Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Chris Lattner and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the interfaces that X86 uses to lower LLVM code into a |
| 11 | // selection DAG. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "X86.h" |
Duncan Sands | d8455ca | 2007-07-27 20:02:49 +0000 | [diff] [blame] | 16 | #include "X86CodeEmitter.h" |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 17 | #include "X86InstrBuilder.h" |
| 18 | #include "X86ISelLowering.h" |
| 19 | #include "X86MachineFunctionInfo.h" |
| 20 | #include "X86TargetMachine.h" |
| 21 | #include "llvm/CallingConv.h" |
| 22 | #include "llvm/Constants.h" |
| 23 | #include "llvm/DerivedTypes.h" |
| 24 | #include "llvm/GlobalVariable.h" |
| 25 | #include "llvm/Function.h" |
| 26 | #include "llvm/Intrinsics.h" |
| 27 | #include "llvm/ADT/VectorExtras.h" |
| 28 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 29 | #include "llvm/CodeGen/CallingConvLower.h" |
| 30 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 31 | #include "llvm/CodeGen/MachineFunction.h" |
| 32 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 33 | #include "llvm/CodeGen/SelectionDAG.h" |
| 34 | #include "llvm/CodeGen/SSARegMap.h" |
| 35 | #include "llvm/Support/MathExtras.h" |
| 36 | #include "llvm/Target/TargetOptions.h" |
| 37 | #include "llvm/ADT/StringExtras.h" |
Duncan Sands | d8455ca | 2007-07-27 20:02:49 +0000 | [diff] [blame] | 38 | #include "llvm/ParameterAttributes.h" |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 39 | using namespace llvm; |
| 40 | |
| 41 | X86TargetLowering::X86TargetLowering(TargetMachine &TM) |
| 42 | : TargetLowering(TM) { |
| 43 | Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| 44 | X86ScalarSSE = Subtarget->hasSSE2(); |
| 45 | X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; |
| 46 | |
| 47 | RegInfo = TM.getRegisterInfo(); |
| 48 | |
| 49 | // Set up the TargetLowering object. |
| 50 | |
| 51 | // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| 52 | setShiftAmountType(MVT::i8); |
| 53 | setSetCCResultType(MVT::i8); |
| 54 | setSetCCResultContents(ZeroOrOneSetCCResult); |
| 55 | setSchedulingPreference(SchedulingForRegPressure); |
| 56 | setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 |
| 57 | setStackPointerRegisterToSaveRestore(X86StackPtr); |
| 58 | |
| 59 | if (Subtarget->isTargetDarwin()) { |
| 60 | // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. |
| 61 | setUseUnderscoreSetJmp(false); |
| 62 | setUseUnderscoreLongJmp(false); |
| 63 | } else if (Subtarget->isTargetMingw()) { |
| 64 | // MS runtime is weird: it exports _setjmp, but longjmp! |
| 65 | setUseUnderscoreSetJmp(true); |
| 66 | setUseUnderscoreLongJmp(false); |
| 67 | } else { |
| 68 | setUseUnderscoreSetJmp(true); |
| 69 | setUseUnderscoreLongJmp(true); |
| 70 | } |
| 71 | |
| 72 | // Set up the register classes. |
| 73 | addRegisterClass(MVT::i8, X86::GR8RegisterClass); |
| 74 | addRegisterClass(MVT::i16, X86::GR16RegisterClass); |
| 75 | addRegisterClass(MVT::i32, X86::GR32RegisterClass); |
| 76 | if (Subtarget->is64Bit()) |
| 77 | addRegisterClass(MVT::i64, X86::GR64RegisterClass); |
| 78 | |
| 79 | setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand); |
| 80 | |
| 81 | // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| 82 | // operation. |
| 83 | setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| 84 | setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| 85 | setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| 86 | |
| 87 | if (Subtarget->is64Bit()) { |
| 88 | setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); |
| 89 | setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| 90 | } else { |
| 91 | if (X86ScalarSSE) |
| 92 | // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. |
| 93 | setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); |
| 94 | else |
| 95 | setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| 96 | } |
| 97 | |
| 98 | // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| 99 | // this operation. |
| 100 | setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| 101 | setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| 102 | // SSE has no i16 to fp conversion, only i32 |
| 103 | if (X86ScalarSSE) |
| 104 | setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| 105 | else { |
| 106 | setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| 107 | setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| 108 | } |
| 109 | |
| 110 | if (!Subtarget->is64Bit()) { |
| 111 | // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode. |
| 112 | setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| 113 | setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| 114 | } |
| 115 | |
| 116 | // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| 117 | // this operation. |
| 118 | setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| 119 | setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| 120 | |
| 121 | if (X86ScalarSSE) { |
| 122 | setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| 123 | } else { |
| 124 | setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| 125 | setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| 126 | } |
| 127 | |
| 128 | // Handle FP_TO_UINT by promoting the destination to a larger signed |
| 129 | // conversion. |
| 130 | setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| 131 | setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| 132 | setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| 133 | |
| 134 | if (Subtarget->is64Bit()) { |
| 135 | setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); |
| 136 | setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| 137 | } else { |
| 138 | if (X86ScalarSSE && !Subtarget->hasSSE3()) |
| 139 | // Expand FP_TO_UINT into a select. |
| 140 | // FIXME: We would like to use a Custom expander here eventually to do |
| 141 | // the optimal thing for SSE vs. the default expansion in the legalizer. |
| 142 | setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| 143 | else |
| 144 | // With SSE3 we can use fisttpll to convert to a signed i64. |
| 145 | setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| 146 | } |
| 147 | |
| 148 | // TODO: when we have SSE, these could be more efficient, by using movd/movq. |
| 149 | if (!X86ScalarSSE) { |
| 150 | setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); |
| 151 | setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); |
| 152 | } |
| 153 | |
| 154 | setOperationAction(ISD::BR_JT , MVT::Other, Expand); |
| 155 | setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| 156 | setOperationAction(ISD::BR_CC , MVT::Other, Expand); |
| 157 | setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); |
| 158 | setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| 159 | if (Subtarget->is64Bit()) |
Christopher Lamb | 0a7c866 | 2007-08-10 21:48:46 +0000 | [diff] [blame] | 160 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| 161 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); |
| 162 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 163 | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| 164 | setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| 165 | setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| 166 | |
| 167 | setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| 168 | setOperationAction(ISD::CTTZ , MVT::i8 , Expand); |
| 169 | setOperationAction(ISD::CTLZ , MVT::i8 , Expand); |
| 170 | setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| 171 | setOperationAction(ISD::CTTZ , MVT::i16 , Expand); |
| 172 | setOperationAction(ISD::CTLZ , MVT::i16 , Expand); |
| 173 | setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| 174 | setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| 175 | setOperationAction(ISD::CTLZ , MVT::i32 , Expand); |
| 176 | if (Subtarget->is64Bit()) { |
| 177 | setOperationAction(ISD::CTPOP , MVT::i64 , Expand); |
| 178 | setOperationAction(ISD::CTTZ , MVT::i64 , Expand); |
| 179 | setOperationAction(ISD::CTLZ , MVT::i64 , Expand); |
| 180 | } |
| 181 | |
| 182 | setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| 183 | setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| 184 | |
| 185 | // These should be promoted to a larger select which is supported. |
| 186 | setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| 187 | setOperationAction(ISD::SELECT , MVT::i8 , Promote); |
| 188 | // X86 wants to expand cmov itself. |
| 189 | setOperationAction(ISD::SELECT , MVT::i16 , Custom); |
| 190 | setOperationAction(ISD::SELECT , MVT::i32 , Custom); |
| 191 | setOperationAction(ISD::SELECT , MVT::f32 , Custom); |
| 192 | setOperationAction(ISD::SELECT , MVT::f64 , Custom); |
| 193 | setOperationAction(ISD::SETCC , MVT::i8 , Custom); |
| 194 | setOperationAction(ISD::SETCC , MVT::i16 , Custom); |
| 195 | setOperationAction(ISD::SETCC , MVT::i32 , Custom); |
| 196 | setOperationAction(ISD::SETCC , MVT::f32 , Custom); |
| 197 | setOperationAction(ISD::SETCC , MVT::f64 , Custom); |
| 198 | if (Subtarget->is64Bit()) { |
| 199 | setOperationAction(ISD::SELECT , MVT::i64 , Custom); |
| 200 | setOperationAction(ISD::SETCC , MVT::i64 , Custom); |
| 201 | } |
| 202 | // X86 ret instruction may pop stack. |
| 203 | setOperationAction(ISD::RET , MVT::Other, Custom); |
| 204 | if (!Subtarget->is64Bit()) |
| 205 | setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); |
| 206 | |
| 207 | // Darwin ABI issue. |
| 208 | setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); |
| 209 | setOperationAction(ISD::JumpTable , MVT::i32 , Custom); |
| 210 | setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); |
| 211 | setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); |
| 212 | setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); |
| 213 | if (Subtarget->is64Bit()) { |
| 214 | setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); |
| 215 | setOperationAction(ISD::JumpTable , MVT::i64 , Custom); |
| 216 | setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); |
| 217 | setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); |
| 218 | } |
| 219 | // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) |
| 220 | setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); |
| 221 | setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); |
| 222 | setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); |
| 223 | // X86 wants to expand memset / memcpy itself. |
| 224 | setOperationAction(ISD::MEMSET , MVT::Other, Custom); |
| 225 | setOperationAction(ISD::MEMCPY , MVT::Other, Custom); |
| 226 | |
| 227 | // We don't have line number support yet. |
| 228 | setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| 229 | setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| 230 | // FIXME - use subtarget debug flags |
| 231 | if (!Subtarget->isTargetDarwin() && |
| 232 | !Subtarget->isTargetELF() && |
| 233 | !Subtarget->isTargetCygMing()) |
| 234 | setOperationAction(ISD::LABEL, MVT::Other, Expand); |
| 235 | |
| 236 | setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| 237 | setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| 238 | setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| 239 | setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| 240 | if (Subtarget->is64Bit()) { |
| 241 | // FIXME: Verify |
| 242 | setExceptionPointerRegister(X86::RAX); |
| 243 | setExceptionSelectorRegister(X86::RDX); |
| 244 | } else { |
| 245 | setExceptionPointerRegister(X86::EAX); |
| 246 | setExceptionSelectorRegister(X86::EDX); |
| 247 | } |
| 248 | |
Duncan Sands | d8455ca | 2007-07-27 20:02:49 +0000 | [diff] [blame] | 249 | setOperationAction(ISD::ADJUST_TRAMP, MVT::i32, Expand); |
| 250 | setOperationAction(ISD::ADJUST_TRAMP, MVT::i64, Expand); |
| 251 | setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); |
| 252 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 253 | // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| 254 | setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| 255 | setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| 256 | setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| 257 | if (Subtarget->is64Bit()) |
| 258 | setOperationAction(ISD::VACOPY , MVT::Other, Custom); |
| 259 | else |
| 260 | setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| 261 | |
| 262 | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| 263 | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| 264 | if (Subtarget->is64Bit()) |
| 265 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| 266 | if (Subtarget->isTargetCygMing()) |
| 267 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| 268 | else |
| 269 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| 270 | |
| 271 | if (X86ScalarSSE) { |
| 272 | // Set up the FP register classes. |
| 273 | addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| 274 | addRegisterClass(MVT::f64, X86::FR64RegisterClass); |
| 275 | |
| 276 | // Use ANDPD to simulate FABS. |
| 277 | setOperationAction(ISD::FABS , MVT::f64, Custom); |
| 278 | setOperationAction(ISD::FABS , MVT::f32, Custom); |
| 279 | |
| 280 | // Use XORP to simulate FNEG. |
| 281 | setOperationAction(ISD::FNEG , MVT::f64, Custom); |
| 282 | setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| 283 | |
| 284 | // Use ANDPD and ORPD to simulate FCOPYSIGN. |
| 285 | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| 286 | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| 287 | |
| 288 | // We don't support sin/cos/fmod |
| 289 | setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| 290 | setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| 291 | setOperationAction(ISD::FREM , MVT::f64, Expand); |
| 292 | setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| 293 | setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| 294 | setOperationAction(ISD::FREM , MVT::f32, Expand); |
| 295 | |
| 296 | // Expand FP immediates into loads from the stack, except for the special |
| 297 | // cases we handle. |
| 298 | setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| 299 | setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| 300 | addLegalFPImmediate(+0.0); // xorps / xorpd |
Dale Johannesen | 8f83a6b | 2007-08-09 01:04:01 +0000 | [diff] [blame] | 301 | |
| 302 | // Conversions to long double (in X87) go through memory. |
| 303 | setConvertAction(MVT::f32, MVT::f80, Expand); |
| 304 | setConvertAction(MVT::f64, MVT::f80, Expand); |
| 305 | |
| 306 | // Conversions from long double (in X87) go through memory. |
| 307 | setConvertAction(MVT::f80, MVT::f32, Expand); |
| 308 | setConvertAction(MVT::f80, MVT::f64, Expand); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 309 | } else { |
| 310 | // Set up the FP register classes. |
| 311 | addRegisterClass(MVT::f64, X86::RFP64RegisterClass); |
| 312 | addRegisterClass(MVT::f32, X86::RFP32RegisterClass); |
| 313 | |
| 314 | setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| 315 | setOperationAction(ISD::UNDEF, MVT::f32, Expand); |
| 316 | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| 317 | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
Dale Johannesen | 8f83a6b | 2007-08-09 01:04:01 +0000 | [diff] [blame] | 318 | |
| 319 | // Floating truncations need to go through memory. |
| 320 | setConvertAction(MVT::f80, MVT::f32, Expand); |
| 321 | setConvertAction(MVT::f64, MVT::f32, Expand); |
| 322 | setConvertAction(MVT::f80, MVT::f64, Expand); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 323 | |
| 324 | if (!UnsafeFPMath) { |
| 325 | setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| 326 | setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| 327 | } |
| 328 | |
| 329 | setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| 330 | setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| 331 | addLegalFPImmediate(+0.0); // FLD0 |
| 332 | addLegalFPImmediate(+1.0); // FLD1 |
| 333 | addLegalFPImmediate(-0.0); // FLD0/FCHS |
| 334 | addLegalFPImmediate(-1.0); // FLD1/FCHS |
| 335 | } |
| 336 | |
Dale Johannesen | 4ab00bd | 2007-08-05 18:49:15 +0000 | [diff] [blame] | 337 | // Long double always uses X87. |
| 338 | addRegisterClass(MVT::f80, X86::RFP80RegisterClass); |
| 339 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 340 | // First set operation action for all vector types to expand. Then we |
| 341 | // will selectively turn on ones that can be effectively codegen'd. |
| 342 | for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| 343 | VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| 344 | setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); |
| 345 | setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); |
| 346 | setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand); |
| 347 | setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand); |
| 348 | setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand); |
| 349 | setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); |
| 350 | setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand); |
| 351 | setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); |
| 352 | setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); |
| 353 | setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); |
| 354 | setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); |
| 355 | setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); |
| 356 | setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); |
| 357 | setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand); |
| 358 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| 359 | setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| 360 | setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand); |
| 361 | setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand); |
| 362 | setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand); |
| 363 | setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand); |
| 364 | setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand); |
| 365 | setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand); |
| 366 | setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand); |
| 367 | } |
| 368 | |
| 369 | if (Subtarget->hasMMX()) { |
| 370 | addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); |
| 371 | addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); |
| 372 | addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); |
| 373 | addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); |
| 374 | |
| 375 | // FIXME: add MMX packed arithmetics |
| 376 | |
| 377 | setOperationAction(ISD::ADD, MVT::v8i8, Legal); |
| 378 | setOperationAction(ISD::ADD, MVT::v4i16, Legal); |
| 379 | setOperationAction(ISD::ADD, MVT::v2i32, Legal); |
| 380 | setOperationAction(ISD::ADD, MVT::v1i64, Legal); |
| 381 | |
| 382 | setOperationAction(ISD::SUB, MVT::v8i8, Legal); |
| 383 | setOperationAction(ISD::SUB, MVT::v4i16, Legal); |
| 384 | setOperationAction(ISD::SUB, MVT::v2i32, Legal); |
| 385 | |
| 386 | setOperationAction(ISD::MULHS, MVT::v4i16, Legal); |
| 387 | setOperationAction(ISD::MUL, MVT::v4i16, Legal); |
| 388 | |
| 389 | setOperationAction(ISD::AND, MVT::v8i8, Promote); |
| 390 | AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); |
| 391 | setOperationAction(ISD::AND, MVT::v4i16, Promote); |
| 392 | AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); |
| 393 | setOperationAction(ISD::AND, MVT::v2i32, Promote); |
| 394 | AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); |
| 395 | setOperationAction(ISD::AND, MVT::v1i64, Legal); |
| 396 | |
| 397 | setOperationAction(ISD::OR, MVT::v8i8, Promote); |
| 398 | AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); |
| 399 | setOperationAction(ISD::OR, MVT::v4i16, Promote); |
| 400 | AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); |
| 401 | setOperationAction(ISD::OR, MVT::v2i32, Promote); |
| 402 | AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); |
| 403 | setOperationAction(ISD::OR, MVT::v1i64, Legal); |
| 404 | |
| 405 | setOperationAction(ISD::XOR, MVT::v8i8, Promote); |
| 406 | AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); |
| 407 | setOperationAction(ISD::XOR, MVT::v4i16, Promote); |
| 408 | AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); |
| 409 | setOperationAction(ISD::XOR, MVT::v2i32, Promote); |
| 410 | AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); |
| 411 | setOperationAction(ISD::XOR, MVT::v1i64, Legal); |
| 412 | |
| 413 | setOperationAction(ISD::LOAD, MVT::v8i8, Promote); |
| 414 | AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); |
| 415 | setOperationAction(ISD::LOAD, MVT::v4i16, Promote); |
| 416 | AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); |
| 417 | setOperationAction(ISD::LOAD, MVT::v2i32, Promote); |
| 418 | AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); |
| 419 | setOperationAction(ISD::LOAD, MVT::v1i64, Legal); |
| 420 | |
| 421 | setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); |
| 422 | setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); |
| 423 | setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); |
| 424 | setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); |
| 425 | |
| 426 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); |
| 427 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); |
| 428 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); |
| 429 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); |
| 430 | |
| 431 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); |
| 432 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); |
| 433 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom); |
| 434 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); |
| 435 | } |
| 436 | |
| 437 | if (Subtarget->hasSSE1()) { |
| 438 | addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); |
| 439 | |
| 440 | setOperationAction(ISD::FADD, MVT::v4f32, Legal); |
| 441 | setOperationAction(ISD::FSUB, MVT::v4f32, Legal); |
| 442 | setOperationAction(ISD::FMUL, MVT::v4f32, Legal); |
| 443 | setOperationAction(ISD::FDIV, MVT::v4f32, Legal); |
| 444 | setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); |
| 445 | setOperationAction(ISD::FNEG, MVT::v4f32, Custom); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 446 | setOperationAction(ISD::LOAD, MVT::v4f32, Legal); |
| 447 | setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| 448 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); |
| 449 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| 450 | setOperationAction(ISD::SELECT, MVT::v4f32, Custom); |
| 451 | } |
| 452 | |
| 453 | if (Subtarget->hasSSE2()) { |
| 454 | addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); |
| 455 | addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); |
| 456 | addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); |
| 457 | addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); |
| 458 | addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); |
| 459 | |
| 460 | setOperationAction(ISD::ADD, MVT::v16i8, Legal); |
| 461 | setOperationAction(ISD::ADD, MVT::v8i16, Legal); |
| 462 | setOperationAction(ISD::ADD, MVT::v4i32, Legal); |
| 463 | setOperationAction(ISD::ADD, MVT::v2i64, Legal); |
| 464 | setOperationAction(ISD::SUB, MVT::v16i8, Legal); |
| 465 | setOperationAction(ISD::SUB, MVT::v8i16, Legal); |
| 466 | setOperationAction(ISD::SUB, MVT::v4i32, Legal); |
| 467 | setOperationAction(ISD::SUB, MVT::v2i64, Legal); |
| 468 | setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| 469 | setOperationAction(ISD::FADD, MVT::v2f64, Legal); |
| 470 | setOperationAction(ISD::FSUB, MVT::v2f64, Legal); |
| 471 | setOperationAction(ISD::FMUL, MVT::v2f64, Legal); |
| 472 | setOperationAction(ISD::FDIV, MVT::v2f64, Legal); |
| 473 | setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); |
| 474 | setOperationAction(ISD::FNEG, MVT::v2f64, Custom); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 475 | |
| 476 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); |
| 477 | setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); |
| 478 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| 479 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| 480 | // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones. |
| 481 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| 482 | |
| 483 | // Custom lower build_vector, vector_shuffle, and extract_vector_elt. |
| 484 | for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| 485 | setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom); |
| 486 | setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom); |
| 487 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom); |
| 488 | } |
| 489 | setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); |
| 490 | setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); |
| 491 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); |
| 492 | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); |
| 493 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); |
| 494 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); |
| 495 | |
| 496 | // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. |
| 497 | for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| 498 | setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote); |
| 499 | AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64); |
| 500 | setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote); |
| 501 | AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64); |
| 502 | setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote); |
| 503 | AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64); |
| 504 | setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote); |
| 505 | AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64); |
| 506 | setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); |
| 507 | AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); |
| 508 | } |
| 509 | |
| 510 | // Custom lower v2i64 and v2f64 selects. |
| 511 | setOperationAction(ISD::LOAD, MVT::v2f64, Legal); |
| 512 | setOperationAction(ISD::LOAD, MVT::v2i64, Legal); |
| 513 | setOperationAction(ISD::SELECT, MVT::v2f64, Custom); |
| 514 | setOperationAction(ISD::SELECT, MVT::v2i64, Custom); |
| 515 | } |
| 516 | |
| 517 | // We want to custom lower some of our intrinsics. |
| 518 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| 519 | |
| 520 | // We have target-specific dag combine patterns for the following nodes: |
| 521 | setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| 522 | setTargetDAGCombine(ISD::SELECT); |
| 523 | |
| 524 | computeRegisterProperties(); |
| 525 | |
| 526 | // FIXME: These should be based on subtarget info. Plus, the values should |
| 527 | // be smaller when we are in optimizing for size mode. |
| 528 | maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores |
| 529 | maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores |
| 530 | maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores |
| 531 | allowUnalignedMemoryAccesses = true; // x86 supports it! |
| 532 | } |
| 533 | |
| 534 | |
| 535 | //===----------------------------------------------------------------------===// |
| 536 | // Return Value Calling Convention Implementation |
| 537 | //===----------------------------------------------------------------------===// |
| 538 | |
| 539 | #include "X86GenCallingConv.inc" |
| 540 | |
| 541 | /// LowerRET - Lower an ISD::RET node. |
| 542 | SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { |
| 543 | assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args"); |
| 544 | |
| 545 | SmallVector<CCValAssign, 16> RVLocs; |
| 546 | unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); |
| 547 | bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); |
| 548 | CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); |
| 549 | CCInfo.AnalyzeReturn(Op.Val, RetCC_X86); |
| 550 | |
| 551 | |
| 552 | // If this is the first return lowered for this function, add the regs to the |
| 553 | // liveout set for the function. |
| 554 | if (DAG.getMachineFunction().liveout_empty()) { |
| 555 | for (unsigned i = 0; i != RVLocs.size(); ++i) |
| 556 | if (RVLocs[i].isRegLoc()) |
| 557 | DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg()); |
| 558 | } |
| 559 | |
| 560 | SDOperand Chain = Op.getOperand(0); |
| 561 | SDOperand Flag; |
| 562 | |
| 563 | // Copy the result values into the output registers. |
| 564 | if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() || |
| 565 | RVLocs[0].getLocReg() != X86::ST0) { |
| 566 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| 567 | CCValAssign &VA = RVLocs[i]; |
| 568 | assert(VA.isRegLoc() && "Can only return in registers!"); |
| 569 | Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), |
| 570 | Flag); |
| 571 | Flag = Chain.getValue(1); |
| 572 | } |
| 573 | } else { |
| 574 | // We need to handle a destination of ST0 specially, because it isn't really |
| 575 | // a register. |
| 576 | SDOperand Value = Op.getOperand(1); |
| 577 | |
| 578 | // If this is an FP return with ScalarSSE, we need to move the value from |
| 579 | // an XMM register onto the fp-stack. |
| 580 | if (X86ScalarSSE) { |
| 581 | SDOperand MemLoc; |
| 582 | |
| 583 | // If this is a load into a scalarsse value, don't store the loaded value |
| 584 | // back to the stack, only to reload it: just replace the scalar-sse load. |
| 585 | if (ISD::isNON_EXTLoad(Value.Val) && |
| 586 | (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { |
| 587 | Chain = Value.getOperand(0); |
| 588 | MemLoc = Value.getOperand(1); |
| 589 | } else { |
| 590 | // Spill the value to memory and reload it into top of stack. |
| 591 | unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8; |
| 592 | MachineFunction &MF = DAG.getMachineFunction(); |
| 593 | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| 594 | MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); |
| 595 | Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0); |
| 596 | } |
| 597 | SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other); |
| 598 | SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())}; |
| 599 | Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3); |
| 600 | Chain = Value.getValue(1); |
| 601 | } |
| 602 | |
| 603 | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 604 | SDOperand Ops[] = { Chain, Value }; |
| 605 | Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2); |
| 606 | Flag = Chain.getValue(1); |
| 607 | } |
| 608 | |
| 609 | SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16); |
| 610 | if (Flag.Val) |
| 611 | return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag); |
| 612 | else |
| 613 | return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop); |
| 614 | } |
| 615 | |
| 616 | |
| 617 | /// LowerCallResult - Lower the result values of an ISD::CALL into the |
| 618 | /// appropriate copies out of appropriate physical registers. This assumes that |
| 619 | /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call |
| 620 | /// being lowered. The returns a SDNode with the same number of values as the |
| 621 | /// ISD::CALL. |
| 622 | SDNode *X86TargetLowering:: |
| 623 | LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, |
| 624 | unsigned CallingConv, SelectionDAG &DAG) { |
| 625 | |
| 626 | // Assign locations to each value returned by this call. |
| 627 | SmallVector<CCValAssign, 16> RVLocs; |
| 628 | bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0; |
| 629 | CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); |
| 630 | CCInfo.AnalyzeCallResult(TheCall, RetCC_X86); |
| 631 | |
| 632 | |
| 633 | SmallVector<SDOperand, 8> ResultVals; |
| 634 | |
| 635 | // Copy all of the result registers out of their specified physreg. |
| 636 | if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) { |
| 637 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| 638 | Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), |
| 639 | RVLocs[i].getValVT(), InFlag).getValue(1); |
| 640 | InFlag = Chain.getValue(2); |
| 641 | ResultVals.push_back(Chain.getValue(0)); |
| 642 | } |
| 643 | } else { |
| 644 | // Copies from the FP stack are special, as ST0 isn't a valid register |
| 645 | // before the fp stackifier runs. |
| 646 | |
| 647 | // Copy ST0 into an RFP register with FP_GET_RESULT. |
| 648 | SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag); |
| 649 | SDOperand GROps[] = { Chain, InFlag }; |
| 650 | SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2); |
| 651 | Chain = RetVal.getValue(1); |
| 652 | InFlag = RetVal.getValue(2); |
| 653 | |
| 654 | // If we are using ScalarSSE, store ST(0) to the stack and reload it into |
| 655 | // an XMM register. |
| 656 | if (X86ScalarSSE) { |
| 657 | // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| 658 | // shouldn't be necessary except that RFP cannot be live across |
| 659 | // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| 660 | MachineFunction &MF = DAG.getMachineFunction(); |
| 661 | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| 662 | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| 663 | SDOperand Ops[] = { |
| 664 | Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag |
| 665 | }; |
| 666 | Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5); |
| 667 | RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0); |
| 668 | Chain = RetVal.getValue(1); |
| 669 | } |
| 670 | ResultVals.push_back(RetVal); |
| 671 | } |
| 672 | |
| 673 | // Merge everything together with a MERGE_VALUES node. |
| 674 | ResultVals.push_back(Chain); |
| 675 | return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), |
| 676 | &ResultVals[0], ResultVals.size()).Val; |
| 677 | } |
| 678 | |
| 679 | |
| 680 | //===----------------------------------------------------------------------===// |
| 681 | // C & StdCall Calling Convention implementation |
| 682 | //===----------------------------------------------------------------------===// |
| 683 | // StdCall calling convention seems to be standard for many Windows' API |
| 684 | // routines and around. It differs from C calling convention just a little: |
| 685 | // callee should clean up the stack, not caller. Symbols should be also |
| 686 | // decorated in some fancy way :) It doesn't support any vector arguments. |
| 687 | |
| 688 | /// AddLiveIn - This helper function adds the specified physical register to the |
| 689 | /// MachineFunction as a live in value. It also creates a corresponding virtual |
| 690 | /// register for it. |
| 691 | static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, |
| 692 | const TargetRegisterClass *RC) { |
| 693 | assert(RC->contains(PReg) && "Not the correct regclass!"); |
| 694 | unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); |
| 695 | MF.addLiveIn(PReg, VReg); |
| 696 | return VReg; |
| 697 | } |
| 698 | |
| 699 | SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG, |
| 700 | bool isStdCall) { |
| 701 | unsigned NumArgs = Op.Val->getNumValues() - 1; |
| 702 | MachineFunction &MF = DAG.getMachineFunction(); |
| 703 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 704 | SDOperand Root = Op.getOperand(0); |
| 705 | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| 706 | |
| 707 | // Assign locations to all of the incoming arguments. |
| 708 | SmallVector<CCValAssign, 16> ArgLocs; |
| 709 | CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg, |
| 710 | getTargetMachine(), ArgLocs); |
| 711 | CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C); |
| 712 | |
| 713 | SmallVector<SDOperand, 8> ArgValues; |
| 714 | unsigned LastVal = ~0U; |
| 715 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 716 | CCValAssign &VA = ArgLocs[i]; |
| 717 | // TODO: If an arg is passed in two places (e.g. reg and stack), skip later |
| 718 | // places. |
| 719 | assert(VA.getValNo() != LastVal && |
| 720 | "Don't support value assigned to multiple locs yet"); |
| 721 | LastVal = VA.getValNo(); |
| 722 | |
| 723 | if (VA.isRegLoc()) { |
| 724 | MVT::ValueType RegVT = VA.getLocVT(); |
| 725 | TargetRegisterClass *RC; |
| 726 | if (RegVT == MVT::i32) |
| 727 | RC = X86::GR32RegisterClass; |
| 728 | else { |
| 729 | assert(MVT::isVector(RegVT)); |
| 730 | RC = X86::VR128RegisterClass; |
| 731 | } |
| 732 | |
| 733 | unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); |
| 734 | SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); |
| 735 | |
| 736 | // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| 737 | // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| 738 | // right size. |
| 739 | if (VA.getLocInfo() == CCValAssign::SExt) |
| 740 | ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, |
| 741 | DAG.getValueType(VA.getValVT())); |
| 742 | else if (VA.getLocInfo() == CCValAssign::ZExt) |
| 743 | ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, |
| 744 | DAG.getValueType(VA.getValVT())); |
| 745 | |
| 746 | if (VA.getLocInfo() != CCValAssign::Full) |
| 747 | ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); |
| 748 | |
| 749 | ArgValues.push_back(ArgValue); |
| 750 | } else { |
| 751 | assert(VA.isMemLoc()); |
| 752 | |
| 753 | // Create the nodes corresponding to a load from this parameter slot. |
| 754 | int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8, |
| 755 | VA.getLocMemOffset()); |
| 756 | SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| 757 | ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0)); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | unsigned StackSize = CCInfo.getNextStackOffset(); |
| 762 | |
| 763 | ArgValues.push_back(Root); |
| 764 | |
| 765 | // If the function takes variable number of arguments, make a frame index for |
| 766 | // the start of the first vararg value... for expansion of llvm.va_start. |
| 767 | if (isVarArg) |
| 768 | VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); |
| 769 | |
| 770 | if (isStdCall && !isVarArg) { |
| 771 | BytesToPopOnReturn = StackSize; // Callee pops everything.. |
| 772 | BytesCallerReserves = 0; |
| 773 | } else { |
| 774 | BytesToPopOnReturn = 0; // Callee pops nothing. |
| 775 | |
| 776 | // If this is an sret function, the return should pop the hidden pointer. |
| 777 | if (NumArgs && |
| 778 | (cast<ConstantSDNode>(Op.getOperand(3))->getValue() & |
| 779 | ISD::ParamFlags::StructReturn)) |
| 780 | BytesToPopOnReturn = 4; |
| 781 | |
| 782 | BytesCallerReserves = StackSize; |
| 783 | } |
Anton Korobeynikov | e844e47 | 2007-08-15 17:12:32 +0000 | [diff] [blame] | 784 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 785 | RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 786 | |
Anton Korobeynikov | e844e47 | 2007-08-15 17:12:32 +0000 | [diff] [blame] | 787 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 788 | FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 789 | |
| 790 | // Return the new list of results. |
| 791 | return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), |
| 792 | &ArgValues[0], ArgValues.size()).getValue(Op.ResNo); |
| 793 | } |
| 794 | |
| 795 | SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG, |
| 796 | unsigned CC) { |
| 797 | SDOperand Chain = Op.getOperand(0); |
| 798 | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| 799 | bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| 800 | SDOperand Callee = Op.getOperand(4); |
| 801 | unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| 802 | |
| 803 | // Analyze operands of the call, assigning locations to each operand. |
| 804 | SmallVector<CCValAssign, 16> ArgLocs; |
| 805 | CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| 806 | CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C); |
| 807 | |
| 808 | // Get a count of how many bytes are to be pushed on the stack. |
| 809 | unsigned NumBytes = CCInfo.getNextStackOffset(); |
| 810 | |
| 811 | Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| 812 | |
| 813 | SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass; |
| 814 | SmallVector<SDOperand, 8> MemOpChains; |
| 815 | |
| 816 | SDOperand StackPtr; |
| 817 | |
| 818 | // Walk the register/memloc assignments, inserting copies/loads. |
| 819 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 820 | CCValAssign &VA = ArgLocs[i]; |
| 821 | SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); |
| 822 | |
| 823 | // Promote the value if needed. |
| 824 | switch (VA.getLocInfo()) { |
| 825 | default: assert(0 && "Unknown loc info!"); |
| 826 | case CCValAssign::Full: break; |
| 827 | case CCValAssign::SExt: |
| 828 | Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); |
| 829 | break; |
| 830 | case CCValAssign::ZExt: |
| 831 | Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); |
| 832 | break; |
| 833 | case CCValAssign::AExt: |
| 834 | Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); |
| 835 | break; |
| 836 | } |
| 837 | |
| 838 | if (VA.isRegLoc()) { |
| 839 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| 840 | } else { |
| 841 | assert(VA.isMemLoc()); |
| 842 | if (StackPtr.Val == 0) |
| 843 | StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy()); |
| 844 | SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy()); |
| 845 | PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| 846 | MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | // If the first argument is an sret pointer, remember it. |
| 851 | bool isSRet = NumOps && |
| 852 | (cast<ConstantSDNode>(Op.getOperand(6))->getValue() & |
| 853 | ISD::ParamFlags::StructReturn); |
| 854 | |
| 855 | if (!MemOpChains.empty()) |
| 856 | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| 857 | &MemOpChains[0], MemOpChains.size()); |
| 858 | |
| 859 | // Build a sequence of copy-to-reg nodes chained together with token chain |
| 860 | // and flag operands which copy the outgoing args into registers. |
| 861 | SDOperand InFlag; |
| 862 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| 863 | Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| 864 | InFlag); |
| 865 | InFlag = Chain.getValue(1); |
| 866 | } |
| 867 | |
| 868 | // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| 869 | // GOT pointer. |
| 870 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 871 | Subtarget->isPICStyleGOT()) { |
| 872 | Chain = DAG.getCopyToReg(Chain, X86::EBX, |
| 873 | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| 874 | InFlag); |
| 875 | InFlag = Chain.getValue(1); |
| 876 | } |
| 877 | |
| 878 | // If the callee is a GlobalAddress node (quite common, every direct call is) |
| 879 | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| 880 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 881 | // We should use extra load for direct calls to dllimported functions in |
| 882 | // non-JIT mode. |
| 883 | if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| 884 | getTargetMachine(), true)) |
| 885 | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| 886 | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| 887 | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| 888 | |
| 889 | // Returns a chain & a flag for retval copy to use. |
| 890 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 891 | SmallVector<SDOperand, 8> Ops; |
| 892 | Ops.push_back(Chain); |
| 893 | Ops.push_back(Callee); |
| 894 | |
| 895 | // Add argument registers to the end of the list so that they are known live |
| 896 | // into the call. |
| 897 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| 898 | Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| 899 | RegsToPass[i].second.getValueType())); |
| 900 | |
| 901 | // Add an implicit use GOT pointer in EBX. |
| 902 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 903 | Subtarget->isPICStyleGOT()) |
| 904 | Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); |
| 905 | |
| 906 | if (InFlag.Val) |
| 907 | Ops.push_back(InFlag); |
| 908 | |
| 909 | Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| 910 | NodeTys, &Ops[0], Ops.size()); |
| 911 | InFlag = Chain.getValue(1); |
| 912 | |
| 913 | // Create the CALLSEQ_END node. |
| 914 | unsigned NumBytesForCalleeToPush = 0; |
| 915 | |
| 916 | if (CC == CallingConv::X86_StdCall) { |
| 917 | if (isVarArg) |
| 918 | NumBytesForCalleeToPush = isSRet ? 4 : 0; |
| 919 | else |
| 920 | NumBytesForCalleeToPush = NumBytes; |
| 921 | } else { |
| 922 | // If this is is a call to a struct-return function, the callee |
| 923 | // pops the hidden struct pointer, so we have to push it back. |
| 924 | // This is common for Darwin/X86, Linux & Mingw32 targets. |
| 925 | NumBytesForCalleeToPush = isSRet ? 4 : 0; |
| 926 | } |
| 927 | |
| 928 | NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 929 | Ops.clear(); |
| 930 | Ops.push_back(Chain); |
| 931 | Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| 932 | Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy())); |
| 933 | Ops.push_back(InFlag); |
| 934 | Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| 935 | InFlag = Chain.getValue(1); |
| 936 | |
| 937 | // Handle result values, copying them out of physregs into vregs that we |
| 938 | // return. |
| 939 | return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo); |
| 940 | } |
| 941 | |
| 942 | |
| 943 | //===----------------------------------------------------------------------===// |
| 944 | // FastCall Calling Convention implementation |
| 945 | //===----------------------------------------------------------------------===// |
| 946 | // |
| 947 | // The X86 'fastcall' calling convention passes up to two integer arguments in |
| 948 | // registers (an appropriate portion of ECX/EDX), passes arguments in C order, |
| 949 | // and requires that the callee pop its arguments off the stack (allowing proper |
| 950 | // tail calls), and has the same return value conventions as C calling convs. |
| 951 | // |
| 952 | // This calling convention always arranges for the callee pop value to be 8n+4 |
| 953 | // bytes, which is needed for tail recursion elimination and stack alignment |
| 954 | // reasons. |
| 955 | SDOperand |
| 956 | X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| 957 | MachineFunction &MF = DAG.getMachineFunction(); |
| 958 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 959 | SDOperand Root = Op.getOperand(0); |
| 960 | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| 961 | |
| 962 | // Assign locations to all of the incoming arguments. |
| 963 | SmallVector<CCValAssign, 16> ArgLocs; |
| 964 | CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg, |
| 965 | getTargetMachine(), ArgLocs); |
| 966 | CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall); |
| 967 | |
| 968 | SmallVector<SDOperand, 8> ArgValues; |
| 969 | unsigned LastVal = ~0U; |
| 970 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 971 | CCValAssign &VA = ArgLocs[i]; |
| 972 | // TODO: If an arg is passed in two places (e.g. reg and stack), skip later |
| 973 | // places. |
| 974 | assert(VA.getValNo() != LastVal && |
| 975 | "Don't support value assigned to multiple locs yet"); |
| 976 | LastVal = VA.getValNo(); |
| 977 | |
| 978 | if (VA.isRegLoc()) { |
| 979 | MVT::ValueType RegVT = VA.getLocVT(); |
| 980 | TargetRegisterClass *RC; |
| 981 | if (RegVT == MVT::i32) |
| 982 | RC = X86::GR32RegisterClass; |
| 983 | else { |
| 984 | assert(MVT::isVector(RegVT)); |
| 985 | RC = X86::VR128RegisterClass; |
| 986 | } |
| 987 | |
| 988 | unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); |
| 989 | SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); |
| 990 | |
| 991 | // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| 992 | // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| 993 | // right size. |
| 994 | if (VA.getLocInfo() == CCValAssign::SExt) |
| 995 | ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, |
| 996 | DAG.getValueType(VA.getValVT())); |
| 997 | else if (VA.getLocInfo() == CCValAssign::ZExt) |
| 998 | ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, |
| 999 | DAG.getValueType(VA.getValVT())); |
| 1000 | |
| 1001 | if (VA.getLocInfo() != CCValAssign::Full) |
| 1002 | ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); |
| 1003 | |
| 1004 | ArgValues.push_back(ArgValue); |
| 1005 | } else { |
| 1006 | assert(VA.isMemLoc()); |
| 1007 | |
| 1008 | // Create the nodes corresponding to a load from this parameter slot. |
| 1009 | int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8, |
| 1010 | VA.getLocMemOffset()); |
| 1011 | SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| 1012 | ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0)); |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | ArgValues.push_back(Root); |
| 1017 | |
| 1018 | unsigned StackSize = CCInfo.getNextStackOffset(); |
| 1019 | |
| 1020 | if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) { |
| 1021 | // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| 1022 | // arguments and the arguments after the retaddr has been pushed are aligned. |
| 1023 | if ((StackSize & 7) == 0) |
| 1024 | StackSize += 4; |
| 1025 | } |
| 1026 | |
| 1027 | VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| 1028 | RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1029 | BytesToPopOnReturn = StackSize; // Callee pops all stack arguments. |
| 1030 | BytesCallerReserves = 0; |
| 1031 | |
Anton Korobeynikov | e844e47 | 2007-08-15 17:12:32 +0000 | [diff] [blame] | 1032 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 1033 | FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1034 | |
| 1035 | // Return the new list of results. |
| 1036 | return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), |
| 1037 | &ArgValues[0], ArgValues.size()).getValue(Op.ResNo); |
| 1038 | } |
| 1039 | |
| 1040 | SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG, |
| 1041 | unsigned CC) { |
| 1042 | SDOperand Chain = Op.getOperand(0); |
| 1043 | bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| 1044 | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| 1045 | SDOperand Callee = Op.getOperand(4); |
| 1046 | |
| 1047 | // Analyze operands of the call, assigning locations to each operand. |
| 1048 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1049 | CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| 1050 | CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall); |
| 1051 | |
| 1052 | // Get a count of how many bytes are to be pushed on the stack. |
| 1053 | unsigned NumBytes = CCInfo.getNextStackOffset(); |
| 1054 | |
| 1055 | if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) { |
| 1056 | // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| 1057 | // arguments and the arguments after the retaddr has been pushed are aligned. |
| 1058 | if ((NumBytes & 7) == 0) |
| 1059 | NumBytes += 4; |
| 1060 | } |
| 1061 | |
| 1062 | Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| 1063 | |
| 1064 | SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass; |
| 1065 | SmallVector<SDOperand, 8> MemOpChains; |
| 1066 | |
| 1067 | SDOperand StackPtr; |
| 1068 | |
| 1069 | // Walk the register/memloc assignments, inserting copies/loads. |
| 1070 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 1071 | CCValAssign &VA = ArgLocs[i]; |
| 1072 | SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); |
| 1073 | |
| 1074 | // Promote the value if needed. |
| 1075 | switch (VA.getLocInfo()) { |
| 1076 | default: assert(0 && "Unknown loc info!"); |
| 1077 | case CCValAssign::Full: break; |
| 1078 | case CCValAssign::SExt: |
| 1079 | Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); |
| 1080 | break; |
| 1081 | case CCValAssign::ZExt: |
| 1082 | Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); |
| 1083 | break; |
| 1084 | case CCValAssign::AExt: |
| 1085 | Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); |
| 1086 | break; |
| 1087 | } |
| 1088 | |
| 1089 | if (VA.isRegLoc()) { |
| 1090 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| 1091 | } else { |
| 1092 | assert(VA.isMemLoc()); |
| 1093 | if (StackPtr.Val == 0) |
| 1094 | StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy()); |
| 1095 | SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy()); |
| 1096 | PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| 1097 | MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | if (!MemOpChains.empty()) |
| 1102 | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| 1103 | &MemOpChains[0], MemOpChains.size()); |
| 1104 | |
| 1105 | // Build a sequence of copy-to-reg nodes chained together with token chain |
| 1106 | // and flag operands which copy the outgoing args into registers. |
| 1107 | SDOperand InFlag; |
| 1108 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| 1109 | Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| 1110 | InFlag); |
| 1111 | InFlag = Chain.getValue(1); |
| 1112 | } |
| 1113 | |
| 1114 | // If the callee is a GlobalAddress node (quite common, every direct call is) |
| 1115 | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| 1116 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 1117 | // We should use extra load for direct calls to dllimported functions in |
| 1118 | // non-JIT mode. |
| 1119 | if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| 1120 | getTargetMachine(), true)) |
| 1121 | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| 1122 | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| 1123 | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| 1124 | |
| 1125 | // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| 1126 | // GOT pointer. |
| 1127 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 1128 | Subtarget->isPICStyleGOT()) { |
| 1129 | Chain = DAG.getCopyToReg(Chain, X86::EBX, |
| 1130 | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| 1131 | InFlag); |
| 1132 | InFlag = Chain.getValue(1); |
| 1133 | } |
| 1134 | |
| 1135 | // Returns a chain & a flag for retval copy to use. |
| 1136 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 1137 | SmallVector<SDOperand, 8> Ops; |
| 1138 | Ops.push_back(Chain); |
| 1139 | Ops.push_back(Callee); |
| 1140 | |
| 1141 | // Add argument registers to the end of the list so that they are known live |
| 1142 | // into the call. |
| 1143 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| 1144 | Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| 1145 | RegsToPass[i].second.getValueType())); |
| 1146 | |
| 1147 | // Add an implicit use GOT pointer in EBX. |
| 1148 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 1149 | Subtarget->isPICStyleGOT()) |
| 1150 | Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); |
| 1151 | |
| 1152 | if (InFlag.Val) |
| 1153 | Ops.push_back(InFlag); |
| 1154 | |
| 1155 | // FIXME: Do not generate X86ISD::TAILCALL for now. |
| 1156 | Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| 1157 | NodeTys, &Ops[0], Ops.size()); |
| 1158 | InFlag = Chain.getValue(1); |
| 1159 | |
| 1160 | // Returns a flag for retval copy to use. |
| 1161 | NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 1162 | Ops.clear(); |
| 1163 | Ops.push_back(Chain); |
| 1164 | Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| 1165 | Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| 1166 | Ops.push_back(InFlag); |
| 1167 | Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| 1168 | InFlag = Chain.getValue(1); |
| 1169 | |
| 1170 | // Handle result values, copying them out of physregs into vregs that we |
| 1171 | // return. |
| 1172 | return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo); |
| 1173 | } |
| 1174 | |
| 1175 | |
| 1176 | //===----------------------------------------------------------------------===// |
| 1177 | // X86-64 C Calling Convention implementation |
| 1178 | //===----------------------------------------------------------------------===// |
| 1179 | |
| 1180 | SDOperand |
| 1181 | X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| 1182 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1183 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 1184 | SDOperand Root = Op.getOperand(0); |
| 1185 | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| 1186 | |
| 1187 | static const unsigned GPR64ArgRegs[] = { |
| 1188 | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| 1189 | }; |
| 1190 | static const unsigned XMMArgRegs[] = { |
| 1191 | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| 1192 | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| 1193 | }; |
| 1194 | |
| 1195 | |
| 1196 | // Assign locations to all of the incoming arguments. |
| 1197 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1198 | CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg, |
| 1199 | getTargetMachine(), ArgLocs); |
| 1200 | CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C); |
| 1201 | |
| 1202 | SmallVector<SDOperand, 8> ArgValues; |
| 1203 | unsigned LastVal = ~0U; |
| 1204 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 1205 | CCValAssign &VA = ArgLocs[i]; |
| 1206 | // TODO: If an arg is passed in two places (e.g. reg and stack), skip later |
| 1207 | // places. |
| 1208 | assert(VA.getValNo() != LastVal && |
| 1209 | "Don't support value assigned to multiple locs yet"); |
| 1210 | LastVal = VA.getValNo(); |
| 1211 | |
| 1212 | if (VA.isRegLoc()) { |
| 1213 | MVT::ValueType RegVT = VA.getLocVT(); |
| 1214 | TargetRegisterClass *RC; |
| 1215 | if (RegVT == MVT::i32) |
| 1216 | RC = X86::GR32RegisterClass; |
| 1217 | else if (RegVT == MVT::i64) |
| 1218 | RC = X86::GR64RegisterClass; |
| 1219 | else if (RegVT == MVT::f32) |
| 1220 | RC = X86::FR32RegisterClass; |
| 1221 | else if (RegVT == MVT::f64) |
| 1222 | RC = X86::FR64RegisterClass; |
| 1223 | else { |
| 1224 | assert(MVT::isVector(RegVT)); |
| 1225 | if (MVT::getSizeInBits(RegVT) == 64) { |
| 1226 | RC = X86::GR64RegisterClass; // MMX values are passed in GPRs. |
| 1227 | RegVT = MVT::i64; |
| 1228 | } else |
| 1229 | RC = X86::VR128RegisterClass; |
| 1230 | } |
| 1231 | |
| 1232 | unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); |
| 1233 | SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); |
| 1234 | |
| 1235 | // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| 1236 | // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| 1237 | // right size. |
| 1238 | if (VA.getLocInfo() == CCValAssign::SExt) |
| 1239 | ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, |
| 1240 | DAG.getValueType(VA.getValVT())); |
| 1241 | else if (VA.getLocInfo() == CCValAssign::ZExt) |
| 1242 | ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, |
| 1243 | DAG.getValueType(VA.getValVT())); |
| 1244 | |
| 1245 | if (VA.getLocInfo() != CCValAssign::Full) |
| 1246 | ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); |
| 1247 | |
| 1248 | // Handle MMX values passed in GPRs. |
| 1249 | if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass && |
| 1250 | MVT::getSizeInBits(RegVT) == 64) |
| 1251 | ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); |
| 1252 | |
| 1253 | ArgValues.push_back(ArgValue); |
| 1254 | } else { |
| 1255 | assert(VA.isMemLoc()); |
| 1256 | |
| 1257 | // Create the nodes corresponding to a load from this parameter slot. |
| 1258 | int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8, |
| 1259 | VA.getLocMemOffset()); |
| 1260 | SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
Rafael Espindola | e4e4d3e | 2007-08-10 14:44:42 +0000 | [diff] [blame] | 1261 | |
| 1262 | unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue(); |
| 1263 | if (Flags & ISD::ParamFlags::ByVal) |
| 1264 | ArgValues.push_back(FIN); |
| 1265 | else |
| 1266 | ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0)); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | unsigned StackSize = CCInfo.getNextStackOffset(); |
| 1271 | |
| 1272 | // If the function takes variable number of arguments, make a frame index for |
| 1273 | // the start of the first vararg value... for expansion of llvm.va_start. |
| 1274 | if (isVarArg) { |
| 1275 | unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6); |
| 1276 | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); |
| 1277 | |
| 1278 | // For X86-64, if there are vararg parameters that are passed via |
| 1279 | // registers, then we must store them to their spots on the stack so they |
| 1280 | // may be loaded by deferencing the result of va_next. |
| 1281 | VarArgsGPOffset = NumIntRegs * 8; |
| 1282 | VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16; |
| 1283 | VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); |
| 1284 | RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16); |
| 1285 | |
| 1286 | // Store the integer parameter registers. |
| 1287 | SmallVector<SDOperand, 8> MemOps; |
| 1288 | SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| 1289 | SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, |
| 1290 | DAG.getConstant(VarArgsGPOffset, getPointerTy())); |
| 1291 | for (; NumIntRegs != 6; ++NumIntRegs) { |
| 1292 | unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], |
| 1293 | X86::GR64RegisterClass); |
| 1294 | SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); |
| 1295 | SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); |
| 1296 | MemOps.push_back(Store); |
| 1297 | FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| 1298 | DAG.getConstant(8, getPointerTy())); |
| 1299 | } |
| 1300 | |
| 1301 | // Now store the XMM (fp + vector) parameter registers. |
| 1302 | FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, |
| 1303 | DAG.getConstant(VarArgsFPOffset, getPointerTy())); |
| 1304 | for (; NumXMMRegs != 8; ++NumXMMRegs) { |
| 1305 | unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], |
| 1306 | X86::VR128RegisterClass); |
| 1307 | SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); |
| 1308 | SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); |
| 1309 | MemOps.push_back(Store); |
| 1310 | FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| 1311 | DAG.getConstant(16, getPointerTy())); |
| 1312 | } |
| 1313 | if (!MemOps.empty()) |
| 1314 | Root = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| 1315 | &MemOps[0], MemOps.size()); |
| 1316 | } |
| 1317 | |
| 1318 | ArgValues.push_back(Root); |
| 1319 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1320 | BytesToPopOnReturn = 0; // Callee pops nothing. |
| 1321 | BytesCallerReserves = StackSize; |
| 1322 | |
Anton Korobeynikov | e844e47 | 2007-08-15 17:12:32 +0000 | [diff] [blame] | 1323 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 1324 | FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); |
| 1325 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1326 | // Return the new list of results. |
| 1327 | return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), |
| 1328 | &ArgValues[0], ArgValues.size()).getValue(Op.ResNo); |
| 1329 | } |
| 1330 | |
| 1331 | SDOperand |
| 1332 | X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG, |
| 1333 | unsigned CC) { |
| 1334 | SDOperand Chain = Op.getOperand(0); |
| 1335 | bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| 1336 | bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| 1337 | SDOperand Callee = Op.getOperand(4); |
| 1338 | |
| 1339 | // Analyze operands of the call, assigning locations to each operand. |
| 1340 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1341 | CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| 1342 | CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C); |
| 1343 | |
| 1344 | // Get a count of how many bytes are to be pushed on the stack. |
| 1345 | unsigned NumBytes = CCInfo.getNextStackOffset(); |
| 1346 | Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| 1347 | |
| 1348 | SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass; |
| 1349 | SmallVector<SDOperand, 8> MemOpChains; |
| 1350 | |
| 1351 | SDOperand StackPtr; |
| 1352 | |
| 1353 | // Walk the register/memloc assignments, inserting copies/loads. |
| 1354 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| 1355 | CCValAssign &VA = ArgLocs[i]; |
| 1356 | SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); |
| 1357 | |
| 1358 | // Promote the value if needed. |
| 1359 | switch (VA.getLocInfo()) { |
| 1360 | default: assert(0 && "Unknown loc info!"); |
| 1361 | case CCValAssign::Full: break; |
| 1362 | case CCValAssign::SExt: |
| 1363 | Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); |
| 1364 | break; |
| 1365 | case CCValAssign::ZExt: |
| 1366 | Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); |
| 1367 | break; |
| 1368 | case CCValAssign::AExt: |
| 1369 | Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); |
| 1370 | break; |
| 1371 | } |
| 1372 | |
| 1373 | if (VA.isRegLoc()) { |
| 1374 | RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| 1375 | } else { |
| 1376 | assert(VA.isMemLoc()); |
| 1377 | if (StackPtr.Val == 0) |
| 1378 | StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy()); |
| 1379 | SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy()); |
| 1380 | PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
Rafael Espindola | b8bcfcd | 2007-08-20 15:18:24 +0000 | [diff] [blame^] | 1381 | |
| 1382 | SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo()); |
| 1383 | unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue(); |
| 1384 | if (Flags & ISD::ParamFlags::ByVal) { |
| 1385 | unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >> |
| 1386 | ISD::ParamFlags::ByValAlignOffs); |
| 1387 | unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >> |
| 1388 | ISD::ParamFlags::ByValSizeOffs; |
| 1389 | |
| 1390 | SDOperand AlignNode = DAG.getConstant(Align, MVT::i32); |
| 1391 | SDOperand SizeNode = DAG.getConstant(Size, MVT::i32); |
| 1392 | |
| 1393 | assert(0 && "Not Implemented"); |
| 1394 | |
| 1395 | SDOperand Copy = DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, |
| 1396 | Arg, SizeNode, AlignNode); |
| 1397 | MemOpChains.push_back(Copy); |
| 1398 | } |
| 1399 | else { |
| 1400 | MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| 1401 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1402 | } |
| 1403 | } |
| 1404 | |
| 1405 | if (!MemOpChains.empty()) |
| 1406 | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| 1407 | &MemOpChains[0], MemOpChains.size()); |
| 1408 | |
| 1409 | // Build a sequence of copy-to-reg nodes chained together with token chain |
| 1410 | // and flag operands which copy the outgoing args into registers. |
| 1411 | SDOperand InFlag; |
| 1412 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| 1413 | Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| 1414 | InFlag); |
| 1415 | InFlag = Chain.getValue(1); |
| 1416 | } |
| 1417 | |
| 1418 | if (isVarArg) { |
| 1419 | // From AMD64 ABI document: |
| 1420 | // For calls that may call functions that use varargs or stdargs |
| 1421 | // (prototype-less calls or calls to functions containing ellipsis (...) in |
| 1422 | // the declaration) %al is used as hidden argument to specify the number |
| 1423 | // of SSE registers used. The contents of %al do not need to match exactly |
| 1424 | // the number of registers, but must be an ubound on the number of SSE |
| 1425 | // registers used and is in the range 0 - 8 inclusive. |
| 1426 | |
| 1427 | // Count the number of XMM registers allocated. |
| 1428 | static const unsigned XMMArgRegs[] = { |
| 1429 | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| 1430 | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| 1431 | }; |
| 1432 | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); |
| 1433 | |
| 1434 | Chain = DAG.getCopyToReg(Chain, X86::AL, |
| 1435 | DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); |
| 1436 | InFlag = Chain.getValue(1); |
| 1437 | } |
| 1438 | |
| 1439 | // If the callee is a GlobalAddress node (quite common, every direct call is) |
| 1440 | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| 1441 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| 1442 | // We should use extra load for direct calls to dllimported functions in |
| 1443 | // non-JIT mode. |
| 1444 | if (getTargetMachine().getCodeModel() != CodeModel::Large |
| 1445 | && !Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| 1446 | getTargetMachine(), true)) |
| 1447 | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| 1448 | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| 1449 | if (getTargetMachine().getCodeModel() != CodeModel::Large) |
| 1450 | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| 1451 | |
| 1452 | // Returns a chain & a flag for retval copy to use. |
| 1453 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 1454 | SmallVector<SDOperand, 8> Ops; |
| 1455 | Ops.push_back(Chain); |
| 1456 | Ops.push_back(Callee); |
| 1457 | |
| 1458 | // Add argument registers to the end of the list so that they are known live |
| 1459 | // into the call. |
| 1460 | for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| 1461 | Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| 1462 | RegsToPass[i].second.getValueType())); |
| 1463 | |
| 1464 | if (InFlag.Val) |
| 1465 | Ops.push_back(InFlag); |
| 1466 | |
| 1467 | // FIXME: Do not generate X86ISD::TAILCALL for now. |
| 1468 | Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| 1469 | NodeTys, &Ops[0], Ops.size()); |
| 1470 | InFlag = Chain.getValue(1); |
| 1471 | |
| 1472 | // Returns a flag for retval copy to use. |
| 1473 | NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 1474 | Ops.clear(); |
| 1475 | Ops.push_back(Chain); |
| 1476 | Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| 1477 | Ops.push_back(DAG.getConstant(0, getPointerTy())); |
| 1478 | Ops.push_back(InFlag); |
| 1479 | Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| 1480 | InFlag = Chain.getValue(1); |
| 1481 | |
| 1482 | // Handle result values, copying them out of physregs into vregs that we |
| 1483 | // return. |
| 1484 | return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo); |
| 1485 | } |
| 1486 | |
| 1487 | |
| 1488 | //===----------------------------------------------------------------------===// |
| 1489 | // Other Lowering Hooks |
| 1490 | //===----------------------------------------------------------------------===// |
| 1491 | |
| 1492 | |
| 1493 | SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { |
Anton Korobeynikov | e844e47 | 2007-08-15 17:12:32 +0000 | [diff] [blame] | 1494 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1495 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 1496 | int ReturnAddrIndex = FuncInfo->getRAIndex(); |
| 1497 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1498 | if (ReturnAddrIndex == 0) { |
| 1499 | // Set up a frame object for the return address. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1500 | if (Subtarget->is64Bit()) |
| 1501 | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8); |
| 1502 | else |
| 1503 | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); |
Anton Korobeynikov | e844e47 | 2007-08-15 17:12:32 +0000 | [diff] [blame] | 1504 | |
| 1505 | FuncInfo->setRAIndex(ReturnAddrIndex); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1506 | } |
| 1507 | |
| 1508 | return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); |
| 1509 | } |
| 1510 | |
| 1511 | |
| 1512 | |
| 1513 | /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 |
| 1514 | /// specific condition code. It returns a false if it cannot do a direct |
| 1515 | /// translation. X86CC is the translated CondCode. LHS/RHS are modified as |
| 1516 | /// needed. |
| 1517 | static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, |
| 1518 | unsigned &X86CC, SDOperand &LHS, SDOperand &RHS, |
| 1519 | SelectionDAG &DAG) { |
| 1520 | X86CC = X86::COND_INVALID; |
| 1521 | if (!isFP) { |
| 1522 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| 1523 | if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { |
| 1524 | // X > -1 -> X == 0, jump !sign. |
| 1525 | RHS = DAG.getConstant(0, RHS.getValueType()); |
| 1526 | X86CC = X86::COND_NS; |
| 1527 | return true; |
| 1528 | } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { |
| 1529 | // X < 0 -> X == 0, jump on sign. |
| 1530 | X86CC = X86::COND_S; |
| 1531 | return true; |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | switch (SetCCOpcode) { |
| 1536 | default: break; |
| 1537 | case ISD::SETEQ: X86CC = X86::COND_E; break; |
| 1538 | case ISD::SETGT: X86CC = X86::COND_G; break; |
| 1539 | case ISD::SETGE: X86CC = X86::COND_GE; break; |
| 1540 | case ISD::SETLT: X86CC = X86::COND_L; break; |
| 1541 | case ISD::SETLE: X86CC = X86::COND_LE; break; |
| 1542 | case ISD::SETNE: X86CC = X86::COND_NE; break; |
| 1543 | case ISD::SETULT: X86CC = X86::COND_B; break; |
| 1544 | case ISD::SETUGT: X86CC = X86::COND_A; break; |
| 1545 | case ISD::SETULE: X86CC = X86::COND_BE; break; |
| 1546 | case ISD::SETUGE: X86CC = X86::COND_AE; break; |
| 1547 | } |
| 1548 | } else { |
| 1549 | // On a floating point condition, the flags are set as follows: |
| 1550 | // ZF PF CF op |
| 1551 | // 0 | 0 | 0 | X > Y |
| 1552 | // 0 | 0 | 1 | X < Y |
| 1553 | // 1 | 0 | 0 | X == Y |
| 1554 | // 1 | 1 | 1 | unordered |
| 1555 | bool Flip = false; |
| 1556 | switch (SetCCOpcode) { |
| 1557 | default: break; |
| 1558 | case ISD::SETUEQ: |
| 1559 | case ISD::SETEQ: X86CC = X86::COND_E; break; |
| 1560 | case ISD::SETOLT: Flip = true; // Fallthrough |
| 1561 | case ISD::SETOGT: |
| 1562 | case ISD::SETGT: X86CC = X86::COND_A; break; |
| 1563 | case ISD::SETOLE: Flip = true; // Fallthrough |
| 1564 | case ISD::SETOGE: |
| 1565 | case ISD::SETGE: X86CC = X86::COND_AE; break; |
| 1566 | case ISD::SETUGT: Flip = true; // Fallthrough |
| 1567 | case ISD::SETULT: |
| 1568 | case ISD::SETLT: X86CC = X86::COND_B; break; |
| 1569 | case ISD::SETUGE: Flip = true; // Fallthrough |
| 1570 | case ISD::SETULE: |
| 1571 | case ISD::SETLE: X86CC = X86::COND_BE; break; |
| 1572 | case ISD::SETONE: |
| 1573 | case ISD::SETNE: X86CC = X86::COND_NE; break; |
| 1574 | case ISD::SETUO: X86CC = X86::COND_P; break; |
| 1575 | case ISD::SETO: X86CC = X86::COND_NP; break; |
| 1576 | } |
| 1577 | if (Flip) |
| 1578 | std::swap(LHS, RHS); |
| 1579 | } |
| 1580 | |
| 1581 | return X86CC != X86::COND_INVALID; |
| 1582 | } |
| 1583 | |
| 1584 | /// hasFPCMov - is there a floating point cmov for the specific X86 condition |
| 1585 | /// code. Current x86 isa includes the following FP cmov instructions: |
| 1586 | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| 1587 | static bool hasFPCMov(unsigned X86CC) { |
| 1588 | switch (X86CC) { |
| 1589 | default: |
| 1590 | return false; |
| 1591 | case X86::COND_B: |
| 1592 | case X86::COND_BE: |
| 1593 | case X86::COND_E: |
| 1594 | case X86::COND_P: |
| 1595 | case X86::COND_A: |
| 1596 | case X86::COND_AE: |
| 1597 | case X86::COND_NE: |
| 1598 | case X86::COND_NP: |
| 1599 | return true; |
| 1600 | } |
| 1601 | } |
| 1602 | |
| 1603 | /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return |
| 1604 | /// true if Op is undef or if its value falls within the specified range (L, H]. |
| 1605 | static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { |
| 1606 | if (Op.getOpcode() == ISD::UNDEF) |
| 1607 | return true; |
| 1608 | |
| 1609 | unsigned Val = cast<ConstantSDNode>(Op)->getValue(); |
| 1610 | return (Val >= Low && Val < Hi); |
| 1611 | } |
| 1612 | |
| 1613 | /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return |
| 1614 | /// true if Op is undef or if its value equal to the specified value. |
| 1615 | static bool isUndefOrEqual(SDOperand Op, unsigned Val) { |
| 1616 | if (Op.getOpcode() == ISD::UNDEF) |
| 1617 | return true; |
| 1618 | return cast<ConstantSDNode>(Op)->getValue() == Val; |
| 1619 | } |
| 1620 | |
| 1621 | /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1622 | /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| 1623 | bool X86::isPSHUFDMask(SDNode *N) { |
| 1624 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1625 | |
Dan Gohman | 7dc1901 | 2007-08-02 21:17:01 +0000 | [diff] [blame] | 1626 | if (N->getNumOperands() != 2 && N->getNumOperands() != 4) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1627 | return false; |
| 1628 | |
| 1629 | // Check if the value doesn't reference the second vector. |
| 1630 | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| 1631 | SDOperand Arg = N->getOperand(i); |
| 1632 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 1633 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
Dan Gohman | 7dc1901 | 2007-08-02 21:17:01 +0000 | [diff] [blame] | 1634 | if (cast<ConstantSDNode>(Arg)->getValue() >= e) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1635 | return false; |
| 1636 | } |
| 1637 | |
| 1638 | return true; |
| 1639 | } |
| 1640 | |
| 1641 | /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1642 | /// specifies a shuffle of elements that is suitable for input to PSHUFHW. |
| 1643 | bool X86::isPSHUFHWMask(SDNode *N) { |
| 1644 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1645 | |
| 1646 | if (N->getNumOperands() != 8) |
| 1647 | return false; |
| 1648 | |
| 1649 | // Lower quadword copied in order. |
| 1650 | for (unsigned i = 0; i != 4; ++i) { |
| 1651 | SDOperand Arg = N->getOperand(i); |
| 1652 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 1653 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 1654 | if (cast<ConstantSDNode>(Arg)->getValue() != i) |
| 1655 | return false; |
| 1656 | } |
| 1657 | |
| 1658 | // Upper quadword shuffled. |
| 1659 | for (unsigned i = 4; i != 8; ++i) { |
| 1660 | SDOperand Arg = N->getOperand(i); |
| 1661 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 1662 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 1663 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 1664 | if (Val < 4 || Val > 7) |
| 1665 | return false; |
| 1666 | } |
| 1667 | |
| 1668 | return true; |
| 1669 | } |
| 1670 | |
| 1671 | /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1672 | /// specifies a shuffle of elements that is suitable for input to PSHUFLW. |
| 1673 | bool X86::isPSHUFLWMask(SDNode *N) { |
| 1674 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1675 | |
| 1676 | if (N->getNumOperands() != 8) |
| 1677 | return false; |
| 1678 | |
| 1679 | // Upper quadword copied in order. |
| 1680 | for (unsigned i = 4; i != 8; ++i) |
| 1681 | if (!isUndefOrEqual(N->getOperand(i), i)) |
| 1682 | return false; |
| 1683 | |
| 1684 | // Lower quadword shuffled. |
| 1685 | for (unsigned i = 0; i != 4; ++i) |
| 1686 | if (!isUndefOrInRange(N->getOperand(i), 0, 4)) |
| 1687 | return false; |
| 1688 | |
| 1689 | return true; |
| 1690 | } |
| 1691 | |
| 1692 | /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1693 | /// specifies a shuffle of elements that is suitable for input to SHUFP*. |
| 1694 | static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) { |
| 1695 | if (NumElems != 2 && NumElems != 4) return false; |
| 1696 | |
| 1697 | unsigned Half = NumElems / 2; |
| 1698 | for (unsigned i = 0; i < Half; ++i) |
| 1699 | if (!isUndefOrInRange(Elems[i], 0, NumElems)) |
| 1700 | return false; |
| 1701 | for (unsigned i = Half; i < NumElems; ++i) |
| 1702 | if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2)) |
| 1703 | return false; |
| 1704 | |
| 1705 | return true; |
| 1706 | } |
| 1707 | |
| 1708 | bool X86::isSHUFPMask(SDNode *N) { |
| 1709 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1710 | return ::isSHUFPMask(N->op_begin(), N->getNumOperands()); |
| 1711 | } |
| 1712 | |
| 1713 | /// isCommutedSHUFP - Returns true if the shuffle mask is exactly |
| 1714 | /// the reverse of what x86 shuffles want. x86 shuffles requires the lower |
| 1715 | /// half elements to come from vector 1 (which would equal the dest.) and |
| 1716 | /// the upper half to come from vector 2. |
| 1717 | static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) { |
| 1718 | if (NumOps != 2 && NumOps != 4) return false; |
| 1719 | |
| 1720 | unsigned Half = NumOps / 2; |
| 1721 | for (unsigned i = 0; i < Half; ++i) |
| 1722 | if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2)) |
| 1723 | return false; |
| 1724 | for (unsigned i = Half; i < NumOps; ++i) |
| 1725 | if (!isUndefOrInRange(Ops[i], 0, NumOps)) |
| 1726 | return false; |
| 1727 | return true; |
| 1728 | } |
| 1729 | |
| 1730 | static bool isCommutedSHUFP(SDNode *N) { |
| 1731 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1732 | return isCommutedSHUFP(N->op_begin(), N->getNumOperands()); |
| 1733 | } |
| 1734 | |
| 1735 | /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1736 | /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| 1737 | bool X86::isMOVHLPSMask(SDNode *N) { |
| 1738 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1739 | |
| 1740 | if (N->getNumOperands() != 4) |
| 1741 | return false; |
| 1742 | |
| 1743 | // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 |
| 1744 | return isUndefOrEqual(N->getOperand(0), 6) && |
| 1745 | isUndefOrEqual(N->getOperand(1), 7) && |
| 1746 | isUndefOrEqual(N->getOperand(2), 2) && |
| 1747 | isUndefOrEqual(N->getOperand(3), 3); |
| 1748 | } |
| 1749 | |
| 1750 | /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form |
| 1751 | /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, |
| 1752 | /// <2, 3, 2, 3> |
| 1753 | bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { |
| 1754 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1755 | |
| 1756 | if (N->getNumOperands() != 4) |
| 1757 | return false; |
| 1758 | |
| 1759 | // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 |
| 1760 | return isUndefOrEqual(N->getOperand(0), 2) && |
| 1761 | isUndefOrEqual(N->getOperand(1), 3) && |
| 1762 | isUndefOrEqual(N->getOperand(2), 2) && |
| 1763 | isUndefOrEqual(N->getOperand(3), 3); |
| 1764 | } |
| 1765 | |
| 1766 | /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1767 | /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. |
| 1768 | bool X86::isMOVLPMask(SDNode *N) { |
| 1769 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1770 | |
| 1771 | unsigned NumElems = N->getNumOperands(); |
| 1772 | if (NumElems != 2 && NumElems != 4) |
| 1773 | return false; |
| 1774 | |
| 1775 | for (unsigned i = 0; i < NumElems/2; ++i) |
| 1776 | if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) |
| 1777 | return false; |
| 1778 | |
| 1779 | for (unsigned i = NumElems/2; i < NumElems; ++i) |
| 1780 | if (!isUndefOrEqual(N->getOperand(i), i)) |
| 1781 | return false; |
| 1782 | |
| 1783 | return true; |
| 1784 | } |
| 1785 | |
| 1786 | /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1787 | /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} |
| 1788 | /// and MOVLHPS. |
| 1789 | bool X86::isMOVHPMask(SDNode *N) { |
| 1790 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1791 | |
| 1792 | unsigned NumElems = N->getNumOperands(); |
| 1793 | if (NumElems != 2 && NumElems != 4) |
| 1794 | return false; |
| 1795 | |
| 1796 | for (unsigned i = 0; i < NumElems/2; ++i) |
| 1797 | if (!isUndefOrEqual(N->getOperand(i), i)) |
| 1798 | return false; |
| 1799 | |
| 1800 | for (unsigned i = 0; i < NumElems/2; ++i) { |
| 1801 | SDOperand Arg = N->getOperand(i + NumElems/2); |
| 1802 | if (!isUndefOrEqual(Arg, i + NumElems)) |
| 1803 | return false; |
| 1804 | } |
| 1805 | |
| 1806 | return true; |
| 1807 | } |
| 1808 | |
| 1809 | /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1810 | /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| 1811 | bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts, |
| 1812 | bool V2IsSplat = false) { |
| 1813 | if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) |
| 1814 | return false; |
| 1815 | |
| 1816 | for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { |
| 1817 | SDOperand BitI = Elts[i]; |
| 1818 | SDOperand BitI1 = Elts[i+1]; |
| 1819 | if (!isUndefOrEqual(BitI, j)) |
| 1820 | return false; |
| 1821 | if (V2IsSplat) { |
| 1822 | if (isUndefOrEqual(BitI1, NumElts)) |
| 1823 | return false; |
| 1824 | } else { |
| 1825 | if (!isUndefOrEqual(BitI1, j + NumElts)) |
| 1826 | return false; |
| 1827 | } |
| 1828 | } |
| 1829 | |
| 1830 | return true; |
| 1831 | } |
| 1832 | |
| 1833 | bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { |
| 1834 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1835 | return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat); |
| 1836 | } |
| 1837 | |
| 1838 | /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1839 | /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| 1840 | bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts, |
| 1841 | bool V2IsSplat = false) { |
| 1842 | if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) |
| 1843 | return false; |
| 1844 | |
| 1845 | for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { |
| 1846 | SDOperand BitI = Elts[i]; |
| 1847 | SDOperand BitI1 = Elts[i+1]; |
| 1848 | if (!isUndefOrEqual(BitI, j + NumElts/2)) |
| 1849 | return false; |
| 1850 | if (V2IsSplat) { |
| 1851 | if (isUndefOrEqual(BitI1, NumElts)) |
| 1852 | return false; |
| 1853 | } else { |
| 1854 | if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) |
| 1855 | return false; |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | return true; |
| 1860 | } |
| 1861 | |
| 1862 | bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { |
| 1863 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1864 | return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat); |
| 1865 | } |
| 1866 | |
| 1867 | /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| 1868 | /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| 1869 | /// <0, 0, 1, 1> |
| 1870 | bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { |
| 1871 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1872 | |
| 1873 | unsigned NumElems = N->getNumOperands(); |
| 1874 | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| 1875 | return false; |
| 1876 | |
| 1877 | for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| 1878 | SDOperand BitI = N->getOperand(i); |
| 1879 | SDOperand BitI1 = N->getOperand(i+1); |
| 1880 | |
| 1881 | if (!isUndefOrEqual(BitI, j)) |
| 1882 | return false; |
| 1883 | if (!isUndefOrEqual(BitI1, j)) |
| 1884 | return false; |
| 1885 | } |
| 1886 | |
| 1887 | return true; |
| 1888 | } |
| 1889 | |
| 1890 | /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form |
| 1891 | /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, |
| 1892 | /// <2, 2, 3, 3> |
| 1893 | bool X86::isUNPCKH_v_undef_Mask(SDNode *N) { |
| 1894 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1895 | |
| 1896 | unsigned NumElems = N->getNumOperands(); |
| 1897 | if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| 1898 | return false; |
| 1899 | |
| 1900 | for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { |
| 1901 | SDOperand BitI = N->getOperand(i); |
| 1902 | SDOperand BitI1 = N->getOperand(i + 1); |
| 1903 | |
| 1904 | if (!isUndefOrEqual(BitI, j)) |
| 1905 | return false; |
| 1906 | if (!isUndefOrEqual(BitI1, j)) |
| 1907 | return false; |
| 1908 | } |
| 1909 | |
| 1910 | return true; |
| 1911 | } |
| 1912 | |
| 1913 | /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1914 | /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| 1915 | /// MOVSD, and MOVD, i.e. setting the lowest element. |
| 1916 | static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) { |
| 1917 | if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) |
| 1918 | return false; |
| 1919 | |
| 1920 | if (!isUndefOrEqual(Elts[0], NumElts)) |
| 1921 | return false; |
| 1922 | |
| 1923 | for (unsigned i = 1; i < NumElts; ++i) { |
| 1924 | if (!isUndefOrEqual(Elts[i], i)) |
| 1925 | return false; |
| 1926 | } |
| 1927 | |
| 1928 | return true; |
| 1929 | } |
| 1930 | |
| 1931 | bool X86::isMOVLMask(SDNode *N) { |
| 1932 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1933 | return ::isMOVLMask(N->op_begin(), N->getNumOperands()); |
| 1934 | } |
| 1935 | |
| 1936 | /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse |
| 1937 | /// of what x86 movss want. X86 movs requires the lowest element to be lowest |
| 1938 | /// element of vector 2 and the other elements to come from vector 1 in order. |
| 1939 | static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps, |
| 1940 | bool V2IsSplat = false, |
| 1941 | bool V2IsUndef = false) { |
| 1942 | if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) |
| 1943 | return false; |
| 1944 | |
| 1945 | if (!isUndefOrEqual(Ops[0], 0)) |
| 1946 | return false; |
| 1947 | |
| 1948 | for (unsigned i = 1; i < NumOps; ++i) { |
| 1949 | SDOperand Arg = Ops[i]; |
| 1950 | if (!(isUndefOrEqual(Arg, i+NumOps) || |
| 1951 | (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) || |
| 1952 | (V2IsSplat && isUndefOrEqual(Arg, NumOps)))) |
| 1953 | return false; |
| 1954 | } |
| 1955 | |
| 1956 | return true; |
| 1957 | } |
| 1958 | |
| 1959 | static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, |
| 1960 | bool V2IsUndef = false) { |
| 1961 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1962 | return isCommutedMOVL(N->op_begin(), N->getNumOperands(), |
| 1963 | V2IsSplat, V2IsUndef); |
| 1964 | } |
| 1965 | |
| 1966 | /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1967 | /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| 1968 | bool X86::isMOVSHDUPMask(SDNode *N) { |
| 1969 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 1970 | |
| 1971 | if (N->getNumOperands() != 4) |
| 1972 | return false; |
| 1973 | |
| 1974 | // Expect 1, 1, 3, 3 |
| 1975 | for (unsigned i = 0; i < 2; ++i) { |
| 1976 | SDOperand Arg = N->getOperand(i); |
| 1977 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 1978 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 1979 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 1980 | if (Val != 1) return false; |
| 1981 | } |
| 1982 | |
| 1983 | bool HasHi = false; |
| 1984 | for (unsigned i = 2; i < 4; ++i) { |
| 1985 | SDOperand Arg = N->getOperand(i); |
| 1986 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 1987 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 1988 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 1989 | if (Val != 3) return false; |
| 1990 | HasHi = true; |
| 1991 | } |
| 1992 | |
| 1993 | // Don't use movshdup if it can be done with a shufps. |
| 1994 | return HasHi; |
| 1995 | } |
| 1996 | |
| 1997 | /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| 1998 | /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| 1999 | bool X86::isMOVSLDUPMask(SDNode *N) { |
| 2000 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 2001 | |
| 2002 | if (N->getNumOperands() != 4) |
| 2003 | return false; |
| 2004 | |
| 2005 | // Expect 0, 0, 2, 2 |
| 2006 | for (unsigned i = 0; i < 2; ++i) { |
| 2007 | SDOperand Arg = N->getOperand(i); |
| 2008 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 2009 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 2010 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2011 | if (Val != 0) return false; |
| 2012 | } |
| 2013 | |
| 2014 | bool HasHi = false; |
| 2015 | for (unsigned i = 2; i < 4; ++i) { |
| 2016 | SDOperand Arg = N->getOperand(i); |
| 2017 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 2018 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 2019 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2020 | if (Val != 2) return false; |
| 2021 | HasHi = true; |
| 2022 | } |
| 2023 | |
| 2024 | // Don't use movshdup if it can be done with a shufps. |
| 2025 | return HasHi; |
| 2026 | } |
| 2027 | |
| 2028 | /// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand |
| 2029 | /// specifies a identity operation on the LHS or RHS. |
| 2030 | static bool isIdentityMask(SDNode *N, bool RHS = false) { |
| 2031 | unsigned NumElems = N->getNumOperands(); |
| 2032 | for (unsigned i = 0; i < NumElems; ++i) |
| 2033 | if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0))) |
| 2034 | return false; |
| 2035 | return true; |
| 2036 | } |
| 2037 | |
| 2038 | /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| 2039 | /// a splat of a single element. |
| 2040 | static bool isSplatMask(SDNode *N) { |
| 2041 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 2042 | |
| 2043 | // This is a splat operation if each element of the permute is the same, and |
| 2044 | // if the value doesn't reference the second vector. |
| 2045 | unsigned NumElems = N->getNumOperands(); |
| 2046 | SDOperand ElementBase; |
| 2047 | unsigned i = 0; |
| 2048 | for (; i != NumElems; ++i) { |
| 2049 | SDOperand Elt = N->getOperand(i); |
| 2050 | if (isa<ConstantSDNode>(Elt)) { |
| 2051 | ElementBase = Elt; |
| 2052 | break; |
| 2053 | } |
| 2054 | } |
| 2055 | |
| 2056 | if (!ElementBase.Val) |
| 2057 | return false; |
| 2058 | |
| 2059 | for (; i != NumElems; ++i) { |
| 2060 | SDOperand Arg = N->getOperand(i); |
| 2061 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 2062 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 2063 | if (Arg != ElementBase) return false; |
| 2064 | } |
| 2065 | |
| 2066 | // Make sure it is a splat of the first vector operand. |
| 2067 | return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems; |
| 2068 | } |
| 2069 | |
| 2070 | /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| 2071 | /// a splat of a single element and it's a 2 or 4 element mask. |
| 2072 | bool X86::isSplatMask(SDNode *N) { |
| 2073 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 2074 | |
| 2075 | // We can only splat 64-bit, and 32-bit quantities with a single instruction. |
| 2076 | if (N->getNumOperands() != 4 && N->getNumOperands() != 2) |
| 2077 | return false; |
| 2078 | return ::isSplatMask(N); |
| 2079 | } |
| 2080 | |
| 2081 | /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand |
| 2082 | /// specifies a splat of zero element. |
| 2083 | bool X86::isSplatLoMask(SDNode *N) { |
| 2084 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 2085 | |
| 2086 | for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) |
| 2087 | if (!isUndefOrEqual(N->getOperand(i), 0)) |
| 2088 | return false; |
| 2089 | return true; |
| 2090 | } |
| 2091 | |
| 2092 | /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| 2093 | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* |
| 2094 | /// instructions. |
| 2095 | unsigned X86::getShuffleSHUFImmediate(SDNode *N) { |
| 2096 | unsigned NumOperands = N->getNumOperands(); |
| 2097 | unsigned Shift = (NumOperands == 4) ? 2 : 1; |
| 2098 | unsigned Mask = 0; |
| 2099 | for (unsigned i = 0; i < NumOperands; ++i) { |
| 2100 | unsigned Val = 0; |
| 2101 | SDOperand Arg = N->getOperand(NumOperands-i-1); |
| 2102 | if (Arg.getOpcode() != ISD::UNDEF) |
| 2103 | Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2104 | if (Val >= NumOperands) Val -= NumOperands; |
| 2105 | Mask |= Val; |
| 2106 | if (i != NumOperands - 1) |
| 2107 | Mask <<= Shift; |
| 2108 | } |
| 2109 | |
| 2110 | return Mask; |
| 2111 | } |
| 2112 | |
| 2113 | /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| 2114 | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW |
| 2115 | /// instructions. |
| 2116 | unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { |
| 2117 | unsigned Mask = 0; |
| 2118 | // 8 nodes, but we only care about the last 4. |
| 2119 | for (unsigned i = 7; i >= 4; --i) { |
| 2120 | unsigned Val = 0; |
| 2121 | SDOperand Arg = N->getOperand(i); |
| 2122 | if (Arg.getOpcode() != ISD::UNDEF) |
| 2123 | Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2124 | Mask |= (Val - 4); |
| 2125 | if (i != 4) |
| 2126 | Mask <<= 2; |
| 2127 | } |
| 2128 | |
| 2129 | return Mask; |
| 2130 | } |
| 2131 | |
| 2132 | /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle |
| 2133 | /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW |
| 2134 | /// instructions. |
| 2135 | unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { |
| 2136 | unsigned Mask = 0; |
| 2137 | // 8 nodes, but we only care about the first 4. |
| 2138 | for (int i = 3; i >= 0; --i) { |
| 2139 | unsigned Val = 0; |
| 2140 | SDOperand Arg = N->getOperand(i); |
| 2141 | if (Arg.getOpcode() != ISD::UNDEF) |
| 2142 | Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2143 | Mask |= Val; |
| 2144 | if (i != 0) |
| 2145 | Mask <<= 2; |
| 2146 | } |
| 2147 | |
| 2148 | return Mask; |
| 2149 | } |
| 2150 | |
| 2151 | /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand |
| 2152 | /// specifies a 8 element shuffle that can be broken into a pair of |
| 2153 | /// PSHUFHW and PSHUFLW. |
| 2154 | static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { |
| 2155 | assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| 2156 | |
| 2157 | if (N->getNumOperands() != 8) |
| 2158 | return false; |
| 2159 | |
| 2160 | // Lower quadword shuffled. |
| 2161 | for (unsigned i = 0; i != 4; ++i) { |
| 2162 | SDOperand Arg = N->getOperand(i); |
| 2163 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 2164 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 2165 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2166 | if (Val > 4) |
| 2167 | return false; |
| 2168 | } |
| 2169 | |
| 2170 | // Upper quadword shuffled. |
| 2171 | for (unsigned i = 4; i != 8; ++i) { |
| 2172 | SDOperand Arg = N->getOperand(i); |
| 2173 | if (Arg.getOpcode() == ISD::UNDEF) continue; |
| 2174 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 2175 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2176 | if (Val < 4 || Val > 7) |
| 2177 | return false; |
| 2178 | } |
| 2179 | |
| 2180 | return true; |
| 2181 | } |
| 2182 | |
| 2183 | /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as |
| 2184 | /// values in ther permute mask. |
| 2185 | static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1, |
| 2186 | SDOperand &V2, SDOperand &Mask, |
| 2187 | SelectionDAG &DAG) { |
| 2188 | MVT::ValueType VT = Op.getValueType(); |
| 2189 | MVT::ValueType MaskVT = Mask.getValueType(); |
| 2190 | MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT); |
| 2191 | unsigned NumElems = Mask.getNumOperands(); |
| 2192 | SmallVector<SDOperand, 8> MaskVec; |
| 2193 | |
| 2194 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2195 | SDOperand Arg = Mask.getOperand(i); |
| 2196 | if (Arg.getOpcode() == ISD::UNDEF) { |
| 2197 | MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); |
| 2198 | continue; |
| 2199 | } |
| 2200 | assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| 2201 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2202 | if (Val < NumElems) |
| 2203 | MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); |
| 2204 | else |
| 2205 | MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); |
| 2206 | } |
| 2207 | |
| 2208 | std::swap(V1, V2); |
| 2209 | Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| 2210 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| 2211 | } |
| 2212 | |
| 2213 | /// ShouldXformToMOVHLPS - Return true if the node should be transformed to |
| 2214 | /// match movhlps. The lower half elements should come from upper half of |
| 2215 | /// V1 (and in order), and the upper half elements should come from the upper |
| 2216 | /// half of V2 (and in order). |
| 2217 | static bool ShouldXformToMOVHLPS(SDNode *Mask) { |
| 2218 | unsigned NumElems = Mask->getNumOperands(); |
| 2219 | if (NumElems != 4) |
| 2220 | return false; |
| 2221 | for (unsigned i = 0, e = 2; i != e; ++i) |
| 2222 | if (!isUndefOrEqual(Mask->getOperand(i), i+2)) |
| 2223 | return false; |
| 2224 | for (unsigned i = 2; i != 4; ++i) |
| 2225 | if (!isUndefOrEqual(Mask->getOperand(i), i+4)) |
| 2226 | return false; |
| 2227 | return true; |
| 2228 | } |
| 2229 | |
| 2230 | /// isScalarLoadToVector - Returns true if the node is a scalar load that |
| 2231 | /// is promoted to a vector. |
| 2232 | static inline bool isScalarLoadToVector(SDNode *N) { |
| 2233 | if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| 2234 | N = N->getOperand(0).Val; |
| 2235 | return ISD::isNON_EXTLoad(N); |
| 2236 | } |
| 2237 | return false; |
| 2238 | } |
| 2239 | |
| 2240 | /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to |
| 2241 | /// match movlp{s|d}. The lower half elements should come from lower half of |
| 2242 | /// V1 (and in order), and the upper half elements should come from the upper |
| 2243 | /// half of V2 (and in order). And since V1 will become the source of the |
| 2244 | /// MOVLP, it must be either a vector load or a scalar load to vector. |
| 2245 | static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { |
| 2246 | if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) |
| 2247 | return false; |
| 2248 | // Is V2 is a vector load, don't do this transformation. We will try to use |
| 2249 | // load folding shufps op. |
| 2250 | if (ISD::isNON_EXTLoad(V2)) |
| 2251 | return false; |
| 2252 | |
| 2253 | unsigned NumElems = Mask->getNumOperands(); |
| 2254 | if (NumElems != 2 && NumElems != 4) |
| 2255 | return false; |
| 2256 | for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| 2257 | if (!isUndefOrEqual(Mask->getOperand(i), i)) |
| 2258 | return false; |
| 2259 | for (unsigned i = NumElems/2; i != NumElems; ++i) |
| 2260 | if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) |
| 2261 | return false; |
| 2262 | return true; |
| 2263 | } |
| 2264 | |
| 2265 | /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are |
| 2266 | /// all the same. |
| 2267 | static bool isSplatVector(SDNode *N) { |
| 2268 | if (N->getOpcode() != ISD::BUILD_VECTOR) |
| 2269 | return false; |
| 2270 | |
| 2271 | SDOperand SplatValue = N->getOperand(0); |
| 2272 | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
| 2273 | if (N->getOperand(i) != SplatValue) |
| 2274 | return false; |
| 2275 | return true; |
| 2276 | } |
| 2277 | |
| 2278 | /// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved |
| 2279 | /// to an undef. |
| 2280 | static bool isUndefShuffle(SDNode *N) { |
| 2281 | if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
| 2282 | return false; |
| 2283 | |
| 2284 | SDOperand V1 = N->getOperand(0); |
| 2285 | SDOperand V2 = N->getOperand(1); |
| 2286 | SDOperand Mask = N->getOperand(2); |
| 2287 | unsigned NumElems = Mask.getNumOperands(); |
| 2288 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2289 | SDOperand Arg = Mask.getOperand(i); |
| 2290 | if (Arg.getOpcode() != ISD::UNDEF) { |
| 2291 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2292 | if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) |
| 2293 | return false; |
| 2294 | else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) |
| 2295 | return false; |
| 2296 | } |
| 2297 | } |
| 2298 | return true; |
| 2299 | } |
| 2300 | |
| 2301 | /// isZeroNode - Returns true if Elt is a constant zero or a floating point |
| 2302 | /// constant +0.0. |
| 2303 | static inline bool isZeroNode(SDOperand Elt) { |
| 2304 | return ((isa<ConstantSDNode>(Elt) && |
| 2305 | cast<ConstantSDNode>(Elt)->getValue() == 0) || |
| 2306 | (isa<ConstantFPSDNode>(Elt) && |
| 2307 | cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0))); |
| 2308 | } |
| 2309 | |
| 2310 | /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved |
| 2311 | /// to an zero vector. |
| 2312 | static bool isZeroShuffle(SDNode *N) { |
| 2313 | if (N->getOpcode() != ISD::VECTOR_SHUFFLE) |
| 2314 | return false; |
| 2315 | |
| 2316 | SDOperand V1 = N->getOperand(0); |
| 2317 | SDOperand V2 = N->getOperand(1); |
| 2318 | SDOperand Mask = N->getOperand(2); |
| 2319 | unsigned NumElems = Mask.getNumOperands(); |
| 2320 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2321 | SDOperand Arg = Mask.getOperand(i); |
| 2322 | if (Arg.getOpcode() != ISD::UNDEF) { |
| 2323 | unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); |
| 2324 | if (Idx < NumElems) { |
| 2325 | unsigned Opc = V1.Val->getOpcode(); |
| 2326 | if (Opc == ISD::UNDEF) |
| 2327 | continue; |
| 2328 | if (Opc != ISD::BUILD_VECTOR || |
| 2329 | !isZeroNode(V1.Val->getOperand(Idx))) |
| 2330 | return false; |
| 2331 | } else if (Idx >= NumElems) { |
| 2332 | unsigned Opc = V2.Val->getOpcode(); |
| 2333 | if (Opc == ISD::UNDEF) |
| 2334 | continue; |
| 2335 | if (Opc != ISD::BUILD_VECTOR || |
| 2336 | !isZeroNode(V2.Val->getOperand(Idx - NumElems))) |
| 2337 | return false; |
| 2338 | } |
| 2339 | } |
| 2340 | } |
| 2341 | return true; |
| 2342 | } |
| 2343 | |
| 2344 | /// getZeroVector - Returns a vector of specified type with all zero elements. |
| 2345 | /// |
| 2346 | static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { |
| 2347 | assert(MVT::isVector(VT) && "Expected a vector type"); |
| 2348 | unsigned NumElems = MVT::getVectorNumElements(VT); |
| 2349 | MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| 2350 | bool isFP = MVT::isFloatingPoint(EVT); |
| 2351 | SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT); |
| 2352 | SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero); |
| 2353 | return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size()); |
| 2354 | } |
| 2355 | |
| 2356 | /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements |
| 2357 | /// that point to V2 points to its first element. |
| 2358 | static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { |
| 2359 | assert(Mask.getOpcode() == ISD::BUILD_VECTOR); |
| 2360 | |
| 2361 | bool Changed = false; |
| 2362 | SmallVector<SDOperand, 8> MaskVec; |
| 2363 | unsigned NumElems = Mask.getNumOperands(); |
| 2364 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2365 | SDOperand Arg = Mask.getOperand(i); |
| 2366 | if (Arg.getOpcode() != ISD::UNDEF) { |
| 2367 | unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| 2368 | if (Val > NumElems) { |
| 2369 | Arg = DAG.getConstant(NumElems, Arg.getValueType()); |
| 2370 | Changed = true; |
| 2371 | } |
| 2372 | } |
| 2373 | MaskVec.push_back(Arg); |
| 2374 | } |
| 2375 | |
| 2376 | if (Changed) |
| 2377 | Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), |
| 2378 | &MaskVec[0], MaskVec.size()); |
| 2379 | return Mask; |
| 2380 | } |
| 2381 | |
| 2382 | /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd |
| 2383 | /// operation of specified width. |
| 2384 | static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { |
| 2385 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| 2386 | MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| 2387 | |
| 2388 | SmallVector<SDOperand, 8> MaskVec; |
| 2389 | MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); |
| 2390 | for (unsigned i = 1; i != NumElems; ++i) |
| 2391 | MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| 2392 | return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| 2393 | } |
| 2394 | |
| 2395 | /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation |
| 2396 | /// of specified width. |
| 2397 | static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { |
| 2398 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| 2399 | MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| 2400 | SmallVector<SDOperand, 8> MaskVec; |
| 2401 | for (unsigned i = 0, e = NumElems/2; i != e; ++i) { |
| 2402 | MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| 2403 | MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); |
| 2404 | } |
| 2405 | return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| 2406 | } |
| 2407 | |
| 2408 | /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation |
| 2409 | /// of specified width. |
| 2410 | static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { |
| 2411 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| 2412 | MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| 2413 | unsigned Half = NumElems/2; |
| 2414 | SmallVector<SDOperand, 8> MaskVec; |
| 2415 | for (unsigned i = 0; i != Half; ++i) { |
| 2416 | MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); |
| 2417 | MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); |
| 2418 | } |
| 2419 | return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| 2420 | } |
| 2421 | |
| 2422 | /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. |
| 2423 | /// |
| 2424 | static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { |
| 2425 | SDOperand V1 = Op.getOperand(0); |
| 2426 | SDOperand Mask = Op.getOperand(2); |
| 2427 | MVT::ValueType VT = Op.getValueType(); |
| 2428 | unsigned NumElems = Mask.getNumOperands(); |
| 2429 | Mask = getUnpacklMask(NumElems, DAG); |
| 2430 | while (NumElems != 4) { |
| 2431 | V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); |
| 2432 | NumElems >>= 1; |
| 2433 | } |
| 2434 | V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); |
| 2435 | |
| 2436 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| 2437 | Mask = getZeroVector(MaskVT, DAG); |
| 2438 | SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, |
| 2439 | DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); |
| 2440 | return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); |
| 2441 | } |
| 2442 | |
| 2443 | /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified |
| 2444 | /// vector of zero or undef vector. |
| 2445 | static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT, |
| 2446 | unsigned NumElems, unsigned Idx, |
| 2447 | bool isZero, SelectionDAG &DAG) { |
| 2448 | SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); |
| 2449 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| 2450 | MVT::ValueType EVT = MVT::getVectorElementType(MaskVT); |
| 2451 | SDOperand Zero = DAG.getConstant(0, EVT); |
| 2452 | SmallVector<SDOperand, 8> MaskVec(NumElems, Zero); |
| 2453 | MaskVec[Idx] = DAG.getConstant(NumElems, EVT); |
| 2454 | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2455 | &MaskVec[0], MaskVec.size()); |
| 2456 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| 2457 | } |
| 2458 | |
| 2459 | /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. |
| 2460 | /// |
| 2461 | static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, |
| 2462 | unsigned NumNonZero, unsigned NumZero, |
| 2463 | SelectionDAG &DAG, TargetLowering &TLI) { |
| 2464 | if (NumNonZero > 8) |
| 2465 | return SDOperand(); |
| 2466 | |
| 2467 | SDOperand V(0, 0); |
| 2468 | bool First = true; |
| 2469 | for (unsigned i = 0; i < 16; ++i) { |
| 2470 | bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; |
| 2471 | if (ThisIsNonZero && First) { |
| 2472 | if (NumZero) |
| 2473 | V = getZeroVector(MVT::v8i16, DAG); |
| 2474 | else |
| 2475 | V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| 2476 | First = false; |
| 2477 | } |
| 2478 | |
| 2479 | if ((i & 1) != 0) { |
| 2480 | SDOperand ThisElt(0, 0), LastElt(0, 0); |
| 2481 | bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; |
| 2482 | if (LastIsNonZero) { |
| 2483 | LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); |
| 2484 | } |
| 2485 | if (ThisIsNonZero) { |
| 2486 | ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); |
| 2487 | ThisElt = DAG.getNode(ISD::SHL, MVT::i16, |
| 2488 | ThisElt, DAG.getConstant(8, MVT::i8)); |
| 2489 | if (LastIsNonZero) |
| 2490 | ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); |
| 2491 | } else |
| 2492 | ThisElt = LastElt; |
| 2493 | |
| 2494 | if (ThisElt.Val) |
| 2495 | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, |
| 2496 | DAG.getConstant(i/2, TLI.getPointerTy())); |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); |
| 2501 | } |
| 2502 | |
| 2503 | /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. |
| 2504 | /// |
| 2505 | static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, |
| 2506 | unsigned NumNonZero, unsigned NumZero, |
| 2507 | SelectionDAG &DAG, TargetLowering &TLI) { |
| 2508 | if (NumNonZero > 4) |
| 2509 | return SDOperand(); |
| 2510 | |
| 2511 | SDOperand V(0, 0); |
| 2512 | bool First = true; |
| 2513 | for (unsigned i = 0; i < 8; ++i) { |
| 2514 | bool isNonZero = (NonZeros & (1 << i)) != 0; |
| 2515 | if (isNonZero) { |
| 2516 | if (First) { |
| 2517 | if (NumZero) |
| 2518 | V = getZeroVector(MVT::v8i16, DAG); |
| 2519 | else |
| 2520 | V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| 2521 | First = false; |
| 2522 | } |
| 2523 | V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), |
| 2524 | DAG.getConstant(i, TLI.getPointerTy())); |
| 2525 | } |
| 2526 | } |
| 2527 | |
| 2528 | return V; |
| 2529 | } |
| 2530 | |
| 2531 | SDOperand |
| 2532 | X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| 2533 | // All zero's are handled with pxor. |
| 2534 | if (ISD::isBuildVectorAllZeros(Op.Val)) |
| 2535 | return Op; |
| 2536 | |
| 2537 | // All one's are handled with pcmpeqd. |
| 2538 | if (ISD::isBuildVectorAllOnes(Op.Val)) |
| 2539 | return Op; |
| 2540 | |
| 2541 | MVT::ValueType VT = Op.getValueType(); |
| 2542 | MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| 2543 | unsigned EVTBits = MVT::getSizeInBits(EVT); |
| 2544 | |
| 2545 | unsigned NumElems = Op.getNumOperands(); |
| 2546 | unsigned NumZero = 0; |
| 2547 | unsigned NumNonZero = 0; |
| 2548 | unsigned NonZeros = 0; |
Dan Gohman | 2146324 | 2007-07-24 22:55:08 +0000 | [diff] [blame] | 2549 | unsigned NumNonZeroImms = 0; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2550 | std::set<SDOperand> Values; |
| 2551 | for (unsigned i = 0; i < NumElems; ++i) { |
| 2552 | SDOperand Elt = Op.getOperand(i); |
| 2553 | if (Elt.getOpcode() != ISD::UNDEF) { |
| 2554 | Values.insert(Elt); |
| 2555 | if (isZeroNode(Elt)) |
| 2556 | NumZero++; |
| 2557 | else { |
| 2558 | NonZeros |= (1 << i); |
| 2559 | NumNonZero++; |
Dan Gohman | 2146324 | 2007-07-24 22:55:08 +0000 | [diff] [blame] | 2560 | if (Elt.getOpcode() == ISD::Constant || |
| 2561 | Elt.getOpcode() == ISD::ConstantFP) |
| 2562 | NumNonZeroImms++; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2563 | } |
| 2564 | } |
| 2565 | } |
| 2566 | |
| 2567 | if (NumNonZero == 0) { |
| 2568 | if (NumZero == 0) |
| 2569 | // All undef vector. Return an UNDEF. |
| 2570 | return DAG.getNode(ISD::UNDEF, VT); |
| 2571 | else |
| 2572 | // A mix of zero and undef. Return a zero vector. |
| 2573 | return getZeroVector(VT, DAG); |
| 2574 | } |
| 2575 | |
| 2576 | // Splat is obviously ok. Let legalizer expand it to a shuffle. |
| 2577 | if (Values.size() == 1) |
| 2578 | return SDOperand(); |
| 2579 | |
| 2580 | // Special case for single non-zero element. |
| 2581 | if (NumNonZero == 1) { |
| 2582 | unsigned Idx = CountTrailingZeros_32(NonZeros); |
| 2583 | SDOperand Item = Op.getOperand(Idx); |
| 2584 | Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); |
| 2585 | if (Idx == 0) |
| 2586 | // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. |
| 2587 | return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx, |
| 2588 | NumZero > 0, DAG); |
| 2589 | |
| 2590 | if (EVTBits == 32) { |
| 2591 | // Turn it into a shuffle of zero and zero-extended scalar to vector. |
| 2592 | Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0, |
| 2593 | DAG); |
| 2594 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| 2595 | MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); |
| 2596 | SmallVector<SDOperand, 8> MaskVec; |
| 2597 | for (unsigned i = 0; i < NumElems; i++) |
| 2598 | MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); |
| 2599 | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2600 | &MaskVec[0], MaskVec.size()); |
| 2601 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, |
| 2602 | DAG.getNode(ISD::UNDEF, VT), Mask); |
| 2603 | } |
| 2604 | } |
| 2605 | |
Dan Gohman | 2146324 | 2007-07-24 22:55:08 +0000 | [diff] [blame] | 2606 | // A vector full of immediates; various special cases are already |
| 2607 | // handled, so this is best done with a single constant-pool load. |
| 2608 | if (NumNonZero == NumNonZeroImms) |
| 2609 | return SDOperand(); |
| 2610 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2611 | // Let legalizer expand 2-wide build_vectors. |
| 2612 | if (EVTBits == 64) |
| 2613 | return SDOperand(); |
| 2614 | |
| 2615 | // If element VT is < 32 bits, convert it to inserts into a zero vector. |
| 2616 | if (EVTBits == 8 && NumElems == 16) { |
| 2617 | SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, |
| 2618 | *this); |
| 2619 | if (V.Val) return V; |
| 2620 | } |
| 2621 | |
| 2622 | if (EVTBits == 16 && NumElems == 8) { |
| 2623 | SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, |
| 2624 | *this); |
| 2625 | if (V.Val) return V; |
| 2626 | } |
| 2627 | |
| 2628 | // If element VT is == 32 bits, turn it into a number of shuffles. |
| 2629 | SmallVector<SDOperand, 8> V; |
| 2630 | V.resize(NumElems); |
| 2631 | if (NumElems == 4 && NumZero > 0) { |
| 2632 | for (unsigned i = 0; i < 4; ++i) { |
| 2633 | bool isZero = !(NonZeros & (1 << i)); |
| 2634 | if (isZero) |
| 2635 | V[i] = getZeroVector(VT, DAG); |
| 2636 | else |
| 2637 | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| 2638 | } |
| 2639 | |
| 2640 | for (unsigned i = 0; i < 2; ++i) { |
| 2641 | switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { |
| 2642 | default: break; |
| 2643 | case 0: |
| 2644 | V[i] = V[i*2]; // Must be a zero vector. |
| 2645 | break; |
| 2646 | case 1: |
| 2647 | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], |
| 2648 | getMOVLMask(NumElems, DAG)); |
| 2649 | break; |
| 2650 | case 2: |
| 2651 | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| 2652 | getMOVLMask(NumElems, DAG)); |
| 2653 | break; |
| 2654 | case 3: |
| 2655 | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| 2656 | getUnpacklMask(NumElems, DAG)); |
| 2657 | break; |
| 2658 | } |
| 2659 | } |
| 2660 | |
| 2661 | // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd) |
| 2662 | // clears the upper bits. |
| 2663 | // FIXME: we can do the same for v4f32 case when we know both parts of |
| 2664 | // the lower half come from scalar_to_vector (loadf32). We should do |
| 2665 | // that in post legalizer dag combiner with target specific hooks. |
| 2666 | if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) |
| 2667 | return V[0]; |
| 2668 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| 2669 | MVT::ValueType EVT = MVT::getVectorElementType(MaskVT); |
| 2670 | SmallVector<SDOperand, 8> MaskVec; |
| 2671 | bool Reverse = (NonZeros & 0x3) == 2; |
| 2672 | for (unsigned i = 0; i < 2; ++i) |
| 2673 | if (Reverse) |
| 2674 | MaskVec.push_back(DAG.getConstant(1-i, EVT)); |
| 2675 | else |
| 2676 | MaskVec.push_back(DAG.getConstant(i, EVT)); |
| 2677 | Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; |
| 2678 | for (unsigned i = 0; i < 2; ++i) |
| 2679 | if (Reverse) |
| 2680 | MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); |
| 2681 | else |
| 2682 | MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); |
| 2683 | SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2684 | &MaskVec[0], MaskVec.size()); |
| 2685 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); |
| 2686 | } |
| 2687 | |
| 2688 | if (Values.size() > 2) { |
| 2689 | // Expand into a number of unpckl*. |
| 2690 | // e.g. for v4f32 |
| 2691 | // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> |
| 2692 | // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> |
| 2693 | // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> |
| 2694 | SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); |
| 2695 | for (unsigned i = 0; i < NumElems; ++i) |
| 2696 | V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| 2697 | NumElems >>= 1; |
| 2698 | while (NumElems != 0) { |
| 2699 | for (unsigned i = 0; i < NumElems; ++i) |
| 2700 | V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], |
| 2701 | UnpckMask); |
| 2702 | NumElems >>= 1; |
| 2703 | } |
| 2704 | return V[0]; |
| 2705 | } |
| 2706 | |
| 2707 | return SDOperand(); |
| 2708 | } |
| 2709 | |
| 2710 | SDOperand |
| 2711 | X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { |
| 2712 | SDOperand V1 = Op.getOperand(0); |
| 2713 | SDOperand V2 = Op.getOperand(1); |
| 2714 | SDOperand PermMask = Op.getOperand(2); |
| 2715 | MVT::ValueType VT = Op.getValueType(); |
| 2716 | unsigned NumElems = PermMask.getNumOperands(); |
| 2717 | bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; |
| 2718 | bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; |
| 2719 | bool V1IsSplat = false; |
| 2720 | bool V2IsSplat = false; |
| 2721 | |
| 2722 | if (isUndefShuffle(Op.Val)) |
| 2723 | return DAG.getNode(ISD::UNDEF, VT); |
| 2724 | |
| 2725 | if (isZeroShuffle(Op.Val)) |
| 2726 | return getZeroVector(VT, DAG); |
| 2727 | |
| 2728 | if (isIdentityMask(PermMask.Val)) |
| 2729 | return V1; |
| 2730 | else if (isIdentityMask(PermMask.Val, true)) |
| 2731 | return V2; |
| 2732 | |
| 2733 | if (isSplatMask(PermMask.Val)) { |
| 2734 | if (NumElems <= 4) return Op; |
| 2735 | // Promote it to a v4i32 splat. |
| 2736 | return PromoteSplat(Op, DAG); |
| 2737 | } |
| 2738 | |
| 2739 | if (X86::isMOVLMask(PermMask.Val)) |
| 2740 | return (V1IsUndef) ? V2 : Op; |
| 2741 | |
| 2742 | if (X86::isMOVSHDUPMask(PermMask.Val) || |
| 2743 | X86::isMOVSLDUPMask(PermMask.Val) || |
| 2744 | X86::isMOVHLPSMask(PermMask.Val) || |
| 2745 | X86::isMOVHPMask(PermMask.Val) || |
| 2746 | X86::isMOVLPMask(PermMask.Val)) |
| 2747 | return Op; |
| 2748 | |
| 2749 | if (ShouldXformToMOVHLPS(PermMask.Val) || |
| 2750 | ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val)) |
| 2751 | return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| 2752 | |
| 2753 | bool Commuted = false; |
| 2754 | V1IsSplat = isSplatVector(V1.Val); |
| 2755 | V2IsSplat = isSplatVector(V2.Val); |
| 2756 | if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { |
| 2757 | Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| 2758 | std::swap(V1IsSplat, V2IsSplat); |
| 2759 | std::swap(V1IsUndef, V2IsUndef); |
| 2760 | Commuted = true; |
| 2761 | } |
| 2762 | |
| 2763 | if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) { |
| 2764 | if (V2IsUndef) return V1; |
| 2765 | Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| 2766 | if (V2IsSplat) { |
| 2767 | // V2 is a splat, so the mask may be malformed. That is, it may point |
| 2768 | // to any V2 element. The instruction selectior won't like this. Get |
| 2769 | // a corrected mask and commute to form a proper MOVS{S|D}. |
| 2770 | SDOperand NewMask = getMOVLMask(NumElems, DAG); |
| 2771 | if (NewMask.Val != PermMask.Val) |
| 2772 | Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| 2773 | } |
| 2774 | return Op; |
| 2775 | } |
| 2776 | |
| 2777 | if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || |
| 2778 | X86::isUNPCKH_v_undef_Mask(PermMask.Val) || |
| 2779 | X86::isUNPCKLMask(PermMask.Val) || |
| 2780 | X86::isUNPCKHMask(PermMask.Val)) |
| 2781 | return Op; |
| 2782 | |
| 2783 | if (V2IsSplat) { |
| 2784 | // Normalize mask so all entries that point to V2 points to its first |
| 2785 | // element then try to match unpck{h|l} again. If match, return a |
| 2786 | // new vector_shuffle with the corrected mask. |
| 2787 | SDOperand NewMask = NormalizeMask(PermMask, DAG); |
| 2788 | if (NewMask.Val != PermMask.Val) { |
| 2789 | if (X86::isUNPCKLMask(PermMask.Val, true)) { |
| 2790 | SDOperand NewMask = getUnpacklMask(NumElems, DAG); |
| 2791 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| 2792 | } else if (X86::isUNPCKHMask(PermMask.Val, true)) { |
| 2793 | SDOperand NewMask = getUnpackhMask(NumElems, DAG); |
| 2794 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| 2795 | } |
| 2796 | } |
| 2797 | } |
| 2798 | |
| 2799 | // Normalize the node to match x86 shuffle ops if needed |
| 2800 | if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val)) |
| 2801 | Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| 2802 | |
| 2803 | if (Commuted) { |
| 2804 | // Commute is back and try unpck* again. |
| 2805 | Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| 2806 | if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || |
| 2807 | X86::isUNPCKH_v_undef_Mask(PermMask.Val) || |
| 2808 | X86::isUNPCKLMask(PermMask.Val) || |
| 2809 | X86::isUNPCKHMask(PermMask.Val)) |
| 2810 | return Op; |
| 2811 | } |
| 2812 | |
| 2813 | // If VT is integer, try PSHUF* first, then SHUFP*. |
| 2814 | if (MVT::isInteger(VT)) { |
Dan Gohman | 7dc1901 | 2007-08-02 21:17:01 +0000 | [diff] [blame] | 2815 | // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically |
| 2816 | // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented. |
| 2817 | if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) && |
| 2818 | X86::isPSHUFDMask(PermMask.Val)) || |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2819 | X86::isPSHUFHWMask(PermMask.Val) || |
| 2820 | X86::isPSHUFLWMask(PermMask.Val)) { |
| 2821 | if (V2.getOpcode() != ISD::UNDEF) |
| 2822 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| 2823 | DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| 2824 | return Op; |
| 2825 | } |
| 2826 | |
| 2827 | if (X86::isSHUFPMask(PermMask.Val) && |
| 2828 | MVT::getSizeInBits(VT) != 64) // Don't do this for MMX. |
| 2829 | return Op; |
| 2830 | |
| 2831 | // Handle v8i16 shuffle high / low shuffle node pair. |
| 2832 | if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) { |
| 2833 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| 2834 | MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| 2835 | SmallVector<SDOperand, 8> MaskVec; |
| 2836 | for (unsigned i = 0; i != 4; ++i) |
| 2837 | MaskVec.push_back(PermMask.getOperand(i)); |
| 2838 | for (unsigned i = 4; i != 8; ++i) |
| 2839 | MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| 2840 | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2841 | &MaskVec[0], MaskVec.size()); |
| 2842 | V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| 2843 | MaskVec.clear(); |
| 2844 | for (unsigned i = 0; i != 4; ++i) |
| 2845 | MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| 2846 | for (unsigned i = 4; i != 8; ++i) |
| 2847 | MaskVec.push_back(PermMask.getOperand(i)); |
| 2848 | Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size()); |
| 2849 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| 2850 | } |
| 2851 | } else { |
| 2852 | // Floating point cases in the other order. |
| 2853 | if (X86::isSHUFPMask(PermMask.Val)) |
| 2854 | return Op; |
| 2855 | if (X86::isPSHUFDMask(PermMask.Val) || |
| 2856 | X86::isPSHUFHWMask(PermMask.Val) || |
| 2857 | X86::isPSHUFLWMask(PermMask.Val)) { |
| 2858 | if (V2.getOpcode() != ISD::UNDEF) |
| 2859 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| 2860 | DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| 2861 | return Op; |
| 2862 | } |
| 2863 | } |
| 2864 | |
| 2865 | if (NumElems == 4 && |
| 2866 | // Don't do this for MMX. |
| 2867 | MVT::getSizeInBits(VT) != 64) { |
| 2868 | MVT::ValueType MaskVT = PermMask.getValueType(); |
| 2869 | MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT); |
| 2870 | SmallVector<std::pair<int, int>, 8> Locs; |
| 2871 | Locs.reserve(NumElems); |
| 2872 | SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| 2873 | SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| 2874 | unsigned NumHi = 0; |
| 2875 | unsigned NumLo = 0; |
| 2876 | // If no more than two elements come from either vector. This can be |
| 2877 | // implemented with two shuffles. First shuffle gather the elements. |
| 2878 | // The second shuffle, which takes the first shuffle as both of its |
| 2879 | // vector operands, put the elements into the right order. |
| 2880 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2881 | SDOperand Elt = PermMask.getOperand(i); |
| 2882 | if (Elt.getOpcode() == ISD::UNDEF) { |
| 2883 | Locs[i] = std::make_pair(-1, -1); |
| 2884 | } else { |
| 2885 | unsigned Val = cast<ConstantSDNode>(Elt)->getValue(); |
| 2886 | if (Val < NumElems) { |
| 2887 | Locs[i] = std::make_pair(0, NumLo); |
| 2888 | Mask1[NumLo] = Elt; |
| 2889 | NumLo++; |
| 2890 | } else { |
| 2891 | Locs[i] = std::make_pair(1, NumHi); |
| 2892 | if (2+NumHi < NumElems) |
| 2893 | Mask1[2+NumHi] = Elt; |
| 2894 | NumHi++; |
| 2895 | } |
| 2896 | } |
| 2897 | } |
| 2898 | if (NumLo <= 2 && NumHi <= 2) { |
| 2899 | V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| 2900 | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2901 | &Mask1[0], Mask1.size())); |
| 2902 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2903 | if (Locs[i].first == -1) |
| 2904 | continue; |
| 2905 | else { |
| 2906 | unsigned Idx = (i < NumElems/2) ? 0 : NumElems; |
| 2907 | Idx += Locs[i].first * (NumElems/2) + Locs[i].second; |
| 2908 | Mask2[i] = DAG.getConstant(Idx, MaskEVT); |
| 2909 | } |
| 2910 | } |
| 2911 | |
| 2912 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, |
| 2913 | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2914 | &Mask2[0], Mask2.size())); |
| 2915 | } |
| 2916 | |
| 2917 | // Break it into (shuffle shuffle_hi, shuffle_lo). |
| 2918 | Locs.clear(); |
| 2919 | SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| 2920 | SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| 2921 | SmallVector<SDOperand,8> *MaskPtr = &LoMask; |
| 2922 | unsigned MaskIdx = 0; |
| 2923 | unsigned LoIdx = 0; |
| 2924 | unsigned HiIdx = NumElems/2; |
| 2925 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2926 | if (i == NumElems/2) { |
| 2927 | MaskPtr = &HiMask; |
| 2928 | MaskIdx = 1; |
| 2929 | LoIdx = 0; |
| 2930 | HiIdx = NumElems/2; |
| 2931 | } |
| 2932 | SDOperand Elt = PermMask.getOperand(i); |
| 2933 | if (Elt.getOpcode() == ISD::UNDEF) { |
| 2934 | Locs[i] = std::make_pair(-1, -1); |
| 2935 | } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) { |
| 2936 | Locs[i] = std::make_pair(MaskIdx, LoIdx); |
| 2937 | (*MaskPtr)[LoIdx] = Elt; |
| 2938 | LoIdx++; |
| 2939 | } else { |
| 2940 | Locs[i] = std::make_pair(MaskIdx, HiIdx); |
| 2941 | (*MaskPtr)[HiIdx] = Elt; |
| 2942 | HiIdx++; |
| 2943 | } |
| 2944 | } |
| 2945 | |
| 2946 | SDOperand LoShuffle = |
| 2947 | DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| 2948 | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2949 | &LoMask[0], LoMask.size())); |
| 2950 | SDOperand HiShuffle = |
| 2951 | DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| 2952 | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2953 | &HiMask[0], HiMask.size())); |
| 2954 | SmallVector<SDOperand, 8> MaskOps; |
| 2955 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2956 | if (Locs[i].first == -1) { |
| 2957 | MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); |
| 2958 | } else { |
| 2959 | unsigned Idx = Locs[i].first * NumElems + Locs[i].second; |
| 2960 | MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); |
| 2961 | } |
| 2962 | } |
| 2963 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, |
| 2964 | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2965 | &MaskOps[0], MaskOps.size())); |
| 2966 | } |
| 2967 | |
| 2968 | return SDOperand(); |
| 2969 | } |
| 2970 | |
| 2971 | SDOperand |
| 2972 | X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| 2973 | if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| 2974 | return SDOperand(); |
| 2975 | |
| 2976 | MVT::ValueType VT = Op.getValueType(); |
| 2977 | // TODO: handle v16i8. |
| 2978 | if (MVT::getSizeInBits(VT) == 16) { |
| 2979 | // Transform it so it match pextrw which produces a 32-bit result. |
| 2980 | MVT::ValueType EVT = (MVT::ValueType)(VT+1); |
| 2981 | SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, |
| 2982 | Op.getOperand(0), Op.getOperand(1)); |
| 2983 | SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, |
| 2984 | DAG.getValueType(VT)); |
| 2985 | return DAG.getNode(ISD::TRUNCATE, VT, Assert); |
| 2986 | } else if (MVT::getSizeInBits(VT) == 32) { |
| 2987 | SDOperand Vec = Op.getOperand(0); |
| 2988 | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| 2989 | if (Idx == 0) |
| 2990 | return Op; |
| 2991 | // SHUFPS the element to the lowest double word, then movss. |
| 2992 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| 2993 | SmallVector<SDOperand, 8> IdxVec; |
| 2994 | IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT))); |
| 2995 | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| 2996 | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| 2997 | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| 2998 | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 2999 | &IdxVec[0], IdxVec.size()); |
| 3000 | Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| 3001 | Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); |
| 3002 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| 3003 | DAG.getConstant(0, getPointerTy())); |
| 3004 | } else if (MVT::getSizeInBits(VT) == 64) { |
| 3005 | SDOperand Vec = Op.getOperand(0); |
| 3006 | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| 3007 | if (Idx == 0) |
| 3008 | return Op; |
| 3009 | |
| 3010 | // UNPCKHPD the element to the lowest double word, then movsd. |
| 3011 | // Note if the lower 64 bits of the result of the UNPCKHPD is then stored |
| 3012 | // to a f64mem, the whole operation is folded into a single MOVHPDmr. |
| 3013 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| 3014 | SmallVector<SDOperand, 8> IdxVec; |
| 3015 | IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT))); |
| 3016 | IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT))); |
| 3017 | SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 3018 | &IdxVec[0], IdxVec.size()); |
| 3019 | Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| 3020 | Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); |
| 3021 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| 3022 | DAG.getConstant(0, getPointerTy())); |
| 3023 | } |
| 3024 | |
| 3025 | return SDOperand(); |
| 3026 | } |
| 3027 | |
| 3028 | SDOperand |
| 3029 | X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| 3030 | // Transform it so it match pinsrw which expects a 16-bit value in a GR32 |
| 3031 | // as its second argument. |
| 3032 | MVT::ValueType VT = Op.getValueType(); |
| 3033 | MVT::ValueType BaseVT = MVT::getVectorElementType(VT); |
| 3034 | SDOperand N0 = Op.getOperand(0); |
| 3035 | SDOperand N1 = Op.getOperand(1); |
| 3036 | SDOperand N2 = Op.getOperand(2); |
| 3037 | if (MVT::getSizeInBits(BaseVT) == 16) { |
| 3038 | if (N1.getValueType() != MVT::i32) |
| 3039 | N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); |
| 3040 | if (N2.getValueType() != MVT::i32) |
| 3041 | N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy()); |
| 3042 | return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); |
| 3043 | } else if (MVT::getSizeInBits(BaseVT) == 32) { |
| 3044 | unsigned Idx = cast<ConstantSDNode>(N2)->getValue(); |
| 3045 | if (Idx == 0) { |
| 3046 | // Use a movss. |
| 3047 | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1); |
| 3048 | MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| 3049 | MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT); |
| 3050 | SmallVector<SDOperand, 8> MaskVec; |
| 3051 | MaskVec.push_back(DAG.getConstant(4, BaseVT)); |
| 3052 | for (unsigned i = 1; i <= 3; ++i) |
| 3053 | MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| 3054 | return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1, |
| 3055 | DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| 3056 | &MaskVec[0], MaskVec.size())); |
| 3057 | } else { |
| 3058 | // Use two pinsrw instructions to insert a 32 bit value. |
| 3059 | Idx <<= 1; |
| 3060 | if (MVT::isFloatingPoint(N1.getValueType())) { |
Evan Cheng | 1eea675 | 2007-07-31 06:21:44 +0000 | [diff] [blame] | 3061 | N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1); |
| 3062 | N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1); |
| 3063 | N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1, |
| 3064 | DAG.getConstant(0, getPointerTy())); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3065 | } |
| 3066 | N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0); |
| 3067 | N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, |
| 3068 | DAG.getConstant(Idx, getPointerTy())); |
| 3069 | N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8)); |
| 3070 | N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, |
| 3071 | DAG.getConstant(Idx+1, getPointerTy())); |
| 3072 | return DAG.getNode(ISD::BIT_CONVERT, VT, N0); |
| 3073 | } |
| 3074 | } |
| 3075 | |
| 3076 | return SDOperand(); |
| 3077 | } |
| 3078 | |
| 3079 | SDOperand |
| 3080 | X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| 3081 | SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); |
| 3082 | return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt); |
| 3083 | } |
| 3084 | |
| 3085 | // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| 3086 | // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is |
| 3087 | // one of the above mentioned nodes. It has to be wrapped because otherwise |
| 3088 | // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| 3089 | // be used to form addressing mode. These wrapped nodes will be selected |
| 3090 | // into MOV32ri. |
| 3091 | SDOperand |
| 3092 | X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { |
| 3093 | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| 3094 | SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(), |
| 3095 | getPointerTy(), |
| 3096 | CP->getAlignment()); |
| 3097 | Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| 3098 | // With PIC, the address is actually $g + Offset. |
| 3099 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 3100 | !Subtarget->isPICStyleRIPRel()) { |
| 3101 | Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| 3102 | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| 3103 | Result); |
| 3104 | } |
| 3105 | |
| 3106 | return Result; |
| 3107 | } |
| 3108 | |
| 3109 | SDOperand |
| 3110 | X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { |
| 3111 | GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| 3112 | SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); |
| 3113 | Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| 3114 | // With PIC, the address is actually $g + Offset. |
| 3115 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 3116 | !Subtarget->isPICStyleRIPRel()) { |
| 3117 | Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| 3118 | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| 3119 | Result); |
| 3120 | } |
| 3121 | |
| 3122 | // For Darwin & Mingw32, external and weak symbols are indirect, so we want to |
| 3123 | // load the value at address GV, not the value of GV itself. This means that |
| 3124 | // the GlobalAddress must be in the base or index register of the address, not |
| 3125 | // the GV offset field. Platform check is inside GVRequiresExtraLoad() call |
| 3126 | // The same applies for external symbols during PIC codegen |
| 3127 | if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) |
| 3128 | Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0); |
| 3129 | |
| 3130 | return Result; |
| 3131 | } |
| 3132 | |
| 3133 | // Lower ISD::GlobalTLSAddress using the "general dynamic" model |
| 3134 | static SDOperand |
| 3135 | LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| 3136 | const MVT::ValueType PtrVT) { |
| 3137 | SDOperand InFlag; |
| 3138 | SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX, |
| 3139 | DAG.getNode(X86ISD::GlobalBaseReg, |
| 3140 | PtrVT), InFlag); |
| 3141 | InFlag = Chain.getValue(1); |
| 3142 | |
| 3143 | // emit leal symbol@TLSGD(,%ebx,1), %eax |
| 3144 | SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); |
| 3145 | SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), |
| 3146 | GA->getValueType(0), |
| 3147 | GA->getOffset()); |
| 3148 | SDOperand Ops[] = { Chain, TGA, InFlag }; |
| 3149 | SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3); |
| 3150 | InFlag = Result.getValue(2); |
| 3151 | Chain = Result.getValue(1); |
| 3152 | |
| 3153 | // call ___tls_get_addr. This function receives its argument in |
| 3154 | // the register EAX. |
| 3155 | Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag); |
| 3156 | InFlag = Chain.getValue(1); |
| 3157 | |
| 3158 | NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 3159 | SDOperand Ops1[] = { Chain, |
| 3160 | DAG.getTargetExternalSymbol("___tls_get_addr", |
| 3161 | PtrVT), |
| 3162 | DAG.getRegister(X86::EAX, PtrVT), |
| 3163 | DAG.getRegister(X86::EBX, PtrVT), |
| 3164 | InFlag }; |
| 3165 | Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5); |
| 3166 | InFlag = Chain.getValue(1); |
| 3167 | |
| 3168 | return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag); |
| 3169 | } |
| 3170 | |
| 3171 | // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or |
| 3172 | // "local exec" model. |
| 3173 | static SDOperand |
| 3174 | LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| 3175 | const MVT::ValueType PtrVT) { |
| 3176 | // Get the Thread Pointer |
| 3177 | SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT); |
| 3178 | // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial |
| 3179 | // exec) |
| 3180 | SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), |
| 3181 | GA->getValueType(0), |
| 3182 | GA->getOffset()); |
| 3183 | SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA); |
| 3184 | |
| 3185 | if (GA->getGlobal()->isDeclaration()) // initial exec TLS model |
| 3186 | Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0); |
| 3187 | |
| 3188 | // The address of the thread local variable is the add of the thread |
| 3189 | // pointer with the offset of the variable. |
| 3190 | return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset); |
| 3191 | } |
| 3192 | |
| 3193 | SDOperand |
| 3194 | X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) { |
| 3195 | // TODO: implement the "local dynamic" model |
| 3196 | // TODO: implement the "initial exec"model for pic executables |
| 3197 | assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() && |
| 3198 | "TLS not implemented for non-ELF and 64-bit targets"); |
| 3199 | GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| 3200 | // If the relocation model is PIC, use the "General Dynamic" TLS Model, |
| 3201 | // otherwise use the "Local Exec"TLS Model |
| 3202 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| 3203 | return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy()); |
| 3204 | else |
| 3205 | return LowerToTLSExecModel(GA, DAG, getPointerTy()); |
| 3206 | } |
| 3207 | |
| 3208 | SDOperand |
| 3209 | X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { |
| 3210 | const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); |
| 3211 | SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| 3212 | Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| 3213 | // With PIC, the address is actually $g + Offset. |
| 3214 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 3215 | !Subtarget->isPICStyleRIPRel()) { |
| 3216 | Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| 3217 | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| 3218 | Result); |
| 3219 | } |
| 3220 | |
| 3221 | return Result; |
| 3222 | } |
| 3223 | |
| 3224 | SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { |
| 3225 | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| 3226 | SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); |
| 3227 | Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| 3228 | // With PIC, the address is actually $g + Offset. |
| 3229 | if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| 3230 | !Subtarget->isPICStyleRIPRel()) { |
| 3231 | Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| 3232 | DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| 3233 | Result); |
| 3234 | } |
| 3235 | |
| 3236 | return Result; |
| 3237 | } |
| 3238 | |
| 3239 | SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { |
| 3240 | assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && |
| 3241 | "Not an i64 shift!"); |
| 3242 | bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| 3243 | SDOperand ShOpLo = Op.getOperand(0); |
| 3244 | SDOperand ShOpHi = Op.getOperand(1); |
| 3245 | SDOperand ShAmt = Op.getOperand(2); |
| 3246 | SDOperand Tmp1 = isSRA ? |
| 3247 | DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) : |
| 3248 | DAG.getConstant(0, MVT::i32); |
| 3249 | |
| 3250 | SDOperand Tmp2, Tmp3; |
| 3251 | if (Op.getOpcode() == ISD::SHL_PARTS) { |
| 3252 | Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); |
| 3253 | Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); |
| 3254 | } else { |
| 3255 | Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); |
| 3256 | Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); |
| 3257 | } |
| 3258 | |
| 3259 | const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| 3260 | SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, |
| 3261 | DAG.getConstant(32, MVT::i8)); |
| 3262 | SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)}; |
| 3263 | SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1); |
| 3264 | |
| 3265 | SDOperand Hi, Lo; |
| 3266 | SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| 3267 | |
| 3268 | VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag); |
| 3269 | SmallVector<SDOperand, 4> Ops; |
| 3270 | if (Op.getOpcode() == ISD::SHL_PARTS) { |
| 3271 | Ops.push_back(Tmp2); |
| 3272 | Ops.push_back(Tmp3); |
| 3273 | Ops.push_back(CC); |
| 3274 | Ops.push_back(InFlag); |
| 3275 | Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| 3276 | InFlag = Hi.getValue(1); |
| 3277 | |
| 3278 | Ops.clear(); |
| 3279 | Ops.push_back(Tmp3); |
| 3280 | Ops.push_back(Tmp1); |
| 3281 | Ops.push_back(CC); |
| 3282 | Ops.push_back(InFlag); |
| 3283 | Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| 3284 | } else { |
| 3285 | Ops.push_back(Tmp2); |
| 3286 | Ops.push_back(Tmp3); |
| 3287 | Ops.push_back(CC); |
| 3288 | Ops.push_back(InFlag); |
| 3289 | Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| 3290 | InFlag = Lo.getValue(1); |
| 3291 | |
| 3292 | Ops.clear(); |
| 3293 | Ops.push_back(Tmp3); |
| 3294 | Ops.push_back(Tmp1); |
| 3295 | Ops.push_back(CC); |
| 3296 | Ops.push_back(InFlag); |
| 3297 | Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| 3298 | } |
| 3299 | |
| 3300 | VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32); |
| 3301 | Ops.clear(); |
| 3302 | Ops.push_back(Lo); |
| 3303 | Ops.push_back(Hi); |
| 3304 | return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size()); |
| 3305 | } |
| 3306 | |
| 3307 | SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { |
| 3308 | assert(Op.getOperand(0).getValueType() <= MVT::i64 && |
| 3309 | Op.getOperand(0).getValueType() >= MVT::i16 && |
| 3310 | "Unknown SINT_TO_FP to lower!"); |
| 3311 | |
| 3312 | SDOperand Result; |
| 3313 | MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); |
| 3314 | unsigned Size = MVT::getSizeInBits(SrcVT)/8; |
| 3315 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3316 | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| 3317 | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| 3318 | SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), |
| 3319 | StackSlot, NULL, 0); |
| 3320 | |
| 3321 | // Build the FILD |
| 3322 | SDVTList Tys; |
| 3323 | if (X86ScalarSSE) |
| 3324 | Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); |
| 3325 | else |
| 3326 | Tys = DAG.getVTList(Op.getValueType(), MVT::Other); |
| 3327 | SmallVector<SDOperand, 8> Ops; |
| 3328 | Ops.push_back(Chain); |
| 3329 | Ops.push_back(StackSlot); |
| 3330 | Ops.push_back(DAG.getValueType(SrcVT)); |
| 3331 | Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, |
| 3332 | Tys, &Ops[0], Ops.size()); |
| 3333 | |
| 3334 | if (X86ScalarSSE) { |
| 3335 | Chain = Result.getValue(1); |
| 3336 | SDOperand InFlag = Result.getValue(2); |
| 3337 | |
| 3338 | // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| 3339 | // shouldn't be necessary except that RFP cannot be live across |
| 3340 | // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| 3341 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3342 | int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| 3343 | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| 3344 | Tys = DAG.getVTList(MVT::Other); |
| 3345 | SmallVector<SDOperand, 8> Ops; |
| 3346 | Ops.push_back(Chain); |
| 3347 | Ops.push_back(Result); |
| 3348 | Ops.push_back(StackSlot); |
| 3349 | Ops.push_back(DAG.getValueType(Op.getValueType())); |
| 3350 | Ops.push_back(InFlag); |
| 3351 | Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); |
| 3352 | Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0); |
| 3353 | } |
| 3354 | |
| 3355 | return Result; |
| 3356 | } |
| 3357 | |
| 3358 | SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { |
| 3359 | assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && |
| 3360 | "Unknown FP_TO_SINT to lower!"); |
| 3361 | // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary |
| 3362 | // stack slot. |
| 3363 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3364 | unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; |
| 3365 | int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| 3366 | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| 3367 | |
| 3368 | unsigned Opc; |
| 3369 | switch (Op.getValueType()) { |
| 3370 | default: assert(0 && "Invalid FP_TO_SINT to lower!"); |
| 3371 | case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| 3372 | case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| 3373 | case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| 3374 | } |
| 3375 | |
| 3376 | SDOperand Chain = DAG.getEntryNode(); |
| 3377 | SDOperand Value = Op.getOperand(0); |
| 3378 | if (X86ScalarSSE) { |
| 3379 | assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| 3380 | Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0); |
| 3381 | SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); |
| 3382 | SDOperand Ops[] = { |
| 3383 | Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) |
| 3384 | }; |
| 3385 | Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3); |
| 3386 | Chain = Value.getValue(1); |
| 3387 | SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| 3388 | StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| 3389 | } |
| 3390 | |
| 3391 | // Build the FP_TO_INT*_IN_MEM |
| 3392 | SDOperand Ops[] = { Chain, Value, StackSlot }; |
| 3393 | SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3); |
| 3394 | |
| 3395 | // Load the result. |
| 3396 | return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); |
| 3397 | } |
| 3398 | |
| 3399 | SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { |
| 3400 | MVT::ValueType VT = Op.getValueType(); |
| 3401 | MVT::ValueType EltVT = VT; |
| 3402 | if (MVT::isVector(VT)) |
| 3403 | EltVT = MVT::getVectorElementType(VT); |
| 3404 | const Type *OpNTy = MVT::getTypeForValueType(EltVT); |
| 3405 | std::vector<Constant*> CV; |
| 3406 | if (EltVT == MVT::f64) { |
| 3407 | Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))); |
| 3408 | CV.push_back(C); |
| 3409 | CV.push_back(C); |
| 3410 | } else { |
| 3411 | Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))); |
| 3412 | CV.push_back(C); |
| 3413 | CV.push_back(C); |
| 3414 | CV.push_back(C); |
| 3415 | CV.push_back(C); |
| 3416 | } |
Dan Gohman | 1182170 | 2007-07-27 17:16:43 +0000 | [diff] [blame] | 3417 | Constant *C = ConstantVector::get(CV); |
| 3418 | SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| 3419 | SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0, |
| 3420 | false, 16); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3421 | return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); |
| 3422 | } |
| 3423 | |
| 3424 | SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { |
| 3425 | MVT::ValueType VT = Op.getValueType(); |
| 3426 | MVT::ValueType EltVT = VT; |
Evan Cheng | 92b8f78 | 2007-07-19 23:36:01 +0000 | [diff] [blame] | 3427 | unsigned EltNum = 1; |
| 3428 | if (MVT::isVector(VT)) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3429 | EltVT = MVT::getVectorElementType(VT); |
Evan Cheng | 92b8f78 | 2007-07-19 23:36:01 +0000 | [diff] [blame] | 3430 | EltNum = MVT::getVectorNumElements(VT); |
| 3431 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3432 | const Type *OpNTy = MVT::getTypeForValueType(EltVT); |
| 3433 | std::vector<Constant*> CV; |
| 3434 | if (EltVT == MVT::f64) { |
| 3435 | Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)); |
| 3436 | CV.push_back(C); |
| 3437 | CV.push_back(C); |
| 3438 | } else { |
| 3439 | Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31)); |
| 3440 | CV.push_back(C); |
| 3441 | CV.push_back(C); |
| 3442 | CV.push_back(C); |
| 3443 | CV.push_back(C); |
| 3444 | } |
Dan Gohman | 1182170 | 2007-07-27 17:16:43 +0000 | [diff] [blame] | 3445 | Constant *C = ConstantVector::get(CV); |
| 3446 | SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| 3447 | SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0, |
| 3448 | false, 16); |
Evan Cheng | 92b8f78 | 2007-07-19 23:36:01 +0000 | [diff] [blame] | 3449 | if (MVT::isVector(VT)) { |
Evan Cheng | 92b8f78 | 2007-07-19 23:36:01 +0000 | [diff] [blame] | 3450 | return DAG.getNode(ISD::BIT_CONVERT, VT, |
| 3451 | DAG.getNode(ISD::XOR, MVT::v2i64, |
| 3452 | DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)), |
| 3453 | DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask))); |
| 3454 | } else { |
Evan Cheng | 92b8f78 | 2007-07-19 23:36:01 +0000 | [diff] [blame] | 3455 | return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); |
| 3456 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3457 | } |
| 3458 | |
| 3459 | SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) { |
| 3460 | SDOperand Op0 = Op.getOperand(0); |
| 3461 | SDOperand Op1 = Op.getOperand(1); |
| 3462 | MVT::ValueType VT = Op.getValueType(); |
| 3463 | MVT::ValueType SrcVT = Op1.getValueType(); |
| 3464 | const Type *SrcTy = MVT::getTypeForValueType(SrcVT); |
| 3465 | |
| 3466 | // If second operand is smaller, extend it first. |
| 3467 | if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) { |
| 3468 | Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1); |
| 3469 | SrcVT = VT; |
| 3470 | } |
| 3471 | |
| 3472 | // First get the sign bit of second operand. |
| 3473 | std::vector<Constant*> CV; |
| 3474 | if (SrcVT == MVT::f64) { |
| 3475 | CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63))); |
| 3476 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3477 | } else { |
| 3478 | CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31))); |
| 3479 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3480 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3481 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3482 | } |
Dan Gohman | 1182170 | 2007-07-27 17:16:43 +0000 | [diff] [blame] | 3483 | Constant *C = ConstantVector::get(CV); |
| 3484 | SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| 3485 | SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0, |
| 3486 | false, 16); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3487 | SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1); |
| 3488 | |
| 3489 | // Shift sign bit right or left if the two operands have different types. |
| 3490 | if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) { |
| 3491 | // Op0 is MVT::f32, Op1 is MVT::f64. |
| 3492 | SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit); |
| 3493 | SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit, |
| 3494 | DAG.getConstant(32, MVT::i32)); |
| 3495 | SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit); |
| 3496 | SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit, |
| 3497 | DAG.getConstant(0, getPointerTy())); |
| 3498 | } |
| 3499 | |
| 3500 | // Clear first operand sign bit. |
| 3501 | CV.clear(); |
| 3502 | if (VT == MVT::f64) { |
| 3503 | CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63)))); |
| 3504 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3505 | } else { |
| 3506 | CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31)))); |
| 3507 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3508 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3509 | CV.push_back(ConstantFP::get(SrcTy, 0.0)); |
| 3510 | } |
Dan Gohman | 1182170 | 2007-07-27 17:16:43 +0000 | [diff] [blame] | 3511 | C = ConstantVector::get(CV); |
| 3512 | CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); |
| 3513 | SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0, |
| 3514 | false, 16); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3515 | SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2); |
| 3516 | |
| 3517 | // Or the value with the sign bit. |
| 3518 | return DAG.getNode(X86ISD::FOR, VT, Val, SignBit); |
| 3519 | } |
| 3520 | |
| 3521 | SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG, |
| 3522 | SDOperand Chain) { |
| 3523 | assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); |
| 3524 | SDOperand Cond; |
| 3525 | SDOperand Op0 = Op.getOperand(0); |
| 3526 | SDOperand Op1 = Op.getOperand(1); |
| 3527 | SDOperand CC = Op.getOperand(2); |
| 3528 | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| 3529 | const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| 3530 | const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag); |
| 3531 | bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); |
| 3532 | unsigned X86CC; |
| 3533 | |
| 3534 | if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, |
| 3535 | Op0, Op1, DAG)) { |
| 3536 | SDOperand Ops1[] = { Chain, Op0, Op1 }; |
| 3537 | Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1); |
| 3538 | SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond }; |
| 3539 | return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); |
| 3540 | } |
| 3541 | |
| 3542 | assert(isFP && "Illegal integer SetCC!"); |
| 3543 | |
| 3544 | SDOperand COps[] = { Chain, Op0, Op1 }; |
| 3545 | Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1); |
| 3546 | |
| 3547 | switch (SetCCOpcode) { |
| 3548 | default: assert(false && "Illegal floating point SetCC!"); |
| 3549 | case ISD::SETOEQ: { // !PF & ZF |
| 3550 | SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond }; |
| 3551 | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2); |
| 3552 | SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8), |
| 3553 | Tmp1.getValue(1) }; |
| 3554 | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); |
| 3555 | return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); |
| 3556 | } |
| 3557 | case ISD::SETUNE: { // PF | !ZF |
| 3558 | SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond }; |
| 3559 | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2); |
| 3560 | SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8), |
| 3561 | Tmp1.getValue(1) }; |
| 3562 | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); |
| 3563 | return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); |
| 3564 | } |
| 3565 | } |
| 3566 | } |
| 3567 | |
| 3568 | SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { |
| 3569 | bool addTest = true; |
| 3570 | SDOperand Chain = DAG.getEntryNode(); |
| 3571 | SDOperand Cond = Op.getOperand(0); |
| 3572 | SDOperand CC; |
| 3573 | const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| 3574 | |
| 3575 | if (Cond.getOpcode() == ISD::SETCC) |
| 3576 | Cond = LowerSETCC(Cond, DAG, Chain); |
| 3577 | |
| 3578 | if (Cond.getOpcode() == X86ISD::SETCC) { |
| 3579 | CC = Cond.getOperand(0); |
| 3580 | |
| 3581 | // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| 3582 | // (since flag operand cannot be shared). Use it as the condition setting |
| 3583 | // operand in place of the X86ISD::SETCC. |
| 3584 | // If the X86ISD::SETCC has more than one use, then perhaps it's better |
| 3585 | // to use a test instead of duplicating the X86ISD::CMP (for register |
| 3586 | // pressure reason)? |
| 3587 | SDOperand Cmp = Cond.getOperand(1); |
| 3588 | unsigned Opc = Cmp.getOpcode(); |
| 3589 | bool IllegalFPCMov = !X86ScalarSSE && |
| 3590 | MVT::isFloatingPoint(Op.getValueType()) && |
| 3591 | !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); |
| 3592 | if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) && |
| 3593 | !IllegalFPCMov) { |
| 3594 | SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) }; |
| 3595 | Cond = DAG.getNode(Opc, VTs, 2, Ops, 3); |
| 3596 | addTest = false; |
| 3597 | } |
| 3598 | } |
| 3599 | |
| 3600 | if (addTest) { |
| 3601 | CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| 3602 | SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) }; |
| 3603 | Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3); |
| 3604 | } |
| 3605 | |
| 3606 | VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag); |
| 3607 | SmallVector<SDOperand, 4> Ops; |
| 3608 | // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| 3609 | // condition is true. |
| 3610 | Ops.push_back(Op.getOperand(2)); |
| 3611 | Ops.push_back(Op.getOperand(1)); |
| 3612 | Ops.push_back(CC); |
| 3613 | Ops.push_back(Cond.getValue(1)); |
| 3614 | return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| 3615 | } |
| 3616 | |
| 3617 | SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { |
| 3618 | bool addTest = true; |
| 3619 | SDOperand Chain = Op.getOperand(0); |
| 3620 | SDOperand Cond = Op.getOperand(1); |
| 3621 | SDOperand Dest = Op.getOperand(2); |
| 3622 | SDOperand CC; |
| 3623 | const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| 3624 | |
| 3625 | if (Cond.getOpcode() == ISD::SETCC) |
| 3626 | Cond = LowerSETCC(Cond, DAG, Chain); |
| 3627 | |
| 3628 | if (Cond.getOpcode() == X86ISD::SETCC) { |
| 3629 | CC = Cond.getOperand(0); |
| 3630 | |
| 3631 | // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| 3632 | // (since flag operand cannot be shared). Use it as the condition setting |
| 3633 | // operand in place of the X86ISD::SETCC. |
| 3634 | // If the X86ISD::SETCC has more than one use, then perhaps it's better |
| 3635 | // to use a test instead of duplicating the X86ISD::CMP (for register |
| 3636 | // pressure reason)? |
| 3637 | SDOperand Cmp = Cond.getOperand(1); |
| 3638 | unsigned Opc = Cmp.getOpcode(); |
| 3639 | if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) { |
| 3640 | SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) }; |
| 3641 | Cond = DAG.getNode(Opc, VTs, 2, Ops, 3); |
| 3642 | addTest = false; |
| 3643 | } |
| 3644 | } |
| 3645 | |
| 3646 | if (addTest) { |
| 3647 | CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| 3648 | SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) }; |
| 3649 | Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3); |
| 3650 | } |
| 3651 | return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), |
| 3652 | Cond, Op.getOperand(2), CC, Cond.getValue(1)); |
| 3653 | } |
| 3654 | |
| 3655 | SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { |
| 3656 | unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| 3657 | |
| 3658 | if (Subtarget->is64Bit()) |
| 3659 | return LowerX86_64CCCCallTo(Op, DAG, CallingConv); |
| 3660 | else |
| 3661 | switch (CallingConv) { |
| 3662 | default: |
| 3663 | assert(0 && "Unsupported calling convention"); |
| 3664 | case CallingConv::Fast: |
| 3665 | // TODO: Implement fastcc |
| 3666 | // Falls through |
| 3667 | case CallingConv::C: |
| 3668 | case CallingConv::X86_StdCall: |
| 3669 | return LowerCCCCallTo(Op, DAG, CallingConv); |
| 3670 | case CallingConv::X86_FastCall: |
| 3671 | return LowerFastCCCallTo(Op, DAG, CallingConv); |
| 3672 | } |
| 3673 | } |
| 3674 | |
| 3675 | |
| 3676 | // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. |
| 3677 | // Calls to _alloca is needed to probe the stack when allocating more than 4k |
| 3678 | // bytes in one go. Touching the stack at 4K increments is necessary to ensure |
| 3679 | // that the guard pages used by the OS virtual memory manager are allocated in |
| 3680 | // correct sequence. |
| 3681 | SDOperand |
| 3682 | X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op, |
| 3683 | SelectionDAG &DAG) { |
| 3684 | assert(Subtarget->isTargetCygMing() && |
| 3685 | "This should be used only on Cygwin/Mingw targets"); |
| 3686 | |
| 3687 | // Get the inputs. |
| 3688 | SDOperand Chain = Op.getOperand(0); |
| 3689 | SDOperand Size = Op.getOperand(1); |
| 3690 | // FIXME: Ensure alignment here |
| 3691 | |
| 3692 | SDOperand Flag; |
| 3693 | |
| 3694 | MVT::ValueType IntPtr = getPointerTy(); |
| 3695 | MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32); |
| 3696 | |
| 3697 | Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag); |
| 3698 | Flag = Chain.getValue(1); |
| 3699 | |
| 3700 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 3701 | SDOperand Ops[] = { Chain, |
| 3702 | DAG.getTargetExternalSymbol("_alloca", IntPtr), |
| 3703 | DAG.getRegister(X86::EAX, IntPtr), |
| 3704 | Flag }; |
| 3705 | Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4); |
| 3706 | Flag = Chain.getValue(1); |
| 3707 | |
| 3708 | Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1); |
| 3709 | |
| 3710 | std::vector<MVT::ValueType> Tys; |
| 3711 | Tys.push_back(SPTy); |
| 3712 | Tys.push_back(MVT::Other); |
| 3713 | SDOperand Ops1[2] = { Chain.getValue(0), Chain }; |
| 3714 | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2); |
| 3715 | } |
| 3716 | |
| 3717 | SDOperand |
| 3718 | X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { |
| 3719 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3720 | const Function* Fn = MF.getFunction(); |
| 3721 | if (Fn->hasExternalLinkage() && |
| 3722 | Subtarget->isTargetCygMing() && |
| 3723 | Fn->getName() == "main") |
| 3724 | MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true); |
| 3725 | |
| 3726 | unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| 3727 | if (Subtarget->is64Bit()) |
| 3728 | return LowerX86_64CCCArguments(Op, DAG); |
| 3729 | else |
| 3730 | switch(CC) { |
| 3731 | default: |
| 3732 | assert(0 && "Unsupported calling convention"); |
| 3733 | case CallingConv::Fast: |
| 3734 | // TODO: implement fastcc. |
| 3735 | |
| 3736 | // Falls through |
| 3737 | case CallingConv::C: |
| 3738 | return LowerCCCArguments(Op, DAG); |
| 3739 | case CallingConv::X86_StdCall: |
| 3740 | MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall); |
| 3741 | return LowerCCCArguments(Op, DAG, true); |
| 3742 | case CallingConv::X86_FastCall: |
| 3743 | MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall); |
| 3744 | return LowerFastCCArguments(Op, DAG); |
| 3745 | } |
| 3746 | } |
| 3747 | |
| 3748 | SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { |
| 3749 | SDOperand InFlag(0, 0); |
| 3750 | SDOperand Chain = Op.getOperand(0); |
| 3751 | unsigned Align = |
| 3752 | (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| 3753 | if (Align == 0) Align = 1; |
| 3754 | |
| 3755 | ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| 3756 | // If not DWORD aligned, call memset if size is less than the threshold. |
| 3757 | // It knows how to align to the right boundary first. |
| 3758 | if ((Align & 3) != 0 || |
| 3759 | (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { |
| 3760 | MVT::ValueType IntPtr = getPointerTy(); |
| 3761 | const Type *IntPtrTy = getTargetData()->getIntPtrType(); |
| 3762 | TargetLowering::ArgListTy Args; |
| 3763 | TargetLowering::ArgListEntry Entry; |
| 3764 | Entry.Node = Op.getOperand(1); |
| 3765 | Entry.Ty = IntPtrTy; |
| 3766 | Args.push_back(Entry); |
| 3767 | // Extend the unsigned i8 argument to be an int value for the call. |
| 3768 | Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); |
| 3769 | Entry.Ty = IntPtrTy; |
| 3770 | Args.push_back(Entry); |
| 3771 | Entry.Node = Op.getOperand(3); |
| 3772 | Args.push_back(Entry); |
| 3773 | std::pair<SDOperand,SDOperand> CallResult = |
| 3774 | LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false, |
| 3775 | DAG.getExternalSymbol("memset", IntPtr), Args, DAG); |
| 3776 | return CallResult.second; |
| 3777 | } |
| 3778 | |
| 3779 | MVT::ValueType AVT; |
| 3780 | SDOperand Count; |
| 3781 | ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| 3782 | unsigned BytesLeft = 0; |
| 3783 | bool TwoRepStos = false; |
| 3784 | if (ValC) { |
| 3785 | unsigned ValReg; |
| 3786 | uint64_t Val = ValC->getValue() & 255; |
| 3787 | |
| 3788 | // If the value is a constant, then we can potentially use larger sets. |
| 3789 | switch (Align & 3) { |
| 3790 | case 2: // WORD aligned |
| 3791 | AVT = MVT::i16; |
| 3792 | ValReg = X86::AX; |
| 3793 | Val = (Val << 8) | Val; |
| 3794 | break; |
| 3795 | case 0: // DWORD aligned |
| 3796 | AVT = MVT::i32; |
| 3797 | ValReg = X86::EAX; |
| 3798 | Val = (Val << 8) | Val; |
| 3799 | Val = (Val << 16) | Val; |
| 3800 | if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned |
| 3801 | AVT = MVT::i64; |
| 3802 | ValReg = X86::RAX; |
| 3803 | Val = (Val << 32) | Val; |
| 3804 | } |
| 3805 | break; |
| 3806 | default: // Byte aligned |
| 3807 | AVT = MVT::i8; |
| 3808 | ValReg = X86::AL; |
| 3809 | Count = Op.getOperand(3); |
| 3810 | break; |
| 3811 | } |
| 3812 | |
| 3813 | if (AVT > MVT::i8) { |
| 3814 | if (I) { |
| 3815 | unsigned UBytes = MVT::getSizeInBits(AVT) / 8; |
| 3816 | Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy()); |
| 3817 | BytesLeft = I->getValue() % UBytes; |
| 3818 | } else { |
| 3819 | assert(AVT >= MVT::i32 && |
| 3820 | "Do not use rep;stos if not at least DWORD aligned"); |
| 3821 | Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), |
| 3822 | Op.getOperand(3), DAG.getConstant(2, MVT::i8)); |
| 3823 | TwoRepStos = true; |
| 3824 | } |
| 3825 | } |
| 3826 | |
| 3827 | Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), |
| 3828 | InFlag); |
| 3829 | InFlag = Chain.getValue(1); |
| 3830 | } else { |
| 3831 | AVT = MVT::i8; |
| 3832 | Count = Op.getOperand(3); |
| 3833 | Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); |
| 3834 | InFlag = Chain.getValue(1); |
| 3835 | } |
| 3836 | |
| 3837 | Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, |
| 3838 | Count, InFlag); |
| 3839 | InFlag = Chain.getValue(1); |
| 3840 | Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, |
| 3841 | Op.getOperand(1), InFlag); |
| 3842 | InFlag = Chain.getValue(1); |
| 3843 | |
| 3844 | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 3845 | SmallVector<SDOperand, 8> Ops; |
| 3846 | Ops.push_back(Chain); |
| 3847 | Ops.push_back(DAG.getValueType(AVT)); |
| 3848 | Ops.push_back(InFlag); |
| 3849 | Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); |
| 3850 | |
| 3851 | if (TwoRepStos) { |
| 3852 | InFlag = Chain.getValue(1); |
| 3853 | Count = Op.getOperand(3); |
| 3854 | MVT::ValueType CVT = Count.getValueType(); |
| 3855 | SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, |
| 3856 | DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); |
| 3857 | Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, |
| 3858 | Left, InFlag); |
| 3859 | InFlag = Chain.getValue(1); |
| 3860 | Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 3861 | Ops.clear(); |
| 3862 | Ops.push_back(Chain); |
| 3863 | Ops.push_back(DAG.getValueType(MVT::i8)); |
| 3864 | Ops.push_back(InFlag); |
| 3865 | Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); |
| 3866 | } else if (BytesLeft) { |
| 3867 | // Issue stores for the last 1 - 7 bytes. |
| 3868 | SDOperand Value; |
| 3869 | unsigned Val = ValC->getValue() & 255; |
| 3870 | unsigned Offset = I->getValue() - BytesLeft; |
| 3871 | SDOperand DstAddr = Op.getOperand(1); |
| 3872 | MVT::ValueType AddrVT = DstAddr.getValueType(); |
| 3873 | if (BytesLeft >= 4) { |
| 3874 | Val = (Val << 8) | Val; |
| 3875 | Val = (Val << 16) | Val; |
| 3876 | Value = DAG.getConstant(Val, MVT::i32); |
| 3877 | Chain = DAG.getStore(Chain, Value, |
| 3878 | DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| 3879 | DAG.getConstant(Offset, AddrVT)), |
| 3880 | NULL, 0); |
| 3881 | BytesLeft -= 4; |
| 3882 | Offset += 4; |
| 3883 | } |
| 3884 | if (BytesLeft >= 2) { |
| 3885 | Value = DAG.getConstant((Val << 8) | Val, MVT::i16); |
| 3886 | Chain = DAG.getStore(Chain, Value, |
| 3887 | DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| 3888 | DAG.getConstant(Offset, AddrVT)), |
| 3889 | NULL, 0); |
| 3890 | BytesLeft -= 2; |
| 3891 | Offset += 2; |
| 3892 | } |
| 3893 | if (BytesLeft == 1) { |
| 3894 | Value = DAG.getConstant(Val, MVT::i8); |
| 3895 | Chain = DAG.getStore(Chain, Value, |
| 3896 | DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| 3897 | DAG.getConstant(Offset, AddrVT)), |
| 3898 | NULL, 0); |
| 3899 | } |
| 3900 | } |
| 3901 | |
| 3902 | return Chain; |
| 3903 | } |
| 3904 | |
| 3905 | SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { |
| 3906 | SDOperand Chain = Op.getOperand(0); |
| 3907 | unsigned Align = |
| 3908 | (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| 3909 | if (Align == 0) Align = 1; |
| 3910 | |
| 3911 | ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| 3912 | // If not DWORD aligned, call memcpy if size is less than the threshold. |
| 3913 | // It knows how to align to the right boundary first. |
| 3914 | if ((Align & 3) != 0 || |
| 3915 | (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { |
| 3916 | MVT::ValueType IntPtr = getPointerTy(); |
| 3917 | TargetLowering::ArgListTy Args; |
| 3918 | TargetLowering::ArgListEntry Entry; |
| 3919 | Entry.Ty = getTargetData()->getIntPtrType(); |
| 3920 | Entry.Node = Op.getOperand(1); Args.push_back(Entry); |
| 3921 | Entry.Node = Op.getOperand(2); Args.push_back(Entry); |
| 3922 | Entry.Node = Op.getOperand(3); Args.push_back(Entry); |
| 3923 | std::pair<SDOperand,SDOperand> CallResult = |
| 3924 | LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false, |
| 3925 | DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); |
| 3926 | return CallResult.second; |
| 3927 | } |
| 3928 | |
| 3929 | MVT::ValueType AVT; |
| 3930 | SDOperand Count; |
| 3931 | unsigned BytesLeft = 0; |
| 3932 | bool TwoRepMovs = false; |
| 3933 | switch (Align & 3) { |
| 3934 | case 2: // WORD aligned |
| 3935 | AVT = MVT::i16; |
| 3936 | break; |
| 3937 | case 0: // DWORD aligned |
| 3938 | AVT = MVT::i32; |
| 3939 | if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned |
| 3940 | AVT = MVT::i64; |
| 3941 | break; |
| 3942 | default: // Byte aligned |
| 3943 | AVT = MVT::i8; |
| 3944 | Count = Op.getOperand(3); |
| 3945 | break; |
| 3946 | } |
| 3947 | |
| 3948 | if (AVT > MVT::i8) { |
| 3949 | if (I) { |
| 3950 | unsigned UBytes = MVT::getSizeInBits(AVT) / 8; |
| 3951 | Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy()); |
| 3952 | BytesLeft = I->getValue() % UBytes; |
| 3953 | } else { |
| 3954 | assert(AVT >= MVT::i32 && |
| 3955 | "Do not use rep;movs if not at least DWORD aligned"); |
| 3956 | Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), |
| 3957 | Op.getOperand(3), DAG.getConstant(2, MVT::i8)); |
| 3958 | TwoRepMovs = true; |
| 3959 | } |
| 3960 | } |
| 3961 | |
| 3962 | SDOperand InFlag(0, 0); |
| 3963 | Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, |
| 3964 | Count, InFlag); |
| 3965 | InFlag = Chain.getValue(1); |
| 3966 | Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, |
| 3967 | Op.getOperand(1), InFlag); |
| 3968 | InFlag = Chain.getValue(1); |
| 3969 | Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, |
| 3970 | Op.getOperand(2), InFlag); |
| 3971 | InFlag = Chain.getValue(1); |
| 3972 | |
| 3973 | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 3974 | SmallVector<SDOperand, 8> Ops; |
| 3975 | Ops.push_back(Chain); |
| 3976 | Ops.push_back(DAG.getValueType(AVT)); |
| 3977 | Ops.push_back(InFlag); |
| 3978 | Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); |
| 3979 | |
| 3980 | if (TwoRepMovs) { |
| 3981 | InFlag = Chain.getValue(1); |
| 3982 | Count = Op.getOperand(3); |
| 3983 | MVT::ValueType CVT = Count.getValueType(); |
| 3984 | SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, |
| 3985 | DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); |
| 3986 | Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, |
| 3987 | Left, InFlag); |
| 3988 | InFlag = Chain.getValue(1); |
| 3989 | Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 3990 | Ops.clear(); |
| 3991 | Ops.push_back(Chain); |
| 3992 | Ops.push_back(DAG.getValueType(MVT::i8)); |
| 3993 | Ops.push_back(InFlag); |
| 3994 | Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); |
| 3995 | } else if (BytesLeft) { |
| 3996 | // Issue loads and stores for the last 1 - 7 bytes. |
| 3997 | unsigned Offset = I->getValue() - BytesLeft; |
| 3998 | SDOperand DstAddr = Op.getOperand(1); |
| 3999 | MVT::ValueType DstVT = DstAddr.getValueType(); |
| 4000 | SDOperand SrcAddr = Op.getOperand(2); |
| 4001 | MVT::ValueType SrcVT = SrcAddr.getValueType(); |
| 4002 | SDOperand Value; |
| 4003 | if (BytesLeft >= 4) { |
| 4004 | Value = DAG.getLoad(MVT::i32, Chain, |
| 4005 | DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| 4006 | DAG.getConstant(Offset, SrcVT)), |
| 4007 | NULL, 0); |
| 4008 | Chain = Value.getValue(1); |
| 4009 | Chain = DAG.getStore(Chain, Value, |
| 4010 | DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| 4011 | DAG.getConstant(Offset, DstVT)), |
| 4012 | NULL, 0); |
| 4013 | BytesLeft -= 4; |
| 4014 | Offset += 4; |
| 4015 | } |
| 4016 | if (BytesLeft >= 2) { |
| 4017 | Value = DAG.getLoad(MVT::i16, Chain, |
| 4018 | DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| 4019 | DAG.getConstant(Offset, SrcVT)), |
| 4020 | NULL, 0); |
| 4021 | Chain = Value.getValue(1); |
| 4022 | Chain = DAG.getStore(Chain, Value, |
| 4023 | DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| 4024 | DAG.getConstant(Offset, DstVT)), |
| 4025 | NULL, 0); |
| 4026 | BytesLeft -= 2; |
| 4027 | Offset += 2; |
| 4028 | } |
| 4029 | |
| 4030 | if (BytesLeft == 1) { |
| 4031 | Value = DAG.getLoad(MVT::i8, Chain, |
| 4032 | DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| 4033 | DAG.getConstant(Offset, SrcVT)), |
| 4034 | NULL, 0); |
| 4035 | Chain = Value.getValue(1); |
| 4036 | Chain = DAG.getStore(Chain, Value, |
| 4037 | DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| 4038 | DAG.getConstant(Offset, DstVT)), |
| 4039 | NULL, 0); |
| 4040 | } |
| 4041 | } |
| 4042 | |
| 4043 | return Chain; |
| 4044 | } |
| 4045 | |
| 4046 | SDOperand |
| 4047 | X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) { |
| 4048 | SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| 4049 | SDOperand TheOp = Op.getOperand(0); |
| 4050 | SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1); |
| 4051 | if (Subtarget->is64Bit()) { |
| 4052 | SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); |
| 4053 | SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX, |
| 4054 | MVT::i64, Copy1.getValue(2)); |
| 4055 | SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2, |
| 4056 | DAG.getConstant(32, MVT::i8)); |
| 4057 | SDOperand Ops[] = { |
| 4058 | DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1) |
| 4059 | }; |
| 4060 | |
| 4061 | Tys = DAG.getVTList(MVT::i64, MVT::Other); |
| 4062 | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2); |
| 4063 | } |
| 4064 | |
| 4065 | SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); |
| 4066 | SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX, |
| 4067 | MVT::i32, Copy1.getValue(2)); |
| 4068 | SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) }; |
| 4069 | Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); |
| 4070 | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3); |
| 4071 | } |
| 4072 | |
| 4073 | SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { |
| 4074 | SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2)); |
| 4075 | |
| 4076 | if (!Subtarget->is64Bit()) { |
| 4077 | // vastart just stores the address of the VarArgsFrameIndex slot into the |
| 4078 | // memory location argument. |
| 4079 | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| 4080 | return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(), |
| 4081 | SV->getOffset()); |
| 4082 | } |
| 4083 | |
| 4084 | // __va_list_tag: |
| 4085 | // gp_offset (0 - 6 * 8) |
| 4086 | // fp_offset (48 - 48 + 8 * 16) |
| 4087 | // overflow_arg_area (point to parameters coming in memory). |
| 4088 | // reg_save_area |
| 4089 | SmallVector<SDOperand, 8> MemOps; |
| 4090 | SDOperand FIN = Op.getOperand(1); |
| 4091 | // Store gp_offset |
| 4092 | SDOperand Store = DAG.getStore(Op.getOperand(0), |
| 4093 | DAG.getConstant(VarArgsGPOffset, MVT::i32), |
| 4094 | FIN, SV->getValue(), SV->getOffset()); |
| 4095 | MemOps.push_back(Store); |
| 4096 | |
| 4097 | // Store fp_offset |
| 4098 | FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| 4099 | DAG.getConstant(4, getPointerTy())); |
| 4100 | Store = DAG.getStore(Op.getOperand(0), |
| 4101 | DAG.getConstant(VarArgsFPOffset, MVT::i32), |
| 4102 | FIN, SV->getValue(), SV->getOffset()); |
| 4103 | MemOps.push_back(Store); |
| 4104 | |
| 4105 | // Store ptr to overflow_arg_area |
| 4106 | FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| 4107 | DAG.getConstant(4, getPointerTy())); |
| 4108 | SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| 4109 | Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(), |
| 4110 | SV->getOffset()); |
| 4111 | MemOps.push_back(Store); |
| 4112 | |
| 4113 | // Store ptr to reg_save_area. |
| 4114 | FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| 4115 | DAG.getConstant(8, getPointerTy())); |
| 4116 | SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| 4117 | Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(), |
| 4118 | SV->getOffset()); |
| 4119 | MemOps.push_back(Store); |
| 4120 | return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); |
| 4121 | } |
| 4122 | |
| 4123 | SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) { |
| 4124 | // X86-64 va_list is a struct { i32, i32, i8*, i8* }. |
| 4125 | SDOperand Chain = Op.getOperand(0); |
| 4126 | SDOperand DstPtr = Op.getOperand(1); |
| 4127 | SDOperand SrcPtr = Op.getOperand(2); |
| 4128 | SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3)); |
| 4129 | SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4)); |
| 4130 | |
| 4131 | SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr, |
| 4132 | SrcSV->getValue(), SrcSV->getOffset()); |
| 4133 | Chain = SrcPtr.getValue(1); |
| 4134 | for (unsigned i = 0; i < 3; ++i) { |
| 4135 | SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr, |
| 4136 | SrcSV->getValue(), SrcSV->getOffset()); |
| 4137 | Chain = Val.getValue(1); |
| 4138 | Chain = DAG.getStore(Chain, Val, DstPtr, |
| 4139 | DstSV->getValue(), DstSV->getOffset()); |
| 4140 | if (i == 2) |
| 4141 | break; |
| 4142 | SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr, |
| 4143 | DAG.getConstant(8, getPointerTy())); |
| 4144 | DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr, |
| 4145 | DAG.getConstant(8, getPointerTy())); |
| 4146 | } |
| 4147 | return Chain; |
| 4148 | } |
| 4149 | |
| 4150 | SDOperand |
| 4151 | X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { |
| 4152 | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); |
| 4153 | switch (IntNo) { |
| 4154 | default: return SDOperand(); // Don't custom lower most intrinsics. |
| 4155 | // Comparison intrinsics. |
| 4156 | case Intrinsic::x86_sse_comieq_ss: |
| 4157 | case Intrinsic::x86_sse_comilt_ss: |
| 4158 | case Intrinsic::x86_sse_comile_ss: |
| 4159 | case Intrinsic::x86_sse_comigt_ss: |
| 4160 | case Intrinsic::x86_sse_comige_ss: |
| 4161 | case Intrinsic::x86_sse_comineq_ss: |
| 4162 | case Intrinsic::x86_sse_ucomieq_ss: |
| 4163 | case Intrinsic::x86_sse_ucomilt_ss: |
| 4164 | case Intrinsic::x86_sse_ucomile_ss: |
| 4165 | case Intrinsic::x86_sse_ucomigt_ss: |
| 4166 | case Intrinsic::x86_sse_ucomige_ss: |
| 4167 | case Intrinsic::x86_sse_ucomineq_ss: |
| 4168 | case Intrinsic::x86_sse2_comieq_sd: |
| 4169 | case Intrinsic::x86_sse2_comilt_sd: |
| 4170 | case Intrinsic::x86_sse2_comile_sd: |
| 4171 | case Intrinsic::x86_sse2_comigt_sd: |
| 4172 | case Intrinsic::x86_sse2_comige_sd: |
| 4173 | case Intrinsic::x86_sse2_comineq_sd: |
| 4174 | case Intrinsic::x86_sse2_ucomieq_sd: |
| 4175 | case Intrinsic::x86_sse2_ucomilt_sd: |
| 4176 | case Intrinsic::x86_sse2_ucomile_sd: |
| 4177 | case Intrinsic::x86_sse2_ucomigt_sd: |
| 4178 | case Intrinsic::x86_sse2_ucomige_sd: |
| 4179 | case Intrinsic::x86_sse2_ucomineq_sd: { |
| 4180 | unsigned Opc = 0; |
| 4181 | ISD::CondCode CC = ISD::SETCC_INVALID; |
| 4182 | switch (IntNo) { |
| 4183 | default: break; |
| 4184 | case Intrinsic::x86_sse_comieq_ss: |
| 4185 | case Intrinsic::x86_sse2_comieq_sd: |
| 4186 | Opc = X86ISD::COMI; |
| 4187 | CC = ISD::SETEQ; |
| 4188 | break; |
| 4189 | case Intrinsic::x86_sse_comilt_ss: |
| 4190 | case Intrinsic::x86_sse2_comilt_sd: |
| 4191 | Opc = X86ISD::COMI; |
| 4192 | CC = ISD::SETLT; |
| 4193 | break; |
| 4194 | case Intrinsic::x86_sse_comile_ss: |
| 4195 | case Intrinsic::x86_sse2_comile_sd: |
| 4196 | Opc = X86ISD::COMI; |
| 4197 | CC = ISD::SETLE; |
| 4198 | break; |
| 4199 | case Intrinsic::x86_sse_comigt_ss: |
| 4200 | case Intrinsic::x86_sse2_comigt_sd: |
| 4201 | Opc = X86ISD::COMI; |
| 4202 | CC = ISD::SETGT; |
| 4203 | break; |
| 4204 | case Intrinsic::x86_sse_comige_ss: |
| 4205 | case Intrinsic::x86_sse2_comige_sd: |
| 4206 | Opc = X86ISD::COMI; |
| 4207 | CC = ISD::SETGE; |
| 4208 | break; |
| 4209 | case Intrinsic::x86_sse_comineq_ss: |
| 4210 | case Intrinsic::x86_sse2_comineq_sd: |
| 4211 | Opc = X86ISD::COMI; |
| 4212 | CC = ISD::SETNE; |
| 4213 | break; |
| 4214 | case Intrinsic::x86_sse_ucomieq_ss: |
| 4215 | case Intrinsic::x86_sse2_ucomieq_sd: |
| 4216 | Opc = X86ISD::UCOMI; |
| 4217 | CC = ISD::SETEQ; |
| 4218 | break; |
| 4219 | case Intrinsic::x86_sse_ucomilt_ss: |
| 4220 | case Intrinsic::x86_sse2_ucomilt_sd: |
| 4221 | Opc = X86ISD::UCOMI; |
| 4222 | CC = ISD::SETLT; |
| 4223 | break; |
| 4224 | case Intrinsic::x86_sse_ucomile_ss: |
| 4225 | case Intrinsic::x86_sse2_ucomile_sd: |
| 4226 | Opc = X86ISD::UCOMI; |
| 4227 | CC = ISD::SETLE; |
| 4228 | break; |
| 4229 | case Intrinsic::x86_sse_ucomigt_ss: |
| 4230 | case Intrinsic::x86_sse2_ucomigt_sd: |
| 4231 | Opc = X86ISD::UCOMI; |
| 4232 | CC = ISD::SETGT; |
| 4233 | break; |
| 4234 | case Intrinsic::x86_sse_ucomige_ss: |
| 4235 | case Intrinsic::x86_sse2_ucomige_sd: |
| 4236 | Opc = X86ISD::UCOMI; |
| 4237 | CC = ISD::SETGE; |
| 4238 | break; |
| 4239 | case Intrinsic::x86_sse_ucomineq_ss: |
| 4240 | case Intrinsic::x86_sse2_ucomineq_sd: |
| 4241 | Opc = X86ISD::UCOMI; |
| 4242 | CC = ISD::SETNE; |
| 4243 | break; |
| 4244 | } |
| 4245 | |
| 4246 | unsigned X86CC; |
| 4247 | SDOperand LHS = Op.getOperand(1); |
| 4248 | SDOperand RHS = Op.getOperand(2); |
| 4249 | translateX86CC(CC, true, X86CC, LHS, RHS, DAG); |
| 4250 | |
| 4251 | const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| 4252 | SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS }; |
| 4253 | SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3); |
| 4254 | VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag); |
| 4255 | SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond }; |
| 4256 | SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2); |
| 4257 | return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); |
| 4258 | } |
| 4259 | } |
| 4260 | } |
| 4261 | |
| 4262 | SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) { |
| 4263 | // Depths > 0 not supported yet! |
| 4264 | if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) |
| 4265 | return SDOperand(); |
| 4266 | |
| 4267 | // Just load the return address |
| 4268 | SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| 4269 | return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); |
| 4270 | } |
| 4271 | |
| 4272 | SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) { |
| 4273 | // Depths > 0 not supported yet! |
| 4274 | if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) |
| 4275 | return SDOperand(); |
| 4276 | |
| 4277 | SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| 4278 | return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, |
| 4279 | DAG.getConstant(4, getPointerTy())); |
| 4280 | } |
| 4281 | |
| 4282 | SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, |
| 4283 | SelectionDAG &DAG) { |
| 4284 | // Is not yet supported on x86-64 |
| 4285 | if (Subtarget->is64Bit()) |
| 4286 | return SDOperand(); |
| 4287 | |
| 4288 | return DAG.getConstant(8, getPointerTy()); |
| 4289 | } |
| 4290 | |
| 4291 | SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG) |
| 4292 | { |
| 4293 | assert(!Subtarget->is64Bit() && |
| 4294 | "Lowering of eh_return builtin is not supported yet on x86-64"); |
| 4295 | |
| 4296 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4297 | SDOperand Chain = Op.getOperand(0); |
| 4298 | SDOperand Offset = Op.getOperand(1); |
| 4299 | SDOperand Handler = Op.getOperand(2); |
| 4300 | |
| 4301 | SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF), |
| 4302 | getPointerTy()); |
| 4303 | |
| 4304 | SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame, |
| 4305 | DAG.getConstant(-4UL, getPointerTy())); |
| 4306 | StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset); |
| 4307 | Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0); |
| 4308 | Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr); |
| 4309 | MF.addLiveOut(X86::ECX); |
| 4310 | |
| 4311 | return DAG.getNode(X86ISD::EH_RETURN, MVT::Other, |
| 4312 | Chain, DAG.getRegister(X86::ECX, getPointerTy())); |
| 4313 | } |
| 4314 | |
Duncan Sands | d8455ca | 2007-07-27 20:02:49 +0000 | [diff] [blame] | 4315 | SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op, |
| 4316 | SelectionDAG &DAG) { |
| 4317 | SDOperand Root = Op.getOperand(0); |
| 4318 | SDOperand Trmp = Op.getOperand(1); // trampoline |
| 4319 | SDOperand FPtr = Op.getOperand(2); // nested function |
| 4320 | SDOperand Nest = Op.getOperand(3); // 'nest' parameter value |
| 4321 | |
| 4322 | SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4)); |
| 4323 | |
| 4324 | if (Subtarget->is64Bit()) { |
| 4325 | return SDOperand(); // not yet supported |
| 4326 | } else { |
| 4327 | Function *Func = (Function *) |
| 4328 | cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); |
| 4329 | unsigned CC = Func->getCallingConv(); |
| 4330 | unsigned char NestReg; |
| 4331 | |
| 4332 | switch (CC) { |
| 4333 | default: |
| 4334 | assert(0 && "Unsupported calling convention"); |
| 4335 | case CallingConv::C: |
| 4336 | case CallingConv::Fast: |
| 4337 | case CallingConv::X86_StdCall: { |
| 4338 | // Pass 'nest' parameter in ECX. |
| 4339 | // Must be kept in sync with X86CallingConv.td |
| 4340 | NestReg = N86::ECX; |
| 4341 | |
| 4342 | // Check that ECX wasn't needed by an 'inreg' parameter. |
| 4343 | const FunctionType *FTy = Func->getFunctionType(); |
| 4344 | const ParamAttrsList *Attrs = FTy->getParamAttrs(); |
| 4345 | |
| 4346 | if (Attrs && !Func->isVarArg()) { |
| 4347 | unsigned InRegCount = 0; |
| 4348 | unsigned Idx = 1; |
| 4349 | |
| 4350 | for (FunctionType::param_iterator I = FTy->param_begin(), |
| 4351 | E = FTy->param_end(); I != E; ++I, ++Idx) |
| 4352 | if (Attrs->paramHasAttr(Idx, ParamAttr::InReg)) |
| 4353 | // FIXME: should only count parameters that are lowered to integers. |
| 4354 | InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32; |
| 4355 | |
| 4356 | if (InRegCount > 2) { |
| 4357 | cerr << "Nest register in use - reduce number of inreg parameters!\n"; |
| 4358 | abort(); |
| 4359 | } |
| 4360 | } |
| 4361 | break; |
| 4362 | } |
| 4363 | case CallingConv::X86_FastCall: |
| 4364 | // Pass 'nest' parameter in EAX. |
| 4365 | // Must be kept in sync with X86CallingConv.td |
| 4366 | NestReg = N86::EAX; |
| 4367 | break; |
| 4368 | } |
| 4369 | |
| 4370 | SDOperand OutChains[4]; |
| 4371 | SDOperand Addr, Disp; |
| 4372 | |
| 4373 | Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); |
| 4374 | Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr); |
| 4375 | |
| 4376 | const unsigned char MOV32ri = 0xB8; |
| 4377 | const unsigned char JMP = 0xE9; |
| 4378 | |
| 4379 | OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|NestReg, MVT::i8), |
| 4380 | Trmp, TrmpSV->getValue(), TrmpSV->getOffset()); |
| 4381 | |
| 4382 | Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); |
| 4383 | OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(), |
| 4384 | TrmpSV->getOffset() + 1, false, 1); |
| 4385 | |
| 4386 | Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); |
| 4387 | OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr, |
| 4388 | TrmpSV->getValue() + 5, TrmpSV->getOffset()); |
| 4389 | |
| 4390 | Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); |
| 4391 | OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(), |
| 4392 | TrmpSV->getOffset() + 6, false, 1); |
| 4393 | |
| 4394 | return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4); |
| 4395 | } |
| 4396 | } |
| 4397 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4398 | /// LowerOperation - Provide custom lowering hooks for some operations. |
| 4399 | /// |
| 4400 | SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| 4401 | switch (Op.getOpcode()) { |
| 4402 | default: assert(0 && "Should not custom lower this!"); |
| 4403 | case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| 4404 | case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| 4405 | case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| 4406 | case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| 4407 | case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| 4408 | case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| 4409 | case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| 4410 | case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| 4411 | case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); |
| 4412 | case ISD::SHL_PARTS: |
| 4413 | case ISD::SRA_PARTS: |
| 4414 | case ISD::SRL_PARTS: return LowerShift(Op, DAG); |
| 4415 | case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| 4416 | case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| 4417 | case ISD::FABS: return LowerFABS(Op, DAG); |
| 4418 | case ISD::FNEG: return LowerFNEG(Op, DAG); |
| 4419 | case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| 4420 | case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode()); |
| 4421 | case ISD::SELECT: return LowerSELECT(Op, DAG); |
| 4422 | case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| 4423 | case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| 4424 | case ISD::CALL: return LowerCALL(Op, DAG); |
| 4425 | case ISD::RET: return LowerRET(Op, DAG); |
| 4426 | case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); |
| 4427 | case ISD::MEMSET: return LowerMEMSET(Op, DAG); |
| 4428 | case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); |
| 4429 | case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG); |
| 4430 | case ISD::VASTART: return LowerVASTART(Op, DAG); |
| 4431 | case ISD::VACOPY: return LowerVACOPY(Op, DAG); |
| 4432 | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| 4433 | case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| 4434 | case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| 4435 | case ISD::FRAME_TO_ARGS_OFFSET: |
| 4436 | return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); |
| 4437 | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| 4438 | case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); |
Duncan Sands | d8455ca | 2007-07-27 20:02:49 +0000 | [diff] [blame] | 4439 | case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4440 | } |
| 4441 | return SDOperand(); |
| 4442 | } |
| 4443 | |
| 4444 | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 4445 | switch (Opcode) { |
| 4446 | default: return NULL; |
| 4447 | case X86ISD::SHLD: return "X86ISD::SHLD"; |
| 4448 | case X86ISD::SHRD: return "X86ISD::SHRD"; |
| 4449 | case X86ISD::FAND: return "X86ISD::FAND"; |
| 4450 | case X86ISD::FOR: return "X86ISD::FOR"; |
| 4451 | case X86ISD::FXOR: return "X86ISD::FXOR"; |
| 4452 | case X86ISD::FSRL: return "X86ISD::FSRL"; |
| 4453 | case X86ISD::FILD: return "X86ISD::FILD"; |
| 4454 | case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| 4455 | case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| 4456 | case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| 4457 | case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| 4458 | case X86ISD::FLD: return "X86ISD::FLD"; |
| 4459 | case X86ISD::FST: return "X86ISD::FST"; |
| 4460 | case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; |
| 4461 | case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; |
| 4462 | case X86ISD::CALL: return "X86ISD::CALL"; |
| 4463 | case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; |
| 4464 | case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| 4465 | case X86ISD::CMP: return "X86ISD::CMP"; |
| 4466 | case X86ISD::COMI: return "X86ISD::COMI"; |
| 4467 | case X86ISD::UCOMI: return "X86ISD::UCOMI"; |
| 4468 | case X86ISD::SETCC: return "X86ISD::SETCC"; |
| 4469 | case X86ISD::CMOV: return "X86ISD::CMOV"; |
| 4470 | case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| 4471 | case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| 4472 | case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; |
| 4473 | case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4474 | case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| 4475 | case X86ISD::Wrapper: return "X86ISD::Wrapper"; |
| 4476 | case X86ISD::S2VEC: return "X86ISD::S2VEC"; |
| 4477 | case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; |
| 4478 | case X86ISD::PINSRW: return "X86ISD::PINSRW"; |
| 4479 | case X86ISD::FMAX: return "X86ISD::FMAX"; |
| 4480 | case X86ISD::FMIN: return "X86ISD::FMIN"; |
| 4481 | case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; |
| 4482 | case X86ISD::FRCP: return "X86ISD::FRCP"; |
| 4483 | case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; |
| 4484 | case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER"; |
| 4485 | case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; |
| 4486 | } |
| 4487 | } |
| 4488 | |
| 4489 | // isLegalAddressingMode - Return true if the addressing mode represented |
| 4490 | // by AM is legal for this target, for a load/store of the specified type. |
| 4491 | bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| 4492 | const Type *Ty) const { |
| 4493 | // X86 supports extremely general addressing modes. |
| 4494 | |
| 4495 | // X86 allows a sign-extended 32-bit immediate field as a displacement. |
| 4496 | if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1) |
| 4497 | return false; |
| 4498 | |
| 4499 | if (AM.BaseGV) { |
Evan Cheng | 6a1f3f1 | 2007-08-01 23:46:47 +0000 | [diff] [blame] | 4500 | // We can only fold this if we don't need an extra load. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4501 | if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false)) |
| 4502 | return false; |
Evan Cheng | 6a1f3f1 | 2007-08-01 23:46:47 +0000 | [diff] [blame] | 4503 | |
| 4504 | // X86-64 only supports addr of globals in small code model. |
| 4505 | if (Subtarget->is64Bit()) { |
| 4506 | if (getTargetMachine().getCodeModel() != CodeModel::Small) |
| 4507 | return false; |
| 4508 | // If lower 4G is not available, then we must use rip-relative addressing. |
| 4509 | if (AM.BaseOffs || AM.Scale > 1) |
| 4510 | return false; |
| 4511 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4512 | } |
| 4513 | |
| 4514 | switch (AM.Scale) { |
| 4515 | case 0: |
| 4516 | case 1: |
| 4517 | case 2: |
| 4518 | case 4: |
| 4519 | case 8: |
| 4520 | // These scales always work. |
| 4521 | break; |
| 4522 | case 3: |
| 4523 | case 5: |
| 4524 | case 9: |
| 4525 | // These scales are formed with basereg+scalereg. Only accept if there is |
| 4526 | // no basereg yet. |
| 4527 | if (AM.HasBaseReg) |
| 4528 | return false; |
| 4529 | break; |
| 4530 | default: // Other stuff never works. |
| 4531 | return false; |
| 4532 | } |
| 4533 | |
| 4534 | return true; |
| 4535 | } |
| 4536 | |
| 4537 | |
| 4538 | /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| 4539 | /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| 4540 | /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| 4541 | /// are assumed to be legal. |
| 4542 | bool |
| 4543 | X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { |
| 4544 | // Only do shuffles on 128-bit vector types for now. |
| 4545 | if (MVT::getSizeInBits(VT) == 64) return false; |
| 4546 | return (Mask.Val->getNumOperands() <= 4 || |
| 4547 | isIdentityMask(Mask.Val) || |
| 4548 | isIdentityMask(Mask.Val, true) || |
| 4549 | isSplatMask(Mask.Val) || |
| 4550 | isPSHUFHW_PSHUFLWMask(Mask.Val) || |
| 4551 | X86::isUNPCKLMask(Mask.Val) || |
| 4552 | X86::isUNPCKHMask(Mask.Val) || |
| 4553 | X86::isUNPCKL_v_undef_Mask(Mask.Val) || |
| 4554 | X86::isUNPCKH_v_undef_Mask(Mask.Val)); |
| 4555 | } |
| 4556 | |
| 4557 | bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps, |
| 4558 | MVT::ValueType EVT, |
| 4559 | SelectionDAG &DAG) const { |
| 4560 | unsigned NumElts = BVOps.size(); |
| 4561 | // Only do shuffles on 128-bit vector types for now. |
| 4562 | if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; |
| 4563 | if (NumElts == 2) return true; |
| 4564 | if (NumElts == 4) { |
| 4565 | return (isMOVLMask(&BVOps[0], 4) || |
| 4566 | isCommutedMOVL(&BVOps[0], 4, true) || |
| 4567 | isSHUFPMask(&BVOps[0], 4) || |
| 4568 | isCommutedSHUFP(&BVOps[0], 4)); |
| 4569 | } |
| 4570 | return false; |
| 4571 | } |
| 4572 | |
| 4573 | //===----------------------------------------------------------------------===// |
| 4574 | // X86 Scheduler Hooks |
| 4575 | //===----------------------------------------------------------------------===// |
| 4576 | |
| 4577 | MachineBasicBlock * |
| 4578 | X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| 4579 | MachineBasicBlock *BB) { |
| 4580 | const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| 4581 | switch (MI->getOpcode()) { |
| 4582 | default: assert(false && "Unexpected instr type to insert"); |
| 4583 | case X86::CMOV_FR32: |
| 4584 | case X86::CMOV_FR64: |
| 4585 | case X86::CMOV_V4F32: |
| 4586 | case X86::CMOV_V2F64: |
| 4587 | case X86::CMOV_V2I64: { |
| 4588 | // To "insert" a SELECT_CC instruction, we actually have to insert the |
| 4589 | // diamond control-flow pattern. The incoming instruction knows the |
| 4590 | // destination vreg to set, the condition code register to branch on, the |
| 4591 | // true/false values to select between, and a branch opcode to use. |
| 4592 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 4593 | ilist<MachineBasicBlock>::iterator It = BB; |
| 4594 | ++It; |
| 4595 | |
| 4596 | // thisMBB: |
| 4597 | // ... |
| 4598 | // TrueVal = ... |
| 4599 | // cmpTY ccX, r1, r2 |
| 4600 | // bCC copy1MBB |
| 4601 | // fallthrough --> copy0MBB |
| 4602 | MachineBasicBlock *thisMBB = BB; |
| 4603 | MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| 4604 | MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| 4605 | unsigned Opc = |
| 4606 | X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); |
| 4607 | BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); |
| 4608 | MachineFunction *F = BB->getParent(); |
| 4609 | F->getBasicBlockList().insert(It, copy0MBB); |
| 4610 | F->getBasicBlockList().insert(It, sinkMBB); |
| 4611 | // Update machine-CFG edges by first adding all successors of the current |
| 4612 | // block to the new block which will contain the Phi node for the select. |
| 4613 | for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| 4614 | e = BB->succ_end(); i != e; ++i) |
| 4615 | sinkMBB->addSuccessor(*i); |
| 4616 | // Next, remove all successors of the current block, and add the true |
| 4617 | // and fallthrough blocks as its successors. |
| 4618 | while(!BB->succ_empty()) |
| 4619 | BB->removeSuccessor(BB->succ_begin()); |
| 4620 | BB->addSuccessor(copy0MBB); |
| 4621 | BB->addSuccessor(sinkMBB); |
| 4622 | |
| 4623 | // copy0MBB: |
| 4624 | // %FalseValue = ... |
| 4625 | // # fallthrough to sinkMBB |
| 4626 | BB = copy0MBB; |
| 4627 | |
| 4628 | // Update machine-CFG edges |
| 4629 | BB->addSuccessor(sinkMBB); |
| 4630 | |
| 4631 | // sinkMBB: |
| 4632 | // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| 4633 | // ... |
| 4634 | BB = sinkMBB; |
| 4635 | BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) |
| 4636 | .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| 4637 | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| 4638 | |
| 4639 | delete MI; // The pseudo instruction is gone now. |
| 4640 | return BB; |
| 4641 | } |
| 4642 | |
| 4643 | case X86::FP32_TO_INT16_IN_MEM: |
| 4644 | case X86::FP32_TO_INT32_IN_MEM: |
| 4645 | case X86::FP32_TO_INT64_IN_MEM: |
| 4646 | case X86::FP64_TO_INT16_IN_MEM: |
| 4647 | case X86::FP64_TO_INT32_IN_MEM: |
Dale Johannesen | 6d0e36a | 2007-08-07 01:17:37 +0000 | [diff] [blame] | 4648 | case X86::FP64_TO_INT64_IN_MEM: |
| 4649 | case X86::FP80_TO_INT16_IN_MEM: |
| 4650 | case X86::FP80_TO_INT32_IN_MEM: |
| 4651 | case X86::FP80_TO_INT64_IN_MEM: { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4652 | // Change the floating point control register to use "round towards zero" |
| 4653 | // mode when truncating to an integer value. |
| 4654 | MachineFunction *F = BB->getParent(); |
| 4655 | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); |
| 4656 | addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); |
| 4657 | |
| 4658 | // Load the old value of the high byte of the control word... |
| 4659 | unsigned OldCW = |
| 4660 | F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass); |
| 4661 | addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); |
| 4662 | |
| 4663 | // Set the high part to be round to zero... |
| 4664 | addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) |
| 4665 | .addImm(0xC7F); |
| 4666 | |
| 4667 | // Reload the modified control word now... |
| 4668 | addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| 4669 | |
| 4670 | // Restore the memory image of control word to original value |
| 4671 | addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) |
| 4672 | .addReg(OldCW); |
| 4673 | |
| 4674 | // Get the X86 opcode to use. |
| 4675 | unsigned Opc; |
| 4676 | switch (MI->getOpcode()) { |
| 4677 | default: assert(0 && "illegal opcode!"); |
| 4678 | case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; |
| 4679 | case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; |
| 4680 | case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; |
| 4681 | case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; |
| 4682 | case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; |
| 4683 | case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; |
Dale Johannesen | 6d0e36a | 2007-08-07 01:17:37 +0000 | [diff] [blame] | 4684 | case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; |
| 4685 | case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; |
| 4686 | case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4687 | } |
| 4688 | |
| 4689 | X86AddressMode AM; |
| 4690 | MachineOperand &Op = MI->getOperand(0); |
| 4691 | if (Op.isRegister()) { |
| 4692 | AM.BaseType = X86AddressMode::RegBase; |
| 4693 | AM.Base.Reg = Op.getReg(); |
| 4694 | } else { |
| 4695 | AM.BaseType = X86AddressMode::FrameIndexBase; |
| 4696 | AM.Base.FrameIndex = Op.getFrameIndex(); |
| 4697 | } |
| 4698 | Op = MI->getOperand(1); |
| 4699 | if (Op.isImmediate()) |
| 4700 | AM.Scale = Op.getImm(); |
| 4701 | Op = MI->getOperand(2); |
| 4702 | if (Op.isImmediate()) |
| 4703 | AM.IndexReg = Op.getImm(); |
| 4704 | Op = MI->getOperand(3); |
| 4705 | if (Op.isGlobalAddress()) { |
| 4706 | AM.GV = Op.getGlobal(); |
| 4707 | } else { |
| 4708 | AM.Disp = Op.getImm(); |
| 4709 | } |
| 4710 | addFullAddress(BuildMI(BB, TII->get(Opc)), AM) |
| 4711 | .addReg(MI->getOperand(4).getReg()); |
| 4712 | |
| 4713 | // Reload the original control word now. |
| 4714 | addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| 4715 | |
| 4716 | delete MI; // The pseudo instruction is gone now. |
| 4717 | return BB; |
| 4718 | } |
| 4719 | } |
| 4720 | } |
| 4721 | |
| 4722 | //===----------------------------------------------------------------------===// |
| 4723 | // X86 Optimization Hooks |
| 4724 | //===----------------------------------------------------------------------===// |
| 4725 | |
| 4726 | void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| 4727 | uint64_t Mask, |
| 4728 | uint64_t &KnownZero, |
| 4729 | uint64_t &KnownOne, |
| 4730 | const SelectionDAG &DAG, |
| 4731 | unsigned Depth) const { |
| 4732 | unsigned Opc = Op.getOpcode(); |
| 4733 | assert((Opc >= ISD::BUILTIN_OP_END || |
| 4734 | Opc == ISD::INTRINSIC_WO_CHAIN || |
| 4735 | Opc == ISD::INTRINSIC_W_CHAIN || |
| 4736 | Opc == ISD::INTRINSIC_VOID) && |
| 4737 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 4738 | " is a target node!"); |
| 4739 | |
| 4740 | KnownZero = KnownOne = 0; // Don't know anything. |
| 4741 | switch (Opc) { |
| 4742 | default: break; |
| 4743 | case X86ISD::SETCC: |
| 4744 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 4745 | break; |
| 4746 | } |
| 4747 | } |
| 4748 | |
| 4749 | /// getShuffleScalarElt - Returns the scalar element that will make up the ith |
| 4750 | /// element of the result of the vector shuffle. |
| 4751 | static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) { |
| 4752 | MVT::ValueType VT = N->getValueType(0); |
| 4753 | SDOperand PermMask = N->getOperand(2); |
| 4754 | unsigned NumElems = PermMask.getNumOperands(); |
| 4755 | SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1); |
| 4756 | i %= NumElems; |
| 4757 | if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| 4758 | return (i == 0) |
| 4759 | ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT)); |
| 4760 | } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| 4761 | SDOperand Idx = PermMask.getOperand(i); |
| 4762 | if (Idx.getOpcode() == ISD::UNDEF) |
| 4763 | return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT)); |
| 4764 | return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG); |
| 4765 | } |
| 4766 | return SDOperand(); |
| 4767 | } |
| 4768 | |
| 4769 | /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the |
| 4770 | /// node is a GlobalAddress + an offset. |
| 4771 | static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) { |
| 4772 | unsigned Opc = N->getOpcode(); |
| 4773 | if (Opc == X86ISD::Wrapper) { |
| 4774 | if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) { |
| 4775 | GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); |
| 4776 | return true; |
| 4777 | } |
| 4778 | } else if (Opc == ISD::ADD) { |
| 4779 | SDOperand N1 = N->getOperand(0); |
| 4780 | SDOperand N2 = N->getOperand(1); |
| 4781 | if (isGAPlusOffset(N1.Val, GA, Offset)) { |
| 4782 | ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); |
| 4783 | if (V) { |
| 4784 | Offset += V->getSignExtended(); |
| 4785 | return true; |
| 4786 | } |
| 4787 | } else if (isGAPlusOffset(N2.Val, GA, Offset)) { |
| 4788 | ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); |
| 4789 | if (V) { |
| 4790 | Offset += V->getSignExtended(); |
| 4791 | return true; |
| 4792 | } |
| 4793 | } |
| 4794 | } |
| 4795 | return false; |
| 4796 | } |
| 4797 | |
| 4798 | /// isConsecutiveLoad - Returns true if N is loading from an address of Base |
| 4799 | /// + Dist * Size. |
| 4800 | static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size, |
| 4801 | MachineFrameInfo *MFI) { |
| 4802 | if (N->getOperand(0).Val != Base->getOperand(0).Val) |
| 4803 | return false; |
| 4804 | |
| 4805 | SDOperand Loc = N->getOperand(1); |
| 4806 | SDOperand BaseLoc = Base->getOperand(1); |
| 4807 | if (Loc.getOpcode() == ISD::FrameIndex) { |
| 4808 | if (BaseLoc.getOpcode() != ISD::FrameIndex) |
| 4809 | return false; |
Dan Gohman | 53491e9 | 2007-07-23 20:24:29 +0000 | [diff] [blame] | 4810 | int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); |
| 4811 | int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4812 | int FS = MFI->getObjectSize(FI); |
| 4813 | int BFS = MFI->getObjectSize(BFI); |
| 4814 | if (FS != BFS || FS != Size) return false; |
| 4815 | return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size); |
| 4816 | } else { |
| 4817 | GlobalValue *GV1 = NULL; |
| 4818 | GlobalValue *GV2 = NULL; |
| 4819 | int64_t Offset1 = 0; |
| 4820 | int64_t Offset2 = 0; |
| 4821 | bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1); |
| 4822 | bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2); |
| 4823 | if (isGA1 && isGA2 && GV1 == GV2) |
| 4824 | return Offset1 == (Offset2 + Dist*Size); |
| 4825 | } |
| 4826 | |
| 4827 | return false; |
| 4828 | } |
| 4829 | |
| 4830 | static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI, |
| 4831 | const X86Subtarget *Subtarget) { |
| 4832 | GlobalValue *GV; |
| 4833 | int64_t Offset; |
| 4834 | if (isGAPlusOffset(Base, GV, Offset)) |
| 4835 | return (GV->getAlignment() >= 16 && (Offset % 16) == 0); |
| 4836 | else { |
| 4837 | assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!"); |
Dan Gohman | 53491e9 | 2007-07-23 20:24:29 +0000 | [diff] [blame] | 4838 | int BFI = cast<FrameIndexSDNode>(Base)->getIndex(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4839 | if (BFI < 0) |
| 4840 | // Fixed objects do not specify alignment, however the offsets are known. |
| 4841 | return ((Subtarget->getStackAlignment() % 16) == 0 && |
| 4842 | (MFI->getObjectOffset(BFI) % 16) == 0); |
| 4843 | else |
| 4844 | return MFI->getObjectAlignment(BFI) >= 16; |
| 4845 | } |
| 4846 | return false; |
| 4847 | } |
| 4848 | |
| 4849 | |
| 4850 | /// PerformShuffleCombine - Combine a vector_shuffle that is equal to |
| 4851 | /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load |
| 4852 | /// if the load addresses are consecutive, non-overlapping, and in the right |
| 4853 | /// order. |
| 4854 | static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, |
| 4855 | const X86Subtarget *Subtarget) { |
| 4856 | MachineFunction &MF = DAG.getMachineFunction(); |
| 4857 | MachineFrameInfo *MFI = MF.getFrameInfo(); |
| 4858 | MVT::ValueType VT = N->getValueType(0); |
| 4859 | MVT::ValueType EVT = MVT::getVectorElementType(VT); |
| 4860 | SDOperand PermMask = N->getOperand(2); |
| 4861 | int NumElems = (int)PermMask.getNumOperands(); |
| 4862 | SDNode *Base = NULL; |
| 4863 | for (int i = 0; i < NumElems; ++i) { |
| 4864 | SDOperand Idx = PermMask.getOperand(i); |
| 4865 | if (Idx.getOpcode() == ISD::UNDEF) { |
| 4866 | if (!Base) return SDOperand(); |
| 4867 | } else { |
| 4868 | SDOperand Arg = |
| 4869 | getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG); |
| 4870 | if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val)) |
| 4871 | return SDOperand(); |
| 4872 | if (!Base) |
| 4873 | Base = Arg.Val; |
| 4874 | else if (!isConsecutiveLoad(Arg.Val, Base, |
| 4875 | i, MVT::getSizeInBits(EVT)/8,MFI)) |
| 4876 | return SDOperand(); |
| 4877 | } |
| 4878 | } |
| 4879 | |
| 4880 | bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget); |
Dan Gohman | 1182170 | 2007-07-27 17:16:43 +0000 | [diff] [blame] | 4881 | LoadSDNode *LD = cast<LoadSDNode>(Base); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4882 | if (isAlign16) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4883 | return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), |
Dan Gohman | 1182170 | 2007-07-27 17:16:43 +0000 | [diff] [blame] | 4884 | LD->getSrcValueOffset(), LD->isVolatile()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4885 | } else { |
Dan Gohman | 1182170 | 2007-07-27 17:16:43 +0000 | [diff] [blame] | 4886 | return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), |
| 4887 | LD->getSrcValueOffset(), LD->isVolatile(), |
| 4888 | LD->getAlignment()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 4889 | } |
| 4890 | } |
| 4891 | |
| 4892 | /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. |
| 4893 | static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, |
| 4894 | const X86Subtarget *Subtarget) { |
| 4895 | SDOperand Cond = N->getOperand(0); |
| 4896 | |
| 4897 | // If we have SSE[12] support, try to form min/max nodes. |
| 4898 | if (Subtarget->hasSSE2() && |
| 4899 | (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { |
| 4900 | if (Cond.getOpcode() == ISD::SETCC) { |
| 4901 | // Get the LHS/RHS of the select. |
| 4902 | SDOperand LHS = N->getOperand(1); |
| 4903 | SDOperand RHS = N->getOperand(2); |
| 4904 | ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| 4905 | |
| 4906 | unsigned Opcode = 0; |
| 4907 | if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { |
| 4908 | switch (CC) { |
| 4909 | default: break; |
| 4910 | case ISD::SETOLE: // (X <= Y) ? X : Y -> min |
| 4911 | case ISD::SETULE: |
| 4912 | case ISD::SETLE: |
| 4913 | if (!UnsafeFPMath) break; |
| 4914 | // FALL THROUGH. |
| 4915 | case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min |
| 4916 | case ISD::SETLT: |
| 4917 | Opcode = X86ISD::FMIN; |
| 4918 | break; |
| 4919 | |
| 4920 | case ISD::SETOGT: // (X > Y) ? X : Y -> max |
| 4921 | case ISD::SETUGT: |
| 4922 | case ISD::SETGT: |
| 4923 | if (!UnsafeFPMath) break; |
| 4924 | // FALL THROUGH. |
| 4925 | case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max |
| 4926 | case ISD::SETGE: |
| 4927 | Opcode = X86ISD::FMAX; |
| 4928 | break; |
| 4929 | } |
| 4930 | } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { |
| 4931 | switch (CC) { |
| 4932 | default: break; |
| 4933 | case ISD::SETOGT: // (X > Y) ? Y : X -> min |
| 4934 | case ISD::SETUGT: |
| 4935 | case ISD::SETGT: |
| 4936 | if (!UnsafeFPMath) break; |
| 4937 | // FALL THROUGH. |
| 4938 | case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min |
| 4939 | case ISD::SETGE: |
| 4940 | Opcode = X86ISD::FMIN; |
| 4941 | break; |
| 4942 | |
| 4943 | case ISD::SETOLE: // (X <= Y) ? Y : X -> max |
| 4944 | case ISD::SETULE: |
| 4945 | case ISD::SETLE: |
| 4946 | if (!UnsafeFPMath) break; |
| 4947 | // FALL THROUGH. |
| 4948 | case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max |
| 4949 | case ISD::SETLT: |
| 4950 | Opcode = X86ISD::FMAX; |
| 4951 | break; |
| 4952 | } |
| 4953 | } |
| 4954 | |
| 4955 | if (Opcode) |
| 4956 | return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); |
| 4957 | } |
| 4958 | |
| 4959 | } |
| 4960 | |
| 4961 | return SDOperand(); |
| 4962 | } |
| 4963 | |
| 4964 | |
| 4965 | SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N, |
| 4966 | DAGCombinerInfo &DCI) const { |
| 4967 | SelectionDAG &DAG = DCI.DAG; |
| 4968 | switch (N->getOpcode()) { |
| 4969 | default: break; |
| 4970 | case ISD::VECTOR_SHUFFLE: |
| 4971 | return PerformShuffleCombine(N, DAG, Subtarget); |
| 4972 | case ISD::SELECT: |
| 4973 | return PerformSELECTCombine(N, DAG, Subtarget); |
| 4974 | } |
| 4975 | |
| 4976 | return SDOperand(); |
| 4977 | } |
| 4978 | |
| 4979 | //===----------------------------------------------------------------------===// |
| 4980 | // X86 Inline Assembly Support |
| 4981 | //===----------------------------------------------------------------------===// |
| 4982 | |
| 4983 | /// getConstraintType - Given a constraint letter, return the type of |
| 4984 | /// constraint it is for this target. |
| 4985 | X86TargetLowering::ConstraintType |
| 4986 | X86TargetLowering::getConstraintType(const std::string &Constraint) const { |
| 4987 | if (Constraint.size() == 1) { |
| 4988 | switch (Constraint[0]) { |
| 4989 | case 'A': |
| 4990 | case 'r': |
| 4991 | case 'R': |
| 4992 | case 'l': |
| 4993 | case 'q': |
| 4994 | case 'Q': |
| 4995 | case 'x': |
| 4996 | case 'Y': |
| 4997 | return C_RegisterClass; |
| 4998 | default: |
| 4999 | break; |
| 5000 | } |
| 5001 | } |
| 5002 | return TargetLowering::getConstraintType(Constraint); |
| 5003 | } |
| 5004 | |
| 5005 | /// isOperandValidForConstraint - Return the specified operand (possibly |
| 5006 | /// modified) if the specified SDOperand is valid for the specified target |
| 5007 | /// constraint letter, otherwise return null. |
| 5008 | SDOperand X86TargetLowering:: |
| 5009 | isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) { |
| 5010 | switch (Constraint) { |
| 5011 | default: break; |
| 5012 | case 'I': |
| 5013 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| 5014 | if (C->getValue() <= 31) |
| 5015 | return DAG.getTargetConstant(C->getValue(), Op.getValueType()); |
| 5016 | } |
| 5017 | return SDOperand(0,0); |
| 5018 | case 'N': |
| 5019 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| 5020 | if (C->getValue() <= 255) |
| 5021 | return DAG.getTargetConstant(C->getValue(), Op.getValueType()); |
| 5022 | } |
| 5023 | return SDOperand(0,0); |
| 5024 | case 'i': { |
| 5025 | // Literal immediates are always ok. |
| 5026 | if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) |
| 5027 | return DAG.getTargetConstant(CST->getValue(), Op.getValueType()); |
| 5028 | |
| 5029 | // If we are in non-pic codegen mode, we allow the address of a global (with |
| 5030 | // an optional displacement) to be used with 'i'. |
| 5031 | GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); |
| 5032 | int64_t Offset = 0; |
| 5033 | |
| 5034 | // Match either (GA) or (GA+C) |
| 5035 | if (GA) { |
| 5036 | Offset = GA->getOffset(); |
| 5037 | } else if (Op.getOpcode() == ISD::ADD) { |
| 5038 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| 5039 | GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); |
| 5040 | if (C && GA) { |
| 5041 | Offset = GA->getOffset()+C->getValue(); |
| 5042 | } else { |
| 5043 | C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| 5044 | GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); |
| 5045 | if (C && GA) |
| 5046 | Offset = GA->getOffset()+C->getValue(); |
| 5047 | else |
| 5048 | C = 0, GA = 0; |
| 5049 | } |
| 5050 | } |
| 5051 | |
| 5052 | if (GA) { |
| 5053 | // If addressing this global requires a load (e.g. in PIC mode), we can't |
| 5054 | // match. |
| 5055 | if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(), |
| 5056 | false)) |
| 5057 | return SDOperand(0, 0); |
| 5058 | |
| 5059 | Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), |
| 5060 | Offset); |
| 5061 | return Op; |
| 5062 | } |
| 5063 | |
| 5064 | // Otherwise, not valid for this mode. |
| 5065 | return SDOperand(0, 0); |
| 5066 | } |
| 5067 | } |
| 5068 | return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG); |
| 5069 | } |
| 5070 | |
| 5071 | std::vector<unsigned> X86TargetLowering:: |
| 5072 | getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| 5073 | MVT::ValueType VT) const { |
| 5074 | if (Constraint.size() == 1) { |
| 5075 | // FIXME: not handling fp-stack yet! |
| 5076 | switch (Constraint[0]) { // GCC X86 Constraint Letters |
| 5077 | default: break; // Unknown constraint letter |
| 5078 | case 'A': // EAX/EDX |
| 5079 | if (VT == MVT::i32 || VT == MVT::i64) |
| 5080 | return make_vector<unsigned>(X86::EAX, X86::EDX, 0); |
| 5081 | break; |
| 5082 | case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) |
| 5083 | case 'Q': // Q_REGS |
| 5084 | if (VT == MVT::i32) |
| 5085 | return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); |
| 5086 | else if (VT == MVT::i16) |
| 5087 | return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); |
| 5088 | else if (VT == MVT::i8) |
Evan Cheng | f85c10f | 2007-08-13 23:27:11 +0000 | [diff] [blame] | 5089 | return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 5090 | break; |
| 5091 | } |
| 5092 | } |
| 5093 | |
| 5094 | return std::vector<unsigned>(); |
| 5095 | } |
| 5096 | |
| 5097 | std::pair<unsigned, const TargetRegisterClass*> |
| 5098 | X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| 5099 | MVT::ValueType VT) const { |
| 5100 | // First, see if this is a constraint that directly corresponds to an LLVM |
| 5101 | // register class. |
| 5102 | if (Constraint.size() == 1) { |
| 5103 | // GCC Constraint Letters |
| 5104 | switch (Constraint[0]) { |
| 5105 | default: break; |
| 5106 | case 'r': // GENERAL_REGS |
| 5107 | case 'R': // LEGACY_REGS |
| 5108 | case 'l': // INDEX_REGS |
| 5109 | if (VT == MVT::i64 && Subtarget->is64Bit()) |
| 5110 | return std::make_pair(0U, X86::GR64RegisterClass); |
| 5111 | if (VT == MVT::i32) |
| 5112 | return std::make_pair(0U, X86::GR32RegisterClass); |
| 5113 | else if (VT == MVT::i16) |
| 5114 | return std::make_pair(0U, X86::GR16RegisterClass); |
| 5115 | else if (VT == MVT::i8) |
| 5116 | return std::make_pair(0U, X86::GR8RegisterClass); |
| 5117 | break; |
| 5118 | case 'y': // MMX_REGS if MMX allowed. |
| 5119 | if (!Subtarget->hasMMX()) break; |
| 5120 | return std::make_pair(0U, X86::VR64RegisterClass); |
| 5121 | break; |
| 5122 | case 'Y': // SSE_REGS if SSE2 allowed |
| 5123 | if (!Subtarget->hasSSE2()) break; |
| 5124 | // FALL THROUGH. |
| 5125 | case 'x': // SSE_REGS if SSE1 allowed |
| 5126 | if (!Subtarget->hasSSE1()) break; |
| 5127 | |
| 5128 | switch (VT) { |
| 5129 | default: break; |
| 5130 | // Scalar SSE types. |
| 5131 | case MVT::f32: |
| 5132 | case MVT::i32: |
| 5133 | return std::make_pair(0U, X86::FR32RegisterClass); |
| 5134 | case MVT::f64: |
| 5135 | case MVT::i64: |
| 5136 | return std::make_pair(0U, X86::FR64RegisterClass); |
| 5137 | // Vector types. |
| 5138 | case MVT::v16i8: |
| 5139 | case MVT::v8i16: |
| 5140 | case MVT::v4i32: |
| 5141 | case MVT::v2i64: |
| 5142 | case MVT::v4f32: |
| 5143 | case MVT::v2f64: |
| 5144 | return std::make_pair(0U, X86::VR128RegisterClass); |
| 5145 | } |
| 5146 | break; |
| 5147 | } |
| 5148 | } |
| 5149 | |
| 5150 | // Use the default implementation in TargetLowering to convert the register |
| 5151 | // constraint into a member of a register class. |
| 5152 | std::pair<unsigned, const TargetRegisterClass*> Res; |
| 5153 | Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| 5154 | |
| 5155 | // Not found as a standard register? |
| 5156 | if (Res.second == 0) { |
| 5157 | // GCC calls "st(0)" just plain "st". |
| 5158 | if (StringsEqualNoCase("{st}", Constraint)) { |
| 5159 | Res.first = X86::ST0; |
| 5160 | Res.second = X86::RSTRegisterClass; |
| 5161 | } |
| 5162 | |
| 5163 | return Res; |
| 5164 | } |
| 5165 | |
| 5166 | // Otherwise, check to see if this is a register class of the wrong value |
| 5167 | // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to |
| 5168 | // turn into {ax},{dx}. |
| 5169 | if (Res.second->hasType(VT)) |
| 5170 | return Res; // Correct type already, nothing to do. |
| 5171 | |
| 5172 | // All of the single-register GCC register classes map their values onto |
| 5173 | // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we |
| 5174 | // really want an 8-bit or 32-bit register, map to the appropriate register |
| 5175 | // class and return the appropriate register. |
| 5176 | if (Res.second != X86::GR16RegisterClass) |
| 5177 | return Res; |
| 5178 | |
| 5179 | if (VT == MVT::i8) { |
| 5180 | unsigned DestReg = 0; |
| 5181 | switch (Res.first) { |
| 5182 | default: break; |
| 5183 | case X86::AX: DestReg = X86::AL; break; |
| 5184 | case X86::DX: DestReg = X86::DL; break; |
| 5185 | case X86::CX: DestReg = X86::CL; break; |
| 5186 | case X86::BX: DestReg = X86::BL; break; |
| 5187 | } |
| 5188 | if (DestReg) { |
| 5189 | Res.first = DestReg; |
| 5190 | Res.second = Res.second = X86::GR8RegisterClass; |
| 5191 | } |
| 5192 | } else if (VT == MVT::i32) { |
| 5193 | unsigned DestReg = 0; |
| 5194 | switch (Res.first) { |
| 5195 | default: break; |
| 5196 | case X86::AX: DestReg = X86::EAX; break; |
| 5197 | case X86::DX: DestReg = X86::EDX; break; |
| 5198 | case X86::CX: DestReg = X86::ECX; break; |
| 5199 | case X86::BX: DestReg = X86::EBX; break; |
| 5200 | case X86::SI: DestReg = X86::ESI; break; |
| 5201 | case X86::DI: DestReg = X86::EDI; break; |
| 5202 | case X86::BP: DestReg = X86::EBP; break; |
| 5203 | case X86::SP: DestReg = X86::ESP; break; |
| 5204 | } |
| 5205 | if (DestReg) { |
| 5206 | Res.first = DestReg; |
| 5207 | Res.second = Res.second = X86::GR32RegisterClass; |
| 5208 | } |
| 5209 | } else if (VT == MVT::i64) { |
| 5210 | unsigned DestReg = 0; |
| 5211 | switch (Res.first) { |
| 5212 | default: break; |
| 5213 | case X86::AX: DestReg = X86::RAX; break; |
| 5214 | case X86::DX: DestReg = X86::RDX; break; |
| 5215 | case X86::CX: DestReg = X86::RCX; break; |
| 5216 | case X86::BX: DestReg = X86::RBX; break; |
| 5217 | case X86::SI: DestReg = X86::RSI; break; |
| 5218 | case X86::DI: DestReg = X86::RDI; break; |
| 5219 | case X86::BP: DestReg = X86::RBP; break; |
| 5220 | case X86::SP: DestReg = X86::RSP; break; |
| 5221 | } |
| 5222 | if (DestReg) { |
| 5223 | Res.first = DestReg; |
| 5224 | Res.second = Res.second = X86::GR64RegisterClass; |
| 5225 | } |
| 5226 | } |
| 5227 | |
| 5228 | return Res; |
| 5229 | } |