Sean Silva | 2f8a176 | 2013-07-01 20:45:12 +0000 | [diff] [blame] | 1 | ======================= |
| 2 | Writing an LLVM Backend |
| 3 | ======================= |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 4 | |
Sean Silva | 5d0d67f | 2012-12-31 11:49:51 +0000 | [diff] [blame] | 5 | .. toctree:: |
| 6 | :hidden: |
| 7 | |
| 8 | HowToUseInstrMappings |
| 9 | |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 10 | .. contents:: |
| 11 | :local: |
| 12 | |
| 13 | Introduction |
| 14 | ============ |
| 15 | |
| 16 | This document describes techniques for writing compiler backends that convert |
| 17 | the LLVM Intermediate Representation (IR) to code for a specified machine or |
| 18 | other languages. Code intended for a specific machine can take the form of |
| 19 | either assembly code or binary code (usable for a JIT compiler). |
| 20 | |
| 21 | The backend of LLVM features a target-independent code generator that may |
| 22 | create output for several types of target CPUs --- including X86, PowerPC, |
| 23 | ARM, and SPARC. The backend may also be used to generate code targeted at SPUs |
| 24 | of the Cell processor or GPUs to support the execution of compute kernels. |
| 25 | |
| 26 | The document focuses on existing examples found in subdirectories of |
| 27 | ``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document |
| 28 | focuses on the example of creating a static compiler (one that emits text |
| 29 | assembly) for a SPARC target, because SPARC has fairly standard |
| 30 | characteristics, such as a RISC instruction set and straightforward calling |
| 31 | conventions. |
| 32 | |
| 33 | Audience |
| 34 | -------- |
| 35 | |
| 36 | The audience for this document is anyone who needs to write an LLVM backend to |
| 37 | generate code for a specific hardware or software target. |
| 38 | |
| 39 | Prerequisite Reading |
| 40 | -------------------- |
| 41 | |
| 42 | These essential documents must be read before reading this document: |
| 43 | |
| 44 | * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for |
| 45 | the LLVM assembly language. |
| 46 | |
| 47 | * :doc:`CodeGenerator` --- a guide to the components (classes and code |
| 48 | generation algorithms) for translating the LLVM internal representation into |
| 49 | machine code for a specified target. Pay particular attention to the |
| 50 | descriptions of code generation stages: Instruction Selection, Scheduling and |
| 51 | Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code |
| 52 | Insertion, Late Machine Code Optimizations, and Code Emission. |
| 53 | |
| 54 | * :doc:`TableGenFundamentals` --- a document that describes the TableGen |
| 55 | (``tblgen``) application that manages domain-specific information to support |
| 56 | LLVM code generation. TableGen processes input from a target description |
| 57 | file (``.td`` suffix) and generates C++ code that can be used for code |
| 58 | generation. |
| 59 | |
Dmitri Gribenko | b64f020 | 2012-12-12 17:02:44 +0000 | [diff] [blame] | 60 | * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as |
| 61 | are several ``SelectionDAG`` processing steps. |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 62 | |
| 63 | To follow the SPARC examples in this document, have a copy of `The SPARC |
| 64 | Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for |
| 65 | reference. For details about the ARM instruction set, refer to the `ARM |
| 66 | Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about |
| 67 | the GNU Assembler format (``GAS``), see `Using As |
| 68 | <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the |
| 69 | assembly printer. "Using As" contains a list of target machine dependent |
| 70 | features. |
| 71 | |
| 72 | Basic Steps |
| 73 | ----------- |
| 74 | |
| 75 | To write a compiler backend for LLVM that converts the LLVM IR to code for a |
| 76 | specified target (machine or other language), follow these steps: |
| 77 | |
| 78 | * Create a subclass of the ``TargetMachine`` class that describes |
| 79 | characteristics of your target machine. Copy existing examples of specific |
| 80 | ``TargetMachine`` class and header files; for example, start with |
| 81 | ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file |
| 82 | names for your target. Similarly, change code that references "``Sparc``" to |
| 83 | reference your target. |
| 84 | |
| 85 | * Describe the register set of the target. Use TableGen to generate code for |
| 86 | register definition, register aliases, and register classes from a |
| 87 | target-specific ``RegisterInfo.td`` input file. You should also write |
| 88 | additional code for a subclass of the ``TargetRegisterInfo`` class that |
| 89 | represents the class register file data used for register allocation and also |
| 90 | describes the interactions between registers. |
| 91 | |
| 92 | * Describe the instruction set of the target. Use TableGen to generate code |
| 93 | for target-specific instructions from target-specific versions of |
| 94 | ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write |
| 95 | additional code for a subclass of the ``TargetInstrInfo`` class to represent |
| 96 | machine instructions supported by the target machine. |
| 97 | |
| 98 | * Describe the selection and conversion of the LLVM IR from a Directed Acyclic |
| 99 | Graph (DAG) representation of instructions to native target-specific |
| 100 | instructions. Use TableGen to generate code that matches patterns and |
| 101 | selects instructions based on additional information in a target-specific |
| 102 | version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``, |
| 103 | where ``XXX`` identifies the specific target, to perform pattern matching and |
| 104 | DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp`` |
| 105 | to replace or remove operations and data types that are not supported |
| 106 | natively in a SelectionDAG. |
| 107 | |
| 108 | * Write code for an assembly printer that converts LLVM IR to a GAS format for |
| 109 | your target machine. You should add assembly strings to the instructions |
| 110 | defined in your target-specific version of ``TargetInstrInfo.td``. You |
| 111 | should also write code for a subclass of ``AsmPrinter`` that performs the |
| 112 | LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``. |
| 113 | |
| 114 | * Optionally, add support for subtargets (i.e., variants with different |
| 115 | capabilities). You should also write code for a subclass of the |
| 116 | ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and |
| 117 | ``-mattr=`` command-line options. |
| 118 | |
| 119 | * Optionally, add JIT support and create a machine code emitter (subclass of |
| 120 | ``TargetJITInfo``) that is used to emit binary code directly into memory. |
| 121 | |
| 122 | In the ``.cpp`` and ``.h``. files, initially stub up these methods and then |
| 123 | implement them later. Initially, you may not know which private members that |
| 124 | the class will need and which components will need to be subclassed. |
| 125 | |
| 126 | Preliminaries |
| 127 | ------------- |
| 128 | |
| 129 | To actually create your compiler backend, you need to create and modify a few |
| 130 | files. The absolute minimum is discussed here. But to actually use the LLVM |
| 131 | target-independent code generator, you must perform the steps described in the |
| 132 | :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document. |
| 133 | |
| 134 | First, you should create a subdirectory under ``lib/Target`` to hold all the |
| 135 | files related to your target. If your target is called "Dummy", create the |
| 136 | directory ``lib/Target/Dummy``. |
| 137 | |
| 138 | In this new directory, create a ``Makefile``. It is easiest to copy a |
| 139 | ``Makefile`` of another target and modify it. It should at least contain the |
| 140 | ``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include |
| 141 | ``$(LEVEL)/Makefile.common``. The library can be named ``LLVMDummy`` (for |
| 142 | example, see the MIPS target). Alternatively, you can split the library into |
| 143 | ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be |
| 144 | implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the |
| 145 | PowerPC target). |
| 146 | |
| 147 | Note that these two naming schemes are hardcoded into ``llvm-config``. Using |
| 148 | any other naming scheme will confuse ``llvm-config`` and produce a lot of |
| 149 | (seemingly unrelated) linker errors when linking ``llc``. |
| 150 | |
| 151 | To make your target actually do something, you need to implement a subclass of |
| 152 | ``TargetMachine``. This implementation should typically be in the file |
| 153 | ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target`` |
| 154 | directory will be built and should work. To use LLVM's target independent code |
| 155 | generator, you should do what all current machine backends do: create a |
| 156 | subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a |
| 157 | subclass of ``TargetMachine``.) |
| 158 | |
| 159 | To get LLVM to actually build and link your target, you need to add it to the |
| 160 | ``TARGETS_TO_BUILD`` variable. To do this, you modify the configure script to |
| 161 | know about your target when parsing the ``--enable-targets`` option. Search |
| 162 | the configure script for ``TARGETS_TO_BUILD``, add your target to the lists |
| 163 | there (some creativity required), and then reconfigure. Alternatively, you can |
| 164 | change ``autotools/configure.ac`` and regenerate configure by running |
| 165 | ``./autoconf/AutoRegen.sh``. |
| 166 | |
| 167 | Target Machine |
| 168 | ============== |
| 169 | |
| 170 | ``LLVMTargetMachine`` is designed as a base class for targets implemented with |
| 171 | the LLVM target-independent code generator. The ``LLVMTargetMachine`` class |
| 172 | should be specialized by a concrete target class that implements the various |
| 173 | virtual methods. ``LLVMTargetMachine`` is defined as a subclass of |
| 174 | ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The |
| 175 | ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes |
| 176 | numerous command-line options. |
| 177 | |
| 178 | To create a concrete target-specific subclass of ``LLVMTargetMachine``, start |
| 179 | by copying an existing ``TargetMachine`` class and header. You should name the |
| 180 | files that you create to reflect your specific target. For instance, for the |
| 181 | SPARC target, name the files ``SparcTargetMachine.h`` and |
| 182 | ``SparcTargetMachine.cpp``. |
| 183 | |
| 184 | For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must |
| 185 | have access methods to obtain objects that represent target components. These |
| 186 | methods are named ``get*Info``, and are intended to obtain the instruction set |
| 187 | (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout |
| 188 | (``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also |
| 189 | implement the ``getDataLayout`` method to access an object with target-specific |
| 190 | data characteristics, such as data type size and alignment requirements. |
| 191 | |
| 192 | For instance, for the SPARC target, the header file ``SparcTargetMachine.h`` |
| 193 | declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that |
| 194 | simply return a class member. |
| 195 | |
| 196 | .. code-block:: c++ |
| 197 | |
| 198 | namespace llvm { |
| 199 | |
| 200 | class Module; |
| 201 | |
| 202 | class SparcTargetMachine : public LLVMTargetMachine { |
| 203 | const DataLayout DataLayout; // Calculates type size & alignment |
| 204 | SparcSubtarget Subtarget; |
| 205 | SparcInstrInfo InstrInfo; |
| 206 | TargetFrameInfo FrameInfo; |
| 207 | |
| 208 | protected: |
| 209 | virtual const TargetAsmInfo *createTargetAsmInfo() const; |
| 210 | |
| 211 | public: |
| 212 | SparcTargetMachine(const Module &M, const std::string &FS); |
| 213 | |
| 214 | virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } |
| 215 | virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } |
| 216 | virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } |
| 217 | virtual const TargetRegisterInfo *getRegisterInfo() const { |
| 218 | return &InstrInfo.getRegisterInfo(); |
| 219 | } |
| 220 | virtual const DataLayout *getDataLayout() const { return &DataLayout; } |
| 221 | static unsigned getModuleMatchQuality(const Module &M); |
| 222 | |
| 223 | // Pass Pipeline Configuration |
| 224 | virtual bool addInstSelector(PassManagerBase &PM, bool Fast); |
| 225 | virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); |
| 226 | }; |
| 227 | |
| 228 | } // end namespace llvm |
| 229 | |
| 230 | * ``getInstrInfo()`` |
| 231 | * ``getRegisterInfo()`` |
| 232 | * ``getFrameInfo()`` |
| 233 | * ``getDataLayout()`` |
| 234 | * ``getSubtargetImpl()`` |
| 235 | |
| 236 | For some targets, you also need to support the following methods: |
| 237 | |
| 238 | * ``getTargetLowering()`` |
| 239 | * ``getJITInfo()`` |
| 240 | |
| 241 | In addition, the ``XXXTargetMachine`` constructor should specify a |
| 242 | ``TargetDescription`` string that determines the data layout for the target |
| 243 | machine, including characteristics such as pointer size, alignment, and |
| 244 | endianness. For example, the constructor for ``SparcTargetMachine`` contains |
| 245 | the following: |
| 246 | |
| 247 | .. code-block:: c++ |
| 248 | |
| 249 | SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) |
| 250 | : DataLayout("E-p:32:32-f128:128:128"), |
| 251 | Subtarget(M, FS), InstrInfo(Subtarget), |
| 252 | FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { |
| 253 | } |
| 254 | |
| 255 | Hyphens separate portions of the ``TargetDescription`` string. |
| 256 | |
| 257 | * An upper-case "``E``" in the string indicates a big-endian target data model. |
| 258 | A lower-case "``e``" indicates little-endian. |
| 259 | |
| 260 | * "``p:``" is followed by pointer information: size, ABI alignment, and |
| 261 | preferred alignment. If only two figures follow "``p:``", then the first |
| 262 | value is pointer size, and the second value is both ABI and preferred |
| 263 | alignment. |
| 264 | |
| 265 | * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or |
| 266 | "``a``" (corresponding to integer, floating point, vector, or aggregate). |
| 267 | "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred |
| 268 | alignment. "``f``" is followed by three values: the first indicates the size |
| 269 | of a long double, then ABI alignment, and then ABI preferred alignment. |
| 270 | |
| 271 | Target Registration |
| 272 | =================== |
| 273 | |
| 274 | You must also register your target with the ``TargetRegistry``, which is what |
| 275 | other LLVM tools use to be able to lookup and use your target at runtime. The |
| 276 | ``TargetRegistry`` can be used directly, but for most targets there are helper |
| 277 | templates which should take care of the work for you. |
| 278 | |
| 279 | All targets should declare a global ``Target`` object which is used to |
| 280 | represent the target during registration. Then, in the target's ``TargetInfo`` |
| 281 | library, the target should define that object and use the ``RegisterTarget`` |
| 282 | template to register the target. For example, the Sparc registration code |
| 283 | looks like this: |
| 284 | |
| 285 | .. code-block:: c++ |
| 286 | |
| 287 | Target llvm::TheSparcTarget; |
| 288 | |
| 289 | extern "C" void LLVMInitializeSparcTargetInfo() { |
| 290 | RegisterTarget<Triple::sparc, /*HasJIT=*/false> |
| 291 | X(TheSparcTarget, "sparc", "Sparc"); |
| 292 | } |
| 293 | |
| 294 | This allows the ``TargetRegistry`` to look up the target by name or by target |
| 295 | triple. In addition, most targets will also register additional features which |
| 296 | are available in separate libraries. These registration steps are separate, |
| 297 | because some clients may wish to only link in some parts of the target --- the |
| 298 | JIT code generator does not require the use of the assembler printer, for |
| 299 | example. Here is an example of registering the Sparc assembly printer: |
| 300 | |
| 301 | .. code-block:: c++ |
| 302 | |
| 303 | extern "C" void LLVMInitializeSparcAsmPrinter() { |
| 304 | RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget); |
| 305 | } |
| 306 | |
| 307 | For more information, see "`llvm/Target/TargetRegistry.h |
| 308 | </doxygen/TargetRegistry_8h-source.html>`_". |
| 309 | |
| 310 | Register Set and Register Classes |
| 311 | ================================= |
| 312 | |
| 313 | You should describe a concrete target-specific class that represents the |
| 314 | register file of a target machine. This class is called ``XXXRegisterInfo`` |
| 315 | (where ``XXX`` identifies the target) and represents the class register file |
| 316 | data that is used for register allocation. It also describes the interactions |
| 317 | between registers. |
| 318 | |
| 319 | You also need to define register classes to categorize related registers. A |
| 320 | register class should be added for groups of registers that are all treated the |
| 321 | same way for some instruction. Typical examples are register classes for |
| 322 | integer, floating-point, or vector registers. A register allocator allows an |
| 323 | instruction to use any register in a specified register class to perform the |
| 324 | instruction in a similar manner. Register classes allocate virtual registers |
| 325 | to instructions from these sets, and register classes let the |
| 326 | target-independent register allocator automatically choose the actual |
| 327 | registers. |
| 328 | |
| 329 | Much of the code for registers, including register definition, register |
| 330 | aliases, and register classes, is generated by TableGen from |
| 331 | ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc`` |
| 332 | and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the |
| 333 | implementation of ``XXXRegisterInfo`` requires hand-coding. |
| 334 | |
| 335 | Defining a Register |
| 336 | ------------------- |
| 337 | |
| 338 | The ``XXXRegisterInfo.td`` file typically starts with register definitions for |
| 339 | a target machine. The ``Register`` class (specified in ``Target.td``) is used |
| 340 | to define an object for each register. The specified string ``n`` becomes the |
| 341 | ``Name`` of the register. The basic ``Register`` object does not have any |
| 342 | subregisters and does not specify any aliases. |
| 343 | |
| 344 | .. code-block:: llvm |
| 345 | |
| 346 | class Register<string n> { |
| 347 | string Namespace = ""; |
| 348 | string AsmName = n; |
| 349 | string Name = n; |
| 350 | int SpillSize = 0; |
| 351 | int SpillAlignment = 0; |
| 352 | list<Register> Aliases = []; |
| 353 | list<Register> SubRegs = []; |
| 354 | list<int> DwarfNumbers = []; |
| 355 | } |
| 356 | |
| 357 | For example, in the ``X86RegisterInfo.td`` file, there are register definitions |
| 358 | that utilize the ``Register`` class, such as: |
| 359 | |
| 360 | .. code-block:: llvm |
| 361 | |
| 362 | def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>; |
| 363 | |
| 364 | This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``) |
| 365 | that are used by ``gcc``, ``gdb``, or a debug information writer to identify a |
| 366 | register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values |
| 367 | representing 3 different modes: the first element is for X86-64, the second for |
| 368 | exception handling (EH) on X86-32, and the third is generic. -1 is a special |
| 369 | Dwarf number that indicates the gcc number is undefined, and -2 indicates the |
| 370 | register number is invalid for this mode. |
| 371 | |
| 372 | From the previously described line in the ``X86RegisterInfo.td`` file, TableGen |
| 373 | generates this code in the ``X86GenRegisterInfo.inc`` file: |
| 374 | |
| 375 | .. code-block:: c++ |
| 376 | |
| 377 | static const unsigned GR8[] = { X86::AL, ... }; |
| 378 | |
| 379 | const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; |
| 380 | |
| 381 | const TargetRegisterDesc RegisterDescriptors[] = { |
| 382 | ... |
| 383 | { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... |
| 384 | |
| 385 | From the register info file, TableGen generates a ``TargetRegisterDesc`` object |
| 386 | for each register. ``TargetRegisterDesc`` is defined in |
| 387 | ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields: |
| 388 | |
| 389 | .. code-block:: c++ |
| 390 | |
| 391 | struct TargetRegisterDesc { |
| 392 | const char *AsmName; // Assembly language name for the register |
| 393 | const char *Name; // Printable name for the reg (for debugging) |
| 394 | const unsigned *AliasSet; // Register Alias Set |
| 395 | const unsigned *SubRegs; // Sub-register set |
| 396 | const unsigned *ImmSubRegs; // Immediate sub-register set |
| 397 | const unsigned *SuperRegs; // Super-register set |
| 398 | }; |
| 399 | |
| 400 | TableGen uses the entire target description file (``.td``) to determine text |
| 401 | names for the register (in the ``AsmName`` and ``Name`` fields of |
| 402 | ``TargetRegisterDesc``) and the relationships of other registers to the defined |
| 403 | register (in the other ``TargetRegisterDesc`` fields). In this example, other |
| 404 | definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as |
| 405 | aliases for one another, so TableGen generates a null-terminated array |
| 406 | (``AL_AliasSet``) for this register alias set. |
| 407 | |
| 408 | The ``Register`` class is commonly used as a base class for more complex |
| 409 | classes. In ``Target.td``, the ``Register`` class is the base for the |
| 410 | ``RegisterWithSubRegs`` class that is used to define registers that need to |
| 411 | specify subregisters in the ``SubRegs`` list, as shown here: |
| 412 | |
| 413 | .. code-block:: llvm |
| 414 | |
| 415 | class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { |
| 416 | let SubRegs = subregs; |
| 417 | } |
| 418 | |
| 419 | In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC: |
| 420 | a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``, |
| 421 | and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a |
| 422 | feature common to these subclasses. Note the use of "``let``" expressions to |
| 423 | override values that are initially defined in a superclass (such as ``SubRegs`` |
| 424 | field in the ``Rd`` class). |
| 425 | |
| 426 | .. code-block:: llvm |
| 427 | |
| 428 | class SparcReg<string n> : Register<n> { |
| 429 | field bits<5> Num; |
| 430 | let Namespace = "SP"; |
| 431 | } |
| 432 | // Ri - 32-bit integer registers |
| 433 | class Ri<bits<5> num, string n> : |
| 434 | SparcReg<n> { |
| 435 | let Num = num; |
| 436 | } |
| 437 | // Rf - 32-bit floating-point registers |
| 438 | class Rf<bits<5> num, string n> : |
| 439 | SparcReg<n> { |
| 440 | let Num = num; |
| 441 | } |
| 442 | // Rd - Slots in the FP register file for 64-bit floating-point values. |
| 443 | class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> { |
| 444 | let Num = num; |
| 445 | let SubRegs = subregs; |
| 446 | } |
| 447 | |
| 448 | In the ``SparcRegisterInfo.td`` file, there are register definitions that |
| 449 | utilize these subclasses of ``Register``, such as: |
| 450 | |
| 451 | .. code-block:: llvm |
| 452 | |
| 453 | def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>; |
| 454 | def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; |
| 455 | ... |
| 456 | def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>; |
| 457 | def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>; |
| 458 | ... |
| 459 | def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>; |
| 460 | def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>; |
| 461 | |
| 462 | The last two registers shown above (``D0`` and ``D1``) are double-precision |
| 463 | floating-point registers that are aliases for pairs of single-precision |
| 464 | floating-point sub-registers. In addition to aliases, the sub-register and |
| 465 | super-register relationships of the defined register are in fields of a |
| 466 | register's ``TargetRegisterDesc``. |
| 467 | |
| 468 | Defining a Register Class |
| 469 | ------------------------- |
| 470 | |
| 471 | The ``RegisterClass`` class (specified in ``Target.td``) is used to define an |
| 472 | object that represents a group of related registers and also defines the |
| 473 | default allocation order of the registers. A target description file |
| 474 | ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes |
| 475 | using the following class: |
| 476 | |
| 477 | .. code-block:: llvm |
| 478 | |
| 479 | class RegisterClass<string namespace, |
| 480 | list<ValueType> regTypes, int alignment, dag regList> { |
| 481 | string Namespace = namespace; |
| 482 | list<ValueType> RegTypes = regTypes; |
| 483 | int Size = 0; // spill size, in bits; zero lets tblgen pick the size |
| 484 | int Alignment = alignment; |
| 485 | |
| 486 | // CopyCost is the cost of copying a value between two registers |
| 487 | // default value 1 means a single instruction |
| 488 | // A negative value means copying is extremely expensive or impossible |
| 489 | int CopyCost = 1; |
| 490 | dag MemberList = regList; |
| 491 | |
| 492 | // for register classes that are subregisters of this class |
| 493 | list<RegisterClass> SubRegClassList = []; |
| 494 | |
| 495 | code MethodProtos = [{}]; // to insert arbitrary code |
| 496 | code MethodBodies = [{}]; |
| 497 | } |
| 498 | |
| 499 | To define a ``RegisterClass``, use the following 4 arguments: |
| 500 | |
| 501 | * The first argument of the definition is the name of the namespace. |
| 502 | |
| 503 | * The second argument is a list of ``ValueType`` register type values that are |
| 504 | defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include |
| 505 | integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean), |
| 506 | floating-point types (``f32``, ``f64``), and vector types (for example, |
| 507 | ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass`` |
| 508 | must have the same ``ValueType``, but some registers may store vector data in |
| 509 | different configurations. For example a register that can process a 128-bit |
| 510 | vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4 |
| 511 | 32-bit integers, and so on. |
| 512 | |
| 513 | * The third argument of the ``RegisterClass`` definition specifies the |
| 514 | alignment required of the registers when they are stored or loaded to |
| 515 | memory. |
| 516 | |
| 517 | * The final argument, ``regList``, specifies which registers are in this class. |
| 518 | If an alternative allocation order method is not specified, then ``regList`` |
| 519 | also defines the order of allocation used by the register allocator. Besides |
| 520 | simply listing registers with ``(add R0, R1, ...)``, more advanced set |
| 521 | operators are available. See ``include/llvm/Target/Target.td`` for more |
| 522 | information. |
| 523 | |
| 524 | In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined: |
| 525 | ``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the |
| 526 | first argument defines the namespace with the string "``SP``". ``FPRegs`` |
| 527 | defines a group of 32 single-precision floating-point registers (``F0`` to |
| 528 | ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers |
| 529 | (``D0-D15``). |
| 530 | |
| 531 | .. code-block:: llvm |
| 532 | |
| 533 | // F0, F1, F2, ..., F31 |
| 534 | def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>; |
| 535 | |
| 536 | def DFPRegs : RegisterClass<"SP", [f64], 64, |
| 537 | (add D0, D1, D2, D3, D4, D5, D6, D7, D8, |
| 538 | D9, D10, D11, D12, D13, D14, D15)>; |
| 539 | |
| 540 | def IntRegs : RegisterClass<"SP", [i32], 32, |
| 541 | (add L0, L1, L2, L3, L4, L5, L6, L7, |
| 542 | I0, I1, I2, I3, I4, I5, |
| 543 | O0, O1, O2, O3, O4, O5, O7, |
| 544 | G1, |
| 545 | // Non-allocatable regs: |
| 546 | G2, G3, G4, |
| 547 | O6, // stack ptr |
| 548 | I6, // frame ptr |
| 549 | I7, // return address |
| 550 | G0, // constant zero |
| 551 | G5, G6, G7 // reserved for kernel |
| 552 | )>; |
| 553 | |
| 554 | Using ``SparcRegisterInfo.td`` with TableGen generates several output files |
| 555 | that are intended for inclusion in other source code that you write. |
| 556 | ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should |
| 557 | be included in the header file for the implementation of the SPARC register |
| 558 | implementation that you write (``SparcRegisterInfo.h``). In |
| 559 | ``SparcGenRegisterInfo.h.inc`` a new structure is defined called |
| 560 | ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also |
| 561 | specifies types, based upon the defined register classes: ``DFPRegsClass``, |
| 562 | ``FPRegsClass``, and ``IntRegsClass``. |
| 563 | |
| 564 | ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is |
| 565 | included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register |
| 566 | implementation. The code below shows only the generated integer registers and |
| 567 | associated register classes. The order of registers in ``IntRegs`` reflects |
| 568 | the order in the definition of ``IntRegs`` in the target description file. |
| 569 | |
| 570 | .. code-block:: c++ |
| 571 | |
| 572 | // IntRegs Register Class... |
| 573 | static const unsigned IntRegs[] = { |
| 574 | SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, |
| 575 | SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, |
| 576 | SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, |
| 577 | SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, |
| 578 | SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5, |
| 579 | SP::G6, SP::G7, |
| 580 | }; |
| 581 | |
| 582 | // IntRegsVTs Register Class Value Types... |
| 583 | static const MVT::ValueType IntRegsVTs[] = { |
| 584 | MVT::i32, MVT::Other |
| 585 | }; |
| 586 | |
| 587 | namespace SP { // Register class instances |
| 588 | DFPRegsClass DFPRegsRegClass; |
| 589 | FPRegsClass FPRegsRegClass; |
| 590 | IntRegsClass IntRegsRegClass; |
| 591 | ... |
| 592 | // IntRegs Sub-register Classess... |
| 593 | static const TargetRegisterClass* const IntRegsSubRegClasses [] = { |
| 594 | NULL |
| 595 | }; |
| 596 | ... |
| 597 | // IntRegs Super-register Classess... |
| 598 | static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { |
| 599 | NULL |
| 600 | }; |
| 601 | ... |
| 602 | // IntRegs Register Class sub-classes... |
| 603 | static const TargetRegisterClass* const IntRegsSubclasses [] = { |
| 604 | NULL |
| 605 | }; |
| 606 | ... |
| 607 | // IntRegs Register Class super-classes... |
| 608 | static const TargetRegisterClass* const IntRegsSuperclasses [] = { |
| 609 | NULL |
| 610 | }; |
| 611 | |
| 612 | IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, |
| 613 | IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, |
| 614 | IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} |
| 615 | } |
| 616 | |
| 617 | The register allocators will avoid using reserved registers, and callee saved |
| 618 | registers are not used until all the volatile registers have been used. That |
| 619 | is usually good enough, but in some cases it may be necessary to provide custom |
| 620 | allocation orders. |
| 621 | |
| 622 | Implement a subclass of ``TargetRegisterInfo`` |
| 623 | ---------------------------------------------- |
| 624 | |
| 625 | The final step is to hand code portions of ``XXXRegisterInfo``, which |
| 626 | implements the interface described in ``TargetRegisterInfo.h`` (see |
| 627 | :ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or |
| 628 | ``false``, unless overridden. Here is a list of functions that are overridden |
| 629 | for the SPARC implementation in ``SparcRegisterInfo.cpp``: |
| 630 | |
| 631 | * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the |
| 632 | order of the desired callee-save stack frame offset. |
| 633 | |
| 634 | * ``getReservedRegs`` --- Returns a bitset indexed by physical register |
| 635 | numbers, indicating if a particular register is unavailable. |
| 636 | |
| 637 | * ``hasFP`` --- Return a Boolean indicating if a function should have a |
| 638 | dedicated frame pointer register. |
| 639 | |
| 640 | * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo |
| 641 | instructions are used, this can be called to eliminate them. |
| 642 | |
| 643 | * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from |
| 644 | instructions that may use them. |
| 645 | |
| 646 | * ``emitPrologue`` --- Insert prologue code into the function. |
| 647 | |
| 648 | * ``emitEpilogue`` --- Insert epilogue code into the function. |
| 649 | |
| 650 | .. _instruction-set: |
| 651 | |
| 652 | Instruction Set |
| 653 | =============== |
| 654 | |
| 655 | During the early stages of code generation, the LLVM IR code is converted to a |
| 656 | ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class |
| 657 | containing target instructions. An ``SDNode`` has an opcode, operands, type |
| 658 | requirements, and operation properties. For example, is an operation |
| 659 | commutative, does an operation load from memory. The various operation node |
| 660 | types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file |
| 661 | (values of the ``NodeType`` enum in the ``ISD`` namespace). |
| 662 | |
| 663 | TableGen uses the following target description (``.td``) input files to |
| 664 | generate much of the code for instruction definition: |
| 665 | |
| 666 | * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and |
| 667 | other fundamental classes are defined. |
| 668 | |
| 669 | * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection |
| 670 | generators, contains ``SDTC*`` classes (selection DAG type constraint), |
| 671 | definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``, |
| 672 | ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``, |
| 673 | ``PatFrag``, ``PatLeaf``, ``ComplexPattern``. |
| 674 | |
| 675 | * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific |
| 676 | instructions. |
| 677 | |
| 678 | * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates, |
| 679 | condition codes, and instructions of an instruction set. For architecture |
| 680 | modifications, a different file name may be used. For example, for Pentium |
| 681 | with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with |
| 682 | MMX, this file is ``X86InstrMMX.td``. |
| 683 | |
| 684 | There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of |
| 685 | the target. The ``XXX.td`` file includes the other ``.td`` input files, but |
| 686 | its contents are only directly important for subtargets. |
| 687 | |
| 688 | You should describe a concrete target-specific class ``XXXInstrInfo`` that |
| 689 | represents machine instructions supported by a target machine. |
| 690 | ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of |
| 691 | which describes one instruction. An instruction descriptor defines: |
| 692 | |
| 693 | * Opcode mnemonic |
| 694 | * Number of operands |
| 695 | * List of implicit register definitions and uses |
| 696 | * Target-independent properties (such as memory access, is commutable) |
| 697 | * Target-specific flags |
| 698 | |
| 699 | The Instruction class (defined in ``Target.td``) is mostly used as a base for |
| 700 | more complex instruction classes. |
| 701 | |
| 702 | .. code-block:: llvm |
| 703 | |
| 704 | class Instruction { |
| 705 | string Namespace = ""; |
| 706 | dag OutOperandList; // A dag containing the MI def operand list. |
| 707 | dag InOperandList; // A dag containing the MI use operand list. |
| 708 | string AsmString = ""; // The .s format to print the instruction with. |
| 709 | list<dag> Pattern; // Set to the DAG pattern for this instruction. |
| 710 | list<Register> Uses = []; |
| 711 | list<Register> Defs = []; |
| 712 | list<Predicate> Predicates = []; // predicates turned into isel match code |
| 713 | ... remainder not shown for space ... |
| 714 | } |
| 715 | |
| 716 | A ``SelectionDAG`` node (``SDNode``) should contain an object representing a |
| 717 | target-specific instruction that is defined in ``XXXInstrInfo.td``. The |
| 718 | instruction objects should represent instructions from the architecture manual |
| 719 | of the target machine (such as the SPARC Architecture Manual for the SPARC |
| 720 | target). |
| 721 | |
| 722 | A single instruction from the architecture manual is often modeled as multiple |
| 723 | target instructions, depending upon its operands. For example, a manual might |
| 724 | describe an add instruction that takes a register or an immediate operand. An |
| 725 | LLVM target could model this with two instructions named ``ADDri`` and |
| 726 | ``ADDrr``. |
| 727 | |
| 728 | You should define a class for each instruction category and define each opcode |
| 729 | as a subclass of the category with appropriate parameters such as the fixed |
| 730 | binary encoding of opcodes and extended opcodes. You should map the register |
| 731 | bits to the bits of the instruction in which they are encoded (for the JIT). |
| 732 | Also you should specify how the instruction should be printed when the |
| 733 | automatic assembly printer is used. |
| 734 | |
| 735 | As is described in the SPARC Architecture Manual, Version 8, there are three |
| 736 | major 32-bit formats for instructions. Format 1 is only for the ``CALL`` |
| 737 | instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high |
| 738 | bits of a register) instructions. Format 3 is for other instructions. |
| 739 | |
| 740 | Each of these formats has corresponding classes in ``SparcInstrFormat.td``. |
| 741 | ``InstSP`` is a base class for other instruction classes. Additional base |
| 742 | classes are specified for more precise formats: for example in |
| 743 | ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for |
| 744 | branches. There are three other base classes: ``F3_1`` for register/register |
| 745 | operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for |
| 746 | floating-point operations. ``SparcInstrInfo.td`` also adds the base class |
| 747 | ``Pseudo`` for synthetic SPARC instructions. |
| 748 | |
| 749 | ``SparcInstrInfo.td`` largely consists of operand and instruction definitions |
| 750 | for the SPARC target. In ``SparcInstrInfo.td``, the following target |
| 751 | description file entry, ``LDrr``, defines the Load Integer instruction for a |
| 752 | Word (the ``LD`` SPARC opcode) from a memory address to a register. The first |
| 753 | parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this |
| 754 | category of operation. The second parameter (``000000``\ :sub:`2`) is the |
| 755 | specific operation value for ``LD``/Load Word. The third parameter is the |
| 756 | output destination, which is a register operand and defined in the ``Register`` |
| 757 | target description file (``IntRegs``). |
| 758 | |
| 759 | .. code-block:: llvm |
| 760 | |
| 761 | def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), |
| 762 | "ld [$addr], $dst", |
Jakob Stoklund Olesen | 15a3c18 | 2013-03-24 00:56:20 +0000 | [diff] [blame] | 763 | [(set i32:$dst, (load ADDRrr:$addr))]>; |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 764 | |
| 765 | The fourth parameter is the input source, which uses the address operand |
| 766 | ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``: |
| 767 | |
| 768 | .. code-block:: llvm |
| 769 | |
| 770 | def MEMrr : Operand<i32> { |
| 771 | let PrintMethod = "printMemOperand"; |
| 772 | let MIOperandInfo = (ops IntRegs, IntRegs); |
| 773 | } |
| 774 | |
| 775 | The fifth parameter is a string that is used by the assembly printer and can be |
| 776 | left as an empty string until the assembly printer interface is implemented. |
| 777 | The sixth and final parameter is the pattern used to match the instruction |
| 778 | during the SelectionDAG Select Phase described in :doc:`CodeGenerator`. |
| 779 | This parameter is detailed in the next section, :ref:`instruction-selector`. |
| 780 | |
| 781 | Instruction class definitions are not overloaded for different operand types, |
| 782 | so separate versions of instructions are needed for register, memory, or |
| 783 | immediate value operands. For example, to perform a Load Integer instruction |
| 784 | for a Word from an immediate operand to a register, the following instruction |
| 785 | class is defined: |
| 786 | |
| 787 | .. code-block:: llvm |
| 788 | |
| 789 | def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), |
| 790 | "ld [$addr], $dst", |
Jakob Stoklund Olesen | 15a3c18 | 2013-03-24 00:56:20 +0000 | [diff] [blame] | 791 | [(set i32:$dst, (load ADDRri:$addr))]>; |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 792 | |
| 793 | Writing these definitions for so many similar instructions can involve a lot of |
| 794 | cut and paste. In ``.td`` files, the ``multiclass`` directive enables the |
| 795 | creation of templates to define several instruction classes at once (using the |
| 796 | ``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass`` |
| 797 | pattern ``F3_12`` is defined to create 2 instruction classes each time |
| 798 | ``F3_12`` is invoked: |
| 799 | |
| 800 | .. code-block:: llvm |
| 801 | |
| 802 | multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { |
| 803 | def rr : F3_1 <2, Op3Val, |
| 804 | (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| 805 | !strconcat(OpcStr, " $b, $c, $dst"), |
Jakob Stoklund Olesen | 15a3c18 | 2013-03-24 00:56:20 +0000 | [diff] [blame] | 806 | [(set i32:$dst, (OpNode i32:$b, i32:$c))]>; |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 807 | def ri : F3_2 <2, Op3Val, |
| 808 | (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), |
| 809 | !strconcat(OpcStr, " $b, $c, $dst"), |
Jakob Stoklund Olesen | 15a3c18 | 2013-03-24 00:56:20 +0000 | [diff] [blame] | 810 | [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>; |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 811 | } |
| 812 | |
| 813 | So when the ``defm`` directive is used for the ``XOR`` and ``ADD`` |
| 814 | instructions, as seen below, it creates four instruction objects: ``XORrr``, |
| 815 | ``XORri``, ``ADDrr``, and ``ADDri``. |
| 816 | |
| 817 | .. code-block:: llvm |
| 818 | |
| 819 | defm XOR : F3_12<"xor", 0b000011, xor>; |
| 820 | defm ADD : F3_12<"add", 0b000000, add>; |
| 821 | |
| 822 | ``SparcInstrInfo.td`` also includes definitions for condition codes that are |
| 823 | referenced by branch instructions. The following definitions in |
| 824 | ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code. |
| 825 | For example, the 10\ :sup:`th` bit represents the "greater than" condition for |
| 826 | integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for |
| 827 | floats. |
| 828 | |
| 829 | .. code-block:: llvm |
| 830 | |
| 831 | def ICC_NE : ICC_VAL< 9>; // Not Equal |
| 832 | def ICC_E : ICC_VAL< 1>; // Equal |
| 833 | def ICC_G : ICC_VAL<10>; // Greater |
| 834 | ... |
| 835 | def FCC_U : FCC_VAL<23>; // Unordered |
| 836 | def FCC_G : FCC_VAL<22>; // Greater |
| 837 | def FCC_UG : FCC_VAL<21>; // Unordered or Greater |
| 838 | ... |
| 839 | |
| 840 | (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC |
| 841 | condition codes. Care must be taken to ensure the values in ``Sparc.h`` |
| 842 | correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``, |
| 843 | ``SPCC::FCC_U = 23`` and so on.) |
| 844 | |
| 845 | Instruction Operand Mapping |
| 846 | --------------------------- |
| 847 | |
| 848 | The code generator backend maps instruction operands to fields in the |
| 849 | instruction. Operands are assigned to unbound fields in the instruction in the |
| 850 | order they are defined. Fields are bound when they are assigned a value. For |
| 851 | example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1`` |
| 852 | format instruction having three operands. |
| 853 | |
| 854 | .. code-block:: llvm |
| 855 | |
| 856 | def XNORrr : F3_1<2, 0b000111, |
| 857 | (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| 858 | "xnor $b, $c, $dst", |
Jakob Stoklund Olesen | 15a3c18 | 2013-03-24 00:56:20 +0000 | [diff] [blame] | 859 | [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>; |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 860 | |
| 861 | The instruction templates in ``SparcInstrFormats.td`` show the base class for |
| 862 | ``F3_1`` is ``InstSP``. |
| 863 | |
| 864 | .. code-block:: llvm |
| 865 | |
| 866 | class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { |
| 867 | field bits<32> Inst; |
| 868 | let Namespace = "SP"; |
| 869 | bits<2> op; |
| 870 | let Inst{31-30} = op; |
| 871 | dag OutOperandList = outs; |
| 872 | dag InOperandList = ins; |
| 873 | let AsmString = asmstr; |
| 874 | let Pattern = pattern; |
| 875 | } |
| 876 | |
| 877 | ``InstSP`` leaves the ``op`` field unbound. |
| 878 | |
| 879 | .. code-block:: llvm |
| 880 | |
| 881 | class F3<dag outs, dag ins, string asmstr, list<dag> pattern> |
| 882 | : InstSP<outs, ins, asmstr, pattern> { |
| 883 | bits<5> rd; |
| 884 | bits<6> op3; |
| 885 | bits<5> rs1; |
| 886 | let op{1} = 1; // Op = 2 or 3 |
| 887 | let Inst{29-25} = rd; |
| 888 | let Inst{24-19} = op3; |
| 889 | let Inst{18-14} = rs1; |
| 890 | } |
| 891 | |
| 892 | ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1`` |
| 893 | fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and |
| 894 | ``rs1`` fields. |
| 895 | |
| 896 | .. code-block:: llvm |
| 897 | |
| 898 | class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, |
| 899 | string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { |
| 900 | bits<8> asi = 0; // asi not currently used |
| 901 | bits<5> rs2; |
| 902 | let op = opVal; |
| 903 | let op3 = op3val; |
| 904 | let Inst{13} = 0; // i field = 0 |
| 905 | let Inst{12-5} = asi; // address space identifier |
| 906 | let Inst{4-0} = rs2; |
| 907 | } |
| 908 | |
| 909 | ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1`` |
| 910 | format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2`` |
| 911 | fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``, |
| 912 | and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively. |
| 913 | |
Tom Stellard | 898b9f0 | 2013-06-25 21:22:09 +0000 | [diff] [blame] | 914 | TableGen will also generate a function called getNamedOperandIdx() which |
| 915 | can be used to look up an operand's index in a MachineInstr based on its |
| 916 | TableGen name. Setting the UseNamedOperandTable bit in an instruction's |
| 917 | TableGen definition will add all of its operands to an enumeration in the |
| 918 | llvm::XXX:OpName namespace and also add an entry for it into the OperandMap |
| 919 | table, which can be queried using getNamedOperandIdx() |
| 920 | |
| 921 | .. code-block:: llvm |
| 922 | |
| 923 | int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0 |
| 924 | int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1 |
| 925 | int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2 |
| 926 | int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1 |
| 927 | |
| 928 | ... |
| 929 | |
| 930 | The entries in the OpName enum are taken verbatim from the TableGen definitions, |
| 931 | so operands with lowercase names will have lower case entries in the enum. |
| 932 | |
| 933 | To include the getNamedOperandIdx() function in your backend, you will need |
| 934 | to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h. |
| 935 | For example: |
| 936 | |
| 937 | XXXInstrInfo.cpp: |
| 938 | |
| 939 | .. code-block:: c++ |
| 940 | |
| 941 | #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function |
| 942 | #include "XXXGenInstrInfo.inc" |
| 943 | |
| 944 | XXXInstrInfo.h: |
| 945 | |
| 946 | .. code-block:: c++ |
| 947 | |
| 948 | #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum |
| 949 | #include "XXXGenInstrInfo.inc" |
| 950 | |
| 951 | namespace XXX { |
| 952 | int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex); |
| 953 | } // End namespace XXX |
| 954 | |
Vincent Lejeune | d8f2eb3 | 2013-09-03 19:43:28 +0000 | [diff] [blame] | 955 | Instruction itineraries can be queried using MCDesc::getSchedClass(). The |
| 956 | value can be named by an enumemation in llvm::XXX::Sched namespace generated |
| 957 | by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are |
| 958 | the same as provided in XXXSchedule.td plus a default NoIntinerary class. |
| 959 | |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 960 | Instruction Relation Mapping |
| 961 | ---------------------------- |
| 962 | |
| 963 | This TableGen feature is used to relate instructions with each other. It is |
| 964 | particularly useful when you have multiple instruction formats and need to |
| 965 | switch between them after instruction selection. This entire feature is driven |
| 966 | by relation models which can be defined in ``XXXInstrInfo.td`` files |
| 967 | according to the target-specific instruction set. Relation models are defined |
| 968 | using ``InstrMapping`` class as a base. TableGen parses all the models |
| 969 | and generates instruction relation maps using the specified information. |
| 970 | Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file |
| 971 | along with the functions to query them. For the detailed information on how to |
| 972 | use this feature, please refer to :doc:`HowToUseInstrMappings`. |
| 973 | |
| 974 | Implement a subclass of ``TargetInstrInfo`` |
| 975 | ------------------------------------------- |
| 976 | |
| 977 | The final step is to hand code portions of ``XXXInstrInfo``, which implements |
| 978 | the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`). |
| 979 | These functions return ``0`` or a Boolean or they assert, unless overridden. |
| 980 | Here's a list of functions that are overridden for the SPARC implementation in |
| 981 | ``SparcInstrInfo.cpp``: |
| 982 | |
| 983 | * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct |
| 984 | load from a stack slot, return the register number of the destination and the |
| 985 | ``FrameIndex`` of the stack slot. |
| 986 | |
| 987 | * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct |
| 988 | store to a stack slot, return the register number of the destination and the |
| 989 | ``FrameIndex`` of the stack slot. |
| 990 | |
| 991 | * ``copyPhysReg`` --- Copy values between a pair of physical registers. |
| 992 | |
| 993 | * ``storeRegToStackSlot`` --- Store a register value to a stack slot. |
| 994 | |
| 995 | * ``loadRegFromStackSlot`` --- Load a register value from a stack slot. |
| 996 | |
| 997 | * ``storeRegToAddr`` --- Store a register value to memory. |
| 998 | |
| 999 | * ``loadRegFromAddr`` --- Load a register value from memory. |
| 1000 | |
| 1001 | * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or |
| 1002 | store instruction for the specified operand(s). |
| 1003 | |
| 1004 | Branch Folding and If Conversion |
| 1005 | -------------------------------- |
| 1006 | |
| 1007 | Performance can be improved by combining instructions or by eliminating |
| 1008 | instructions that are never reached. The ``AnalyzeBranch`` method in |
| 1009 | ``XXXInstrInfo`` may be implemented to examine conditional instructions and |
| 1010 | remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a |
| 1011 | machine basic block (MBB) for opportunities for improvement, such as branch |
| 1012 | folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine |
| 1013 | function passes (see the source files ``BranchFolding.cpp`` and |
| 1014 | ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch`` |
| 1015 | to improve the control flow graph that represents the instructions. |
| 1016 | |
| 1017 | Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be |
| 1018 | examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC |
| 1019 | does not implement a useful ``AnalyzeBranch``, the ARM target implementation is |
| 1020 | shown below. |
| 1021 | |
| 1022 | ``AnalyzeBranch`` returns a Boolean value and takes four parameters: |
| 1023 | |
| 1024 | * ``MachineBasicBlock &MBB`` --- The incoming block to be examined. |
| 1025 | |
| 1026 | * ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a |
| 1027 | conditional branch that evaluates to true, ``TBB`` is the destination. |
| 1028 | |
| 1029 | * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to |
| 1030 | false, ``FBB`` is returned as the destination. |
| 1031 | |
| 1032 | * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a |
| 1033 | condition for a conditional branch. |
| 1034 | |
| 1035 | In the simplest case, if a block ends without a branch, then it falls through |
| 1036 | to the successor block. No destination blocks are specified for either ``TBB`` |
| 1037 | or ``FBB``, so both parameters return ``NULL``. The start of the |
| 1038 | ``AnalyzeBranch`` (see code below for the ARM target) shows the function |
| 1039 | parameters and the code for the simplest case. |
| 1040 | |
| 1041 | .. code-block:: c++ |
| 1042 | |
| 1043 | bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, |
| 1044 | MachineBasicBlock *&TBB, |
| 1045 | MachineBasicBlock *&FBB, |
| 1046 | std::vector<MachineOperand> &Cond) const |
| 1047 | { |
| 1048 | MachineBasicBlock::iterator I = MBB.end(); |
| 1049 | if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) |
| 1050 | return false; |
| 1051 | |
| 1052 | If a block ends with a single unconditional branch instruction, then |
| 1053 | ``AnalyzeBranch`` (shown below) should return the destination of that branch in |
| 1054 | the ``TBB`` parameter. |
| 1055 | |
| 1056 | .. code-block:: c++ |
| 1057 | |
| 1058 | if (LastOpc == ARM::B || LastOpc == ARM::tB) { |
| 1059 | TBB = LastInst->getOperand(0).getMBB(); |
| 1060 | return false; |
| 1061 | } |
| 1062 | |
| 1063 | If a block ends with two unconditional branches, then the second branch is |
| 1064 | never reached. In that situation, as shown below, remove the last branch |
| 1065 | instruction and return the penultimate branch in the ``TBB`` parameter. |
| 1066 | |
| 1067 | .. code-block:: c++ |
| 1068 | |
| 1069 | if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) && |
| 1070 | (LastOpc == ARM::B || LastOpc == ARM::tB)) { |
| 1071 | TBB = SecondLastInst->getOperand(0).getMBB(); |
| 1072 | I = LastInst; |
| 1073 | I->eraseFromParent(); |
| 1074 | return false; |
| 1075 | } |
| 1076 | |
| 1077 | A block may end with a single conditional branch instruction that falls through |
| 1078 | to successor block if the condition evaluates to false. In that case, |
| 1079 | ``AnalyzeBranch`` (shown below) should return the destination of that |
| 1080 | conditional branch in the ``TBB`` parameter and a list of operands in the |
| 1081 | ``Cond`` parameter to evaluate the condition. |
| 1082 | |
| 1083 | .. code-block:: c++ |
| 1084 | |
| 1085 | if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { |
| 1086 | // Block ends with fall-through condbranch. |
| 1087 | TBB = LastInst->getOperand(0).getMBB(); |
| 1088 | Cond.push_back(LastInst->getOperand(1)); |
| 1089 | Cond.push_back(LastInst->getOperand(2)); |
| 1090 | return false; |
| 1091 | } |
| 1092 | |
| 1093 | If a block ends with both a conditional branch and an ensuing unconditional |
| 1094 | branch, then ``AnalyzeBranch`` (shown below) should return the conditional |
| 1095 | branch destination (assuming it corresponds to a conditional evaluation of |
| 1096 | "``true``") in the ``TBB`` parameter and the unconditional branch destination |
| 1097 | in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A |
| 1098 | list of operands to evaluate the condition should be returned in the ``Cond`` |
| 1099 | parameter. |
| 1100 | |
| 1101 | .. code-block:: c++ |
| 1102 | |
| 1103 | unsigned SecondLastOpc = SecondLastInst->getOpcode(); |
| 1104 | |
| 1105 | if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || |
| 1106 | (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { |
| 1107 | TBB = SecondLastInst->getOperand(0).getMBB(); |
| 1108 | Cond.push_back(SecondLastInst->getOperand(1)); |
| 1109 | Cond.push_back(SecondLastInst->getOperand(2)); |
| 1110 | FBB = LastInst->getOperand(0).getMBB(); |
| 1111 | return false; |
| 1112 | } |
| 1113 | |
| 1114 | For the last two cases (ending with a single conditional branch or ending with |
| 1115 | one conditional and one unconditional branch), the operands returned in the |
| 1116 | ``Cond`` parameter can be passed to methods of other instructions to create new |
| 1117 | branches or perform other operations. An implementation of ``AnalyzeBranch`` |
| 1118 | requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage |
| 1119 | subsequent operations. |
| 1120 | |
| 1121 | ``AnalyzeBranch`` should return false indicating success in most circumstances. |
| 1122 | ``AnalyzeBranch`` should only return true when the method is stumped about what |
| 1123 | to do, for example, if a block has three terminating branches. |
| 1124 | ``AnalyzeBranch`` may return true if it encounters a terminator it cannot |
| 1125 | handle, such as an indirect branch. |
| 1126 | |
| 1127 | .. _instruction-selector: |
| 1128 | |
| 1129 | Instruction Selector |
| 1130 | ==================== |
| 1131 | |
| 1132 | LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of |
| 1133 | the ``SelectionDAG`` ideally represent native target instructions. During code |
| 1134 | generation, instruction selection passes are performed to convert non-native |
| 1135 | DAG instructions into native target-specific instructions. The pass described |
| 1136 | in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG |
| 1137 | instruction selection. Optionally, a pass may be defined (in |
| 1138 | ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch |
| 1139 | instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes |
| 1140 | operations and data types not supported natively (legalizes) in a |
| 1141 | ``SelectionDAG``. |
| 1142 | |
| 1143 | TableGen generates code for instruction selection using the following target |
| 1144 | description input files: |
| 1145 | |
| 1146 | * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a |
| 1147 | target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is |
| 1148 | included in ``XXXISelDAGToDAG.cpp``. |
| 1149 | |
| 1150 | * ``XXXCallingConv.td`` --- Contains the calling and return value conventions |
| 1151 | for the target architecture, and it generates ``XXXGenCallingConv.inc``, |
| 1152 | which is included in ``XXXISelLowering.cpp``. |
| 1153 | |
| 1154 | The implementation of an instruction selection pass must include a header that |
| 1155 | declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In |
| 1156 | ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction |
| 1157 | selection pass into the queue of passes to run. |
| 1158 | |
| 1159 | The LLVM static compiler (``llc``) is an excellent tool for visualizing the |
| 1160 | contents of DAGs. To display the ``SelectionDAG`` before or after specific |
| 1161 | processing phases, use the command line options for ``llc``, described at |
| 1162 | :ref:`SelectionDAG-Process`. |
| 1163 | |
| 1164 | To describe instruction selector behavior, you should add patterns for lowering |
| 1165 | LLVM code into a ``SelectionDAG`` as the last parameter of the instruction |
| 1166 | definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``, |
| 1167 | this entry defines a register store operation, and the last parameter describes |
| 1168 | a pattern with the store DAG operator. |
| 1169 | |
| 1170 | .. code-block:: llvm |
| 1171 | |
| 1172 | def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), |
Jakob Stoklund Olesen | 15a3c18 | 2013-03-24 00:56:20 +0000 | [diff] [blame] | 1173 | "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>; |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 1174 | |
| 1175 | ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``: |
| 1176 | |
| 1177 | .. code-block:: llvm |
| 1178 | |
| 1179 | def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; |
| 1180 | |
| 1181 | The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function |
| 1182 | defined in an implementation of the Instructor Selector (such as |
| 1183 | ``SparcISelDAGToDAG.cpp``). |
| 1184 | |
| 1185 | In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined |
| 1186 | below: |
| 1187 | |
| 1188 | .. code-block:: llvm |
| 1189 | |
| 1190 | def store : PatFrag<(ops node:$val, node:$ptr), |
| 1191 | (st node:$val, node:$ptr), [{ |
| 1192 | if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) |
| 1193 | return !ST->isTruncatingStore() && |
| 1194 | ST->getAddressingMode() == ISD::UNINDEXED; |
| 1195 | return false; |
| 1196 | }]>; |
| 1197 | |
| 1198 | ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the |
| 1199 | ``SelectCode`` method that is used to call the appropriate processing method |
| 1200 | for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE`` |
| 1201 | for the ``ISD::STORE`` opcode. |
| 1202 | |
| 1203 | .. code-block:: c++ |
| 1204 | |
| 1205 | SDNode *SelectCode(SDValue N) { |
| 1206 | ... |
| 1207 | MVT::ValueType NVT = N.getNode()->getValueType(0); |
| 1208 | switch (N.getOpcode()) { |
| 1209 | case ISD::STORE: { |
| 1210 | switch (NVT) { |
| 1211 | default: |
| 1212 | return Select_ISD_STORE(N); |
| 1213 | break; |
| 1214 | } |
| 1215 | break; |
| 1216 | } |
| 1217 | ... |
| 1218 | |
| 1219 | The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``, |
| 1220 | code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method |
| 1221 | is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this |
| 1222 | instruction. |
| 1223 | |
| 1224 | .. code-block:: c++ |
| 1225 | |
| 1226 | SDNode *Select_ISD_STORE(const SDValue &N) { |
| 1227 | SDValue Chain = N.getOperand(0); |
| 1228 | if (Predicate_store(N.getNode())) { |
| 1229 | SDValue N1 = N.getOperand(1); |
| 1230 | SDValue N2 = N.getOperand(2); |
| 1231 | SDValue CPTmp0; |
| 1232 | SDValue CPTmp1; |
| 1233 | |
Jakob Stoklund Olesen | 15a3c18 | 2013-03-24 00:56:20 +0000 | [diff] [blame] | 1234 | // Pattern: (st:void i32:i32:$src, |
Dmitri Gribenko | 91cb694 | 2012-12-01 12:13:48 +0000 | [diff] [blame] | 1235 | // ADDRrr:i32:$addr)<<P:Predicate_store>> |
| 1236 | // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) |
| 1237 | // Pattern complexity = 13 cost = 1 size = 0 |
| 1238 | if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && |
| 1239 | N1.getNode()->getValueType(0) == MVT::i32 && |
| 1240 | N2.getNode()->getValueType(0) == MVT::i32) { |
| 1241 | return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); |
| 1242 | } |
| 1243 | ... |
| 1244 | |
| 1245 | The SelectionDAG Legalize Phase |
| 1246 | ------------------------------- |
| 1247 | |
| 1248 | The Legalize phase converts a DAG to use types and operations that are natively |
| 1249 | supported by the target. For natively unsupported types and operations, you |
| 1250 | need to add code to the target-specific ``XXXTargetLowering`` implementation to |
| 1251 | convert unsupported types and operations to supported ones. |
| 1252 | |
| 1253 | In the constructor for the ``XXXTargetLowering`` class, first use the |
| 1254 | ``addRegisterClass`` method to specify which types are supported and which |
| 1255 | register classes are associated with them. The code for the register classes |
| 1256 | are generated by TableGen from ``XXXRegisterInfo.td`` and placed in |
| 1257 | ``XXXGenRegisterInfo.h.inc``. For example, the implementation of the |
| 1258 | constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``) |
| 1259 | starts with the following code: |
| 1260 | |
| 1261 | .. code-block:: c++ |
| 1262 | |
| 1263 | addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); |
| 1264 | addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); |
| 1265 | addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); |
| 1266 | |
| 1267 | You should examine the node types in the ``ISD`` namespace |
| 1268 | (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations |
| 1269 | the target natively supports. For operations that do **not** have native |
| 1270 | support, add a callback to the constructor for the ``XXXTargetLowering`` class, |
| 1271 | so the instruction selection process knows what to do. The ``TargetLowering`` |
| 1272 | class callback methods (declared in ``llvm/Target/TargetLowering.h``) are: |
| 1273 | |
| 1274 | * ``setOperationAction`` --- General operation. |
| 1275 | * ``setLoadExtAction`` --- Load with extension. |
| 1276 | * ``setTruncStoreAction`` --- Truncating store. |
| 1277 | * ``setIndexedLoadAction`` --- Indexed load. |
| 1278 | * ``setIndexedStoreAction`` --- Indexed store. |
| 1279 | * ``setConvertAction`` --- Type conversion. |
| 1280 | * ``setCondCodeAction`` --- Support for a given condition code. |
| 1281 | |
| 1282 | Note: on older releases, ``setLoadXAction`` is used instead of |
| 1283 | ``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not |
| 1284 | be supported. Examine your release to see what methods are specifically |
| 1285 | supported. |
| 1286 | |
| 1287 | These callbacks are used to determine that an operation does or does not work |
| 1288 | with a specified type (or types). And in all cases, the third parameter is a |
| 1289 | ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or |
| 1290 | ``Legal``. ``SparcISelLowering.cpp`` contains examples of all four |
| 1291 | ``LegalAction`` values. |
| 1292 | |
| 1293 | Promote |
| 1294 | ^^^^^^^ |
| 1295 | |
| 1296 | For an operation without native support for a given type, the specified type |
| 1297 | may be promoted to a larger type that is supported. For example, SPARC does |
| 1298 | not support a sign-extending load for Boolean values (``i1`` type), so in |
| 1299 | ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes |
| 1300 | ``i1`` type values to a large type before loading. |
| 1301 | |
| 1302 | .. code-block:: c++ |
| 1303 | |
| 1304 | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| 1305 | |
| 1306 | Expand |
| 1307 | ^^^^^^ |
| 1308 | |
| 1309 | For a type without native support, a value may need to be broken down further, |
| 1310 | rather than promoted. For an operation without native support, a combination |
| 1311 | of other operations may be used to similar effect. In SPARC, the |
| 1312 | floating-point sine and cosine trig operations are supported by expansion to |
| 1313 | other operations, as indicated by the third parameter, ``Expand``, to |
| 1314 | ``setOperationAction``: |
| 1315 | |
| 1316 | .. code-block:: c++ |
| 1317 | |
| 1318 | setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| 1319 | setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| 1320 | |
| 1321 | Custom |
| 1322 | ^^^^^^ |
| 1323 | |
| 1324 | For some operations, simple type promotion or operation expansion may be |
| 1325 | insufficient. In some cases, a special intrinsic function must be implemented. |
| 1326 | |
| 1327 | For example, a constant value may require special treatment, or an operation |
| 1328 | may require spilling and restoring registers in the stack and working with |
| 1329 | register allocators. |
| 1330 | |
| 1331 | As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion |
| 1332 | from a floating point value to a signed integer, first the |
| 1333 | ``setOperationAction`` should be called with ``Custom`` as the third parameter: |
| 1334 | |
| 1335 | .. code-block:: c++ |
| 1336 | |
| 1337 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| 1338 | |
| 1339 | In the ``LowerOperation`` method, for each ``Custom`` operation, a case |
| 1340 | statement should be added to indicate what function to call. In the following |
| 1341 | code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method: |
| 1342 | |
| 1343 | .. code-block:: c++ |
| 1344 | |
| 1345 | SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { |
| 1346 | switch (Op.getOpcode()) { |
| 1347 | case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| 1348 | ... |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to |
| 1353 | convert the floating-point value to an integer. |
| 1354 | |
| 1355 | .. code-block:: c++ |
| 1356 | |
| 1357 | static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { |
| 1358 | assert(Op.getValueType() == MVT::i32); |
| 1359 | Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); |
| 1360 | return DAG.getNode(ISD::BITCAST, MVT::i32, Op); |
| 1361 | } |
| 1362 | |
| 1363 | Legal |
| 1364 | ^^^^^ |
| 1365 | |
| 1366 | The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation |
| 1367 | **is** natively supported. ``Legal`` represents the default condition, so it |
| 1368 | is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an |
| 1369 | operation to count the bits set in an integer) is natively supported only for |
| 1370 | SPARC v9. The following code enables the ``Expand`` conversion technique for |
| 1371 | non-v9 SPARC implementations. |
| 1372 | |
| 1373 | .. code-block:: c++ |
| 1374 | |
| 1375 | setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| 1376 | ... |
| 1377 | if (TM.getSubtarget<SparcSubtarget>().isV9()) |
| 1378 | setOperationAction(ISD::CTPOP, MVT::i32, Legal); |
| 1379 | |
| 1380 | Calling Conventions |
| 1381 | ------------------- |
| 1382 | |
| 1383 | To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses |
| 1384 | interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in |
| 1385 | ``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor |
| 1386 | file ``XXXGenCallingConv.td`` and generate the header file |
| 1387 | ``XXXGenCallingConv.inc``, which is typically included in |
| 1388 | ``XXXISelLowering.cpp``. You can use the interfaces in |
| 1389 | ``TargetCallingConv.td`` to specify: |
| 1390 | |
| 1391 | * The order of parameter allocation. |
| 1392 | |
| 1393 | * Where parameters and return values are placed (that is, on the stack or in |
| 1394 | registers). |
| 1395 | |
| 1396 | * Which registers may be used. |
| 1397 | |
| 1398 | * Whether the caller or callee unwinds the stack. |
| 1399 | |
| 1400 | The following example demonstrates the use of the ``CCIfType`` and |
| 1401 | ``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is, |
| 1402 | if the current argument is of type ``f32`` or ``f64``), then the action is |
| 1403 | performed. In this case, the ``CCAssignToReg`` action assigns the argument |
| 1404 | value to the first available register: either ``R0`` or ``R1``. |
| 1405 | |
| 1406 | .. code-block:: llvm |
| 1407 | |
| 1408 | CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> |
| 1409 | |
| 1410 | ``SparcCallingConv.td`` contains definitions for a target-specific return-value |
| 1411 | calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention |
| 1412 | (``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates |
| 1413 | which registers are used for specified scalar return types. A single-precision |
| 1414 | float is returned to register ``F0``, and a double-precision float goes to |
| 1415 | register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``. |
| 1416 | |
| 1417 | .. code-block:: llvm |
| 1418 | |
| 1419 | def RetCC_Sparc32 : CallingConv<[ |
| 1420 | CCIfType<[i32], CCAssignToReg<[I0, I1]>>, |
| 1421 | CCIfType<[f32], CCAssignToReg<[F0]>>, |
| 1422 | CCIfType<[f64], CCAssignToReg<[D0]>> |
| 1423 | ]>; |
| 1424 | |
| 1425 | The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces |
| 1426 | ``CCAssignToStack``, which assigns the value to a stack slot with the specified |
| 1427 | size and alignment. In the example below, the first parameter, 4, indicates |
| 1428 | the size of the slot, and the second parameter, also 4, indicates the stack |
| 1429 | alignment along 4-byte units. (Special cases: if size is zero, then the ABI |
| 1430 | size is used; if alignment is zero, then the ABI alignment is used.) |
| 1431 | |
| 1432 | .. code-block:: llvm |
| 1433 | |
| 1434 | def CC_Sparc32 : CallingConv<[ |
| 1435 | // All arguments get passed in integer registers if there is space. |
| 1436 | CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, |
| 1437 | CCAssignToStack<4, 4> |
| 1438 | ]>; |
| 1439 | |
| 1440 | ``CCDelegateTo`` is another commonly used interface, which tries to find a |
| 1441 | specified sub-calling convention, and, if a match is found, it is invoked. In |
| 1442 | the following example (in ``X86CallingConv.td``), the definition of |
| 1443 | ``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is |
| 1444 | assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is |
| 1445 | invoked. |
| 1446 | |
| 1447 | .. code-block:: llvm |
| 1448 | |
| 1449 | def RetCC_X86_32_C : CallingConv<[ |
| 1450 | CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, |
| 1451 | CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, |
| 1452 | CCDelegateTo<RetCC_X86Common> |
| 1453 | ]>; |
| 1454 | |
| 1455 | ``CCIfCC`` is an interface that attempts to match the given name to the current |
| 1456 | calling convention. If the name identifies the current calling convention, |
| 1457 | then a specified action is invoked. In the following example (in |
| 1458 | ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then |
| 1459 | ``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in |
| 1460 | use, then ``RetCC_X86_32_SSE`` is invoked. |
| 1461 | |
| 1462 | .. code-block:: llvm |
| 1463 | |
| 1464 | def RetCC_X86_32 : CallingConv<[ |
| 1465 | CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, |
| 1466 | CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, |
| 1467 | CCDelegateTo<RetCC_X86_32_C> |
| 1468 | ]>; |
| 1469 | |
| 1470 | Other calling convention interfaces include: |
| 1471 | |
| 1472 | * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action. |
| 1473 | |
| 1474 | * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``" |
| 1475 | attribute, then apply the action. |
| 1476 | |
| 1477 | * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``" |
| 1478 | attribute, then apply the action. |
| 1479 | |
| 1480 | * ``CCIfNotVarArg <action>`` --- If the current function does not take a |
| 1481 | variable number of arguments, apply the action. |
| 1482 | |
| 1483 | * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to |
| 1484 | ``CCAssignToReg``, but with a shadow list of registers. |
| 1485 | |
| 1486 | * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the |
| 1487 | minimum specified size and alignment. |
| 1488 | |
| 1489 | * ``CCPromoteToType <type>`` --- Promote the current value to the specified |
| 1490 | type. |
| 1491 | |
| 1492 | * ``CallingConv <[actions]>`` --- Define each calling convention that is |
| 1493 | supported. |
| 1494 | |
| 1495 | Assembly Printer |
| 1496 | ================ |
| 1497 | |
| 1498 | During the code emission stage, the code generator may utilize an LLVM pass to |
| 1499 | produce assembly output. To do this, you want to implement the code for a |
| 1500 | printer that converts LLVM IR to a GAS-format assembly language for your target |
| 1501 | machine, using the following steps: |
| 1502 | |
| 1503 | * Define all the assembly strings for your target, adding them to the |
| 1504 | instructions defined in the ``XXXInstrInfo.td`` file. (See |
| 1505 | :ref:`instruction-set`.) TableGen will produce an output file |
| 1506 | (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction`` |
| 1507 | method for the ``XXXAsmPrinter`` class. |
| 1508 | |
| 1509 | * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of |
| 1510 | the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``). |
| 1511 | |
| 1512 | * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for |
| 1513 | ``TargetAsmInfo`` properties and sometimes new implementations for methods. |
| 1514 | |
| 1515 | * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that |
| 1516 | performs the LLVM-to-assembly conversion. |
| 1517 | |
| 1518 | The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the |
| 1519 | ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly, |
| 1520 | ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo`` |
| 1521 | replacement values that override the default values in ``TargetAsmInfo.cpp``. |
| 1522 | For example in ``SparcTargetAsmInfo.cpp``: |
| 1523 | |
| 1524 | .. code-block:: c++ |
| 1525 | |
| 1526 | SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { |
| 1527 | Data16bitsDirective = "\t.half\t"; |
| 1528 | Data32bitsDirective = "\t.word\t"; |
| 1529 | Data64bitsDirective = 0; // .xword is only supported by V9. |
| 1530 | ZeroDirective = "\t.skip\t"; |
| 1531 | CommentString = "!"; |
| 1532 | ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; |
| 1533 | } |
| 1534 | |
| 1535 | The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example |
| 1536 | where the target specific ``TargetAsmInfo`` class uses an overridden methods: |
| 1537 | ``ExpandInlineAsm``. |
| 1538 | |
| 1539 | A target-specific implementation of ``AsmPrinter`` is written in |
| 1540 | ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts |
| 1541 | the LLVM to printable assembly. The implementation must include the following |
| 1542 | headers that have declarations for the ``AsmPrinter`` and |
| 1543 | ``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of |
| 1544 | ``FunctionPass``. |
| 1545 | |
| 1546 | .. code-block:: c++ |
| 1547 | |
| 1548 | #include "llvm/CodeGen/AsmPrinter.h" |
| 1549 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 1550 | |
| 1551 | As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set |
| 1552 | up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is |
| 1553 | instantiated to process variable names. |
| 1554 | |
| 1555 | In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in |
| 1556 | ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In |
| 1557 | ``MachineFunctionPass``, the ``runOnFunction`` method invokes |
| 1558 | ``runOnMachineFunction``. Target-specific implementations of |
| 1559 | ``runOnMachineFunction`` differ, but generally do the following to process each |
| 1560 | machine function: |
| 1561 | |
| 1562 | * Call ``SetupMachineFunction`` to perform initialization. |
| 1563 | |
| 1564 | * Call ``EmitConstantPool`` to print out (to the output stream) constants which |
| 1565 | have been spilled to memory. |
| 1566 | |
| 1567 | * Call ``EmitJumpTableInfo`` to print out jump tables used by the current |
| 1568 | function. |
| 1569 | |
| 1570 | * Print out the label for the current function. |
| 1571 | |
| 1572 | * Print out the code for the function, including basic block labels and the |
| 1573 | assembly for the instruction (using ``printInstruction``) |
| 1574 | |
| 1575 | The ``XXXAsmPrinter`` implementation must also include the code generated by |
| 1576 | TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in |
| 1577 | ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction`` |
| 1578 | method that may call these methods: |
| 1579 | |
| 1580 | * ``printOperand`` |
| 1581 | * ``printMemOperand`` |
| 1582 | * ``printCCOperand`` (for conditional statements) |
| 1583 | * ``printDataDirective`` |
| 1584 | * ``printDeclare`` |
| 1585 | * ``printImplicitDef`` |
| 1586 | * ``printInlineAsm`` |
| 1587 | |
| 1588 | The implementations of ``printDeclare``, ``printImplicitDef``, |
| 1589 | ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally |
| 1590 | adequate for printing assembly and do not need to be overridden. |
| 1591 | |
| 1592 | The ``printOperand`` method is implemented with a long ``switch``/``case`` |
| 1593 | statement for the type of operand: register, immediate, basic block, external |
| 1594 | symbol, global address, constant pool index, or jump table index. For an |
| 1595 | instruction with a memory address operand, the ``printMemOperand`` method |
| 1596 | should be implemented to generate the proper output. Similarly, |
| 1597 | ``printCCOperand`` should be used to print a conditional operand. |
| 1598 | |
| 1599 | ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be |
| 1600 | called to shut down the assembly printer. During ``doFinalization``, global |
| 1601 | variables and constants are printed to output. |
| 1602 | |
| 1603 | Subtarget Support |
| 1604 | ================= |
| 1605 | |
| 1606 | Subtarget support is used to inform the code generation process of instruction |
| 1607 | set variations for a given chip set. For example, the LLVM SPARC |
| 1608 | implementation provided covers three major versions of the SPARC microprocessor |
| 1609 | architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a |
| 1610 | 64-bit architecture), and the UltraSPARC architecture. V8 has 16 |
| 1611 | double-precision floating-point registers that are also usable as either 32 |
| 1612 | single-precision or 8 quad-precision registers. V8 is also purely big-endian. |
| 1613 | V9 has 32 double-precision floating-point registers that are also usable as 16 |
| 1614 | quad-precision registers, but cannot be used as single-precision registers. |
| 1615 | The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set |
| 1616 | extensions. |
| 1617 | |
| 1618 | If subtarget support is needed, you should implement a target-specific |
| 1619 | ``XXXSubtarget`` class for your architecture. This class should process the |
| 1620 | command-line options ``-mcpu=`` and ``-mattr=``. |
| 1621 | |
| 1622 | TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to |
| 1623 | generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the |
| 1624 | ``SubtargetFeature`` interface is defined. The first 4 string parameters of |
| 1625 | the ``SubtargetFeature`` interface are a feature name, an attribute set by the |
| 1626 | feature, the value of the attribute, and a description of the feature. (The |
| 1627 | fifth parameter is a list of features whose presence is implied, and its |
| 1628 | default value is an empty array.) |
| 1629 | |
| 1630 | .. code-block:: llvm |
| 1631 | |
| 1632 | class SubtargetFeature<string n, string a, string v, string d, |
| 1633 | list<SubtargetFeature> i = []> { |
| 1634 | string Name = n; |
| 1635 | string Attribute = a; |
| 1636 | string Value = v; |
| 1637 | string Desc = d; |
| 1638 | list<SubtargetFeature> Implies = i; |
| 1639 | } |
| 1640 | |
| 1641 | In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the |
| 1642 | following features. |
| 1643 | |
| 1644 | .. code-block:: llvm |
| 1645 | |
| 1646 | def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", |
| 1647 | "Enable SPARC-V9 instructions">; |
| 1648 | def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", |
| 1649 | "V8DeprecatedInsts", "true", |
| 1650 | "Enable deprecated V8 instructions in V9 mode">; |
| 1651 | def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", |
| 1652 | "Enable UltraSPARC Visual Instruction Set extensions">; |
| 1653 | |
| 1654 | Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to |
| 1655 | define particular SPARC processor subtypes that may have the previously |
| 1656 | described features. |
| 1657 | |
| 1658 | .. code-block:: llvm |
| 1659 | |
| 1660 | class Proc<string Name, list<SubtargetFeature> Features> |
| 1661 | : Processor<Name, NoItineraries, Features>; |
| 1662 | |
| 1663 | def : Proc<"generic", []>; |
| 1664 | def : Proc<"v8", []>; |
| 1665 | def : Proc<"supersparc", []>; |
| 1666 | def : Proc<"sparclite", []>; |
| 1667 | def : Proc<"f934", []>; |
| 1668 | def : Proc<"hypersparc", []>; |
| 1669 | def : Proc<"sparclite86x", []>; |
| 1670 | def : Proc<"sparclet", []>; |
| 1671 | def : Proc<"tsc701", []>; |
| 1672 | def : Proc<"v9", [FeatureV9]>; |
| 1673 | def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>; |
| 1674 | def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>; |
| 1675 | def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; |
| 1676 | |
| 1677 | From ``Target.td`` and ``Sparc.td`` files, the resulting |
| 1678 | ``SparcGenSubtarget.inc`` specifies enum values to identify the features, |
| 1679 | arrays of constants to represent the CPU features and CPU subtypes, and the |
| 1680 | ``ParseSubtargetFeatures`` method that parses the features string that sets |
| 1681 | specified subtarget options. The generated ``SparcGenSubtarget.inc`` file |
| 1682 | should be included in the ``SparcSubtarget.cpp``. The target-specific |
| 1683 | implementation of the ``XXXSubtarget`` method should follow this pseudocode: |
| 1684 | |
| 1685 | .. code-block:: c++ |
| 1686 | |
| 1687 | XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { |
| 1688 | // Set the default features |
| 1689 | // Determine default and user specified characteristics of the CPU |
| 1690 | // Call ParseSubtargetFeatures(FS, CPU) to parse the features string |
| 1691 | // Perform any additional operations |
| 1692 | } |
| 1693 | |
| 1694 | JIT Support |
| 1695 | =========== |
| 1696 | |
| 1697 | The implementation of a target machine optionally includes a Just-In-Time (JIT) |
| 1698 | code generator that emits machine code and auxiliary structures as binary |
| 1699 | output that can be written directly to memory. To do this, implement JIT code |
| 1700 | generation by performing the following steps: |
| 1701 | |
| 1702 | * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass |
| 1703 | that transforms target-machine instructions into relocatable machine |
| 1704 | code. |
| 1705 | |
| 1706 | * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for |
| 1707 | target-specific code-generation activities, such as emitting machine code and |
| 1708 | stubs. |
| 1709 | |
| 1710 | * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object |
| 1711 | through its ``getJITInfo`` method. |
| 1712 | |
| 1713 | There are several different approaches to writing the JIT support code. For |
| 1714 | instance, TableGen and target descriptor files may be used for creating a JIT |
| 1715 | code generator, but are not mandatory. For the Alpha and PowerPC target |
| 1716 | machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which |
| 1717 | contains the binary coding of machine instructions and the |
| 1718 | ``getBinaryCodeForInstr`` method to access those codes. Other JIT |
| 1719 | implementations do not. |
| 1720 | |
| 1721 | Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the |
| 1722 | ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the |
| 1723 | ``MachineCodeEmitter`` class containing code for several callback functions |
| 1724 | that write data (in bytes, words, strings, etc.) to the output stream. |
| 1725 | |
| 1726 | Machine Code Emitter |
| 1727 | -------------------- |
| 1728 | |
| 1729 | In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is |
| 1730 | implemented as a function pass (subclass of ``MachineFunctionPass``). The |
| 1731 | target-specific implementation of ``runOnMachineFunction`` (invoked by |
| 1732 | ``runOnFunction`` in ``MachineFunctionPass``) iterates through the |
| 1733 | ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and |
| 1734 | emit binary code. ``emitInstruction`` is largely implemented with case |
| 1735 | statements on the instruction types defined in ``XXXInstrInfo.h``. For |
| 1736 | example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built |
| 1737 | around the following ``switch``/``case`` statements: |
| 1738 | |
| 1739 | .. code-block:: c++ |
| 1740 | |
| 1741 | switch (Desc->TSFlags & X86::FormMask) { |
| 1742 | case X86II::Pseudo: // for not yet implemented instructions |
| 1743 | ... // or pseudo-instructions |
| 1744 | break; |
| 1745 | case X86II::RawFrm: // for instructions with a fixed opcode value |
| 1746 | ... |
| 1747 | break; |
| 1748 | case X86II::AddRegFrm: // for instructions that have one register operand |
| 1749 | ... // added to their opcode |
| 1750 | break; |
| 1751 | case X86II::MRMDestReg:// for instructions that use the Mod/RM byte |
| 1752 | ... // to specify a destination (register) |
| 1753 | break; |
| 1754 | case X86II::MRMDestMem:// for instructions that use the Mod/RM byte |
| 1755 | ... // to specify a destination (memory) |
| 1756 | break; |
| 1757 | case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte |
| 1758 | ... // to specify a source (register) |
| 1759 | break; |
| 1760 | case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte |
| 1761 | ... // to specify a source (memory) |
| 1762 | break; |
| 1763 | case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on |
| 1764 | case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and |
| 1765 | case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field |
| 1766 | case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data |
| 1767 | ... |
| 1768 | break; |
| 1769 | case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on |
| 1770 | case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and |
| 1771 | case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field |
| 1772 | case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data |
| 1773 | ... |
| 1774 | break; |
| 1775 | case X86II::MRMInitReg: // for instructions whose source and |
| 1776 | ... // destination are the same register |
| 1777 | break; |
| 1778 | } |
| 1779 | |
| 1780 | The implementations of these case statements often first emit the opcode and |
| 1781 | then get the operand(s). Then depending upon the operand, helper methods may |
| 1782 | be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``, |
| 1783 | for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is |
| 1784 | the opcode added to the register operand. Then an object representing the |
| 1785 | machine operand, ``MO1``, is extracted. The helper methods such as |
| 1786 | ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``, |
| 1787 | ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type. |
| 1788 | (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``, |
| 1789 | ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``, |
| 1790 | and ``emitJumpTableAddress`` that emit the data into the output stream.) |
| 1791 | |
| 1792 | .. code-block:: c++ |
| 1793 | |
| 1794 | case X86II::AddRegFrm: |
| 1795 | MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); |
| 1796 | |
| 1797 | if (CurOp != NumOps) { |
| 1798 | const MachineOperand &MO1 = MI.getOperand(CurOp++); |
| 1799 | unsigned Size = X86InstrInfo::sizeOfImm(Desc); |
| 1800 | if (MO1.isImmediate()) |
| 1801 | emitConstant(MO1.getImm(), Size); |
| 1802 | else { |
| 1803 | unsigned rt = Is64BitMode ? X86::reloc_pcrel_word |
| 1804 | : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); |
| 1805 | if (Opcode == X86::MOV64ri) |
| 1806 | rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? |
| 1807 | if (MO1.isGlobalAddress()) { |
| 1808 | bool NeedStub = isa<Function>(MO1.getGlobal()); |
| 1809 | bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); |
| 1810 | emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, |
| 1811 | NeedStub, isLazy); |
| 1812 | } else if (MO1.isExternalSymbol()) |
| 1813 | emitExternalSymbolAddress(MO1.getSymbolName(), rt); |
| 1814 | else if (MO1.isConstantPoolIndex()) |
| 1815 | emitConstPoolAddress(MO1.getIndex(), rt); |
| 1816 | else if (MO1.isJumpTableIndex()) |
| 1817 | emitJumpTableAddress(MO1.getIndex(), rt); |
| 1818 | } |
| 1819 | } |
| 1820 | break; |
| 1821 | |
| 1822 | In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which |
| 1823 | is a ``RelocationType`` enum that may be used to relocate addresses (for |
| 1824 | example, a global address with a PIC base offset). The ``RelocationType`` enum |
| 1825 | for that target is defined in the short target-specific ``XXXRelocations.h`` |
| 1826 | file. The ``RelocationType`` is used by the ``relocate`` method defined in |
| 1827 | ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols. |
| 1828 | |
| 1829 | For example, ``X86Relocations.h`` specifies the following relocation types for |
| 1830 | the X86 addresses. In all four cases, the relocated value is added to the |
| 1831 | value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``, |
| 1832 | there is an additional initial adjustment. |
| 1833 | |
| 1834 | .. code-block:: c++ |
| 1835 | |
| 1836 | enum RelocationType { |
| 1837 | reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc |
| 1838 | reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base |
| 1839 | reloc_absolute_word = 2, // absolute relocation; no additional adjustment |
| 1840 | reloc_absolute_dword = 3 // absolute relocation; no additional adjustment |
| 1841 | }; |
| 1842 | |
| 1843 | Target JIT Info |
| 1844 | --------------- |
| 1845 | |
| 1846 | ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific |
| 1847 | code-generation activities, such as emitting machine code and stubs. At |
| 1848 | minimum, a target-specific version of ``XXXJITInfo`` implements the following: |
| 1849 | |
| 1850 | * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a |
| 1851 | function that is used for compilation. |
| 1852 | |
| 1853 | * ``emitFunctionStub`` --- Returns a native function with a specified address |
| 1854 | for a callback function. |
| 1855 | |
| 1856 | * ``relocate`` --- Changes the addresses of referenced globals, based on |
| 1857 | relocation types. |
| 1858 | |
| 1859 | * Callback function that are wrappers to a function stub that is used when the |
| 1860 | real target is not initially known. |
| 1861 | |
| 1862 | ``getLazyResolverFunction`` is generally trivial to implement. It makes the |
| 1863 | incoming parameter as the global ``JITCompilerFunction`` and returns the |
| 1864 | callback function that will be used a function wrapper. For the Alpha target |
| 1865 | (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is |
| 1866 | simply: |
| 1867 | |
| 1868 | .. code-block:: c++ |
| 1869 | |
| 1870 | TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction( |
| 1871 | JITCompilerFn F) { |
| 1872 | JITCompilerFunction = F; |
| 1873 | return AlphaCompilationCallback; |
| 1874 | } |
| 1875 | |
| 1876 | For the X86 target, the ``getLazyResolverFunction`` implementation is a little |
| 1877 | more complicated, because it returns a different callback function for |
| 1878 | processors with SSE instructions and XMM registers. |
| 1879 | |
| 1880 | The callback function initially saves and later restores the callee register |
| 1881 | values, incoming arguments, and frame and return address. The callback |
| 1882 | function needs low-level access to the registers or stack, so it is typically |
| 1883 | implemented with assembler. |
| 1884 | |