL) {
1327 runSingleFilter(*this, 28, 4, false);
1328 return;
1329 }
1330
1331 // Try regions of consecutive known bit values first.
1332 if (filterProcessor(false))
1333 return;
1334
1335 // Then regions of mixed bits (both known and unitialized bit values allowed).
1336 if (filterProcessor(true))
1337 return;
1338
1339 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1340 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1341 // well-known encoding pattern. In such case, we backtrack and scan for the
1342 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1343 if (Num == 3 && filterProcessor(true, false))
1344 return;
1345
1346 // If we come to here, the instruction decoding has failed.
1347 // Print out the instructions in the conflict set...
1348 BestIndex = -1;
1349
1350 DEBUG({
1351 errs() << "Conflict:\n";
1352
1353 dumpStack(errs(), "\t\t");
1354
1355 for (unsigned i = 0; i < Num; i++) {
1356 const std::string &Name = nameWithID(Opcodes[i]);
1357
1358 errs() << '\t' << Name << " ";
1359 dumpBits(errs(),
1360 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1361 errs() << '\n';
1362 }
1363 });
1364}
1365
1366// Emits code to decode our share of instructions. Returns true if the
1367// emitted code causes a return, which occurs if we know how to decode
1368// the instruction at this level or the instruction is not decodeable.
1369bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1370 if (Opcodes.size() == 1)
1371 // There is only one instruction in the set, which is great!
1372 // Call emitSingletonDecoder() to see whether there are any remaining
1373 // encodings bits.
1374 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1375
1376 // Choose the best filter to do the decodings!
1377 if (BestIndex != -1) {
1378 Filter &Best = bestFilter();
1379 if (Best.getNumFiltered() == 1)
1380 emitSingletonDecoder(o, Indentation, Best);
1381 else
1382 bestFilter().emit(o, Indentation);
1383 return false;
1384 }
1385
1386 // If we reach here, there is a conflict in decoding. Let's resolve the known
1387 // conflicts!
1388 if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) &&
1389 Opcodes.size() == 2) {
1390 // Resolve the known conflict sets:
1391 //
1392 // 1. source registers are identical => VMOVDneon; otherwise => VORRd
1393 // 2. source registers are identical => VMOVQ; otherwise => VORRq
1394 // 3. LDR, LDRcp => return LDR for now.
1395 // FIXME: How can we distinguish between LDR and LDRcp? Do we need to?
1396 // 4. tLDM, tLDM_UPD => Rn = Inst{10-8}, reglist = Inst{7-0},
1397 // wback = registers<Rn> = 0
1398 // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD
1399 // addressing mode resolution!!!
1400 // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts
1401 // are resolved returning the non-UPD versions of the instructions if the
1402 // Rm field, i.e., Inst{3-0} is 0b1111. This is specified in A7.7.1
1403 // Advanced SIMD addressing mode.
1404 const std::string &name1 = nameWithID(Opcodes[0]);
1405 const std::string &name2 = nameWithID(Opcodes[1]);
1406 if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
1407 (name1 == "VMOVQ" && name2 == "VORRq")) {
1408 // Inserting the opening curly brace for this case block.
1409 --Indentation; --Indentation;
1410 o.indent(Indentation) << "{\n";
1411 ++Indentation; ++Indentation;
1412
1413 o.indent(Indentation)
1414 << "field_t N = fieldFromInstruction(insn, 7, 1), "
1415 << "M = fieldFromInstruction(insn, 5, 1);\n";
1416 o.indent(Indentation)
1417 << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
1418 << "Vm = fieldFromInstruction(insn, 0, 4);\n";
1419 o.indent(Indentation)
1420 << "return (N == M && Vn == Vm) ? "
1421 << Opcodes[0] << " /* " << name1 << " */ : "
1422 << Opcodes[1] << " /* " << name2 << " */ ;\n";
1423
1424 // Inserting the closing curly brace for this case block.
1425 --Indentation; --Indentation;
1426 o.indent(Indentation) << "}\n";
1427 ++Indentation; ++Indentation;
1428
1429 return true;
1430 }
1431 if (name1 == "LDR" && name2 == "LDRcp") {
1432 o.indent(Indentation)
1433 << "return " << Opcodes[0]
1434 << "; // Returning LDR for {LDR, LDRcp}\n";
1435 return true;
1436 }
1437 if (name1 == "tLDM" && name2 == "tLDM_UPD") {
1438 // Inserting the opening curly brace for this case block.
1439 --Indentation; --Indentation;
1440 o.indent(Indentation) << "{\n";
1441 ++Indentation; ++Indentation;
1442
1443 o.indent(Indentation)
1444 << "unsigned Rn = fieldFromInstruction(insn, 8, 3), "
1445 << "list = fieldFromInstruction(insn, 0, 8);\n";
1446 o.indent(Indentation)
1447 << "return ((list >> Rn) & 1) == 0 ? "
1448 << Opcodes[1] << " /* " << name2 << " */ : "
1449 << Opcodes[0] << " /* " << name1 << " */ ;\n";
1450
1451 // Inserting the closing curly brace for this case block.
1452 --Indentation; --Indentation;
1453 o.indent(Indentation) << "}\n";
1454 ++Indentation; ++Indentation;
1455
1456 return true;
1457 }
1458 if (sameStringExceptSuffix(name1, name2, "_UPD")) {
1459 o.indent(Indentation)
1460 << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0]
1461 << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2
1462 << " */ ; // Advanced SIMD addressing mode\n";
1463 return true;
1464 }
1465
1466 // Otherwise, it does not belong to the known conflict sets.
1467 }
1468 // We don't know how to decode these instructions! Dump the conflict set!
1469 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1470 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1471 o << nameWithID(Opcodes[i]);
1472 if (i < (N - 1))
1473 o << ", ";
1474 else
1475 o << '\n';
1476 }
1477 return true;
1478}
1479
1480
1481////////////////////////////////////////////
1482// //
1483// ARMDEBackend //
1484// (Helper class for ARMDecoderEmitter) //
1485// //
1486////////////////////////////////////////////
1487
1488class ARMDecoderEmitter::ARMDEBackend {
1489public:
1490 ARMDEBackend(ARMDecoderEmitter &frontend) :
1491 NumberedInstructions(),
1492 Opcodes(),
1493 Frontend(frontend),
1494 Target(),
1495 FC(NULL)
1496 {
1497 if (Target.getName() == "ARM")
1498 TargetName = TARGET_ARM;
1499 else {
1500 errs() << "Target name " << Target.getName() << " not recognized\n";
1501 assert(0 && "Unknown target");
1502 }
1503
1504 // Populate the instructions for our TargetName.
1505 populateInstructions();
1506 }
1507
1508 ~ARMDEBackend() {
1509 if (FC) {
1510 delete FC;
1511 FC = NULL;
1512 }
1513 }
1514
1515 void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
1516 &NumberedInstructions) {
1517 // We must emit the PHI opcode first...
1518 std::string Namespace = Target.getInstNamespace();
1519 assert(!Namespace.empty() && "No instructions defined.");
1520
1521 NumberedInstructions = Target.getInstructionsByEnumValue();
1522 }
1523
1524 bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN);
1525
1526 void populateInstructions();
1527
1528 // Emits disassembler code for instruction decoding. This delegates to the
1529 // FilterChooser instance to do the heavy lifting.
1530 void emit(raw_ostream &o);
1531
1532protected:
1533 std::vector<const CodeGenInstruction*> NumberedInstructions;
1534 std::vector<unsigned> Opcodes;
1535 // Special case for the ARM chip, which supports ARM and Thumb ISAs.
1536 // Opcodes2 will be populated with the Thumb opcodes.
1537 std::vector<unsigned> Opcodes2;
1538 ARMDecoderEmitter &Frontend;
1539 CodeGenTarget Target;
1540 FilterChooser *FC;
1541
1542 TARGET_NAME_t TargetName;
1543};
1544
1545bool ARMDecoderEmitter::ARMDEBackend::populateInstruction(
1546 const CodeGenInstruction &CGI, TARGET_NAME_t TN) {
1547 const Record &Def = *CGI.TheDef;
1548 const StringRef Name = Def.getName();
1549 uint8_t Form = getByteField(Def, "Form");
1550 BitsInit &Bits = getBitsField(Def, "Inst");
1551
1552 if (TN == TARGET_ARM) {
1553 // FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6?
1554 if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") &&
1555 Form == ARM_FORMAT_PSEUDO)
1556 return false;
1557 if (thumbInstruction(Form))
1558 return false;
1559 if (Name.find("CMPz") != std::string::npos /* ||
1560 Name.find("CMNz") != std::string::npos */)
1561 return false;
1562
1563 // Ignore pseudo instructions.
1564 if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9")
1565 return false;
1566
1567 // VLDMQ/VSTMQ can be hanlded with the more generic VLDMD/VSTMD.
1568 if (Name == "VLDMQ" || Name == "VLDMQ_UPD" ||
1569 Name == "VSTMQ" || Name == "VSTMQ_UPD")
1570 return false;
1571
1572 //
1573 // The following special cases are for conflict resolutions.
1574 //
1575
1576 // NEON NLdStFrm conflict resolutions:
1577 //
1578 // 1. Ignore suffix "odd" and "odd_UPD", prefer the "even" register-
1579 // numbered ones which have the same Asm format string.
1580 // 2. Ignore VST2d64_UPD, which conflicts with VST1q64_UPD.
1581 // 3. Ignore VLD2d64_UPD, which conflicts with VLD1q64_UPD.
1582 // 4. Ignore VLD1q[_UPD], which conflicts with VLD1q64[_UPD].
1583 // 5. Ignore VST1q[_UPD], which conflicts with VST1q64[_UPD].
1584 if (Name.endswith("odd") || Name.endswith("odd_UPD") ||
1585 Name == "VST2d64_UPD" || Name == "VLD2d64_UPD" ||
1586 Name == "VLD1q" || Name == "VLD1q_UPD" ||
1587 Name == "VST1q" || Name == "VST1q_UPD")
1588 return false;
1589
1590 // RSCSri and RSCSrs set the 's' bit, but are not predicated. We are
1591 // better off using the generic RSCri and RSCrs instructions.
1592 if (Name == "RSCSri" || Name == "RSCSrs") return false;
1593
1594 // MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used
1595 // in the compiler to implement conditional moves. We can ignore them in
1596 // favor of their more generic versions of instructions.
1597 // See also SDNode *ARMDAGToDAGISel::Select(SDValue Op).
1598 if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" ||
1599 Name == "FCPYScc" || Name == "FCPYDcc" ||
1600 Name == "FNEGScc" || Name == "FNEGDcc")
1601 return false;
1602
1603 // Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc.
1604 if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" ||
1605 Name == "VNEGScc")
1606 return false;
1607
1608 // Ignore the *_sfp instructions when decoding. They are used by the
1609 // compiler to implement scalar floating point operations using vector
1610 // operations in order to work around some performance issues.
1611 if (Name.find("_sfp") != std::string::npos) return false;
1612
1613 // LDM_RET is a special case of LDM (Load Multiple) where the registers
1614 // loaded include the PC, causing a branch to a loaded address. Ignore
1615 // the LDM_RET instruction when decoding.
1616 if (Name == "LDM_RET") return false;
1617
1618 // Bcc is in a more generic form than B. Ignore B when decoding.
1619 if (Name == "B") return false;
1620
1621 // Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction.
1622 if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" ||
1623 Name == "TPsoft")
1624 return false;
1625
1626 // Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for
1627 // decoding. The instruction duplicates an element from an ARM core
1628 // register into every element of the destination vector. There is no
1629 // distinction between data types.
1630 if (Name == "VDUPfd" || Name == "VDUPfq") return false;
1631
1632 // A8-598: VEXT
1633 // Vector Extract extracts elements from the bottom end of the second
1634 // operand vector and the top end of the first, concatenates them and
1635 // places the result in the destination vector. The elements of the
1636 // vectors are treated as being 8-bit bitfields. There is no distinction
1637 // between data types. The size of the operation can be specified in
1638 // assembler as vext.size. If the value is 16, 32, or 64, the syntax is
1639 // a pseudo-instruction for a VEXT instruction specifying the equivalent
1640 // number of bytes.
1641 //
1642 // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
1643 // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
1644 if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
1645 Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
1646 return false;
1647
1648 // Vector Reverse is similar to Vector Extract. There is no distinction
1649 // between data types, other than size.
1650 //
1651 // VREV64df is equivalent to VREV64d32.
1652 // VREV64qf is equivalent to VREV64q32.
1653 if (Name == "VREV64df" || Name == "VREV64qf") return false;
1654
1655 // VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d.
1656 // VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q.
1657 // VLD1df is equivalent to VLD1d32.
1658 // VLD1qf is equivalent to VLD1q32.
1659 // VLD2d64 is equivalent to VLD1q64.
1660 // VST1df is equivalent to VST1d32.
1661 // VST1qf is equivalent to VST1q32.
1662 // VST2d64 is equivalent to VST1q64.
1663 if (Name == "VDUPLNfd" || Name == "VDUPfdf" ||
1664 Name == "VDUPLNfq" || Name == "VDUPfqf" ||
1665 Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" ||
1666 Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64")
1667 return false;
1668 } else if (TN == TARGET_THUMB) {
1669 if (!thumbInstruction(Form))
1670 return false;
1671
1672 // Ignore pseudo instructions.
1673 if (Name == "tInt_eh_sjlj_setjmp" || Name == "t2Int_eh_sjlj_setjmp" ||
1674 Name == "t2MOVi32imm" || Name == "tBX" || Name == "tBXr9")
1675 return false;
1676
1677 // On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts.
1678 if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr")
1679 return false;
1680
1681 // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9.
1682 if (Name == "tTPsoft" || Name == "t2TPsoft")
1683 return false;
1684
1685 // Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi.
1686 if (Name == "tLEApcrel" || Name == "tLEApcrelJT")
1687 return false;
1688
1689 // Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing.
1690 if (Name == "t2LEApcrel")
1691 return false;
1692
1693 // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
1694 // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
1695 // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
1696 if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
1697 Name == "t2SUBrSPs" || Name == "t2ADDrSPs")
1698 return false;
1699
1700 // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
1701 if (Name == "t2LDRDpci")
1702 return false;
1703
1704 // Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen.
1705 if (Name == "t2TBB" || Name == "t2TBH")
1706 return false;
1707
1708 // Resolve conflicts:
1709 //
1710 // tBfar conflicts with tBLr9
1711 // tCMNz conflicts with tCMN (with assembly format strings being equal)
1712 // tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto)
1713 // tMOVCCi conflicts with tMOVi8
1714 // tMOVCCr conflicts with tMOVgpr2gpr
1715 // tBR_JTr conflicts with tBRIND
1716 // tSpill conflicts with tSTRspi
1717 // tLDRcp conflicts with tLDRspi
1718 // tRestore conflicts with tLDRspi
1719 // t2LEApcrelJT conflicts with t2LEApcrel
1720 // t2ADDrSPi/t2SUBrSPi have more generic couterparts
1721 if (Name == "tBfar" ||
1722 /* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" ||
1723 Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" ||
1724 Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" ||
1725 Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" ||
1726 Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" ||
1727 Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" ||
1728 Name == "t2LEApcrelJT" || Name == "t2ADDrSPi" || Name == "t2SUBrSPi")
1729 return false;
1730 }
1731
1732 // Dumps the instruction encoding format.
1733 switch (TargetName) {
1734 case TARGET_ARM:
1735 case TARGET_THUMB:
1736 DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form));
1737 break;
1738 }
1739
1740 DEBUG({
1741 errs() << " ";
1742
1743 // Dumps the instruction encoding bits.
1744 dumpBits(errs(), Bits);
1745
1746 errs() << '\n';
1747
1748 // Dumps the list of operand info.
1749 for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) {
1750 CodeGenInstruction::OperandInfo Info = CGI.OperandList[i];
1751 const std::string &OperandName = Info.Name;
1752 const Record &OperandDef = *Info.Rec;
1753
1754 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1755 }
1756 });
1757
1758 return true;
1759}
1760
1761void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
1762 getInstructionsByEnumValue(NumberedInstructions);
1763
1764 uint16_t numUIDs = NumberedInstructions.size();
1765 uint16_t uid;
1766
1767 const char *instClass = NULL;
1768
1769 switch (TargetName) {
1770 case TARGET_ARM:
1771 instClass = "InstARM";
1772 break;
1773 default:
1774 assert(0 && "Unreachable code!");
1775 }
1776
1777 for (uid = 0; uid < numUIDs; uid++) {
1778 // filter out intrinsics
1779 if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass))
1780 continue;
1781
1782 if (populateInstruction(*NumberedInstructions[uid], TargetName))
1783 Opcodes.push_back(uid);
1784 }
1785
1786 // Special handling for the ARM chip, which supports two modes of execution.
1787 // This branch handles the Thumb opcodes.
1788 if (TargetName == TARGET_ARM) {
1789 for (uid = 0; uid < numUIDs; uid++) {
1790 // filter out intrinsics
1791 if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
1792 && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
1793 continue;
1794
1795 if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
1796 Opcodes2.push_back(uid);
1797 }
1798 }
1799}
1800
1801// Emits disassembler code for instruction decoding. This delegates to the
1802// FilterChooser instance to do the heavy lifting.
1803void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) {
1804 switch (TargetName) {
1805 case TARGET_ARM:
1806 Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o);
1807 break;
1808 default:
1809 assert(0 && "Unreachable code!");
1810 }
1811
1812 o << "#include \"llvm/Support/DataTypes.h\"\n";
1813 o << "#include <assert.h>\n";
1814 o << '\n';
1815 o << "namespace llvm {\n\n";
1816
1817 FilterChooser::setTargetName(TargetName);
1818
1819 switch (TargetName) {
1820 case TARGET_ARM: {
1821 // Emit common utility and ARM ISA decoder.
1822 FC = new FilterChooser(NumberedInstructions, Opcodes);
1823 // Reset indentation level.
1824 unsigned Indentation = 0;
1825 FC->emitTop(o, Indentation);
1826 delete FC;
1827
1828 // Emit Thumb ISA decoder as well.
1829 FilterChooser::setTargetName(TARGET_THUMB);
1830 FC = new FilterChooser(NumberedInstructions, Opcodes2);
1831 // Reset indentation level.
1832 Indentation = 0;
1833 FC->emitBot(o, Indentation);
1834 break;
1835 }
1836 default:
1837 assert(0 && "Unreachable code!");
1838 }
1839
1840 o << "\n} // End llvm namespace \n";
1841}
1842
1843/////////////////////////
1844// Backend interface //
1845/////////////////////////
1846
1847void ARMDecoderEmitter::initBackend()
1848{
1849 Backend = new ARMDEBackend(*this);
1850}
1851
1852void ARMDecoderEmitter::run(raw_ostream &o)
1853{
1854 Backend->emit(o);
1855}
1856
1857void ARMDecoderEmitter::shutdownBackend()
1858{
1859 delete Backend;
1860 Backend = NULL;
1861}