blob: a2a0f6cdcaa2664548a9240f698181d4f43c5d85 [file] [log] [blame]
Sean Silva2f8a1762013-07-01 20:45:12 +00001=======================
2Writing an LLVM Backend
3=======================
Dmitri Gribenko91cb6942012-12-01 12:13:48 +00004
Sean Silva5d0d67f2012-12-31 11:49:51 +00005.. toctree::
6 :hidden:
7
8 HowToUseInstrMappings
9
Dmitri Gribenko91cb6942012-12-01 12:13:48 +000010.. contents::
11 :local:
12
13Introduction
14============
15
16This document describes techniques for writing compiler backends that convert
17the LLVM Intermediate Representation (IR) to code for a specified machine or
18other languages. Code intended for a specific machine can take the form of
19either assembly code or binary code (usable for a JIT compiler).
20
21The backend of LLVM features a target-independent code generator that may
22create output for several types of target CPUs --- including X86, PowerPC,
23ARM, and SPARC. The backend may also be used to generate code targeted at SPUs
24of the Cell processor or GPUs to support the execution of compute kernels.
25
26The document focuses on existing examples found in subdirectories of
27``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document
28focuses on the example of creating a static compiler (one that emits text
29assembly) for a SPARC target, because SPARC has fairly standard
30characteristics, such as a RISC instruction set and straightforward calling
31conventions.
32
33Audience
34--------
35
36The audience for this document is anyone who needs to write an LLVM backend to
37generate code for a specific hardware or software target.
38
39Prerequisite Reading
40--------------------
41
42These essential documents must be read before reading this document:
43
44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
45 the LLVM assembly language.
46
47* :doc:`CodeGenerator` --- a guide to the components (classes and code
48 generation algorithms) for translating the LLVM internal representation into
49 machine code for a specified target. Pay particular attention to the
50 descriptions of code generation stages: Instruction Selection, Scheduling and
51 Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
52 Insertion, Late Machine Code Optimizations, and Code Emission.
53
54* :doc:`TableGenFundamentals` --- a document that describes the TableGen
55 (``tblgen``) application that manages domain-specific information to support
56 LLVM code generation. TableGen processes input from a target description
57 file (``.td`` suffix) and generates C++ code that can be used for code
58 generation.
59
Dmitri Gribenkob64f0202012-12-12 17:02:44 +000060* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
61 are several ``SelectionDAG`` processing steps.
Dmitri Gribenko91cb6942012-12-01 12:13:48 +000062
63To follow the SPARC examples in this document, have a copy of `The SPARC
64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
65reference. For details about the ARM instruction set, refer to the `ARM
66Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about
67the GNU Assembler format (``GAS``), see `Using As
68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
69assembly printer. "Using As" contains a list of target machine dependent
70features.
71
72Basic Steps
73-----------
74
75To write a compiler backend for LLVM that converts the LLVM IR to code for a
76specified target (machine or other language), follow these steps:
77
78* Create a subclass of the ``TargetMachine`` class that describes
79 characteristics of your target machine. Copy existing examples of specific
80 ``TargetMachine`` class and header files; for example, start with
81 ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
82 names for your target. Similarly, change code that references "``Sparc``" to
83 reference your target.
84
85* Describe the register set of the target. Use TableGen to generate code for
86 register definition, register aliases, and register classes from a
87 target-specific ``RegisterInfo.td`` input file. You should also write
88 additional code for a subclass of the ``TargetRegisterInfo`` class that
89 represents the class register file data used for register allocation and also
90 describes the interactions between registers.
91
92* Describe the instruction set of the target. Use TableGen to generate code
93 for target-specific instructions from target-specific versions of
94 ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write
95 additional code for a subclass of the ``TargetInstrInfo`` class to represent
96 machine instructions supported by the target machine.
97
98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
99 Graph (DAG) representation of instructions to native target-specific
100 instructions. Use TableGen to generate code that matches patterns and
101 selects instructions based on additional information in a target-specific
102 version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``,
103 where ``XXX`` identifies the specific target, to perform pattern matching and
104 DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp``
105 to replace or remove operations and data types that are not supported
106 natively in a SelectionDAG.
107
108* Write code for an assembly printer that converts LLVM IR to a GAS format for
109 your target machine. You should add assembly strings to the instructions
110 defined in your target-specific version of ``TargetInstrInfo.td``. You
111 should also write code for a subclass of ``AsmPrinter`` that performs the
112 LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
113
114* Optionally, add support for subtargets (i.e., variants with different
115 capabilities). You should also write code for a subclass of the
116 ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
117 ``-mattr=`` command-line options.
118
119* Optionally, add JIT support and create a machine code emitter (subclass of
120 ``TargetJITInfo``) that is used to emit binary code directly into memory.
121
122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
123implement them later. Initially, you may not know which private members that
124the class will need and which components will need to be subclassed.
125
126Preliminaries
127-------------
128
129To actually create your compiler backend, you need to create and modify a few
130files. The absolute minimum is discussed here. But to actually use the LLVM
131target-independent code generator, you must perform the steps described in the
132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
133
134First, you should create a subdirectory under ``lib/Target`` to hold all the
135files related to your target. If your target is called "Dummy", create the
136directory ``lib/Target/Dummy``.
137
138In this new directory, create a ``Makefile``. It is easiest to copy a
139``Makefile`` of another target and modify it. It should at least contain the
140``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
141``$(LEVEL)/Makefile.common``. The library can be named ``LLVMDummy`` (for
142example, see the MIPS target). Alternatively, you can split the library into
143``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
144implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
145PowerPC target).
146
147Note that these two naming schemes are hardcoded into ``llvm-config``. Using
148any other naming scheme will confuse ``llvm-config`` and produce a lot of
149(seemingly unrelated) linker errors when linking ``llc``.
150
151To make your target actually do something, you need to implement a subclass of
152``TargetMachine``. This implementation should typically be in the file
153``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
154directory will be built and should work. To use LLVM's target independent code
155generator, you should do what all current machine backends do: create a
156subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a
157subclass of ``TargetMachine``.)
158
159To get LLVM to actually build and link your target, you need to add it to the
160``TARGETS_TO_BUILD`` variable. To do this, you modify the configure script to
161know about your target when parsing the ``--enable-targets`` option. Search
162the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
163there (some creativity required), and then reconfigure. Alternatively, you can
164change ``autotools/configure.ac`` and regenerate configure by running
165``./autoconf/AutoRegen.sh``.
166
167Target Machine
168==============
169
170``LLVMTargetMachine`` is designed as a base class for targets implemented with
171the LLVM target-independent code generator. The ``LLVMTargetMachine`` class
172should be specialized by a concrete target class that implements the various
173virtual methods. ``LLVMTargetMachine`` is defined as a subclass of
174``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The
175``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
176numerous command-line options.
177
178To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
179by copying an existing ``TargetMachine`` class and header. You should name the
180files that you create to reflect your specific target. For instance, for the
181SPARC target, name the files ``SparcTargetMachine.h`` and
182``SparcTargetMachine.cpp``.
183
184For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
185have access methods to obtain objects that represent target components. These
186methods are named ``get*Info``, and are intended to obtain the instruction set
187(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
188(``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also
189implement the ``getDataLayout`` method to access an object with target-specific
190data characteristics, such as data type size and alignment requirements.
191
192For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
193declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
194simply return a class member.
195
196.. code-block:: c++
197
198 namespace llvm {
199
200 class Module;
201
202 class SparcTargetMachine : public LLVMTargetMachine {
203 const DataLayout DataLayout; // Calculates type size & alignment
204 SparcSubtarget Subtarget;
205 SparcInstrInfo InstrInfo;
206 TargetFrameInfo FrameInfo;
207
208 protected:
209 virtual const TargetAsmInfo *createTargetAsmInfo() const;
210
211 public:
212 SparcTargetMachine(const Module &M, const std::string &FS);
213
214 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
215 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
216 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
217 virtual const TargetRegisterInfo *getRegisterInfo() const {
218 return &InstrInfo.getRegisterInfo();
219 }
220 virtual const DataLayout *getDataLayout() const { return &DataLayout; }
221 static unsigned getModuleMatchQuality(const Module &M);
222
223 // Pass Pipeline Configuration
224 virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
225 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
226 };
227
228 } // end namespace llvm
229
230* ``getInstrInfo()``
231* ``getRegisterInfo()``
232* ``getFrameInfo()``
233* ``getDataLayout()``
234* ``getSubtargetImpl()``
235
236For some targets, you also need to support the following methods:
237
238* ``getTargetLowering()``
239* ``getJITInfo()``
240
241In addition, the ``XXXTargetMachine`` constructor should specify a
242``TargetDescription`` string that determines the data layout for the target
243machine, including characteristics such as pointer size, alignment, and
244endianness. For example, the constructor for ``SparcTargetMachine`` contains
245the following:
246
247.. code-block:: c++
248
249 SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
250 : DataLayout("E-p:32:32-f128:128:128"),
251 Subtarget(M, FS), InstrInfo(Subtarget),
252 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
253 }
254
255Hyphens separate portions of the ``TargetDescription`` string.
256
257* An upper-case "``E``" in the string indicates a big-endian target data model.
258 A lower-case "``e``" indicates little-endian.
259
260* "``p:``" is followed by pointer information: size, ABI alignment, and
261 preferred alignment. If only two figures follow "``p:``", then the first
262 value is pointer size, and the second value is both ABI and preferred
263 alignment.
264
265* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
266 "``a``" (corresponding to integer, floating point, vector, or aggregate).
267 "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
268 alignment. "``f``" is followed by three values: the first indicates the size
269 of a long double, then ABI alignment, and then ABI preferred alignment.
270
271Target Registration
272===================
273
274You must also register your target with the ``TargetRegistry``, which is what
275other LLVM tools use to be able to lookup and use your target at runtime. The
276``TargetRegistry`` can be used directly, but for most targets there are helper
277templates which should take care of the work for you.
278
279All targets should declare a global ``Target`` object which is used to
280represent the target during registration. Then, in the target's ``TargetInfo``
281library, the target should define that object and use the ``RegisterTarget``
282template to register the target. For example, the Sparc registration code
283looks like this:
284
285.. code-block:: c++
286
287 Target llvm::TheSparcTarget;
288
289 extern "C" void LLVMInitializeSparcTargetInfo() {
290 RegisterTarget<Triple::sparc, /*HasJIT=*/false>
291 X(TheSparcTarget, "sparc", "Sparc");
292 }
293
294This allows the ``TargetRegistry`` to look up the target by name or by target
295triple. In addition, most targets will also register additional features which
296are available in separate libraries. These registration steps are separate,
297because some clients may wish to only link in some parts of the target --- the
298JIT code generator does not require the use of the assembler printer, for
299example. Here is an example of registering the Sparc assembly printer:
300
301.. code-block:: c++
302
303 extern "C" void LLVMInitializeSparcAsmPrinter() {
304 RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
305 }
306
307For more information, see "`llvm/Target/TargetRegistry.h
308</doxygen/TargetRegistry_8h-source.html>`_".
309
310Register Set and Register Classes
311=================================
312
313You should describe a concrete target-specific class that represents the
314register file of a target machine. This class is called ``XXXRegisterInfo``
315(where ``XXX`` identifies the target) and represents the class register file
316data that is used for register allocation. It also describes the interactions
317between registers.
318
319You also need to define register classes to categorize related registers. A
320register class should be added for groups of registers that are all treated the
321same way for some instruction. Typical examples are register classes for
322integer, floating-point, or vector registers. A register allocator allows an
323instruction to use any register in a specified register class to perform the
324instruction in a similar manner. Register classes allocate virtual registers
325to instructions from these sets, and register classes let the
326target-independent register allocator automatically choose the actual
327registers.
328
329Much of the code for registers, including register definition, register
330aliases, and register classes, is generated by TableGen from
331``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
332and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the
333implementation of ``XXXRegisterInfo`` requires hand-coding.
334
335Defining a Register
336-------------------
337
338The ``XXXRegisterInfo.td`` file typically starts with register definitions for
339a target machine. The ``Register`` class (specified in ``Target.td``) is used
340to define an object for each register. The specified string ``n`` becomes the
341``Name`` of the register. The basic ``Register`` object does not have any
342subregisters and does not specify any aliases.
343
344.. code-block:: llvm
345
346 class Register<string n> {
347 string Namespace = "";
348 string AsmName = n;
349 string Name = n;
350 int SpillSize = 0;
351 int SpillAlignment = 0;
352 list<Register> Aliases = [];
353 list<Register> SubRegs = [];
354 list<int> DwarfNumbers = [];
355 }
356
357For example, in the ``X86RegisterInfo.td`` file, there are register definitions
358that utilize the ``Register`` class, such as:
359
360.. code-block:: llvm
361
362 def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
363
364This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
365that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
366register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
367representing 3 different modes: the first element is for X86-64, the second for
368exception handling (EH) on X86-32, and the third is generic. -1 is a special
369Dwarf number that indicates the gcc number is undefined, and -2 indicates the
370register number is invalid for this mode.
371
372From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
373generates this code in the ``X86GenRegisterInfo.inc`` file:
374
375.. code-block:: c++
376
377 static const unsigned GR8[] = { X86::AL, ... };
378
379 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
380
381 const TargetRegisterDesc RegisterDescriptors[] = {
382 ...
383 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
384
385From the register info file, TableGen generates a ``TargetRegisterDesc`` object
386for each register. ``TargetRegisterDesc`` is defined in
387``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
388
389.. code-block:: c++
390
391 struct TargetRegisterDesc {
392 const char *AsmName; // Assembly language name for the register
393 const char *Name; // Printable name for the reg (for debugging)
394 const unsigned *AliasSet; // Register Alias Set
395 const unsigned *SubRegs; // Sub-register set
396 const unsigned *ImmSubRegs; // Immediate sub-register set
397 const unsigned *SuperRegs; // Super-register set
398 };
399
400TableGen uses the entire target description file (``.td``) to determine text
401names for the register (in the ``AsmName`` and ``Name`` fields of
402``TargetRegisterDesc``) and the relationships of other registers to the defined
403register (in the other ``TargetRegisterDesc`` fields). In this example, other
404definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
405aliases for one another, so TableGen generates a null-terminated array
406(``AL_AliasSet``) for this register alias set.
407
408The ``Register`` class is commonly used as a base class for more complex
409classes. In ``Target.td``, the ``Register`` class is the base for the
410``RegisterWithSubRegs`` class that is used to define registers that need to
411specify subregisters in the ``SubRegs`` list, as shown here:
412
413.. code-block:: llvm
414
415 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
416 let SubRegs = subregs;
417 }
418
419In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
420a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
421and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a
422feature common to these subclasses. Note the use of "``let``" expressions to
423override values that are initially defined in a superclass (such as ``SubRegs``
424field in the ``Rd`` class).
425
426.. code-block:: llvm
427
428 class SparcReg<string n> : Register<n> {
429 field bits<5> Num;
430 let Namespace = "SP";
431 }
432 // Ri - 32-bit integer registers
433 class Ri<bits<5> num, string n> :
434 SparcReg<n> {
435 let Num = num;
436 }
437 // Rf - 32-bit floating-point registers
438 class Rf<bits<5> num, string n> :
439 SparcReg<n> {
440 let Num = num;
441 }
442 // Rd - Slots in the FP register file for 64-bit floating-point values.
443 class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
444 let Num = num;
445 let SubRegs = subregs;
446 }
447
448In the ``SparcRegisterInfo.td`` file, there are register definitions that
449utilize these subclasses of ``Register``, such as:
450
451.. code-block:: llvm
452
453 def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
454 def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
455 ...
456 def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
457 def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
458 ...
459 def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
460 def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
461
462The last two registers shown above (``D0`` and ``D1``) are double-precision
463floating-point registers that are aliases for pairs of single-precision
464floating-point sub-registers. In addition to aliases, the sub-register and
465super-register relationships of the defined register are in fields of a
466register's ``TargetRegisterDesc``.
467
468Defining a Register Class
469-------------------------
470
471The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
472object that represents a group of related registers and also defines the
473default allocation order of the registers. A target description file
474``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
475using the following class:
476
477.. code-block:: llvm
478
479 class RegisterClass<string namespace,
480 list<ValueType> regTypes, int alignment, dag regList> {
481 string Namespace = namespace;
482 list<ValueType> RegTypes = regTypes;
483 int Size = 0; // spill size, in bits; zero lets tblgen pick the size
484 int Alignment = alignment;
485
486 // CopyCost is the cost of copying a value between two registers
487 // default value 1 means a single instruction
488 // A negative value means copying is extremely expensive or impossible
489 int CopyCost = 1;
490 dag MemberList = regList;
491
492 // for register classes that are subregisters of this class
493 list<RegisterClass> SubRegClassList = [];
494
495 code MethodProtos = [{}]; // to insert arbitrary code
496 code MethodBodies = [{}];
497 }
498
499To define a ``RegisterClass``, use the following 4 arguments:
500
501* The first argument of the definition is the name of the namespace.
502
503* The second argument is a list of ``ValueType`` register type values that are
504 defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include
505 integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
506 floating-point types (``f32``, ``f64``), and vector types (for example,
507 ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass``
508 must have the same ``ValueType``, but some registers may store vector data in
509 different configurations. For example a register that can process a 128-bit
510 vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
511 32-bit integers, and so on.
512
513* The third argument of the ``RegisterClass`` definition specifies the
514 alignment required of the registers when they are stored or loaded to
515 memory.
516
517* The final argument, ``regList``, specifies which registers are in this class.
518 If an alternative allocation order method is not specified, then ``regList``
519 also defines the order of allocation used by the register allocator. Besides
520 simply listing registers with ``(add R0, R1, ...)``, more advanced set
521 operators are available. See ``include/llvm/Target/Target.td`` for more
522 information.
523
524In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
525``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the
526first argument defines the namespace with the string "``SP``". ``FPRegs``
527defines a group of 32 single-precision floating-point registers (``F0`` to
528``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
529(``D0-D15``).
530
531.. code-block:: llvm
532
533 // F0, F1, F2, ..., F31
534 def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
535
536 def DFPRegs : RegisterClass<"SP", [f64], 64,
537 (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
538 D9, D10, D11, D12, D13, D14, D15)>;
539
540 def IntRegs : RegisterClass<"SP", [i32], 32,
541 (add L0, L1, L2, L3, L4, L5, L6, L7,
542 I0, I1, I2, I3, I4, I5,
543 O0, O1, O2, O3, O4, O5, O7,
544 G1,
545 // Non-allocatable regs:
546 G2, G3, G4,
547 O6, // stack ptr
548 I6, // frame ptr
549 I7, // return address
550 G0, // constant zero
551 G5, G6, G7 // reserved for kernel
552 )>;
553
554Using ``SparcRegisterInfo.td`` with TableGen generates several output files
555that are intended for inclusion in other source code that you write.
556``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
557be included in the header file for the implementation of the SPARC register
558implementation that you write (``SparcRegisterInfo.h``). In
559``SparcGenRegisterInfo.h.inc`` a new structure is defined called
560``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also
561specifies types, based upon the defined register classes: ``DFPRegsClass``,
562``FPRegsClass``, and ``IntRegsClass``.
563
564``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
565included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
566implementation. The code below shows only the generated integer registers and
567associated register classes. The order of registers in ``IntRegs`` reflects
568the order in the definition of ``IntRegs`` in the target description file.
569
570.. code-block:: c++
571
572 // IntRegs Register Class...
573 static const unsigned IntRegs[] = {
574 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
575 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
576 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
577 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
578 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
579 SP::G6, SP::G7,
580 };
581
582 // IntRegsVTs Register Class Value Types...
583 static const MVT::ValueType IntRegsVTs[] = {
584 MVT::i32, MVT::Other
585 };
586
587 namespace SP { // Register class instances
588 DFPRegsClass DFPRegsRegClass;
589 FPRegsClass FPRegsRegClass;
590 IntRegsClass IntRegsRegClass;
591 ...
592 // IntRegs Sub-register Classess...
593 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
594 NULL
595 };
596 ...
597 // IntRegs Super-register Classess...
598 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
599 NULL
600 };
601 ...
602 // IntRegs Register Class sub-classes...
603 static const TargetRegisterClass* const IntRegsSubclasses [] = {
604 NULL
605 };
606 ...
607 // IntRegs Register Class super-classes...
608 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
609 NULL
610 };
611
612 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
613 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
614 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
615 }
616
617The register allocators will avoid using reserved registers, and callee saved
618registers are not used until all the volatile registers have been used. That
619is usually good enough, but in some cases it may be necessary to provide custom
620allocation orders.
621
622Implement a subclass of ``TargetRegisterInfo``
623----------------------------------------------
624
625The final step is to hand code portions of ``XXXRegisterInfo``, which
626implements the interface described in ``TargetRegisterInfo.h`` (see
627:ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or
628``false``, unless overridden. Here is a list of functions that are overridden
629for the SPARC implementation in ``SparcRegisterInfo.cpp``:
630
631* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
632 order of the desired callee-save stack frame offset.
633
634* ``getReservedRegs`` --- Returns a bitset indexed by physical register
635 numbers, indicating if a particular register is unavailable.
636
637* ``hasFP`` --- Return a Boolean indicating if a function should have a
638 dedicated frame pointer register.
639
640* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
641 instructions are used, this can be called to eliminate them.
642
643* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
644 instructions that may use them.
645
646* ``emitPrologue`` --- Insert prologue code into the function.
647
648* ``emitEpilogue`` --- Insert epilogue code into the function.
649
650.. _instruction-set:
651
652Instruction Set
653===============
654
655During the early stages of code generation, the LLVM IR code is converted to a
656``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
657containing target instructions. An ``SDNode`` has an opcode, operands, type
658requirements, and operation properties. For example, is an operation
659commutative, does an operation load from memory. The various operation node
660types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
661(values of the ``NodeType`` enum in the ``ISD`` namespace).
662
663TableGen uses the following target description (``.td``) input files to
664generate much of the code for instruction definition:
665
666* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
667 other fundamental classes are defined.
668
669* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
670 generators, contains ``SDTC*`` classes (selection DAG type constraint),
671 definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
672 ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
673 ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
674
675* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
676 instructions.
677
678* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
679 condition codes, and instructions of an instruction set. For architecture
680 modifications, a different file name may be used. For example, for Pentium
681 with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
682 MMX, this file is ``X86InstrMMX.td``.
683
684There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
685the target. The ``XXX.td`` file includes the other ``.td`` input files, but
686its contents are only directly important for subtargets.
687
688You should describe a concrete target-specific class ``XXXInstrInfo`` that
689represents machine instructions supported by a target machine.
690``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
691which describes one instruction. An instruction descriptor defines:
692
693* Opcode mnemonic
694* Number of operands
695* List of implicit register definitions and uses
696* Target-independent properties (such as memory access, is commutable)
697* Target-specific flags
698
699The Instruction class (defined in ``Target.td``) is mostly used as a base for
700more complex instruction classes.
701
702.. code-block:: llvm
703
704 class Instruction {
705 string Namespace = "";
706 dag OutOperandList; // A dag containing the MI def operand list.
707 dag InOperandList; // A dag containing the MI use operand list.
708 string AsmString = ""; // The .s format to print the instruction with.
709 list<dag> Pattern; // Set to the DAG pattern for this instruction.
710 list<Register> Uses = [];
711 list<Register> Defs = [];
712 list<Predicate> Predicates = []; // predicates turned into isel match code
713 ... remainder not shown for space ...
714 }
715
716A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
717target-specific instruction that is defined in ``XXXInstrInfo.td``. The
718instruction objects should represent instructions from the architecture manual
719of the target machine (such as the SPARC Architecture Manual for the SPARC
720target).
721
722A single instruction from the architecture manual is often modeled as multiple
723target instructions, depending upon its operands. For example, a manual might
724describe an add instruction that takes a register or an immediate operand. An
725LLVM target could model this with two instructions named ``ADDri`` and
726``ADDrr``.
727
728You should define a class for each instruction category and define each opcode
729as a subclass of the category with appropriate parameters such as the fixed
730binary encoding of opcodes and extended opcodes. You should map the register
731bits to the bits of the instruction in which they are encoded (for the JIT).
732Also you should specify how the instruction should be printed when the
733automatic assembly printer is used.
734
735As is described in the SPARC Architecture Manual, Version 8, there are three
736major 32-bit formats for instructions. Format 1 is only for the ``CALL``
737instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high
738bits of a register) instructions. Format 3 is for other instructions.
739
740Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
741``InstSP`` is a base class for other instruction classes. Additional base
742classes are specified for more precise formats: for example in
743``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
744branches. There are three other base classes: ``F3_1`` for register/register
745operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
746floating-point operations. ``SparcInstrInfo.td`` also adds the base class
747``Pseudo`` for synthetic SPARC instructions.
748
749``SparcInstrInfo.td`` largely consists of operand and instruction definitions
750for the SPARC target. In ``SparcInstrInfo.td``, the following target
751description file entry, ``LDrr``, defines the Load Integer instruction for a
752Word (the ``LD`` SPARC opcode) from a memory address to a register. The first
753parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
754category of operation. The second parameter (``000000``\ :sub:`2`) is the
755specific operation value for ``LD``/Load Word. The third parameter is the
756output destination, which is a register operand and defined in the ``Register``
757target description file (``IntRegs``).
758
759.. code-block:: llvm
760
761 def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
762 "ld [$addr], $dst",
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000763 [(set i32:$dst, (load ADDRrr:$addr))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000764
765The fourth parameter is the input source, which uses the address operand
766``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
767
768.. code-block:: llvm
769
770 def MEMrr : Operand<i32> {
771 let PrintMethod = "printMemOperand";
772 let MIOperandInfo = (ops IntRegs, IntRegs);
773 }
774
775The fifth parameter is a string that is used by the assembly printer and can be
776left as an empty string until the assembly printer interface is implemented.
777The sixth and final parameter is the pattern used to match the instruction
778during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
779This parameter is detailed in the next section, :ref:`instruction-selector`.
780
781Instruction class definitions are not overloaded for different operand types,
782so separate versions of instructions are needed for register, memory, or
783immediate value operands. For example, to perform a Load Integer instruction
784for a Word from an immediate operand to a register, the following instruction
785class is defined:
786
787.. code-block:: llvm
788
789 def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
790 "ld [$addr], $dst",
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000791 [(set i32:$dst, (load ADDRri:$addr))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000792
793Writing these definitions for so many similar instructions can involve a lot of
794cut and paste. In ``.td`` files, the ``multiclass`` directive enables the
795creation of templates to define several instruction classes at once (using the
796``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass``
797pattern ``F3_12`` is defined to create 2 instruction classes each time
798``F3_12`` is invoked:
799
800.. code-block:: llvm
801
802 multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
803 def rr : F3_1 <2, Op3Val,
804 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
805 !strconcat(OpcStr, " $b, $c, $dst"),
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000806 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000807 def ri : F3_2 <2, Op3Val,
808 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
809 !strconcat(OpcStr, " $b, $c, $dst"),
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000810 [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000811 }
812
813So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
814instructions, as seen below, it creates four instruction objects: ``XORrr``,
815``XORri``, ``ADDrr``, and ``ADDri``.
816
817.. code-block:: llvm
818
819 defm XOR : F3_12<"xor", 0b000011, xor>;
820 defm ADD : F3_12<"add", 0b000000, add>;
821
822``SparcInstrInfo.td`` also includes definitions for condition codes that are
823referenced by branch instructions. The following definitions in
824``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
825For example, the 10\ :sup:`th` bit represents the "greater than" condition for
826integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
827floats.
828
829.. code-block:: llvm
830
831 def ICC_NE : ICC_VAL< 9>; // Not Equal
832 def ICC_E : ICC_VAL< 1>; // Equal
833 def ICC_G : ICC_VAL<10>; // Greater
834 ...
835 def FCC_U : FCC_VAL<23>; // Unordered
836 def FCC_G : FCC_VAL<22>; // Greater
837 def FCC_UG : FCC_VAL<21>; // Unordered or Greater
838 ...
839
840(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
841condition codes. Care must be taken to ensure the values in ``Sparc.h``
842correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``,
843``SPCC::FCC_U = 23`` and so on.)
844
845Instruction Operand Mapping
846---------------------------
847
848The code generator backend maps instruction operands to fields in the
849instruction. Operands are assigned to unbound fields in the instruction in the
850order they are defined. Fields are bound when they are assigned a value. For
851example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
852format instruction having three operands.
853
854.. code-block:: llvm
855
856 def XNORrr : F3_1<2, 0b000111,
857 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
858 "xnor $b, $c, $dst",
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +0000859 [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000860
861The instruction templates in ``SparcInstrFormats.td`` show the base class for
862``F3_1`` is ``InstSP``.
863
864.. code-block:: llvm
865
866 class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
867 field bits<32> Inst;
868 let Namespace = "SP";
869 bits<2> op;
870 let Inst{31-30} = op;
871 dag OutOperandList = outs;
872 dag InOperandList = ins;
873 let AsmString = asmstr;
874 let Pattern = pattern;
875 }
876
877``InstSP`` leaves the ``op`` field unbound.
878
879.. code-block:: llvm
880
881 class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
882 : InstSP<outs, ins, asmstr, pattern> {
883 bits<5> rd;
884 bits<6> op3;
885 bits<5> rs1;
886 let op{1} = 1; // Op = 2 or 3
887 let Inst{29-25} = rd;
888 let Inst{24-19} = op3;
889 let Inst{18-14} = rs1;
890 }
891
892``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
893fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
894``rs1`` fields.
895
896.. code-block:: llvm
897
898 class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
899 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
900 bits<8> asi = 0; // asi not currently used
901 bits<5> rs2;
902 let op = opVal;
903 let op3 = op3val;
904 let Inst{13} = 0; // i field = 0
905 let Inst{12-5} = asi; // address space identifier
906 let Inst{4-0} = rs2;
907 }
908
909``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1``
910format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
911fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
912and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
913
Tom Stellard898b9f02013-06-25 21:22:09 +0000914TableGen will also generate a function called getNamedOperandIdx() which
915can be used to look up an operand's index in a MachineInstr based on its
916TableGen name. Setting the UseNamedOperandTable bit in an instruction's
917TableGen definition will add all of its operands to an enumeration in the
918llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
919table, which can be queried using getNamedOperandIdx()
920
921.. code-block:: llvm
922
923 int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
924 int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1
925 int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2
926 int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1
927
928 ...
929
930The entries in the OpName enum are taken verbatim from the TableGen definitions,
931so operands with lowercase names will have lower case entries in the enum.
932
933To include the getNamedOperandIdx() function in your backend, you will need
934to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
935For example:
936
937XXXInstrInfo.cpp:
938
939.. code-block:: c++
940
941 #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
942 #include "XXXGenInstrInfo.inc"
943
944XXXInstrInfo.h:
945
946.. code-block:: c++
947
948 #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
949 #include "XXXGenInstrInfo.inc"
950
951 namespace XXX {
952 int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
953 } // End namespace XXX
954
Vincent Lejeuned8f2eb32013-09-03 19:43:28 +0000955Instruction itineraries can be queried using MCDesc::getSchedClass(). The
956value can be named by an enumemation in llvm::XXX::Sched namespace generated
957by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
958the same as provided in XXXSchedule.td plus a default NoIntinerary class.
959
Dmitri Gribenko91cb6942012-12-01 12:13:48 +0000960Instruction Relation Mapping
961----------------------------
962
963This TableGen feature is used to relate instructions with each other. It is
964particularly useful when you have multiple instruction formats and need to
965switch between them after instruction selection. This entire feature is driven
966by relation models which can be defined in ``XXXInstrInfo.td`` files
967according to the target-specific instruction set. Relation models are defined
968using ``InstrMapping`` class as a base. TableGen parses all the models
969and generates instruction relation maps using the specified information.
970Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
971along with the functions to query them. For the detailed information on how to
972use this feature, please refer to :doc:`HowToUseInstrMappings`.
973
974Implement a subclass of ``TargetInstrInfo``
975-------------------------------------------
976
977The final step is to hand code portions of ``XXXInstrInfo``, which implements
978the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
979These functions return ``0`` or a Boolean or they assert, unless overridden.
980Here's a list of functions that are overridden for the SPARC implementation in
981``SparcInstrInfo.cpp``:
982
983* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
984 load from a stack slot, return the register number of the destination and the
985 ``FrameIndex`` of the stack slot.
986
987* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
988 store to a stack slot, return the register number of the destination and the
989 ``FrameIndex`` of the stack slot.
990
991* ``copyPhysReg`` --- Copy values between a pair of physical registers.
992
993* ``storeRegToStackSlot`` --- Store a register value to a stack slot.
994
995* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
996
997* ``storeRegToAddr`` --- Store a register value to memory.
998
999* ``loadRegFromAddr`` --- Load a register value from memory.
1000
1001* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
1002 store instruction for the specified operand(s).
1003
1004Branch Folding and If Conversion
1005--------------------------------
1006
1007Performance can be improved by combining instructions or by eliminating
1008instructions that are never reached. The ``AnalyzeBranch`` method in
1009``XXXInstrInfo`` may be implemented to examine conditional instructions and
1010remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a
1011machine basic block (MBB) for opportunities for improvement, such as branch
1012folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine
1013function passes (see the source files ``BranchFolding.cpp`` and
1014``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
1015to improve the control flow graph that represents the instructions.
1016
1017Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
1018examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC
1019does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
1020shown below.
1021
1022``AnalyzeBranch`` returns a Boolean value and takes four parameters:
1023
1024* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
1025
1026* ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a
1027 conditional branch that evaluates to true, ``TBB`` is the destination.
1028
1029* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
1030 false, ``FBB`` is returned as the destination.
1031
1032* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
1033 condition for a conditional branch.
1034
1035In the simplest case, if a block ends without a branch, then it falls through
1036to the successor block. No destination blocks are specified for either ``TBB``
1037or ``FBB``, so both parameters return ``NULL``. The start of the
1038``AnalyzeBranch`` (see code below for the ARM target) shows the function
1039parameters and the code for the simplest case.
1040
1041.. code-block:: c++
1042
1043 bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1044 MachineBasicBlock *&TBB,
1045 MachineBasicBlock *&FBB,
1046 std::vector<MachineOperand> &Cond) const
1047 {
1048 MachineBasicBlock::iterator I = MBB.end();
1049 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1050 return false;
1051
1052If a block ends with a single unconditional branch instruction, then
1053``AnalyzeBranch`` (shown below) should return the destination of that branch in
1054the ``TBB`` parameter.
1055
1056.. code-block:: c++
1057
1058 if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1059 TBB = LastInst->getOperand(0).getMBB();
1060 return false;
1061 }
1062
1063If a block ends with two unconditional branches, then the second branch is
1064never reached. In that situation, as shown below, remove the last branch
1065instruction and return the penultimate branch in the ``TBB`` parameter.
1066
1067.. code-block:: c++
1068
1069 if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1070 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1071 TBB = SecondLastInst->getOperand(0).getMBB();
1072 I = LastInst;
1073 I->eraseFromParent();
1074 return false;
1075 }
1076
1077A block may end with a single conditional branch instruction that falls through
1078to successor block if the condition evaluates to false. In that case,
1079``AnalyzeBranch`` (shown below) should return the destination of that
1080conditional branch in the ``TBB`` parameter and a list of operands in the
1081``Cond`` parameter to evaluate the condition.
1082
1083.. code-block:: c++
1084
1085 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1086 // Block ends with fall-through condbranch.
1087 TBB = LastInst->getOperand(0).getMBB();
1088 Cond.push_back(LastInst->getOperand(1));
1089 Cond.push_back(LastInst->getOperand(2));
1090 return false;
1091 }
1092
1093If a block ends with both a conditional branch and an ensuing unconditional
1094branch, then ``AnalyzeBranch`` (shown below) should return the conditional
1095branch destination (assuming it corresponds to a conditional evaluation of
1096"``true``") in the ``TBB`` parameter and the unconditional branch destination
1097in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A
1098list of operands to evaluate the condition should be returned in the ``Cond``
1099parameter.
1100
1101.. code-block:: c++
1102
1103 unsigned SecondLastOpc = SecondLastInst->getOpcode();
1104
1105 if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1106 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1107 TBB = SecondLastInst->getOperand(0).getMBB();
1108 Cond.push_back(SecondLastInst->getOperand(1));
1109 Cond.push_back(SecondLastInst->getOperand(2));
1110 FBB = LastInst->getOperand(0).getMBB();
1111 return false;
1112 }
1113
1114For the last two cases (ending with a single conditional branch or ending with
1115one conditional and one unconditional branch), the operands returned in the
1116``Cond`` parameter can be passed to methods of other instructions to create new
1117branches or perform other operations. An implementation of ``AnalyzeBranch``
1118requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
1119subsequent operations.
1120
1121``AnalyzeBranch`` should return false indicating success in most circumstances.
1122``AnalyzeBranch`` should only return true when the method is stumped about what
1123to do, for example, if a block has three terminating branches.
1124``AnalyzeBranch`` may return true if it encounters a terminator it cannot
1125handle, such as an indirect branch.
1126
1127.. _instruction-selector:
1128
1129Instruction Selector
1130====================
1131
1132LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1133the ``SelectionDAG`` ideally represent native target instructions. During code
1134generation, instruction selection passes are performed to convert non-native
1135DAG instructions into native target-specific instructions. The pass described
1136in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1137instruction selection. Optionally, a pass may be defined (in
1138``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1139instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1140operations and data types not supported natively (legalizes) in a
1141``SelectionDAG``.
1142
1143TableGen generates code for instruction selection using the following target
1144description input files:
1145
1146* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1147 target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1148 included in ``XXXISelDAGToDAG.cpp``.
1149
1150* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1151 for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1152 which is included in ``XXXISelLowering.cpp``.
1153
1154The implementation of an instruction selection pass must include a header that
1155declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In
1156``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1157selection pass into the queue of passes to run.
1158
1159The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1160contents of DAGs. To display the ``SelectionDAG`` before or after specific
1161processing phases, use the command line options for ``llc``, described at
1162:ref:`SelectionDAG-Process`.
1163
1164To describe instruction selector behavior, you should add patterns for lowering
1165LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1166definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``,
1167this entry defines a register store operation, and the last parameter describes
1168a pattern with the store DAG operator.
1169
1170.. code-block:: llvm
1171
1172 def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +00001173 "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
Dmitri Gribenko91cb6942012-12-01 12:13:48 +00001174
1175``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1176
1177.. code-block:: llvm
1178
1179 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1180
1181The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1182defined in an implementation of the Instructor Selector (such as
1183``SparcISelDAGToDAG.cpp``).
1184
1185In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1186below:
1187
1188.. code-block:: llvm
1189
1190 def store : PatFrag<(ops node:$val, node:$ptr),
1191 (st node:$val, node:$ptr), [{
1192 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1193 return !ST->isTruncatingStore() &&
1194 ST->getAddressingMode() == ISD::UNINDEXED;
1195 return false;
1196 }]>;
1197
1198``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1199``SelectCode`` method that is used to call the appropriate processing method
1200for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1201for the ``ISD::STORE`` opcode.
1202
1203.. code-block:: c++
1204
1205 SDNode *SelectCode(SDValue N) {
1206 ...
1207 MVT::ValueType NVT = N.getNode()->getValueType(0);
1208 switch (N.getOpcode()) {
1209 case ISD::STORE: {
1210 switch (NVT) {
1211 default:
1212 return Select_ISD_STORE(N);
1213 break;
1214 }
1215 break;
1216 }
1217 ...
1218
1219The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1220code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method
1221is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1222instruction.
1223
1224.. code-block:: c++
1225
1226 SDNode *Select_ISD_STORE(const SDValue &N) {
1227 SDValue Chain = N.getOperand(0);
1228 if (Predicate_store(N.getNode())) {
1229 SDValue N1 = N.getOperand(1);
1230 SDValue N2 = N.getOperand(2);
1231 SDValue CPTmp0;
1232 SDValue CPTmp1;
1233
Jakob Stoklund Olesen15a3c182013-03-24 00:56:20 +00001234 // Pattern: (st:void i32:i32:$src,
Dmitri Gribenko91cb6942012-12-01 12:13:48 +00001235 // ADDRrr:i32:$addr)<<P:Predicate_store>>
1236 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1237 // Pattern complexity = 13 cost = 1 size = 0
1238 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1239 N1.getNode()->getValueType(0) == MVT::i32 &&
1240 N2.getNode()->getValueType(0) == MVT::i32) {
1241 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1242 }
1243 ...
1244
1245The SelectionDAG Legalize Phase
1246-------------------------------
1247
1248The Legalize phase converts a DAG to use types and operations that are natively
1249supported by the target. For natively unsupported types and operations, you
1250need to add code to the target-specific ``XXXTargetLowering`` implementation to
1251convert unsupported types and operations to supported ones.
1252
1253In the constructor for the ``XXXTargetLowering`` class, first use the
1254``addRegisterClass`` method to specify which types are supported and which
1255register classes are associated with them. The code for the register classes
1256are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1257``XXXGenRegisterInfo.h.inc``. For example, the implementation of the
1258constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1259starts with the following code:
1260
1261.. code-block:: c++
1262
1263 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1264 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1265 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1266
1267You should examine the node types in the ``ISD`` namespace
1268(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1269the target natively supports. For operations that do **not** have native
1270support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1271so the instruction selection process knows what to do. The ``TargetLowering``
1272class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1273
1274* ``setOperationAction`` --- General operation.
1275* ``setLoadExtAction`` --- Load with extension.
1276* ``setTruncStoreAction`` --- Truncating store.
1277* ``setIndexedLoadAction`` --- Indexed load.
1278* ``setIndexedStoreAction`` --- Indexed store.
1279* ``setConvertAction`` --- Type conversion.
1280* ``setCondCodeAction`` --- Support for a given condition code.
1281
1282Note: on older releases, ``setLoadXAction`` is used instead of
1283``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not
1284be supported. Examine your release to see what methods are specifically
1285supported.
1286
1287These callbacks are used to determine that an operation does or does not work
1288with a specified type (or types). And in all cases, the third parameter is a
1289``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1290``Legal``. ``SparcISelLowering.cpp`` contains examples of all four
1291``LegalAction`` values.
1292
1293Promote
1294^^^^^^^
1295
1296For an operation without native support for a given type, the specified type
1297may be promoted to a larger type that is supported. For example, SPARC does
1298not support a sign-extending load for Boolean values (``i1`` type), so in
1299``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1300``i1`` type values to a large type before loading.
1301
1302.. code-block:: c++
1303
1304 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1305
1306Expand
1307^^^^^^
1308
1309For a type without native support, a value may need to be broken down further,
1310rather than promoted. For an operation without native support, a combination
1311of other operations may be used to similar effect. In SPARC, the
1312floating-point sine and cosine trig operations are supported by expansion to
1313other operations, as indicated by the third parameter, ``Expand``, to
1314``setOperationAction``:
1315
1316.. code-block:: c++
1317
1318 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1319 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1320
1321Custom
1322^^^^^^
1323
1324For some operations, simple type promotion or operation expansion may be
1325insufficient. In some cases, a special intrinsic function must be implemented.
1326
1327For example, a constant value may require special treatment, or an operation
1328may require spilling and restoring registers in the stack and working with
1329register allocators.
1330
1331As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1332from a floating point value to a signed integer, first the
1333``setOperationAction`` should be called with ``Custom`` as the third parameter:
1334
1335.. code-block:: c++
1336
1337 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1338
1339In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1340statement should be added to indicate what function to call. In the following
1341code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1342
1343.. code-block:: c++
1344
1345 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1346 switch (Op.getOpcode()) {
1347 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1348 ...
1349 }
1350 }
1351
1352Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1353convert the floating-point value to an integer.
1354
1355.. code-block:: c++
1356
1357 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1358 assert(Op.getValueType() == MVT::i32);
1359 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1360 return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1361 }
1362
1363Legal
1364^^^^^
1365
1366The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1367**is** natively supported. ``Legal`` represents the default condition, so it
1368is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1369operation to count the bits set in an integer) is natively supported only for
1370SPARC v9. The following code enables the ``Expand`` conversion technique for
1371non-v9 SPARC implementations.
1372
1373.. code-block:: c++
1374
1375 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1376 ...
1377 if (TM.getSubtarget<SparcSubtarget>().isV9())
1378 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1379
1380Calling Conventions
1381-------------------
1382
1383To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1384interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1385``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor
1386file ``XXXGenCallingConv.td`` and generate the header file
1387``XXXGenCallingConv.inc``, which is typically included in
1388``XXXISelLowering.cpp``. You can use the interfaces in
1389``TargetCallingConv.td`` to specify:
1390
1391* The order of parameter allocation.
1392
1393* Where parameters and return values are placed (that is, on the stack or in
1394 registers).
1395
1396* Which registers may be used.
1397
1398* Whether the caller or callee unwinds the stack.
1399
1400The following example demonstrates the use of the ``CCIfType`` and
1401``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is,
1402if the current argument is of type ``f32`` or ``f64``), then the action is
1403performed. In this case, the ``CCAssignToReg`` action assigns the argument
1404value to the first available register: either ``R0`` or ``R1``.
1405
1406.. code-block:: llvm
1407
1408 CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1409
1410``SparcCallingConv.td`` contains definitions for a target-specific return-value
1411calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1412(``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates
1413which registers are used for specified scalar return types. A single-precision
1414float is returned to register ``F0``, and a double-precision float goes to
1415register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``.
1416
1417.. code-block:: llvm
1418
1419 def RetCC_Sparc32 : CallingConv<[
1420 CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1421 CCIfType<[f32], CCAssignToReg<[F0]>>,
1422 CCIfType<[f64], CCAssignToReg<[D0]>>
1423 ]>;
1424
1425The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1426``CCAssignToStack``, which assigns the value to a stack slot with the specified
1427size and alignment. In the example below, the first parameter, 4, indicates
1428the size of the slot, and the second parameter, also 4, indicates the stack
1429alignment along 4-byte units. (Special cases: if size is zero, then the ABI
1430size is used; if alignment is zero, then the ABI alignment is used.)
1431
1432.. code-block:: llvm
1433
1434 def CC_Sparc32 : CallingConv<[
1435 // All arguments get passed in integer registers if there is space.
1436 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1437 CCAssignToStack<4, 4>
1438 ]>;
1439
1440``CCDelegateTo`` is another commonly used interface, which tries to find a
1441specified sub-calling convention, and, if a match is found, it is invoked. In
1442the following example (in ``X86CallingConv.td``), the definition of
1443``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is
1444assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1445invoked.
1446
1447.. code-block:: llvm
1448
1449 def RetCC_X86_32_C : CallingConv<[
1450 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1451 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1452 CCDelegateTo<RetCC_X86Common>
1453 ]>;
1454
1455``CCIfCC`` is an interface that attempts to match the given name to the current
1456calling convention. If the name identifies the current calling convention,
1457then a specified action is invoked. In the following example (in
1458``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1459``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in
1460use, then ``RetCC_X86_32_SSE`` is invoked.
1461
1462.. code-block:: llvm
1463
1464 def RetCC_X86_32 : CallingConv<[
1465 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1466 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1467 CCDelegateTo<RetCC_X86_32_C>
1468 ]>;
1469
1470Other calling convention interfaces include:
1471
1472* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1473
1474* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1475 attribute, then apply the action.
1476
1477* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1478 attribute, then apply the action.
1479
1480* ``CCIfNotVarArg <action>`` --- If the current function does not take a
1481 variable number of arguments, apply the action.
1482
1483* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1484 ``CCAssignToReg``, but with a shadow list of registers.
1485
1486* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1487 minimum specified size and alignment.
1488
1489* ``CCPromoteToType <type>`` --- Promote the current value to the specified
1490 type.
1491
1492* ``CallingConv <[actions]>`` --- Define each calling convention that is
1493 supported.
1494
1495Assembly Printer
1496================
1497
1498During the code emission stage, the code generator may utilize an LLVM pass to
1499produce assembly output. To do this, you want to implement the code for a
1500printer that converts LLVM IR to a GAS-format assembly language for your target
1501machine, using the following steps:
1502
1503* Define all the assembly strings for your target, adding them to the
1504 instructions defined in the ``XXXInstrInfo.td`` file. (See
1505 :ref:`instruction-set`.) TableGen will produce an output file
1506 (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1507 method for the ``XXXAsmPrinter`` class.
1508
1509* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1510 the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1511
1512* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1513 ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1514
1515* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1516 performs the LLVM-to-assembly conversion.
1517
1518The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1519``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly,
1520``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1521replacement values that override the default values in ``TargetAsmInfo.cpp``.
1522For example in ``SparcTargetAsmInfo.cpp``:
1523
1524.. code-block:: c++
1525
1526 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1527 Data16bitsDirective = "\t.half\t";
1528 Data32bitsDirective = "\t.word\t";
1529 Data64bitsDirective = 0; // .xword is only supported by V9.
1530 ZeroDirective = "\t.skip\t";
1531 CommentString = "!";
1532 ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1533 }
1534
1535The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1536where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1537``ExpandInlineAsm``.
1538
1539A target-specific implementation of ``AsmPrinter`` is written in
1540``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1541the LLVM to printable assembly. The implementation must include the following
1542headers that have declarations for the ``AsmPrinter`` and
1543``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of
1544``FunctionPass``.
1545
1546.. code-block:: c++
1547
1548 #include "llvm/CodeGen/AsmPrinter.h"
1549 #include "llvm/CodeGen/MachineFunctionPass.h"
1550
1551As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1552up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is
1553instantiated to process variable names.
1554
1555In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1556``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In
1557``MachineFunctionPass``, the ``runOnFunction`` method invokes
1558``runOnMachineFunction``. Target-specific implementations of
1559``runOnMachineFunction`` differ, but generally do the following to process each
1560machine function:
1561
1562* Call ``SetupMachineFunction`` to perform initialization.
1563
1564* Call ``EmitConstantPool`` to print out (to the output stream) constants which
1565 have been spilled to memory.
1566
1567* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1568 function.
1569
1570* Print out the label for the current function.
1571
1572* Print out the code for the function, including basic block labels and the
1573 assembly for the instruction (using ``printInstruction``)
1574
1575The ``XXXAsmPrinter`` implementation must also include the code generated by
1576TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in
1577``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1578method that may call these methods:
1579
1580* ``printOperand``
1581* ``printMemOperand``
1582* ``printCCOperand`` (for conditional statements)
1583* ``printDataDirective``
1584* ``printDeclare``
1585* ``printImplicitDef``
1586* ``printInlineAsm``
1587
1588The implementations of ``printDeclare``, ``printImplicitDef``,
1589``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1590adequate for printing assembly and do not need to be overridden.
1591
1592The ``printOperand`` method is implemented with a long ``switch``/``case``
1593statement for the type of operand: register, immediate, basic block, external
1594symbol, global address, constant pool index, or jump table index. For an
1595instruction with a memory address operand, the ``printMemOperand`` method
1596should be implemented to generate the proper output. Similarly,
1597``printCCOperand`` should be used to print a conditional operand.
1598
1599``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1600called to shut down the assembly printer. During ``doFinalization``, global
1601variables and constants are printed to output.
1602
1603Subtarget Support
1604=================
1605
1606Subtarget support is used to inform the code generation process of instruction
1607set variations for a given chip set. For example, the LLVM SPARC
1608implementation provided covers three major versions of the SPARC microprocessor
1609architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
161064-bit architecture), and the UltraSPARC architecture. V8 has 16
1611double-precision floating-point registers that are also usable as either 32
1612single-precision or 8 quad-precision registers. V8 is also purely big-endian.
1613V9 has 32 double-precision floating-point registers that are also usable as 16
1614quad-precision registers, but cannot be used as single-precision registers.
1615The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1616extensions.
1617
1618If subtarget support is needed, you should implement a target-specific
1619``XXXSubtarget`` class for your architecture. This class should process the
1620command-line options ``-mcpu=`` and ``-mattr=``.
1621
1622TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1623generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the
1624``SubtargetFeature`` interface is defined. The first 4 string parameters of
1625the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1626feature, the value of the attribute, and a description of the feature. (The
1627fifth parameter is a list of features whose presence is implied, and its
1628default value is an empty array.)
1629
1630.. code-block:: llvm
1631
1632 class SubtargetFeature<string n, string a, string v, string d,
1633 list<SubtargetFeature> i = []> {
1634 string Name = n;
1635 string Attribute = a;
1636 string Value = v;
1637 string Desc = d;
1638 list<SubtargetFeature> Implies = i;
1639 }
1640
1641In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1642following features.
1643
1644.. code-block:: llvm
1645
1646 def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1647 "Enable SPARC-V9 instructions">;
1648 def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1649 "V8DeprecatedInsts", "true",
1650 "Enable deprecated V8 instructions in V9 mode">;
1651 def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1652 "Enable UltraSPARC Visual Instruction Set extensions">;
1653
1654Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1655define particular SPARC processor subtypes that may have the previously
1656described features.
1657
1658.. code-block:: llvm
1659
1660 class Proc<string Name, list<SubtargetFeature> Features>
1661 : Processor<Name, NoItineraries, Features>;
1662
1663 def : Proc<"generic", []>;
1664 def : Proc<"v8", []>;
1665 def : Proc<"supersparc", []>;
1666 def : Proc<"sparclite", []>;
1667 def : Proc<"f934", []>;
1668 def : Proc<"hypersparc", []>;
1669 def : Proc<"sparclite86x", []>;
1670 def : Proc<"sparclet", []>;
1671 def : Proc<"tsc701", []>;
1672 def : Proc<"v9", [FeatureV9]>;
1673 def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>;
1674 def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>;
1675 def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1676
1677From ``Target.td`` and ``Sparc.td`` files, the resulting
1678``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1679arrays of constants to represent the CPU features and CPU subtypes, and the
1680``ParseSubtargetFeatures`` method that parses the features string that sets
1681specified subtarget options. The generated ``SparcGenSubtarget.inc`` file
1682should be included in the ``SparcSubtarget.cpp``. The target-specific
1683implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1684
1685.. code-block:: c++
1686
1687 XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1688 // Set the default features
1689 // Determine default and user specified characteristics of the CPU
1690 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1691 // Perform any additional operations
1692 }
1693
1694JIT Support
1695===========
1696
1697The implementation of a target machine optionally includes a Just-In-Time (JIT)
1698code generator that emits machine code and auxiliary structures as binary
1699output that can be written directly to memory. To do this, implement JIT code
1700generation by performing the following steps:
1701
1702* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1703 that transforms target-machine instructions into relocatable machine
1704 code.
1705
1706* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1707 target-specific code-generation activities, such as emitting machine code and
1708 stubs.
1709
1710* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1711 through its ``getJITInfo`` method.
1712
1713There are several different approaches to writing the JIT support code. For
1714instance, TableGen and target descriptor files may be used for creating a JIT
1715code generator, but are not mandatory. For the Alpha and PowerPC target
1716machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1717contains the binary coding of machine instructions and the
1718``getBinaryCodeForInstr`` method to access those codes. Other JIT
1719implementations do not.
1720
1721Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1722``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1723``MachineCodeEmitter`` class containing code for several callback functions
1724that write data (in bytes, words, strings, etc.) to the output stream.
1725
1726Machine Code Emitter
1727--------------------
1728
1729In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1730implemented as a function pass (subclass of ``MachineFunctionPass``). The
1731target-specific implementation of ``runOnMachineFunction`` (invoked by
1732``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1733``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1734emit binary code. ``emitInstruction`` is largely implemented with case
1735statements on the instruction types defined in ``XXXInstrInfo.h``. For
1736example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1737around the following ``switch``/``case`` statements:
1738
1739.. code-block:: c++
1740
1741 switch (Desc->TSFlags & X86::FormMask) {
1742 case X86II::Pseudo: // for not yet implemented instructions
1743 ... // or pseudo-instructions
1744 break;
1745 case X86II::RawFrm: // for instructions with a fixed opcode value
1746 ...
1747 break;
1748 case X86II::AddRegFrm: // for instructions that have one register operand
1749 ... // added to their opcode
1750 break;
1751 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1752 ... // to specify a destination (register)
1753 break;
1754 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1755 ... // to specify a destination (memory)
1756 break;
1757 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1758 ... // to specify a source (register)
1759 break;
1760 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1761 ... // to specify a source (memory)
1762 break;
1763 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
1764 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
1765 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
1766 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
1767 ...
1768 break;
1769 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
1770 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
1771 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
1772 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
1773 ...
1774 break;
1775 case X86II::MRMInitReg: // for instructions whose source and
1776 ... // destination are the same register
1777 break;
1778 }
1779
1780The implementations of these case statements often first emit the opcode and
1781then get the operand(s). Then depending upon the operand, helper methods may
1782be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``,
1783for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1784the opcode added to the register operand. Then an object representing the
1785machine operand, ``MO1``, is extracted. The helper methods such as
1786``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1787``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1788(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1789``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1790and ``emitJumpTableAddress`` that emit the data into the output stream.)
1791
1792.. code-block:: c++
1793
1794 case X86II::AddRegFrm:
1795 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1796
1797 if (CurOp != NumOps) {
1798 const MachineOperand &MO1 = MI.getOperand(CurOp++);
1799 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1800 if (MO1.isImmediate())
1801 emitConstant(MO1.getImm(), Size);
1802 else {
1803 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1804 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1805 if (Opcode == X86::MOV64ri)
1806 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
1807 if (MO1.isGlobalAddress()) {
1808 bool NeedStub = isa<Function>(MO1.getGlobal());
1809 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1810 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1811 NeedStub, isLazy);
1812 } else if (MO1.isExternalSymbol())
1813 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1814 else if (MO1.isConstantPoolIndex())
1815 emitConstPoolAddress(MO1.getIndex(), rt);
1816 else if (MO1.isJumpTableIndex())
1817 emitJumpTableAddress(MO1.getIndex(), rt);
1818 }
1819 }
1820 break;
1821
1822In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1823is a ``RelocationType`` enum that may be used to relocate addresses (for
1824example, a global address with a PIC base offset). The ``RelocationType`` enum
1825for that target is defined in the short target-specific ``XXXRelocations.h``
1826file. The ``RelocationType`` is used by the ``relocate`` method defined in
1827``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1828
1829For example, ``X86Relocations.h`` specifies the following relocation types for
1830the X86 addresses. In all four cases, the relocated value is added to the
1831value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1832there is an additional initial adjustment.
1833
1834.. code-block:: c++
1835
1836 enum RelocationType {
1837 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
1838 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
1839 reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1840 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1841 };
1842
1843Target JIT Info
1844---------------
1845
1846``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1847code-generation activities, such as emitting machine code and stubs. At
1848minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1849
1850* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1851 function that is used for compilation.
1852
1853* ``emitFunctionStub`` --- Returns a native function with a specified address
1854 for a callback function.
1855
1856* ``relocate`` --- Changes the addresses of referenced globals, based on
1857 relocation types.
1858
1859* Callback function that are wrappers to a function stub that is used when the
1860 real target is not initially known.
1861
1862``getLazyResolverFunction`` is generally trivial to implement. It makes the
1863incoming parameter as the global ``JITCompilerFunction`` and returns the
1864callback function that will be used a function wrapper. For the Alpha target
1865(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1866simply:
1867
1868.. code-block:: c++
1869
1870 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1871 JITCompilerFn F) {
1872 JITCompilerFunction = F;
1873 return AlphaCompilationCallback;
1874 }
1875
1876For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1877more complicated, because it returns a different callback function for
1878processors with SSE instructions and XMM registers.
1879
1880The callback function initially saves and later restores the callee register
1881values, incoming arguments, and frame and return address. The callback
1882function needs low-level access to the registers or stack, so it is typically
1883implemented with assembler.
1884