blob: f32e6f6ead233a366733733d0fa96783d97a35c8 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000016#include "X86CodeEmitter.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000017#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86TargetMachine.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000038#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039using namespace llvm;
40
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42 : TargetLowering(TM) {
43 Subtarget = &TM.getSubtarget<X86Subtarget>();
44 X86ScalarSSE = Subtarget->hasSSE2();
45 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47 RegInfo = TM.getRegisterInfo();
48
49 // Set up the TargetLowering object.
50
51 // X86 is weird, it always uses i8 for shift amounts and setcc results.
52 setShiftAmountType(MVT::i8);
53 setSetCCResultType(MVT::i8);
54 setSetCCResultContents(ZeroOrOneSetCCResult);
55 setSchedulingPreference(SchedulingForRegPressure);
56 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
57 setStackPointerRegisterToSaveRestore(X86StackPtr);
58
59 if (Subtarget->isTargetDarwin()) {
60 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
61 setUseUnderscoreSetJmp(false);
62 setUseUnderscoreLongJmp(false);
63 } else if (Subtarget->isTargetMingw()) {
64 // MS runtime is weird: it exports _setjmp, but longjmp!
65 setUseUnderscoreSetJmp(true);
66 setUseUnderscoreLongJmp(false);
67 } else {
68 setUseUnderscoreSetJmp(true);
69 setUseUnderscoreLongJmp(true);
70 }
71
72 // Set up the register classes.
73 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
74 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
75 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
76 if (Subtarget->is64Bit())
77 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
78
79 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
80
81 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
82 // operation.
83 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
84 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
85 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
86
87 if (Subtarget->is64Bit()) {
88 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
89 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
90 } else {
91 if (X86ScalarSSE)
92 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
93 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
94 else
95 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
96 }
97
98 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
99 // this operation.
100 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
101 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
102 // SSE has no i16 to fp conversion, only i32
103 if (X86ScalarSSE)
104 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
105 else {
106 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
107 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
108 }
109
110 if (!Subtarget->is64Bit()) {
111 // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
112 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
113 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
114 }
115
116 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
117 // this operation.
118 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
119 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
120
121 if (X86ScalarSSE) {
122 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
123 } else {
124 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
125 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
126 }
127
128 // Handle FP_TO_UINT by promoting the destination to a larger signed
129 // conversion.
130 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
131 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
132 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
133
134 if (Subtarget->is64Bit()) {
135 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
136 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
137 } else {
138 if (X86ScalarSSE && !Subtarget->hasSSE3())
139 // Expand FP_TO_UINT into a select.
140 // FIXME: We would like to use a Custom expander here eventually to do
141 // the optimal thing for SSE vs. the default expansion in the legalizer.
142 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
143 else
144 // With SSE3 we can use fisttpll to convert to a signed i64.
145 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
146 }
147
148 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
149 if (!X86ScalarSSE) {
150 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
151 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
152 }
153
154 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
155 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
156 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
157 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
158 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
159 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000160 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
161 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
162 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
164 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
165 setOperationAction(ISD::FREM , MVT::f64 , Expand);
166
167 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
168 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
169 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
170 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
171 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
172 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
173 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
174 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
175 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
176 if (Subtarget->is64Bit()) {
177 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
178 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
179 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
180 }
181
182 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
183 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
184
185 // These should be promoted to a larger select which is supported.
186 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
187 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
188 // X86 wants to expand cmov itself.
189 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
190 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
191 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
192 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
193 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
194 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
195 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
196 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
197 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
198 if (Subtarget->is64Bit()) {
199 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
200 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
201 }
202 // X86 ret instruction may pop stack.
203 setOperationAction(ISD::RET , MVT::Other, Custom);
204 if (!Subtarget->is64Bit())
205 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
206
207 // Darwin ABI issue.
208 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
209 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
210 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
211 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
212 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
213 if (Subtarget->is64Bit()) {
214 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
215 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
216 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
217 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
218 }
219 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
220 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
221 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
222 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
223 // X86 wants to expand memset / memcpy itself.
224 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
225 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
226
227 // We don't have line number support yet.
228 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
229 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
230 // FIXME - use subtarget debug flags
231 if (!Subtarget->isTargetDarwin() &&
232 !Subtarget->isTargetELF() &&
233 !Subtarget->isTargetCygMing())
234 setOperationAction(ISD::LABEL, MVT::Other, Expand);
235
236 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
237 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
238 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
239 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
240 if (Subtarget->is64Bit()) {
241 // FIXME: Verify
242 setExceptionPointerRegister(X86::RAX);
243 setExceptionSelectorRegister(X86::RDX);
244 } else {
245 setExceptionPointerRegister(X86::EAX);
246 setExceptionSelectorRegister(X86::EDX);
247 }
248
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000249 setOperationAction(ISD::ADJUST_TRAMP, MVT::i32, Expand);
250 setOperationAction(ISD::ADJUST_TRAMP, MVT::i64, Expand);
251 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
252
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
254 setOperationAction(ISD::VASTART , MVT::Other, Custom);
255 setOperationAction(ISD::VAARG , MVT::Other, Expand);
256 setOperationAction(ISD::VAEND , MVT::Other, Expand);
257 if (Subtarget->is64Bit())
258 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
259 else
260 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
261
262 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
263 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
264 if (Subtarget->is64Bit())
265 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
266 if (Subtarget->isTargetCygMing())
267 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
268 else
269 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
270
271 if (X86ScalarSSE) {
272 // Set up the FP register classes.
273 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
274 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
275
276 // Use ANDPD to simulate FABS.
277 setOperationAction(ISD::FABS , MVT::f64, Custom);
278 setOperationAction(ISD::FABS , MVT::f32, Custom);
279
280 // Use XORP to simulate FNEG.
281 setOperationAction(ISD::FNEG , MVT::f64, Custom);
282 setOperationAction(ISD::FNEG , MVT::f32, Custom);
283
284 // Use ANDPD and ORPD to simulate FCOPYSIGN.
285 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
286 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
287
288 // We don't support sin/cos/fmod
289 setOperationAction(ISD::FSIN , MVT::f64, Expand);
290 setOperationAction(ISD::FCOS , MVT::f64, Expand);
291 setOperationAction(ISD::FREM , MVT::f64, Expand);
292 setOperationAction(ISD::FSIN , MVT::f32, Expand);
293 setOperationAction(ISD::FCOS , MVT::f32, Expand);
294 setOperationAction(ISD::FREM , MVT::f32, Expand);
295
296 // Expand FP immediates into loads from the stack, except for the special
297 // cases we handle.
298 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
299 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
300 addLegalFPImmediate(+0.0); // xorps / xorpd
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000301
302 // Conversions to long double (in X87) go through memory.
303 setConvertAction(MVT::f32, MVT::f80, Expand);
304 setConvertAction(MVT::f64, MVT::f80, Expand);
305
306 // Conversions from long double (in X87) go through memory.
307 setConvertAction(MVT::f80, MVT::f32, Expand);
308 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309 } else {
310 // Set up the FP register classes.
311 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
312 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
313
314 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
315 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
316 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
317 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000318
319 // Floating truncations need to go through memory.
320 setConvertAction(MVT::f80, MVT::f32, Expand);
321 setConvertAction(MVT::f64, MVT::f32, Expand);
322 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323
324 if (!UnsafeFPMath) {
325 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
326 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
327 }
328
329 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
330 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
331 addLegalFPImmediate(+0.0); // FLD0
332 addLegalFPImmediate(+1.0); // FLD1
333 addLegalFPImmediate(-0.0); // FLD0/FCHS
334 addLegalFPImmediate(-1.0); // FLD1/FCHS
335 }
336
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000337 // Long double always uses X87.
338 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
339
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340 // First set operation action for all vector types to expand. Then we
341 // will selectively turn on ones that can be effectively codegen'd.
342 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
343 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
344 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
345 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
346 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
347 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
348 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
349 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
350 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
351 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
352 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
353 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
354 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
355 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
356 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
357 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
358 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
359 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
360 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
361 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
362 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
363 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
364 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
365 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
366 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
367 }
368
369 if (Subtarget->hasMMX()) {
370 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
371 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
372 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
373 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
374
375 // FIXME: add MMX packed arithmetics
376
377 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
378 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
379 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
380 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
381
382 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
383 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
384 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
385
386 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
387 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
388
389 setOperationAction(ISD::AND, MVT::v8i8, Promote);
390 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
391 setOperationAction(ISD::AND, MVT::v4i16, Promote);
392 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
393 setOperationAction(ISD::AND, MVT::v2i32, Promote);
394 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
395 setOperationAction(ISD::AND, MVT::v1i64, Legal);
396
397 setOperationAction(ISD::OR, MVT::v8i8, Promote);
398 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
399 setOperationAction(ISD::OR, MVT::v4i16, Promote);
400 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
401 setOperationAction(ISD::OR, MVT::v2i32, Promote);
402 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
403 setOperationAction(ISD::OR, MVT::v1i64, Legal);
404
405 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
406 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
407 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
408 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
409 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
410 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
411 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
412
413 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
414 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
415 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
416 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
417 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
418 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
419 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
420
421 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
422 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
423 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
424 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
425
426 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
427 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
428 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
429 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
430
431 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
432 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
433 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
434 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
435 }
436
437 if (Subtarget->hasSSE1()) {
438 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
439
440 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
443 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
444 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
445 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000446 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
447 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
448 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
449 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
450 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
451 }
452
453 if (Subtarget->hasSSE2()) {
454 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
455 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
456 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
457 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
458 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
459
460 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
461 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
462 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
463 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
464 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
465 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
466 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
467 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
468 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
469 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
470 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
471 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
472 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
473 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
474 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475
476 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
477 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
478 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
479 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
480 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
481 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
482
483 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
484 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
485 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
486 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
487 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
488 }
489 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
490 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
491 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
492 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
493 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
494 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
495
496 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
497 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
498 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
499 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
500 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
501 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
502 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
503 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
504 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
505 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
506 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
507 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
508 }
509
510 // Custom lower v2i64 and v2f64 selects.
511 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
512 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
513 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
514 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
515 }
516
517 // We want to custom lower some of our intrinsics.
518 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
519
520 // We have target-specific dag combine patterns for the following nodes:
521 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
522 setTargetDAGCombine(ISD::SELECT);
523
524 computeRegisterProperties();
525
526 // FIXME: These should be based on subtarget info. Plus, the values should
527 // be smaller when we are in optimizing for size mode.
528 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
529 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
530 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
531 allowUnalignedMemoryAccesses = true; // x86 supports it!
532}
533
534
535//===----------------------------------------------------------------------===//
536// Return Value Calling Convention Implementation
537//===----------------------------------------------------------------------===//
538
539#include "X86GenCallingConv.inc"
540
541/// LowerRET - Lower an ISD::RET node.
542SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
543 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
544
545 SmallVector<CCValAssign, 16> RVLocs;
546 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
547 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
548 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
549 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
550
551
552 // If this is the first return lowered for this function, add the regs to the
553 // liveout set for the function.
554 if (DAG.getMachineFunction().liveout_empty()) {
555 for (unsigned i = 0; i != RVLocs.size(); ++i)
556 if (RVLocs[i].isRegLoc())
557 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
558 }
559
560 SDOperand Chain = Op.getOperand(0);
561 SDOperand Flag;
562
563 // Copy the result values into the output registers.
564 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
565 RVLocs[0].getLocReg() != X86::ST0) {
566 for (unsigned i = 0; i != RVLocs.size(); ++i) {
567 CCValAssign &VA = RVLocs[i];
568 assert(VA.isRegLoc() && "Can only return in registers!");
569 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
570 Flag);
571 Flag = Chain.getValue(1);
572 }
573 } else {
574 // We need to handle a destination of ST0 specially, because it isn't really
575 // a register.
576 SDOperand Value = Op.getOperand(1);
577
578 // If this is an FP return with ScalarSSE, we need to move the value from
579 // an XMM register onto the fp-stack.
580 if (X86ScalarSSE) {
581 SDOperand MemLoc;
582
583 // If this is a load into a scalarsse value, don't store the loaded value
584 // back to the stack, only to reload it: just replace the scalar-sse load.
585 if (ISD::isNON_EXTLoad(Value.Val) &&
586 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
587 Chain = Value.getOperand(0);
588 MemLoc = Value.getOperand(1);
589 } else {
590 // Spill the value to memory and reload it into top of stack.
591 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
592 MachineFunction &MF = DAG.getMachineFunction();
593 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
594 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
595 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
596 }
597 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
598 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
599 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
600 Chain = Value.getValue(1);
601 }
602
603 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
604 SDOperand Ops[] = { Chain, Value };
605 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
606 Flag = Chain.getValue(1);
607 }
608
609 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
610 if (Flag.Val)
611 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
612 else
613 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
614}
615
616
617/// LowerCallResult - Lower the result values of an ISD::CALL into the
618/// appropriate copies out of appropriate physical registers. This assumes that
619/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
620/// being lowered. The returns a SDNode with the same number of values as the
621/// ISD::CALL.
622SDNode *X86TargetLowering::
623LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
624 unsigned CallingConv, SelectionDAG &DAG) {
625
626 // Assign locations to each value returned by this call.
627 SmallVector<CCValAssign, 16> RVLocs;
628 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
629 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
630 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
631
632
633 SmallVector<SDOperand, 8> ResultVals;
634
635 // Copy all of the result registers out of their specified physreg.
636 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
637 for (unsigned i = 0; i != RVLocs.size(); ++i) {
638 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
639 RVLocs[i].getValVT(), InFlag).getValue(1);
640 InFlag = Chain.getValue(2);
641 ResultVals.push_back(Chain.getValue(0));
642 }
643 } else {
644 // Copies from the FP stack are special, as ST0 isn't a valid register
645 // before the fp stackifier runs.
646
647 // Copy ST0 into an RFP register with FP_GET_RESULT.
648 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
649 SDOperand GROps[] = { Chain, InFlag };
650 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
651 Chain = RetVal.getValue(1);
652 InFlag = RetVal.getValue(2);
653
654 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
655 // an XMM register.
656 if (X86ScalarSSE) {
657 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
658 // shouldn't be necessary except that RFP cannot be live across
659 // multiple blocks. When stackifier is fixed, they can be uncoupled.
660 MachineFunction &MF = DAG.getMachineFunction();
661 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
662 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
663 SDOperand Ops[] = {
664 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
665 };
666 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
667 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
668 Chain = RetVal.getValue(1);
669 }
670 ResultVals.push_back(RetVal);
671 }
672
673 // Merge everything together with a MERGE_VALUES node.
674 ResultVals.push_back(Chain);
675 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
676 &ResultVals[0], ResultVals.size()).Val;
677}
678
679
680//===----------------------------------------------------------------------===//
681// C & StdCall Calling Convention implementation
682//===----------------------------------------------------------------------===//
683// StdCall calling convention seems to be standard for many Windows' API
684// routines and around. It differs from C calling convention just a little:
685// callee should clean up the stack, not caller. Symbols should be also
686// decorated in some fancy way :) It doesn't support any vector arguments.
687
688/// AddLiveIn - This helper function adds the specified physical register to the
689/// MachineFunction as a live in value. It also creates a corresponding virtual
690/// register for it.
691static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
692 const TargetRegisterClass *RC) {
693 assert(RC->contains(PReg) && "Not the correct regclass!");
694 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
695 MF.addLiveIn(PReg, VReg);
696 return VReg;
697}
698
699SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
700 bool isStdCall) {
701 unsigned NumArgs = Op.Val->getNumValues() - 1;
702 MachineFunction &MF = DAG.getMachineFunction();
703 MachineFrameInfo *MFI = MF.getFrameInfo();
704 SDOperand Root = Op.getOperand(0);
705 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
706
707 // Assign locations to all of the incoming arguments.
708 SmallVector<CCValAssign, 16> ArgLocs;
709 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
710 getTargetMachine(), ArgLocs);
711 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
712
713 SmallVector<SDOperand, 8> ArgValues;
714 unsigned LastVal = ~0U;
715 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
716 CCValAssign &VA = ArgLocs[i];
717 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
718 // places.
719 assert(VA.getValNo() != LastVal &&
720 "Don't support value assigned to multiple locs yet");
721 LastVal = VA.getValNo();
722
723 if (VA.isRegLoc()) {
724 MVT::ValueType RegVT = VA.getLocVT();
725 TargetRegisterClass *RC;
726 if (RegVT == MVT::i32)
727 RC = X86::GR32RegisterClass;
728 else {
729 assert(MVT::isVector(RegVT));
730 RC = X86::VR128RegisterClass;
731 }
732
733 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
734 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
735
736 // If this is an 8 or 16-bit value, it is really passed promoted to 32
737 // bits. Insert an assert[sz]ext to capture this, then truncate to the
738 // right size.
739 if (VA.getLocInfo() == CCValAssign::SExt)
740 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
741 DAG.getValueType(VA.getValVT()));
742 else if (VA.getLocInfo() == CCValAssign::ZExt)
743 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
744 DAG.getValueType(VA.getValVT()));
745
746 if (VA.getLocInfo() != CCValAssign::Full)
747 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
748
749 ArgValues.push_back(ArgValue);
750 } else {
751 assert(VA.isMemLoc());
752
753 // Create the nodes corresponding to a load from this parameter slot.
754 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
755 VA.getLocMemOffset());
756 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
757 ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
758 }
759 }
760
761 unsigned StackSize = CCInfo.getNextStackOffset();
762
763 ArgValues.push_back(Root);
764
765 // If the function takes variable number of arguments, make a frame index for
766 // the start of the first vararg value... for expansion of llvm.va_start.
767 if (isVarArg)
768 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
769
770 if (isStdCall && !isVarArg) {
771 BytesToPopOnReturn = StackSize; // Callee pops everything..
772 BytesCallerReserves = 0;
773 } else {
774 BytesToPopOnReturn = 0; // Callee pops nothing.
775
776 // If this is an sret function, the return should pop the hidden pointer.
777 if (NumArgs &&
778 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
779 ISD::ParamFlags::StructReturn))
780 BytesToPopOnReturn = 4;
781
782 BytesCallerReserves = StackSize;
783 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000784
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000785 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000786
Anton Korobeynikove844e472007-08-15 17:12:32 +0000787 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
788 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000789
790 // Return the new list of results.
791 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
792 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
793}
794
795SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
796 unsigned CC) {
797 SDOperand Chain = Op.getOperand(0);
798 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
799 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
800 SDOperand Callee = Op.getOperand(4);
801 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
802
803 // Analyze operands of the call, assigning locations to each operand.
804 SmallVector<CCValAssign, 16> ArgLocs;
805 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
806 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
807
808 // Get a count of how many bytes are to be pushed on the stack.
809 unsigned NumBytes = CCInfo.getNextStackOffset();
810
811 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
812
813 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
814 SmallVector<SDOperand, 8> MemOpChains;
815
816 SDOperand StackPtr;
817
818 // Walk the register/memloc assignments, inserting copies/loads.
819 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
820 CCValAssign &VA = ArgLocs[i];
821 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
822
823 // Promote the value if needed.
824 switch (VA.getLocInfo()) {
825 default: assert(0 && "Unknown loc info!");
826 case CCValAssign::Full: break;
827 case CCValAssign::SExt:
828 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
829 break;
830 case CCValAssign::ZExt:
831 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
832 break;
833 case CCValAssign::AExt:
834 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
835 break;
836 }
837
838 if (VA.isRegLoc()) {
839 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
840 } else {
841 assert(VA.isMemLoc());
842 if (StackPtr.Val == 0)
843 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
844 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
845 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
846 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
847 }
848 }
849
850 // If the first argument is an sret pointer, remember it.
851 bool isSRet = NumOps &&
852 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
853 ISD::ParamFlags::StructReturn);
854
855 if (!MemOpChains.empty())
856 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
857 &MemOpChains[0], MemOpChains.size());
858
859 // Build a sequence of copy-to-reg nodes chained together with token chain
860 // and flag operands which copy the outgoing args into registers.
861 SDOperand InFlag;
862 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
863 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
864 InFlag);
865 InFlag = Chain.getValue(1);
866 }
867
868 // ELF / PIC requires GOT in the EBX register before function calls via PLT
869 // GOT pointer.
870 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
871 Subtarget->isPICStyleGOT()) {
872 Chain = DAG.getCopyToReg(Chain, X86::EBX,
873 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
874 InFlag);
875 InFlag = Chain.getValue(1);
876 }
877
878 // If the callee is a GlobalAddress node (quite common, every direct call is)
879 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
880 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
881 // We should use extra load for direct calls to dllimported functions in
882 // non-JIT mode.
883 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
884 getTargetMachine(), true))
885 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
886 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
887 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
888
889 // Returns a chain & a flag for retval copy to use.
890 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
891 SmallVector<SDOperand, 8> Ops;
892 Ops.push_back(Chain);
893 Ops.push_back(Callee);
894
895 // Add argument registers to the end of the list so that they are known live
896 // into the call.
897 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
898 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
899 RegsToPass[i].second.getValueType()));
900
901 // Add an implicit use GOT pointer in EBX.
902 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
903 Subtarget->isPICStyleGOT())
904 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
905
906 if (InFlag.Val)
907 Ops.push_back(InFlag);
908
909 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
910 NodeTys, &Ops[0], Ops.size());
911 InFlag = Chain.getValue(1);
912
913 // Create the CALLSEQ_END node.
914 unsigned NumBytesForCalleeToPush = 0;
915
916 if (CC == CallingConv::X86_StdCall) {
917 if (isVarArg)
918 NumBytesForCalleeToPush = isSRet ? 4 : 0;
919 else
920 NumBytesForCalleeToPush = NumBytes;
921 } else {
922 // If this is is a call to a struct-return function, the callee
923 // pops the hidden struct pointer, so we have to push it back.
924 // This is common for Darwin/X86, Linux & Mingw32 targets.
925 NumBytesForCalleeToPush = isSRet ? 4 : 0;
926 }
927
928 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
929 Ops.clear();
930 Ops.push_back(Chain);
931 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
932 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
933 Ops.push_back(InFlag);
934 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
935 InFlag = Chain.getValue(1);
936
937 // Handle result values, copying them out of physregs into vregs that we
938 // return.
939 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
940}
941
942
943//===----------------------------------------------------------------------===//
944// FastCall Calling Convention implementation
945//===----------------------------------------------------------------------===//
946//
947// The X86 'fastcall' calling convention passes up to two integer arguments in
948// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
949// and requires that the callee pop its arguments off the stack (allowing proper
950// tail calls), and has the same return value conventions as C calling convs.
951//
952// This calling convention always arranges for the callee pop value to be 8n+4
953// bytes, which is needed for tail recursion elimination and stack alignment
954// reasons.
955SDOperand
956X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
957 MachineFunction &MF = DAG.getMachineFunction();
958 MachineFrameInfo *MFI = MF.getFrameInfo();
959 SDOperand Root = Op.getOperand(0);
960 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
961
962 // Assign locations to all of the incoming arguments.
963 SmallVector<CCValAssign, 16> ArgLocs;
964 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
965 getTargetMachine(), ArgLocs);
966 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
967
968 SmallVector<SDOperand, 8> ArgValues;
969 unsigned LastVal = ~0U;
970 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
971 CCValAssign &VA = ArgLocs[i];
972 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
973 // places.
974 assert(VA.getValNo() != LastVal &&
975 "Don't support value assigned to multiple locs yet");
976 LastVal = VA.getValNo();
977
978 if (VA.isRegLoc()) {
979 MVT::ValueType RegVT = VA.getLocVT();
980 TargetRegisterClass *RC;
981 if (RegVT == MVT::i32)
982 RC = X86::GR32RegisterClass;
983 else {
984 assert(MVT::isVector(RegVT));
985 RC = X86::VR128RegisterClass;
986 }
987
988 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
989 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
990
991 // If this is an 8 or 16-bit value, it is really passed promoted to 32
992 // bits. Insert an assert[sz]ext to capture this, then truncate to the
993 // right size.
994 if (VA.getLocInfo() == CCValAssign::SExt)
995 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
996 DAG.getValueType(VA.getValVT()));
997 else if (VA.getLocInfo() == CCValAssign::ZExt)
998 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
999 DAG.getValueType(VA.getValVT()));
1000
1001 if (VA.getLocInfo() != CCValAssign::Full)
1002 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1003
1004 ArgValues.push_back(ArgValue);
1005 } else {
1006 assert(VA.isMemLoc());
1007
1008 // Create the nodes corresponding to a load from this parameter slot.
1009 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1010 VA.getLocMemOffset());
1011 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1012 ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1013 }
1014 }
1015
1016 ArgValues.push_back(Root);
1017
1018 unsigned StackSize = CCInfo.getNextStackOffset();
1019
1020 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1021 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1022 // arguments and the arguments after the retaddr has been pushed are aligned.
1023 if ((StackSize & 7) == 0)
1024 StackSize += 4;
1025 }
1026
1027 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1028 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1030 BytesCallerReserves = 0;
1031
Anton Korobeynikove844e472007-08-15 17:12:32 +00001032 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1033 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001034
1035 // Return the new list of results.
1036 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1037 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1038}
1039
1040SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1041 unsigned CC) {
1042 SDOperand Chain = Op.getOperand(0);
1043 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1044 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1045 SDOperand Callee = Op.getOperand(4);
1046
1047 // Analyze operands of the call, assigning locations to each operand.
1048 SmallVector<CCValAssign, 16> ArgLocs;
1049 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1050 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1051
1052 // Get a count of how many bytes are to be pushed on the stack.
1053 unsigned NumBytes = CCInfo.getNextStackOffset();
1054
1055 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1056 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1057 // arguments and the arguments after the retaddr has been pushed are aligned.
1058 if ((NumBytes & 7) == 0)
1059 NumBytes += 4;
1060 }
1061
1062 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1063
1064 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1065 SmallVector<SDOperand, 8> MemOpChains;
1066
1067 SDOperand StackPtr;
1068
1069 // Walk the register/memloc assignments, inserting copies/loads.
1070 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1071 CCValAssign &VA = ArgLocs[i];
1072 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1073
1074 // Promote the value if needed.
1075 switch (VA.getLocInfo()) {
1076 default: assert(0 && "Unknown loc info!");
1077 case CCValAssign::Full: break;
1078 case CCValAssign::SExt:
1079 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1080 break;
1081 case CCValAssign::ZExt:
1082 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1083 break;
1084 case CCValAssign::AExt:
1085 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1086 break;
1087 }
1088
1089 if (VA.isRegLoc()) {
1090 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1091 } else {
1092 assert(VA.isMemLoc());
1093 if (StackPtr.Val == 0)
1094 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1095 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1096 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1097 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1098 }
1099 }
1100
1101 if (!MemOpChains.empty())
1102 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1103 &MemOpChains[0], MemOpChains.size());
1104
1105 // Build a sequence of copy-to-reg nodes chained together with token chain
1106 // and flag operands which copy the outgoing args into registers.
1107 SDOperand InFlag;
1108 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1109 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1110 InFlag);
1111 InFlag = Chain.getValue(1);
1112 }
1113
1114 // If the callee is a GlobalAddress node (quite common, every direct call is)
1115 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1116 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1117 // We should use extra load for direct calls to dllimported functions in
1118 // non-JIT mode.
1119 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1120 getTargetMachine(), true))
1121 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1122 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1123 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1124
1125 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1126 // GOT pointer.
1127 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1128 Subtarget->isPICStyleGOT()) {
1129 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1130 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1131 InFlag);
1132 InFlag = Chain.getValue(1);
1133 }
1134
1135 // Returns a chain & a flag for retval copy to use.
1136 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1137 SmallVector<SDOperand, 8> Ops;
1138 Ops.push_back(Chain);
1139 Ops.push_back(Callee);
1140
1141 // Add argument registers to the end of the list so that they are known live
1142 // into the call.
1143 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1144 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1145 RegsToPass[i].second.getValueType()));
1146
1147 // Add an implicit use GOT pointer in EBX.
1148 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1149 Subtarget->isPICStyleGOT())
1150 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1151
1152 if (InFlag.Val)
1153 Ops.push_back(InFlag);
1154
1155 // FIXME: Do not generate X86ISD::TAILCALL for now.
1156 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1157 NodeTys, &Ops[0], Ops.size());
1158 InFlag = Chain.getValue(1);
1159
1160 // Returns a flag for retval copy to use.
1161 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1162 Ops.clear();
1163 Ops.push_back(Chain);
1164 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1165 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1166 Ops.push_back(InFlag);
1167 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1168 InFlag = Chain.getValue(1);
1169
1170 // Handle result values, copying them out of physregs into vregs that we
1171 // return.
1172 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1173}
1174
1175
1176//===----------------------------------------------------------------------===//
1177// X86-64 C Calling Convention implementation
1178//===----------------------------------------------------------------------===//
1179
1180SDOperand
1181X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1182 MachineFunction &MF = DAG.getMachineFunction();
1183 MachineFrameInfo *MFI = MF.getFrameInfo();
1184 SDOperand Root = Op.getOperand(0);
1185 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1186
1187 static const unsigned GPR64ArgRegs[] = {
1188 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1189 };
1190 static const unsigned XMMArgRegs[] = {
1191 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1192 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1193 };
1194
1195
1196 // Assign locations to all of the incoming arguments.
1197 SmallVector<CCValAssign, 16> ArgLocs;
1198 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1199 getTargetMachine(), ArgLocs);
1200 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1201
1202 SmallVector<SDOperand, 8> ArgValues;
1203 unsigned LastVal = ~0U;
1204 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1205 CCValAssign &VA = ArgLocs[i];
1206 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1207 // places.
1208 assert(VA.getValNo() != LastVal &&
1209 "Don't support value assigned to multiple locs yet");
1210 LastVal = VA.getValNo();
1211
1212 if (VA.isRegLoc()) {
1213 MVT::ValueType RegVT = VA.getLocVT();
1214 TargetRegisterClass *RC;
1215 if (RegVT == MVT::i32)
1216 RC = X86::GR32RegisterClass;
1217 else if (RegVT == MVT::i64)
1218 RC = X86::GR64RegisterClass;
1219 else if (RegVT == MVT::f32)
1220 RC = X86::FR32RegisterClass;
1221 else if (RegVT == MVT::f64)
1222 RC = X86::FR64RegisterClass;
1223 else {
1224 assert(MVT::isVector(RegVT));
1225 if (MVT::getSizeInBits(RegVT) == 64) {
1226 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1227 RegVT = MVT::i64;
1228 } else
1229 RC = X86::VR128RegisterClass;
1230 }
1231
1232 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1233 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1234
1235 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1236 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1237 // right size.
1238 if (VA.getLocInfo() == CCValAssign::SExt)
1239 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1240 DAG.getValueType(VA.getValVT()));
1241 else if (VA.getLocInfo() == CCValAssign::ZExt)
1242 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1243 DAG.getValueType(VA.getValVT()));
1244
1245 if (VA.getLocInfo() != CCValAssign::Full)
1246 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1247
1248 // Handle MMX values passed in GPRs.
1249 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1250 MVT::getSizeInBits(RegVT) == 64)
1251 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1252
1253 ArgValues.push_back(ArgValue);
1254 } else {
1255 assert(VA.isMemLoc());
1256
1257 // Create the nodes corresponding to a load from this parameter slot.
1258 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1259 VA.getLocMemOffset());
1260 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00001261
1262 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1263 if (Flags & ISD::ParamFlags::ByVal)
1264 ArgValues.push_back(FIN);
1265 else
1266 ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 }
1268 }
1269
1270 unsigned StackSize = CCInfo.getNextStackOffset();
1271
1272 // If the function takes variable number of arguments, make a frame index for
1273 // the start of the first vararg value... for expansion of llvm.va_start.
1274 if (isVarArg) {
1275 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1276 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1277
1278 // For X86-64, if there are vararg parameters that are passed via
1279 // registers, then we must store them to their spots on the stack so they
1280 // may be loaded by deferencing the result of va_next.
1281 VarArgsGPOffset = NumIntRegs * 8;
1282 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1283 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1284 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1285
1286 // Store the integer parameter registers.
1287 SmallVector<SDOperand, 8> MemOps;
1288 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1289 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1290 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1291 for (; NumIntRegs != 6; ++NumIntRegs) {
1292 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1293 X86::GR64RegisterClass);
1294 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1295 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1296 MemOps.push_back(Store);
1297 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1298 DAG.getConstant(8, getPointerTy()));
1299 }
1300
1301 // Now store the XMM (fp + vector) parameter registers.
1302 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1303 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1304 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1305 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1306 X86::VR128RegisterClass);
1307 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1308 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1309 MemOps.push_back(Store);
1310 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1311 DAG.getConstant(16, getPointerTy()));
1312 }
1313 if (!MemOps.empty())
1314 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1315 &MemOps[0], MemOps.size());
1316 }
1317
1318 ArgValues.push_back(Root);
1319
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001320 BytesToPopOnReturn = 0; // Callee pops nothing.
1321 BytesCallerReserves = StackSize;
1322
Anton Korobeynikove844e472007-08-15 17:12:32 +00001323 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1324 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1325
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001326 // Return the new list of results.
1327 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1328 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1329}
1330
1331SDOperand
1332X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1333 unsigned CC) {
1334 SDOperand Chain = Op.getOperand(0);
1335 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1336 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1337 SDOperand Callee = Op.getOperand(4);
1338
1339 // Analyze operands of the call, assigning locations to each operand.
1340 SmallVector<CCValAssign, 16> ArgLocs;
1341 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1342 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1343
1344 // Get a count of how many bytes are to be pushed on the stack.
1345 unsigned NumBytes = CCInfo.getNextStackOffset();
1346 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1347
1348 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1349 SmallVector<SDOperand, 8> MemOpChains;
1350
1351 SDOperand StackPtr;
1352
1353 // Walk the register/memloc assignments, inserting copies/loads.
1354 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1355 CCValAssign &VA = ArgLocs[i];
1356 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1357
1358 // Promote the value if needed.
1359 switch (VA.getLocInfo()) {
1360 default: assert(0 && "Unknown loc info!");
1361 case CCValAssign::Full: break;
1362 case CCValAssign::SExt:
1363 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1364 break;
1365 case CCValAssign::ZExt:
1366 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1367 break;
1368 case CCValAssign::AExt:
1369 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1370 break;
1371 }
1372
1373 if (VA.isRegLoc()) {
1374 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1375 } else {
1376 assert(VA.isMemLoc());
1377 if (StackPtr.Val == 0)
1378 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1379 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1380 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001381
1382 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1383 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1384 if (Flags & ISD::ParamFlags::ByVal) {
1385 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1386 ISD::ParamFlags::ByValAlignOffs);
1387 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1388 ISD::ParamFlags::ByValSizeOffs;
1389
1390 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1391 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1392
1393 assert(0 && "Not Implemented");
1394
1395 SDOperand Copy = DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff,
1396 Arg, SizeNode, AlignNode);
1397 MemOpChains.push_back(Copy);
1398 }
1399 else {
1400 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1401 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001402 }
1403 }
1404
1405 if (!MemOpChains.empty())
1406 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1407 &MemOpChains[0], MemOpChains.size());
1408
1409 // Build a sequence of copy-to-reg nodes chained together with token chain
1410 // and flag operands which copy the outgoing args into registers.
1411 SDOperand InFlag;
1412 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1413 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1414 InFlag);
1415 InFlag = Chain.getValue(1);
1416 }
1417
1418 if (isVarArg) {
1419 // From AMD64 ABI document:
1420 // For calls that may call functions that use varargs or stdargs
1421 // (prototype-less calls or calls to functions containing ellipsis (...) in
1422 // the declaration) %al is used as hidden argument to specify the number
1423 // of SSE registers used. The contents of %al do not need to match exactly
1424 // the number of registers, but must be an ubound on the number of SSE
1425 // registers used and is in the range 0 - 8 inclusive.
1426
1427 // Count the number of XMM registers allocated.
1428 static const unsigned XMMArgRegs[] = {
1429 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1430 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1431 };
1432 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1433
1434 Chain = DAG.getCopyToReg(Chain, X86::AL,
1435 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1436 InFlag = Chain.getValue(1);
1437 }
1438
1439 // If the callee is a GlobalAddress node (quite common, every direct call is)
1440 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1441 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1442 // We should use extra load for direct calls to dllimported functions in
1443 // non-JIT mode.
1444 if (getTargetMachine().getCodeModel() != CodeModel::Large
1445 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1446 getTargetMachine(), true))
1447 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1448 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1449 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1450 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1451
1452 // Returns a chain & a flag for retval copy to use.
1453 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1454 SmallVector<SDOperand, 8> Ops;
1455 Ops.push_back(Chain);
1456 Ops.push_back(Callee);
1457
1458 // Add argument registers to the end of the list so that they are known live
1459 // into the call.
1460 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1461 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1462 RegsToPass[i].second.getValueType()));
1463
1464 if (InFlag.Val)
1465 Ops.push_back(InFlag);
1466
1467 // FIXME: Do not generate X86ISD::TAILCALL for now.
1468 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1469 NodeTys, &Ops[0], Ops.size());
1470 InFlag = Chain.getValue(1);
1471
1472 // Returns a flag for retval copy to use.
1473 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1474 Ops.clear();
1475 Ops.push_back(Chain);
1476 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1477 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1478 Ops.push_back(InFlag);
1479 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1480 InFlag = Chain.getValue(1);
1481
1482 // Handle result values, copying them out of physregs into vregs that we
1483 // return.
1484 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1485}
1486
1487
1488//===----------------------------------------------------------------------===//
1489// Other Lowering Hooks
1490//===----------------------------------------------------------------------===//
1491
1492
1493SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001494 MachineFunction &MF = DAG.getMachineFunction();
1495 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1496 int ReturnAddrIndex = FuncInfo->getRAIndex();
1497
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001498 if (ReturnAddrIndex == 0) {
1499 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500 if (Subtarget->is64Bit())
1501 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1502 else
1503 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001504
1505 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001506 }
1507
1508 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1509}
1510
1511
1512
1513/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1514/// specific condition code. It returns a false if it cannot do a direct
1515/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1516/// needed.
1517static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1518 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1519 SelectionDAG &DAG) {
1520 X86CC = X86::COND_INVALID;
1521 if (!isFP) {
1522 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1523 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1524 // X > -1 -> X == 0, jump !sign.
1525 RHS = DAG.getConstant(0, RHS.getValueType());
1526 X86CC = X86::COND_NS;
1527 return true;
1528 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1529 // X < 0 -> X == 0, jump on sign.
1530 X86CC = X86::COND_S;
1531 return true;
1532 }
1533 }
1534
1535 switch (SetCCOpcode) {
1536 default: break;
1537 case ISD::SETEQ: X86CC = X86::COND_E; break;
1538 case ISD::SETGT: X86CC = X86::COND_G; break;
1539 case ISD::SETGE: X86CC = X86::COND_GE; break;
1540 case ISD::SETLT: X86CC = X86::COND_L; break;
1541 case ISD::SETLE: X86CC = X86::COND_LE; break;
1542 case ISD::SETNE: X86CC = X86::COND_NE; break;
1543 case ISD::SETULT: X86CC = X86::COND_B; break;
1544 case ISD::SETUGT: X86CC = X86::COND_A; break;
1545 case ISD::SETULE: X86CC = X86::COND_BE; break;
1546 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1547 }
1548 } else {
1549 // On a floating point condition, the flags are set as follows:
1550 // ZF PF CF op
1551 // 0 | 0 | 0 | X > Y
1552 // 0 | 0 | 1 | X < Y
1553 // 1 | 0 | 0 | X == Y
1554 // 1 | 1 | 1 | unordered
1555 bool Flip = false;
1556 switch (SetCCOpcode) {
1557 default: break;
1558 case ISD::SETUEQ:
1559 case ISD::SETEQ: X86CC = X86::COND_E; break;
1560 case ISD::SETOLT: Flip = true; // Fallthrough
1561 case ISD::SETOGT:
1562 case ISD::SETGT: X86CC = X86::COND_A; break;
1563 case ISD::SETOLE: Flip = true; // Fallthrough
1564 case ISD::SETOGE:
1565 case ISD::SETGE: X86CC = X86::COND_AE; break;
1566 case ISD::SETUGT: Flip = true; // Fallthrough
1567 case ISD::SETULT:
1568 case ISD::SETLT: X86CC = X86::COND_B; break;
1569 case ISD::SETUGE: Flip = true; // Fallthrough
1570 case ISD::SETULE:
1571 case ISD::SETLE: X86CC = X86::COND_BE; break;
1572 case ISD::SETONE:
1573 case ISD::SETNE: X86CC = X86::COND_NE; break;
1574 case ISD::SETUO: X86CC = X86::COND_P; break;
1575 case ISD::SETO: X86CC = X86::COND_NP; break;
1576 }
1577 if (Flip)
1578 std::swap(LHS, RHS);
1579 }
1580
1581 return X86CC != X86::COND_INVALID;
1582}
1583
1584/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1585/// code. Current x86 isa includes the following FP cmov instructions:
1586/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1587static bool hasFPCMov(unsigned X86CC) {
1588 switch (X86CC) {
1589 default:
1590 return false;
1591 case X86::COND_B:
1592 case X86::COND_BE:
1593 case X86::COND_E:
1594 case X86::COND_P:
1595 case X86::COND_A:
1596 case X86::COND_AE:
1597 case X86::COND_NE:
1598 case X86::COND_NP:
1599 return true;
1600 }
1601}
1602
1603/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1604/// true if Op is undef or if its value falls within the specified range (L, H].
1605static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1606 if (Op.getOpcode() == ISD::UNDEF)
1607 return true;
1608
1609 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1610 return (Val >= Low && Val < Hi);
1611}
1612
1613/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1614/// true if Op is undef or if its value equal to the specified value.
1615static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1616 if (Op.getOpcode() == ISD::UNDEF)
1617 return true;
1618 return cast<ConstantSDNode>(Op)->getValue() == Val;
1619}
1620
1621/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1622/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1623bool X86::isPSHUFDMask(SDNode *N) {
1624 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1625
Dan Gohman7dc19012007-08-02 21:17:01 +00001626 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001627 return false;
1628
1629 // Check if the value doesn't reference the second vector.
1630 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1631 SDOperand Arg = N->getOperand(i);
1632 if (Arg.getOpcode() == ISD::UNDEF) continue;
1633 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001634 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001635 return false;
1636 }
1637
1638 return true;
1639}
1640
1641/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1642/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1643bool X86::isPSHUFHWMask(SDNode *N) {
1644 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1645
1646 if (N->getNumOperands() != 8)
1647 return false;
1648
1649 // Lower quadword copied in order.
1650 for (unsigned i = 0; i != 4; ++i) {
1651 SDOperand Arg = N->getOperand(i);
1652 if (Arg.getOpcode() == ISD::UNDEF) continue;
1653 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1654 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1655 return false;
1656 }
1657
1658 // Upper quadword shuffled.
1659 for (unsigned i = 4; i != 8; ++i) {
1660 SDOperand Arg = N->getOperand(i);
1661 if (Arg.getOpcode() == ISD::UNDEF) continue;
1662 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1663 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1664 if (Val < 4 || Val > 7)
1665 return false;
1666 }
1667
1668 return true;
1669}
1670
1671/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1672/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1673bool X86::isPSHUFLWMask(SDNode *N) {
1674 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1675
1676 if (N->getNumOperands() != 8)
1677 return false;
1678
1679 // Upper quadword copied in order.
1680 for (unsigned i = 4; i != 8; ++i)
1681 if (!isUndefOrEqual(N->getOperand(i), i))
1682 return false;
1683
1684 // Lower quadword shuffled.
1685 for (unsigned i = 0; i != 4; ++i)
1686 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1687 return false;
1688
1689 return true;
1690}
1691
1692/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1693/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1694static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1695 if (NumElems != 2 && NumElems != 4) return false;
1696
1697 unsigned Half = NumElems / 2;
1698 for (unsigned i = 0; i < Half; ++i)
1699 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1700 return false;
1701 for (unsigned i = Half; i < NumElems; ++i)
1702 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1703 return false;
1704
1705 return true;
1706}
1707
1708bool X86::isSHUFPMask(SDNode *N) {
1709 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1710 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1711}
1712
1713/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1714/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1715/// half elements to come from vector 1 (which would equal the dest.) and
1716/// the upper half to come from vector 2.
1717static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1718 if (NumOps != 2 && NumOps != 4) return false;
1719
1720 unsigned Half = NumOps / 2;
1721 for (unsigned i = 0; i < Half; ++i)
1722 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1723 return false;
1724 for (unsigned i = Half; i < NumOps; ++i)
1725 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1726 return false;
1727 return true;
1728}
1729
1730static bool isCommutedSHUFP(SDNode *N) {
1731 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1732 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1733}
1734
1735/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1736/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1737bool X86::isMOVHLPSMask(SDNode *N) {
1738 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1739
1740 if (N->getNumOperands() != 4)
1741 return false;
1742
1743 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1744 return isUndefOrEqual(N->getOperand(0), 6) &&
1745 isUndefOrEqual(N->getOperand(1), 7) &&
1746 isUndefOrEqual(N->getOperand(2), 2) &&
1747 isUndefOrEqual(N->getOperand(3), 3);
1748}
1749
1750/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1751/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1752/// <2, 3, 2, 3>
1753bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1754 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1755
1756 if (N->getNumOperands() != 4)
1757 return false;
1758
1759 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1760 return isUndefOrEqual(N->getOperand(0), 2) &&
1761 isUndefOrEqual(N->getOperand(1), 3) &&
1762 isUndefOrEqual(N->getOperand(2), 2) &&
1763 isUndefOrEqual(N->getOperand(3), 3);
1764}
1765
1766/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1767/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1768bool X86::isMOVLPMask(SDNode *N) {
1769 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1770
1771 unsigned NumElems = N->getNumOperands();
1772 if (NumElems != 2 && NumElems != 4)
1773 return false;
1774
1775 for (unsigned i = 0; i < NumElems/2; ++i)
1776 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1777 return false;
1778
1779 for (unsigned i = NumElems/2; i < NumElems; ++i)
1780 if (!isUndefOrEqual(N->getOperand(i), i))
1781 return false;
1782
1783 return true;
1784}
1785
1786/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1787/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1788/// and MOVLHPS.
1789bool X86::isMOVHPMask(SDNode *N) {
1790 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1791
1792 unsigned NumElems = N->getNumOperands();
1793 if (NumElems != 2 && NumElems != 4)
1794 return false;
1795
1796 for (unsigned i = 0; i < NumElems/2; ++i)
1797 if (!isUndefOrEqual(N->getOperand(i), i))
1798 return false;
1799
1800 for (unsigned i = 0; i < NumElems/2; ++i) {
1801 SDOperand Arg = N->getOperand(i + NumElems/2);
1802 if (!isUndefOrEqual(Arg, i + NumElems))
1803 return false;
1804 }
1805
1806 return true;
1807}
1808
1809/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1810/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1811bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1812 bool V2IsSplat = false) {
1813 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1814 return false;
1815
1816 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1817 SDOperand BitI = Elts[i];
1818 SDOperand BitI1 = Elts[i+1];
1819 if (!isUndefOrEqual(BitI, j))
1820 return false;
1821 if (V2IsSplat) {
1822 if (isUndefOrEqual(BitI1, NumElts))
1823 return false;
1824 } else {
1825 if (!isUndefOrEqual(BitI1, j + NumElts))
1826 return false;
1827 }
1828 }
1829
1830 return true;
1831}
1832
1833bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1834 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1835 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1836}
1837
1838/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1839/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1840bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1841 bool V2IsSplat = false) {
1842 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1843 return false;
1844
1845 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1846 SDOperand BitI = Elts[i];
1847 SDOperand BitI1 = Elts[i+1];
1848 if (!isUndefOrEqual(BitI, j + NumElts/2))
1849 return false;
1850 if (V2IsSplat) {
1851 if (isUndefOrEqual(BitI1, NumElts))
1852 return false;
1853 } else {
1854 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1855 return false;
1856 }
1857 }
1858
1859 return true;
1860}
1861
1862bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1863 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1864 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1865}
1866
1867/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1868/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1869/// <0, 0, 1, 1>
1870bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1871 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1872
1873 unsigned NumElems = N->getNumOperands();
1874 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1875 return false;
1876
1877 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1878 SDOperand BitI = N->getOperand(i);
1879 SDOperand BitI1 = N->getOperand(i+1);
1880
1881 if (!isUndefOrEqual(BitI, j))
1882 return false;
1883 if (!isUndefOrEqual(BitI1, j))
1884 return false;
1885 }
1886
1887 return true;
1888}
1889
1890/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1891/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1892/// <2, 2, 3, 3>
1893bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1894 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1895
1896 unsigned NumElems = N->getNumOperands();
1897 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1898 return false;
1899
1900 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1901 SDOperand BitI = N->getOperand(i);
1902 SDOperand BitI1 = N->getOperand(i + 1);
1903
1904 if (!isUndefOrEqual(BitI, j))
1905 return false;
1906 if (!isUndefOrEqual(BitI1, j))
1907 return false;
1908 }
1909
1910 return true;
1911}
1912
1913/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1914/// specifies a shuffle of elements that is suitable for input to MOVSS,
1915/// MOVSD, and MOVD, i.e. setting the lowest element.
1916static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1917 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1918 return false;
1919
1920 if (!isUndefOrEqual(Elts[0], NumElts))
1921 return false;
1922
1923 for (unsigned i = 1; i < NumElts; ++i) {
1924 if (!isUndefOrEqual(Elts[i], i))
1925 return false;
1926 }
1927
1928 return true;
1929}
1930
1931bool X86::isMOVLMask(SDNode *N) {
1932 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1933 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1934}
1935
1936/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1937/// of what x86 movss want. X86 movs requires the lowest element to be lowest
1938/// element of vector 2 and the other elements to come from vector 1 in order.
1939static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1940 bool V2IsSplat = false,
1941 bool V2IsUndef = false) {
1942 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1943 return false;
1944
1945 if (!isUndefOrEqual(Ops[0], 0))
1946 return false;
1947
1948 for (unsigned i = 1; i < NumOps; ++i) {
1949 SDOperand Arg = Ops[i];
1950 if (!(isUndefOrEqual(Arg, i+NumOps) ||
1951 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1952 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1953 return false;
1954 }
1955
1956 return true;
1957}
1958
1959static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1960 bool V2IsUndef = false) {
1961 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1962 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1963 V2IsSplat, V2IsUndef);
1964}
1965
1966/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1967/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1968bool X86::isMOVSHDUPMask(SDNode *N) {
1969 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1970
1971 if (N->getNumOperands() != 4)
1972 return false;
1973
1974 // Expect 1, 1, 3, 3
1975 for (unsigned i = 0; i < 2; ++i) {
1976 SDOperand Arg = N->getOperand(i);
1977 if (Arg.getOpcode() == ISD::UNDEF) continue;
1978 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1979 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1980 if (Val != 1) return false;
1981 }
1982
1983 bool HasHi = false;
1984 for (unsigned i = 2; i < 4; ++i) {
1985 SDOperand Arg = N->getOperand(i);
1986 if (Arg.getOpcode() == ISD::UNDEF) continue;
1987 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1988 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1989 if (Val != 3) return false;
1990 HasHi = true;
1991 }
1992
1993 // Don't use movshdup if it can be done with a shufps.
1994 return HasHi;
1995}
1996
1997/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1998/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1999bool X86::isMOVSLDUPMask(SDNode *N) {
2000 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2001
2002 if (N->getNumOperands() != 4)
2003 return false;
2004
2005 // Expect 0, 0, 2, 2
2006 for (unsigned i = 0; i < 2; ++i) {
2007 SDOperand Arg = N->getOperand(i);
2008 if (Arg.getOpcode() == ISD::UNDEF) continue;
2009 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2010 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2011 if (Val != 0) return false;
2012 }
2013
2014 bool HasHi = false;
2015 for (unsigned i = 2; i < 4; ++i) {
2016 SDOperand Arg = N->getOperand(i);
2017 if (Arg.getOpcode() == ISD::UNDEF) continue;
2018 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2019 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2020 if (Val != 2) return false;
2021 HasHi = true;
2022 }
2023
2024 // Don't use movshdup if it can be done with a shufps.
2025 return HasHi;
2026}
2027
2028/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2029/// specifies a identity operation on the LHS or RHS.
2030static bool isIdentityMask(SDNode *N, bool RHS = false) {
2031 unsigned NumElems = N->getNumOperands();
2032 for (unsigned i = 0; i < NumElems; ++i)
2033 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2034 return false;
2035 return true;
2036}
2037
2038/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2039/// a splat of a single element.
2040static bool isSplatMask(SDNode *N) {
2041 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2042
2043 // This is a splat operation if each element of the permute is the same, and
2044 // if the value doesn't reference the second vector.
2045 unsigned NumElems = N->getNumOperands();
2046 SDOperand ElementBase;
2047 unsigned i = 0;
2048 for (; i != NumElems; ++i) {
2049 SDOperand Elt = N->getOperand(i);
2050 if (isa<ConstantSDNode>(Elt)) {
2051 ElementBase = Elt;
2052 break;
2053 }
2054 }
2055
2056 if (!ElementBase.Val)
2057 return false;
2058
2059 for (; i != NumElems; ++i) {
2060 SDOperand Arg = N->getOperand(i);
2061 if (Arg.getOpcode() == ISD::UNDEF) continue;
2062 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2063 if (Arg != ElementBase) return false;
2064 }
2065
2066 // Make sure it is a splat of the first vector operand.
2067 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2068}
2069
2070/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2071/// a splat of a single element and it's a 2 or 4 element mask.
2072bool X86::isSplatMask(SDNode *N) {
2073 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2074
2075 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2076 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2077 return false;
2078 return ::isSplatMask(N);
2079}
2080
2081/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2082/// specifies a splat of zero element.
2083bool X86::isSplatLoMask(SDNode *N) {
2084 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2085
2086 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2087 if (!isUndefOrEqual(N->getOperand(i), 0))
2088 return false;
2089 return true;
2090}
2091
2092/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2093/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2094/// instructions.
2095unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2096 unsigned NumOperands = N->getNumOperands();
2097 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2098 unsigned Mask = 0;
2099 for (unsigned i = 0; i < NumOperands; ++i) {
2100 unsigned Val = 0;
2101 SDOperand Arg = N->getOperand(NumOperands-i-1);
2102 if (Arg.getOpcode() != ISD::UNDEF)
2103 Val = cast<ConstantSDNode>(Arg)->getValue();
2104 if (Val >= NumOperands) Val -= NumOperands;
2105 Mask |= Val;
2106 if (i != NumOperands - 1)
2107 Mask <<= Shift;
2108 }
2109
2110 return Mask;
2111}
2112
2113/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2114/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2115/// instructions.
2116unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2117 unsigned Mask = 0;
2118 // 8 nodes, but we only care about the last 4.
2119 for (unsigned i = 7; i >= 4; --i) {
2120 unsigned Val = 0;
2121 SDOperand Arg = N->getOperand(i);
2122 if (Arg.getOpcode() != ISD::UNDEF)
2123 Val = cast<ConstantSDNode>(Arg)->getValue();
2124 Mask |= (Val - 4);
2125 if (i != 4)
2126 Mask <<= 2;
2127 }
2128
2129 return Mask;
2130}
2131
2132/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2133/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2134/// instructions.
2135unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2136 unsigned Mask = 0;
2137 // 8 nodes, but we only care about the first 4.
2138 for (int i = 3; i >= 0; --i) {
2139 unsigned Val = 0;
2140 SDOperand Arg = N->getOperand(i);
2141 if (Arg.getOpcode() != ISD::UNDEF)
2142 Val = cast<ConstantSDNode>(Arg)->getValue();
2143 Mask |= Val;
2144 if (i != 0)
2145 Mask <<= 2;
2146 }
2147
2148 return Mask;
2149}
2150
2151/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2152/// specifies a 8 element shuffle that can be broken into a pair of
2153/// PSHUFHW and PSHUFLW.
2154static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2155 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2156
2157 if (N->getNumOperands() != 8)
2158 return false;
2159
2160 // Lower quadword shuffled.
2161 for (unsigned i = 0; i != 4; ++i) {
2162 SDOperand Arg = N->getOperand(i);
2163 if (Arg.getOpcode() == ISD::UNDEF) continue;
2164 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2165 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2166 if (Val > 4)
2167 return false;
2168 }
2169
2170 // Upper quadword shuffled.
2171 for (unsigned i = 4; i != 8; ++i) {
2172 SDOperand Arg = N->getOperand(i);
2173 if (Arg.getOpcode() == ISD::UNDEF) continue;
2174 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2175 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2176 if (Val < 4 || Val > 7)
2177 return false;
2178 }
2179
2180 return true;
2181}
2182
2183/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2184/// values in ther permute mask.
2185static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2186 SDOperand &V2, SDOperand &Mask,
2187 SelectionDAG &DAG) {
2188 MVT::ValueType VT = Op.getValueType();
2189 MVT::ValueType MaskVT = Mask.getValueType();
2190 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2191 unsigned NumElems = Mask.getNumOperands();
2192 SmallVector<SDOperand, 8> MaskVec;
2193
2194 for (unsigned i = 0; i != NumElems; ++i) {
2195 SDOperand Arg = Mask.getOperand(i);
2196 if (Arg.getOpcode() == ISD::UNDEF) {
2197 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2198 continue;
2199 }
2200 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2201 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2202 if (Val < NumElems)
2203 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2204 else
2205 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2206 }
2207
2208 std::swap(V1, V2);
2209 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2210 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2211}
2212
2213/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2214/// match movhlps. The lower half elements should come from upper half of
2215/// V1 (and in order), and the upper half elements should come from the upper
2216/// half of V2 (and in order).
2217static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2218 unsigned NumElems = Mask->getNumOperands();
2219 if (NumElems != 4)
2220 return false;
2221 for (unsigned i = 0, e = 2; i != e; ++i)
2222 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2223 return false;
2224 for (unsigned i = 2; i != 4; ++i)
2225 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2226 return false;
2227 return true;
2228}
2229
2230/// isScalarLoadToVector - Returns true if the node is a scalar load that
2231/// is promoted to a vector.
2232static inline bool isScalarLoadToVector(SDNode *N) {
2233 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2234 N = N->getOperand(0).Val;
2235 return ISD::isNON_EXTLoad(N);
2236 }
2237 return false;
2238}
2239
2240/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2241/// match movlp{s|d}. The lower half elements should come from lower half of
2242/// V1 (and in order), and the upper half elements should come from the upper
2243/// half of V2 (and in order). And since V1 will become the source of the
2244/// MOVLP, it must be either a vector load or a scalar load to vector.
2245static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2246 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2247 return false;
2248 // Is V2 is a vector load, don't do this transformation. We will try to use
2249 // load folding shufps op.
2250 if (ISD::isNON_EXTLoad(V2))
2251 return false;
2252
2253 unsigned NumElems = Mask->getNumOperands();
2254 if (NumElems != 2 && NumElems != 4)
2255 return false;
2256 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2257 if (!isUndefOrEqual(Mask->getOperand(i), i))
2258 return false;
2259 for (unsigned i = NumElems/2; i != NumElems; ++i)
2260 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2261 return false;
2262 return true;
2263}
2264
2265/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2266/// all the same.
2267static bool isSplatVector(SDNode *N) {
2268 if (N->getOpcode() != ISD::BUILD_VECTOR)
2269 return false;
2270
2271 SDOperand SplatValue = N->getOperand(0);
2272 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2273 if (N->getOperand(i) != SplatValue)
2274 return false;
2275 return true;
2276}
2277
2278/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2279/// to an undef.
2280static bool isUndefShuffle(SDNode *N) {
2281 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2282 return false;
2283
2284 SDOperand V1 = N->getOperand(0);
2285 SDOperand V2 = N->getOperand(1);
2286 SDOperand Mask = N->getOperand(2);
2287 unsigned NumElems = Mask.getNumOperands();
2288 for (unsigned i = 0; i != NumElems; ++i) {
2289 SDOperand Arg = Mask.getOperand(i);
2290 if (Arg.getOpcode() != ISD::UNDEF) {
2291 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2292 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2293 return false;
2294 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2295 return false;
2296 }
2297 }
2298 return true;
2299}
2300
2301/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2302/// constant +0.0.
2303static inline bool isZeroNode(SDOperand Elt) {
2304 return ((isa<ConstantSDNode>(Elt) &&
2305 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2306 (isa<ConstantFPSDNode>(Elt) &&
2307 cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2308}
2309
2310/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2311/// to an zero vector.
2312static bool isZeroShuffle(SDNode *N) {
2313 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2314 return false;
2315
2316 SDOperand V1 = N->getOperand(0);
2317 SDOperand V2 = N->getOperand(1);
2318 SDOperand Mask = N->getOperand(2);
2319 unsigned NumElems = Mask.getNumOperands();
2320 for (unsigned i = 0; i != NumElems; ++i) {
2321 SDOperand Arg = Mask.getOperand(i);
2322 if (Arg.getOpcode() != ISD::UNDEF) {
2323 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2324 if (Idx < NumElems) {
2325 unsigned Opc = V1.Val->getOpcode();
2326 if (Opc == ISD::UNDEF)
2327 continue;
2328 if (Opc != ISD::BUILD_VECTOR ||
2329 !isZeroNode(V1.Val->getOperand(Idx)))
2330 return false;
2331 } else if (Idx >= NumElems) {
2332 unsigned Opc = V2.Val->getOpcode();
2333 if (Opc == ISD::UNDEF)
2334 continue;
2335 if (Opc != ISD::BUILD_VECTOR ||
2336 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2337 return false;
2338 }
2339 }
2340 }
2341 return true;
2342}
2343
2344/// getZeroVector - Returns a vector of specified type with all zero elements.
2345///
2346static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2347 assert(MVT::isVector(VT) && "Expected a vector type");
2348 unsigned NumElems = MVT::getVectorNumElements(VT);
2349 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2350 bool isFP = MVT::isFloatingPoint(EVT);
2351 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2352 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2353 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2354}
2355
2356/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2357/// that point to V2 points to its first element.
2358static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2359 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2360
2361 bool Changed = false;
2362 SmallVector<SDOperand, 8> MaskVec;
2363 unsigned NumElems = Mask.getNumOperands();
2364 for (unsigned i = 0; i != NumElems; ++i) {
2365 SDOperand Arg = Mask.getOperand(i);
2366 if (Arg.getOpcode() != ISD::UNDEF) {
2367 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2368 if (Val > NumElems) {
2369 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2370 Changed = true;
2371 }
2372 }
2373 MaskVec.push_back(Arg);
2374 }
2375
2376 if (Changed)
2377 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2378 &MaskVec[0], MaskVec.size());
2379 return Mask;
2380}
2381
2382/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2383/// operation of specified width.
2384static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2385 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2386 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2387
2388 SmallVector<SDOperand, 8> MaskVec;
2389 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2390 for (unsigned i = 1; i != NumElems; ++i)
2391 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2392 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2393}
2394
2395/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2396/// of specified width.
2397static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2398 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2399 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2400 SmallVector<SDOperand, 8> MaskVec;
2401 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2402 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2403 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2404 }
2405 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2406}
2407
2408/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2409/// of specified width.
2410static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2411 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2412 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2413 unsigned Half = NumElems/2;
2414 SmallVector<SDOperand, 8> MaskVec;
2415 for (unsigned i = 0; i != Half; ++i) {
2416 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2417 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2418 }
2419 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2420}
2421
2422/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2423///
2424static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2425 SDOperand V1 = Op.getOperand(0);
2426 SDOperand Mask = Op.getOperand(2);
2427 MVT::ValueType VT = Op.getValueType();
2428 unsigned NumElems = Mask.getNumOperands();
2429 Mask = getUnpacklMask(NumElems, DAG);
2430 while (NumElems != 4) {
2431 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2432 NumElems >>= 1;
2433 }
2434 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2435
2436 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2437 Mask = getZeroVector(MaskVT, DAG);
2438 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2439 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2440 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2441}
2442
2443/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2444/// vector of zero or undef vector.
2445static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2446 unsigned NumElems, unsigned Idx,
2447 bool isZero, SelectionDAG &DAG) {
2448 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2449 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2450 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2451 SDOperand Zero = DAG.getConstant(0, EVT);
2452 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2453 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2454 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2455 &MaskVec[0], MaskVec.size());
2456 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2457}
2458
2459/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2460///
2461static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2462 unsigned NumNonZero, unsigned NumZero,
2463 SelectionDAG &DAG, TargetLowering &TLI) {
2464 if (NumNonZero > 8)
2465 return SDOperand();
2466
2467 SDOperand V(0, 0);
2468 bool First = true;
2469 for (unsigned i = 0; i < 16; ++i) {
2470 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2471 if (ThisIsNonZero && First) {
2472 if (NumZero)
2473 V = getZeroVector(MVT::v8i16, DAG);
2474 else
2475 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2476 First = false;
2477 }
2478
2479 if ((i & 1) != 0) {
2480 SDOperand ThisElt(0, 0), LastElt(0, 0);
2481 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2482 if (LastIsNonZero) {
2483 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2484 }
2485 if (ThisIsNonZero) {
2486 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2487 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2488 ThisElt, DAG.getConstant(8, MVT::i8));
2489 if (LastIsNonZero)
2490 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2491 } else
2492 ThisElt = LastElt;
2493
2494 if (ThisElt.Val)
2495 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2496 DAG.getConstant(i/2, TLI.getPointerTy()));
2497 }
2498 }
2499
2500 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2501}
2502
2503/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2504///
2505static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2506 unsigned NumNonZero, unsigned NumZero,
2507 SelectionDAG &DAG, TargetLowering &TLI) {
2508 if (NumNonZero > 4)
2509 return SDOperand();
2510
2511 SDOperand V(0, 0);
2512 bool First = true;
2513 for (unsigned i = 0; i < 8; ++i) {
2514 bool isNonZero = (NonZeros & (1 << i)) != 0;
2515 if (isNonZero) {
2516 if (First) {
2517 if (NumZero)
2518 V = getZeroVector(MVT::v8i16, DAG);
2519 else
2520 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2521 First = false;
2522 }
2523 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2524 DAG.getConstant(i, TLI.getPointerTy()));
2525 }
2526 }
2527
2528 return V;
2529}
2530
2531SDOperand
2532X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2533 // All zero's are handled with pxor.
2534 if (ISD::isBuildVectorAllZeros(Op.Val))
2535 return Op;
2536
2537 // All one's are handled with pcmpeqd.
2538 if (ISD::isBuildVectorAllOnes(Op.Val))
2539 return Op;
2540
2541 MVT::ValueType VT = Op.getValueType();
2542 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2543 unsigned EVTBits = MVT::getSizeInBits(EVT);
2544
2545 unsigned NumElems = Op.getNumOperands();
2546 unsigned NumZero = 0;
2547 unsigned NumNonZero = 0;
2548 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00002549 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002550 std::set<SDOperand> Values;
2551 for (unsigned i = 0; i < NumElems; ++i) {
2552 SDOperand Elt = Op.getOperand(i);
2553 if (Elt.getOpcode() != ISD::UNDEF) {
2554 Values.insert(Elt);
2555 if (isZeroNode(Elt))
2556 NumZero++;
2557 else {
2558 NonZeros |= (1 << i);
2559 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00002560 if (Elt.getOpcode() == ISD::Constant ||
2561 Elt.getOpcode() == ISD::ConstantFP)
2562 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002563 }
2564 }
2565 }
2566
2567 if (NumNonZero == 0) {
2568 if (NumZero == 0)
2569 // All undef vector. Return an UNDEF.
2570 return DAG.getNode(ISD::UNDEF, VT);
2571 else
2572 // A mix of zero and undef. Return a zero vector.
2573 return getZeroVector(VT, DAG);
2574 }
2575
2576 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2577 if (Values.size() == 1)
2578 return SDOperand();
2579
2580 // Special case for single non-zero element.
2581 if (NumNonZero == 1) {
2582 unsigned Idx = CountTrailingZeros_32(NonZeros);
2583 SDOperand Item = Op.getOperand(Idx);
2584 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2585 if (Idx == 0)
2586 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2587 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2588 NumZero > 0, DAG);
2589
2590 if (EVTBits == 32) {
2591 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2592 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2593 DAG);
2594 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2595 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2596 SmallVector<SDOperand, 8> MaskVec;
2597 for (unsigned i = 0; i < NumElems; i++)
2598 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2599 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2600 &MaskVec[0], MaskVec.size());
2601 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2602 DAG.getNode(ISD::UNDEF, VT), Mask);
2603 }
2604 }
2605
Dan Gohman21463242007-07-24 22:55:08 +00002606 // A vector full of immediates; various special cases are already
2607 // handled, so this is best done with a single constant-pool load.
2608 if (NumNonZero == NumNonZeroImms)
2609 return SDOperand();
2610
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002611 // Let legalizer expand 2-wide build_vectors.
2612 if (EVTBits == 64)
2613 return SDOperand();
2614
2615 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2616 if (EVTBits == 8 && NumElems == 16) {
2617 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2618 *this);
2619 if (V.Val) return V;
2620 }
2621
2622 if (EVTBits == 16 && NumElems == 8) {
2623 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2624 *this);
2625 if (V.Val) return V;
2626 }
2627
2628 // If element VT is == 32 bits, turn it into a number of shuffles.
2629 SmallVector<SDOperand, 8> V;
2630 V.resize(NumElems);
2631 if (NumElems == 4 && NumZero > 0) {
2632 for (unsigned i = 0; i < 4; ++i) {
2633 bool isZero = !(NonZeros & (1 << i));
2634 if (isZero)
2635 V[i] = getZeroVector(VT, DAG);
2636 else
2637 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2638 }
2639
2640 for (unsigned i = 0; i < 2; ++i) {
2641 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2642 default: break;
2643 case 0:
2644 V[i] = V[i*2]; // Must be a zero vector.
2645 break;
2646 case 1:
2647 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2648 getMOVLMask(NumElems, DAG));
2649 break;
2650 case 2:
2651 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2652 getMOVLMask(NumElems, DAG));
2653 break;
2654 case 3:
2655 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2656 getUnpacklMask(NumElems, DAG));
2657 break;
2658 }
2659 }
2660
2661 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2662 // clears the upper bits.
2663 // FIXME: we can do the same for v4f32 case when we know both parts of
2664 // the lower half come from scalar_to_vector (loadf32). We should do
2665 // that in post legalizer dag combiner with target specific hooks.
2666 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2667 return V[0];
2668 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2669 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2670 SmallVector<SDOperand, 8> MaskVec;
2671 bool Reverse = (NonZeros & 0x3) == 2;
2672 for (unsigned i = 0; i < 2; ++i)
2673 if (Reverse)
2674 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2675 else
2676 MaskVec.push_back(DAG.getConstant(i, EVT));
2677 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2678 for (unsigned i = 0; i < 2; ++i)
2679 if (Reverse)
2680 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2681 else
2682 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2683 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2684 &MaskVec[0], MaskVec.size());
2685 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2686 }
2687
2688 if (Values.size() > 2) {
2689 // Expand into a number of unpckl*.
2690 // e.g. for v4f32
2691 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2692 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2693 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2694 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2695 for (unsigned i = 0; i < NumElems; ++i)
2696 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2697 NumElems >>= 1;
2698 while (NumElems != 0) {
2699 for (unsigned i = 0; i < NumElems; ++i)
2700 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2701 UnpckMask);
2702 NumElems >>= 1;
2703 }
2704 return V[0];
2705 }
2706
2707 return SDOperand();
2708}
2709
2710SDOperand
2711X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2712 SDOperand V1 = Op.getOperand(0);
2713 SDOperand V2 = Op.getOperand(1);
2714 SDOperand PermMask = Op.getOperand(2);
2715 MVT::ValueType VT = Op.getValueType();
2716 unsigned NumElems = PermMask.getNumOperands();
2717 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2718 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2719 bool V1IsSplat = false;
2720 bool V2IsSplat = false;
2721
2722 if (isUndefShuffle(Op.Val))
2723 return DAG.getNode(ISD::UNDEF, VT);
2724
2725 if (isZeroShuffle(Op.Val))
2726 return getZeroVector(VT, DAG);
2727
2728 if (isIdentityMask(PermMask.Val))
2729 return V1;
2730 else if (isIdentityMask(PermMask.Val, true))
2731 return V2;
2732
2733 if (isSplatMask(PermMask.Val)) {
2734 if (NumElems <= 4) return Op;
2735 // Promote it to a v4i32 splat.
2736 return PromoteSplat(Op, DAG);
2737 }
2738
2739 if (X86::isMOVLMask(PermMask.Val))
2740 return (V1IsUndef) ? V2 : Op;
2741
2742 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2743 X86::isMOVSLDUPMask(PermMask.Val) ||
2744 X86::isMOVHLPSMask(PermMask.Val) ||
2745 X86::isMOVHPMask(PermMask.Val) ||
2746 X86::isMOVLPMask(PermMask.Val))
2747 return Op;
2748
2749 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2750 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2751 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2752
2753 bool Commuted = false;
2754 V1IsSplat = isSplatVector(V1.Val);
2755 V2IsSplat = isSplatVector(V2.Val);
2756 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2757 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2758 std::swap(V1IsSplat, V2IsSplat);
2759 std::swap(V1IsUndef, V2IsUndef);
2760 Commuted = true;
2761 }
2762
2763 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2764 if (V2IsUndef) return V1;
2765 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2766 if (V2IsSplat) {
2767 // V2 is a splat, so the mask may be malformed. That is, it may point
2768 // to any V2 element. The instruction selectior won't like this. Get
2769 // a corrected mask and commute to form a proper MOVS{S|D}.
2770 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2771 if (NewMask.Val != PermMask.Val)
2772 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2773 }
2774 return Op;
2775 }
2776
2777 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2778 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2779 X86::isUNPCKLMask(PermMask.Val) ||
2780 X86::isUNPCKHMask(PermMask.Val))
2781 return Op;
2782
2783 if (V2IsSplat) {
2784 // Normalize mask so all entries that point to V2 points to its first
2785 // element then try to match unpck{h|l} again. If match, return a
2786 // new vector_shuffle with the corrected mask.
2787 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2788 if (NewMask.Val != PermMask.Val) {
2789 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2790 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2791 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2792 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2793 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2794 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2795 }
2796 }
2797 }
2798
2799 // Normalize the node to match x86 shuffle ops if needed
2800 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2801 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2802
2803 if (Commuted) {
2804 // Commute is back and try unpck* again.
2805 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2806 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2807 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2808 X86::isUNPCKLMask(PermMask.Val) ||
2809 X86::isUNPCKHMask(PermMask.Val))
2810 return Op;
2811 }
2812
2813 // If VT is integer, try PSHUF* first, then SHUFP*.
2814 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00002815 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2816 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2817 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2818 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819 X86::isPSHUFHWMask(PermMask.Val) ||
2820 X86::isPSHUFLWMask(PermMask.Val)) {
2821 if (V2.getOpcode() != ISD::UNDEF)
2822 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2823 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2824 return Op;
2825 }
2826
2827 if (X86::isSHUFPMask(PermMask.Val) &&
2828 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2829 return Op;
2830
2831 // Handle v8i16 shuffle high / low shuffle node pair.
2832 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2833 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2834 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2835 SmallVector<SDOperand, 8> MaskVec;
2836 for (unsigned i = 0; i != 4; ++i)
2837 MaskVec.push_back(PermMask.getOperand(i));
2838 for (unsigned i = 4; i != 8; ++i)
2839 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2840 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2841 &MaskVec[0], MaskVec.size());
2842 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2843 MaskVec.clear();
2844 for (unsigned i = 0; i != 4; ++i)
2845 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2846 for (unsigned i = 4; i != 8; ++i)
2847 MaskVec.push_back(PermMask.getOperand(i));
2848 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2849 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2850 }
2851 } else {
2852 // Floating point cases in the other order.
2853 if (X86::isSHUFPMask(PermMask.Val))
2854 return Op;
2855 if (X86::isPSHUFDMask(PermMask.Val) ||
2856 X86::isPSHUFHWMask(PermMask.Val) ||
2857 X86::isPSHUFLWMask(PermMask.Val)) {
2858 if (V2.getOpcode() != ISD::UNDEF)
2859 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2860 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2861 return Op;
2862 }
2863 }
2864
2865 if (NumElems == 4 &&
2866 // Don't do this for MMX.
2867 MVT::getSizeInBits(VT) != 64) {
2868 MVT::ValueType MaskVT = PermMask.getValueType();
2869 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2870 SmallVector<std::pair<int, int>, 8> Locs;
2871 Locs.reserve(NumElems);
2872 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2873 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2874 unsigned NumHi = 0;
2875 unsigned NumLo = 0;
2876 // If no more than two elements come from either vector. This can be
2877 // implemented with two shuffles. First shuffle gather the elements.
2878 // The second shuffle, which takes the first shuffle as both of its
2879 // vector operands, put the elements into the right order.
2880 for (unsigned i = 0; i != NumElems; ++i) {
2881 SDOperand Elt = PermMask.getOperand(i);
2882 if (Elt.getOpcode() == ISD::UNDEF) {
2883 Locs[i] = std::make_pair(-1, -1);
2884 } else {
2885 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2886 if (Val < NumElems) {
2887 Locs[i] = std::make_pair(0, NumLo);
2888 Mask1[NumLo] = Elt;
2889 NumLo++;
2890 } else {
2891 Locs[i] = std::make_pair(1, NumHi);
2892 if (2+NumHi < NumElems)
2893 Mask1[2+NumHi] = Elt;
2894 NumHi++;
2895 }
2896 }
2897 }
2898 if (NumLo <= 2 && NumHi <= 2) {
2899 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2900 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2901 &Mask1[0], Mask1.size()));
2902 for (unsigned i = 0; i != NumElems; ++i) {
2903 if (Locs[i].first == -1)
2904 continue;
2905 else {
2906 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2907 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2908 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2909 }
2910 }
2911
2912 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2913 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2914 &Mask2[0], Mask2.size()));
2915 }
2916
2917 // Break it into (shuffle shuffle_hi, shuffle_lo).
2918 Locs.clear();
2919 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2920 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2921 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2922 unsigned MaskIdx = 0;
2923 unsigned LoIdx = 0;
2924 unsigned HiIdx = NumElems/2;
2925 for (unsigned i = 0; i != NumElems; ++i) {
2926 if (i == NumElems/2) {
2927 MaskPtr = &HiMask;
2928 MaskIdx = 1;
2929 LoIdx = 0;
2930 HiIdx = NumElems/2;
2931 }
2932 SDOperand Elt = PermMask.getOperand(i);
2933 if (Elt.getOpcode() == ISD::UNDEF) {
2934 Locs[i] = std::make_pair(-1, -1);
2935 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2936 Locs[i] = std::make_pair(MaskIdx, LoIdx);
2937 (*MaskPtr)[LoIdx] = Elt;
2938 LoIdx++;
2939 } else {
2940 Locs[i] = std::make_pair(MaskIdx, HiIdx);
2941 (*MaskPtr)[HiIdx] = Elt;
2942 HiIdx++;
2943 }
2944 }
2945
2946 SDOperand LoShuffle =
2947 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2948 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2949 &LoMask[0], LoMask.size()));
2950 SDOperand HiShuffle =
2951 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2952 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2953 &HiMask[0], HiMask.size()));
2954 SmallVector<SDOperand, 8> MaskOps;
2955 for (unsigned i = 0; i != NumElems; ++i) {
2956 if (Locs[i].first == -1) {
2957 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2958 } else {
2959 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2960 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2961 }
2962 }
2963 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2964 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2965 &MaskOps[0], MaskOps.size()));
2966 }
2967
2968 return SDOperand();
2969}
2970
2971SDOperand
2972X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2973 if (!isa<ConstantSDNode>(Op.getOperand(1)))
2974 return SDOperand();
2975
2976 MVT::ValueType VT = Op.getValueType();
2977 // TODO: handle v16i8.
2978 if (MVT::getSizeInBits(VT) == 16) {
2979 // Transform it so it match pextrw which produces a 32-bit result.
2980 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2981 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2982 Op.getOperand(0), Op.getOperand(1));
2983 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
2984 DAG.getValueType(VT));
2985 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2986 } else if (MVT::getSizeInBits(VT) == 32) {
2987 SDOperand Vec = Op.getOperand(0);
2988 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2989 if (Idx == 0)
2990 return Op;
2991 // SHUFPS the element to the lowest double word, then movss.
2992 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2993 SmallVector<SDOperand, 8> IdxVec;
2994 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
2995 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2996 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2997 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2998 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2999 &IdxVec[0], IdxVec.size());
3000 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3001 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3002 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3003 DAG.getConstant(0, getPointerTy()));
3004 } else if (MVT::getSizeInBits(VT) == 64) {
3005 SDOperand Vec = Op.getOperand(0);
3006 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3007 if (Idx == 0)
3008 return Op;
3009
3010 // UNPCKHPD the element to the lowest double word, then movsd.
3011 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3012 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3013 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3014 SmallVector<SDOperand, 8> IdxVec;
3015 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3016 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3017 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3018 &IdxVec[0], IdxVec.size());
3019 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3020 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3021 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3022 DAG.getConstant(0, getPointerTy()));
3023 }
3024
3025 return SDOperand();
3026}
3027
3028SDOperand
3029X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3030 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3031 // as its second argument.
3032 MVT::ValueType VT = Op.getValueType();
3033 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3034 SDOperand N0 = Op.getOperand(0);
3035 SDOperand N1 = Op.getOperand(1);
3036 SDOperand N2 = Op.getOperand(2);
3037 if (MVT::getSizeInBits(BaseVT) == 16) {
3038 if (N1.getValueType() != MVT::i32)
3039 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3040 if (N2.getValueType() != MVT::i32)
3041 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3042 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3043 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3044 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3045 if (Idx == 0) {
3046 // Use a movss.
3047 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3048 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3049 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3050 SmallVector<SDOperand, 8> MaskVec;
3051 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3052 for (unsigned i = 1; i <= 3; ++i)
3053 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3054 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3055 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3056 &MaskVec[0], MaskVec.size()));
3057 } else {
3058 // Use two pinsrw instructions to insert a 32 bit value.
3059 Idx <<= 1;
3060 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003061 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3062 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3063 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3064 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003065 }
3066 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3067 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3068 DAG.getConstant(Idx, getPointerTy()));
3069 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3070 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3071 DAG.getConstant(Idx+1, getPointerTy()));
3072 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3073 }
3074 }
3075
3076 return SDOperand();
3077}
3078
3079SDOperand
3080X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3081 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3082 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3083}
3084
3085// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3086// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3087// one of the above mentioned nodes. It has to be wrapped because otherwise
3088// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3089// be used to form addressing mode. These wrapped nodes will be selected
3090// into MOV32ri.
3091SDOperand
3092X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3093 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3094 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3095 getPointerTy(),
3096 CP->getAlignment());
3097 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3098 // With PIC, the address is actually $g + Offset.
3099 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3100 !Subtarget->isPICStyleRIPRel()) {
3101 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3102 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3103 Result);
3104 }
3105
3106 return Result;
3107}
3108
3109SDOperand
3110X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3111 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3112 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3113 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3114 // With PIC, the address is actually $g + Offset.
3115 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3116 !Subtarget->isPICStyleRIPRel()) {
3117 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3118 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3119 Result);
3120 }
3121
3122 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3123 // load the value at address GV, not the value of GV itself. This means that
3124 // the GlobalAddress must be in the base or index register of the address, not
3125 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3126 // The same applies for external symbols during PIC codegen
3127 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3128 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3129
3130 return Result;
3131}
3132
3133// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3134static SDOperand
3135LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3136 const MVT::ValueType PtrVT) {
3137 SDOperand InFlag;
3138 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3139 DAG.getNode(X86ISD::GlobalBaseReg,
3140 PtrVT), InFlag);
3141 InFlag = Chain.getValue(1);
3142
3143 // emit leal symbol@TLSGD(,%ebx,1), %eax
3144 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3145 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3146 GA->getValueType(0),
3147 GA->getOffset());
3148 SDOperand Ops[] = { Chain, TGA, InFlag };
3149 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3150 InFlag = Result.getValue(2);
3151 Chain = Result.getValue(1);
3152
3153 // call ___tls_get_addr. This function receives its argument in
3154 // the register EAX.
3155 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3156 InFlag = Chain.getValue(1);
3157
3158 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3159 SDOperand Ops1[] = { Chain,
3160 DAG.getTargetExternalSymbol("___tls_get_addr",
3161 PtrVT),
3162 DAG.getRegister(X86::EAX, PtrVT),
3163 DAG.getRegister(X86::EBX, PtrVT),
3164 InFlag };
3165 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3166 InFlag = Chain.getValue(1);
3167
3168 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3169}
3170
3171// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3172// "local exec" model.
3173static SDOperand
3174LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3175 const MVT::ValueType PtrVT) {
3176 // Get the Thread Pointer
3177 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3178 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3179 // exec)
3180 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3181 GA->getValueType(0),
3182 GA->getOffset());
3183 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3184
3185 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3186 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3187
3188 // The address of the thread local variable is the add of the thread
3189 // pointer with the offset of the variable.
3190 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3191}
3192
3193SDOperand
3194X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3195 // TODO: implement the "local dynamic" model
3196 // TODO: implement the "initial exec"model for pic executables
3197 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3198 "TLS not implemented for non-ELF and 64-bit targets");
3199 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3200 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3201 // otherwise use the "Local Exec"TLS Model
3202 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3203 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3204 else
3205 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3206}
3207
3208SDOperand
3209X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3210 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3211 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3212 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3213 // With PIC, the address is actually $g + Offset.
3214 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3215 !Subtarget->isPICStyleRIPRel()) {
3216 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3217 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3218 Result);
3219 }
3220
3221 return Result;
3222}
3223
3224SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3225 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3226 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3227 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3228 // With PIC, the address is actually $g + Offset.
3229 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3230 !Subtarget->isPICStyleRIPRel()) {
3231 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3232 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3233 Result);
3234 }
3235
3236 return Result;
3237}
3238
3239SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3240 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3241 "Not an i64 shift!");
3242 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3243 SDOperand ShOpLo = Op.getOperand(0);
3244 SDOperand ShOpHi = Op.getOperand(1);
3245 SDOperand ShAmt = Op.getOperand(2);
3246 SDOperand Tmp1 = isSRA ?
3247 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3248 DAG.getConstant(0, MVT::i32);
3249
3250 SDOperand Tmp2, Tmp3;
3251 if (Op.getOpcode() == ISD::SHL_PARTS) {
3252 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3253 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3254 } else {
3255 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3256 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3257 }
3258
3259 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3260 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3261 DAG.getConstant(32, MVT::i8));
3262 SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3263 SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3264
3265 SDOperand Hi, Lo;
3266 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3267
3268 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3269 SmallVector<SDOperand, 4> Ops;
3270 if (Op.getOpcode() == ISD::SHL_PARTS) {
3271 Ops.push_back(Tmp2);
3272 Ops.push_back(Tmp3);
3273 Ops.push_back(CC);
3274 Ops.push_back(InFlag);
3275 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3276 InFlag = Hi.getValue(1);
3277
3278 Ops.clear();
3279 Ops.push_back(Tmp3);
3280 Ops.push_back(Tmp1);
3281 Ops.push_back(CC);
3282 Ops.push_back(InFlag);
3283 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3284 } else {
3285 Ops.push_back(Tmp2);
3286 Ops.push_back(Tmp3);
3287 Ops.push_back(CC);
3288 Ops.push_back(InFlag);
3289 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3290 InFlag = Lo.getValue(1);
3291
3292 Ops.clear();
3293 Ops.push_back(Tmp3);
3294 Ops.push_back(Tmp1);
3295 Ops.push_back(CC);
3296 Ops.push_back(InFlag);
3297 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3298 }
3299
3300 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3301 Ops.clear();
3302 Ops.push_back(Lo);
3303 Ops.push_back(Hi);
3304 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3305}
3306
3307SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3308 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3309 Op.getOperand(0).getValueType() >= MVT::i16 &&
3310 "Unknown SINT_TO_FP to lower!");
3311
3312 SDOperand Result;
3313 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3314 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3315 MachineFunction &MF = DAG.getMachineFunction();
3316 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3317 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3318 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3319 StackSlot, NULL, 0);
3320
3321 // Build the FILD
3322 SDVTList Tys;
3323 if (X86ScalarSSE)
3324 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3325 else
3326 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3327 SmallVector<SDOperand, 8> Ops;
3328 Ops.push_back(Chain);
3329 Ops.push_back(StackSlot);
3330 Ops.push_back(DAG.getValueType(SrcVT));
3331 Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3332 Tys, &Ops[0], Ops.size());
3333
3334 if (X86ScalarSSE) {
3335 Chain = Result.getValue(1);
3336 SDOperand InFlag = Result.getValue(2);
3337
3338 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3339 // shouldn't be necessary except that RFP cannot be live across
3340 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3341 MachineFunction &MF = DAG.getMachineFunction();
3342 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3343 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3344 Tys = DAG.getVTList(MVT::Other);
3345 SmallVector<SDOperand, 8> Ops;
3346 Ops.push_back(Chain);
3347 Ops.push_back(Result);
3348 Ops.push_back(StackSlot);
3349 Ops.push_back(DAG.getValueType(Op.getValueType()));
3350 Ops.push_back(InFlag);
3351 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3352 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3353 }
3354
3355 return Result;
3356}
3357
3358SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3359 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3360 "Unknown FP_TO_SINT to lower!");
3361 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3362 // stack slot.
3363 MachineFunction &MF = DAG.getMachineFunction();
3364 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3365 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3366 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3367
3368 unsigned Opc;
3369 switch (Op.getValueType()) {
3370 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3371 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3372 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3373 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3374 }
3375
3376 SDOperand Chain = DAG.getEntryNode();
3377 SDOperand Value = Op.getOperand(0);
3378 if (X86ScalarSSE) {
3379 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3380 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3381 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3382 SDOperand Ops[] = {
3383 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3384 };
3385 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3386 Chain = Value.getValue(1);
3387 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3388 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3389 }
3390
3391 // Build the FP_TO_INT*_IN_MEM
3392 SDOperand Ops[] = { Chain, Value, StackSlot };
3393 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3394
3395 // Load the result.
3396 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3397}
3398
3399SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3400 MVT::ValueType VT = Op.getValueType();
3401 MVT::ValueType EltVT = VT;
3402 if (MVT::isVector(VT))
3403 EltVT = MVT::getVectorElementType(VT);
3404 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3405 std::vector<Constant*> CV;
3406 if (EltVT == MVT::f64) {
3407 Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)));
3408 CV.push_back(C);
3409 CV.push_back(C);
3410 } else {
3411 Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)));
3412 CV.push_back(C);
3413 CV.push_back(C);
3414 CV.push_back(C);
3415 CV.push_back(C);
3416 }
Dan Gohman11821702007-07-27 17:16:43 +00003417 Constant *C = ConstantVector::get(CV);
3418 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3419 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3420 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003421 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3422}
3423
3424SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3425 MVT::ValueType VT = Op.getValueType();
3426 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003427 unsigned EltNum = 1;
3428 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003429 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003430 EltNum = MVT::getVectorNumElements(VT);
3431 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003432 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3433 std::vector<Constant*> CV;
3434 if (EltVT == MVT::f64) {
3435 Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63));
3436 CV.push_back(C);
3437 CV.push_back(C);
3438 } else {
3439 Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31));
3440 CV.push_back(C);
3441 CV.push_back(C);
3442 CV.push_back(C);
3443 CV.push_back(C);
3444 }
Dan Gohman11821702007-07-27 17:16:43 +00003445 Constant *C = ConstantVector::get(CV);
3446 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3447 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3448 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00003449 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00003450 return DAG.getNode(ISD::BIT_CONVERT, VT,
3451 DAG.getNode(ISD::XOR, MVT::v2i64,
3452 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3453 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3454 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00003455 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3456 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003457}
3458
3459SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3460 SDOperand Op0 = Op.getOperand(0);
3461 SDOperand Op1 = Op.getOperand(1);
3462 MVT::ValueType VT = Op.getValueType();
3463 MVT::ValueType SrcVT = Op1.getValueType();
3464 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3465
3466 // If second operand is smaller, extend it first.
3467 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3468 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3469 SrcVT = VT;
3470 }
3471
3472 // First get the sign bit of second operand.
3473 std::vector<Constant*> CV;
3474 if (SrcVT == MVT::f64) {
3475 CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3476 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3477 } else {
3478 CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3479 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3480 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3481 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3482 }
Dan Gohman11821702007-07-27 17:16:43 +00003483 Constant *C = ConstantVector::get(CV);
3484 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3485 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3486 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003487 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3488
3489 // Shift sign bit right or left if the two operands have different types.
3490 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3491 // Op0 is MVT::f32, Op1 is MVT::f64.
3492 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3493 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3494 DAG.getConstant(32, MVT::i32));
3495 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3496 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3497 DAG.getConstant(0, getPointerTy()));
3498 }
3499
3500 // Clear first operand sign bit.
3501 CV.clear();
3502 if (VT == MVT::f64) {
3503 CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3504 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3505 } else {
3506 CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3507 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3508 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3509 CV.push_back(ConstantFP::get(SrcTy, 0.0));
3510 }
Dan Gohman11821702007-07-27 17:16:43 +00003511 C = ConstantVector::get(CV);
3512 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3513 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3514 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3516
3517 // Or the value with the sign bit.
3518 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3519}
3520
3521SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3522 SDOperand Chain) {
3523 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3524 SDOperand Cond;
3525 SDOperand Op0 = Op.getOperand(0);
3526 SDOperand Op1 = Op.getOperand(1);
3527 SDOperand CC = Op.getOperand(2);
3528 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3529 const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3530 const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3531 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3532 unsigned X86CC;
3533
3534 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3535 Op0, Op1, DAG)) {
3536 SDOperand Ops1[] = { Chain, Op0, Op1 };
3537 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3538 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3539 return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3540 }
3541
3542 assert(isFP && "Illegal integer SetCC!");
3543
3544 SDOperand COps[] = { Chain, Op0, Op1 };
3545 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3546
3547 switch (SetCCOpcode) {
3548 default: assert(false && "Illegal floating point SetCC!");
3549 case ISD::SETOEQ: { // !PF & ZF
3550 SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3551 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3552 SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3553 Tmp1.getValue(1) };
3554 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3555 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3556 }
3557 case ISD::SETUNE: { // PF | !ZF
3558 SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3559 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3560 SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3561 Tmp1.getValue(1) };
3562 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3563 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3564 }
3565 }
3566}
3567
3568SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3569 bool addTest = true;
3570 SDOperand Chain = DAG.getEntryNode();
3571 SDOperand Cond = Op.getOperand(0);
3572 SDOperand CC;
3573 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3574
3575 if (Cond.getOpcode() == ISD::SETCC)
3576 Cond = LowerSETCC(Cond, DAG, Chain);
3577
3578 if (Cond.getOpcode() == X86ISD::SETCC) {
3579 CC = Cond.getOperand(0);
3580
3581 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3582 // (since flag operand cannot be shared). Use it as the condition setting
3583 // operand in place of the X86ISD::SETCC.
3584 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3585 // to use a test instead of duplicating the X86ISD::CMP (for register
3586 // pressure reason)?
3587 SDOperand Cmp = Cond.getOperand(1);
3588 unsigned Opc = Cmp.getOpcode();
3589 bool IllegalFPCMov = !X86ScalarSSE &&
3590 MVT::isFloatingPoint(Op.getValueType()) &&
3591 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3592 if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3593 !IllegalFPCMov) {
3594 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3595 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3596 addTest = false;
3597 }
3598 }
3599
3600 if (addTest) {
3601 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3602 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3603 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3604 }
3605
3606 VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3607 SmallVector<SDOperand, 4> Ops;
3608 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3609 // condition is true.
3610 Ops.push_back(Op.getOperand(2));
3611 Ops.push_back(Op.getOperand(1));
3612 Ops.push_back(CC);
3613 Ops.push_back(Cond.getValue(1));
3614 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3615}
3616
3617SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3618 bool addTest = true;
3619 SDOperand Chain = Op.getOperand(0);
3620 SDOperand Cond = Op.getOperand(1);
3621 SDOperand Dest = Op.getOperand(2);
3622 SDOperand CC;
3623 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3624
3625 if (Cond.getOpcode() == ISD::SETCC)
3626 Cond = LowerSETCC(Cond, DAG, Chain);
3627
3628 if (Cond.getOpcode() == X86ISD::SETCC) {
3629 CC = Cond.getOperand(0);
3630
3631 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3632 // (since flag operand cannot be shared). Use it as the condition setting
3633 // operand in place of the X86ISD::SETCC.
3634 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3635 // to use a test instead of duplicating the X86ISD::CMP (for register
3636 // pressure reason)?
3637 SDOperand Cmp = Cond.getOperand(1);
3638 unsigned Opc = Cmp.getOpcode();
3639 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3640 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3641 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3642 addTest = false;
3643 }
3644 }
3645
3646 if (addTest) {
3647 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3648 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3649 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3650 }
3651 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3652 Cond, Op.getOperand(2), CC, Cond.getValue(1));
3653}
3654
3655SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3656 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3657
3658 if (Subtarget->is64Bit())
3659 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3660 else
3661 switch (CallingConv) {
3662 default:
3663 assert(0 && "Unsupported calling convention");
3664 case CallingConv::Fast:
3665 // TODO: Implement fastcc
3666 // Falls through
3667 case CallingConv::C:
3668 case CallingConv::X86_StdCall:
3669 return LowerCCCCallTo(Op, DAG, CallingConv);
3670 case CallingConv::X86_FastCall:
3671 return LowerFastCCCallTo(Op, DAG, CallingConv);
3672 }
3673}
3674
3675
3676// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3677// Calls to _alloca is needed to probe the stack when allocating more than 4k
3678// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3679// that the guard pages used by the OS virtual memory manager are allocated in
3680// correct sequence.
3681SDOperand
3682X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3683 SelectionDAG &DAG) {
3684 assert(Subtarget->isTargetCygMing() &&
3685 "This should be used only on Cygwin/Mingw targets");
3686
3687 // Get the inputs.
3688 SDOperand Chain = Op.getOperand(0);
3689 SDOperand Size = Op.getOperand(1);
3690 // FIXME: Ensure alignment here
3691
3692 SDOperand Flag;
3693
3694 MVT::ValueType IntPtr = getPointerTy();
3695 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3696
3697 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3698 Flag = Chain.getValue(1);
3699
3700 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3701 SDOperand Ops[] = { Chain,
3702 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3703 DAG.getRegister(X86::EAX, IntPtr),
3704 Flag };
3705 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3706 Flag = Chain.getValue(1);
3707
3708 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3709
3710 std::vector<MVT::ValueType> Tys;
3711 Tys.push_back(SPTy);
3712 Tys.push_back(MVT::Other);
3713 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3714 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3715}
3716
3717SDOperand
3718X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3719 MachineFunction &MF = DAG.getMachineFunction();
3720 const Function* Fn = MF.getFunction();
3721 if (Fn->hasExternalLinkage() &&
3722 Subtarget->isTargetCygMing() &&
3723 Fn->getName() == "main")
3724 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3725
3726 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3727 if (Subtarget->is64Bit())
3728 return LowerX86_64CCCArguments(Op, DAG);
3729 else
3730 switch(CC) {
3731 default:
3732 assert(0 && "Unsupported calling convention");
3733 case CallingConv::Fast:
3734 // TODO: implement fastcc.
3735
3736 // Falls through
3737 case CallingConv::C:
3738 return LowerCCCArguments(Op, DAG);
3739 case CallingConv::X86_StdCall:
3740 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3741 return LowerCCCArguments(Op, DAG, true);
3742 case CallingConv::X86_FastCall:
3743 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3744 return LowerFastCCArguments(Op, DAG);
3745 }
3746}
3747
3748SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3749 SDOperand InFlag(0, 0);
3750 SDOperand Chain = Op.getOperand(0);
3751 unsigned Align =
3752 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3753 if (Align == 0) Align = 1;
3754
3755 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3756 // If not DWORD aligned, call memset if size is less than the threshold.
3757 // It knows how to align to the right boundary first.
3758 if ((Align & 3) != 0 ||
3759 (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3760 MVT::ValueType IntPtr = getPointerTy();
3761 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3762 TargetLowering::ArgListTy Args;
3763 TargetLowering::ArgListEntry Entry;
3764 Entry.Node = Op.getOperand(1);
3765 Entry.Ty = IntPtrTy;
3766 Args.push_back(Entry);
3767 // Extend the unsigned i8 argument to be an int value for the call.
3768 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3769 Entry.Ty = IntPtrTy;
3770 Args.push_back(Entry);
3771 Entry.Node = Op.getOperand(3);
3772 Args.push_back(Entry);
3773 std::pair<SDOperand,SDOperand> CallResult =
3774 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3775 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3776 return CallResult.second;
3777 }
3778
3779 MVT::ValueType AVT;
3780 SDOperand Count;
3781 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3782 unsigned BytesLeft = 0;
3783 bool TwoRepStos = false;
3784 if (ValC) {
3785 unsigned ValReg;
3786 uint64_t Val = ValC->getValue() & 255;
3787
3788 // If the value is a constant, then we can potentially use larger sets.
3789 switch (Align & 3) {
3790 case 2: // WORD aligned
3791 AVT = MVT::i16;
3792 ValReg = X86::AX;
3793 Val = (Val << 8) | Val;
3794 break;
3795 case 0: // DWORD aligned
3796 AVT = MVT::i32;
3797 ValReg = X86::EAX;
3798 Val = (Val << 8) | Val;
3799 Val = (Val << 16) | Val;
3800 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3801 AVT = MVT::i64;
3802 ValReg = X86::RAX;
3803 Val = (Val << 32) | Val;
3804 }
3805 break;
3806 default: // Byte aligned
3807 AVT = MVT::i8;
3808 ValReg = X86::AL;
3809 Count = Op.getOperand(3);
3810 break;
3811 }
3812
3813 if (AVT > MVT::i8) {
3814 if (I) {
3815 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3816 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3817 BytesLeft = I->getValue() % UBytes;
3818 } else {
3819 assert(AVT >= MVT::i32 &&
3820 "Do not use rep;stos if not at least DWORD aligned");
3821 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3822 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3823 TwoRepStos = true;
3824 }
3825 }
3826
3827 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3828 InFlag);
3829 InFlag = Chain.getValue(1);
3830 } else {
3831 AVT = MVT::i8;
3832 Count = Op.getOperand(3);
3833 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3834 InFlag = Chain.getValue(1);
3835 }
3836
3837 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3838 Count, InFlag);
3839 InFlag = Chain.getValue(1);
3840 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3841 Op.getOperand(1), InFlag);
3842 InFlag = Chain.getValue(1);
3843
3844 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3845 SmallVector<SDOperand, 8> Ops;
3846 Ops.push_back(Chain);
3847 Ops.push_back(DAG.getValueType(AVT));
3848 Ops.push_back(InFlag);
3849 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3850
3851 if (TwoRepStos) {
3852 InFlag = Chain.getValue(1);
3853 Count = Op.getOperand(3);
3854 MVT::ValueType CVT = Count.getValueType();
3855 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3856 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3857 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3858 Left, InFlag);
3859 InFlag = Chain.getValue(1);
3860 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3861 Ops.clear();
3862 Ops.push_back(Chain);
3863 Ops.push_back(DAG.getValueType(MVT::i8));
3864 Ops.push_back(InFlag);
3865 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3866 } else if (BytesLeft) {
3867 // Issue stores for the last 1 - 7 bytes.
3868 SDOperand Value;
3869 unsigned Val = ValC->getValue() & 255;
3870 unsigned Offset = I->getValue() - BytesLeft;
3871 SDOperand DstAddr = Op.getOperand(1);
3872 MVT::ValueType AddrVT = DstAddr.getValueType();
3873 if (BytesLeft >= 4) {
3874 Val = (Val << 8) | Val;
3875 Val = (Val << 16) | Val;
3876 Value = DAG.getConstant(Val, MVT::i32);
3877 Chain = DAG.getStore(Chain, Value,
3878 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3879 DAG.getConstant(Offset, AddrVT)),
3880 NULL, 0);
3881 BytesLeft -= 4;
3882 Offset += 4;
3883 }
3884 if (BytesLeft >= 2) {
3885 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3886 Chain = DAG.getStore(Chain, Value,
3887 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3888 DAG.getConstant(Offset, AddrVT)),
3889 NULL, 0);
3890 BytesLeft -= 2;
3891 Offset += 2;
3892 }
3893 if (BytesLeft == 1) {
3894 Value = DAG.getConstant(Val, MVT::i8);
3895 Chain = DAG.getStore(Chain, Value,
3896 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3897 DAG.getConstant(Offset, AddrVT)),
3898 NULL, 0);
3899 }
3900 }
3901
3902 return Chain;
3903}
3904
3905SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3906 SDOperand Chain = Op.getOperand(0);
3907 unsigned Align =
3908 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3909 if (Align == 0) Align = 1;
3910
3911 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3912 // If not DWORD aligned, call memcpy if size is less than the threshold.
3913 // It knows how to align to the right boundary first.
3914 if ((Align & 3) != 0 ||
3915 (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3916 MVT::ValueType IntPtr = getPointerTy();
3917 TargetLowering::ArgListTy Args;
3918 TargetLowering::ArgListEntry Entry;
3919 Entry.Ty = getTargetData()->getIntPtrType();
3920 Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3921 Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3922 Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3923 std::pair<SDOperand,SDOperand> CallResult =
3924 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3925 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3926 return CallResult.second;
3927 }
3928
3929 MVT::ValueType AVT;
3930 SDOperand Count;
3931 unsigned BytesLeft = 0;
3932 bool TwoRepMovs = false;
3933 switch (Align & 3) {
3934 case 2: // WORD aligned
3935 AVT = MVT::i16;
3936 break;
3937 case 0: // DWORD aligned
3938 AVT = MVT::i32;
3939 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
3940 AVT = MVT::i64;
3941 break;
3942 default: // Byte aligned
3943 AVT = MVT::i8;
3944 Count = Op.getOperand(3);
3945 break;
3946 }
3947
3948 if (AVT > MVT::i8) {
3949 if (I) {
3950 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3951 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3952 BytesLeft = I->getValue() % UBytes;
3953 } else {
3954 assert(AVT >= MVT::i32 &&
3955 "Do not use rep;movs if not at least DWORD aligned");
3956 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3957 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3958 TwoRepMovs = true;
3959 }
3960 }
3961
3962 SDOperand InFlag(0, 0);
3963 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3964 Count, InFlag);
3965 InFlag = Chain.getValue(1);
3966 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3967 Op.getOperand(1), InFlag);
3968 InFlag = Chain.getValue(1);
3969 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3970 Op.getOperand(2), InFlag);
3971 InFlag = Chain.getValue(1);
3972
3973 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3974 SmallVector<SDOperand, 8> Ops;
3975 Ops.push_back(Chain);
3976 Ops.push_back(DAG.getValueType(AVT));
3977 Ops.push_back(InFlag);
3978 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3979
3980 if (TwoRepMovs) {
3981 InFlag = Chain.getValue(1);
3982 Count = Op.getOperand(3);
3983 MVT::ValueType CVT = Count.getValueType();
3984 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3985 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3986 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3987 Left, InFlag);
3988 InFlag = Chain.getValue(1);
3989 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3990 Ops.clear();
3991 Ops.push_back(Chain);
3992 Ops.push_back(DAG.getValueType(MVT::i8));
3993 Ops.push_back(InFlag);
3994 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3995 } else if (BytesLeft) {
3996 // Issue loads and stores for the last 1 - 7 bytes.
3997 unsigned Offset = I->getValue() - BytesLeft;
3998 SDOperand DstAddr = Op.getOperand(1);
3999 MVT::ValueType DstVT = DstAddr.getValueType();
4000 SDOperand SrcAddr = Op.getOperand(2);
4001 MVT::ValueType SrcVT = SrcAddr.getValueType();
4002 SDOperand Value;
4003 if (BytesLeft >= 4) {
4004 Value = DAG.getLoad(MVT::i32, Chain,
4005 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4006 DAG.getConstant(Offset, SrcVT)),
4007 NULL, 0);
4008 Chain = Value.getValue(1);
4009 Chain = DAG.getStore(Chain, Value,
4010 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4011 DAG.getConstant(Offset, DstVT)),
4012 NULL, 0);
4013 BytesLeft -= 4;
4014 Offset += 4;
4015 }
4016 if (BytesLeft >= 2) {
4017 Value = DAG.getLoad(MVT::i16, Chain,
4018 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4019 DAG.getConstant(Offset, SrcVT)),
4020 NULL, 0);
4021 Chain = Value.getValue(1);
4022 Chain = DAG.getStore(Chain, Value,
4023 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4024 DAG.getConstant(Offset, DstVT)),
4025 NULL, 0);
4026 BytesLeft -= 2;
4027 Offset += 2;
4028 }
4029
4030 if (BytesLeft == 1) {
4031 Value = DAG.getLoad(MVT::i8, Chain,
4032 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4033 DAG.getConstant(Offset, SrcVT)),
4034 NULL, 0);
4035 Chain = Value.getValue(1);
4036 Chain = DAG.getStore(Chain, Value,
4037 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4038 DAG.getConstant(Offset, DstVT)),
4039 NULL, 0);
4040 }
4041 }
4042
4043 return Chain;
4044}
4045
4046SDOperand
4047X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4048 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4049 SDOperand TheOp = Op.getOperand(0);
4050 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4051 if (Subtarget->is64Bit()) {
4052 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4053 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4054 MVT::i64, Copy1.getValue(2));
4055 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4056 DAG.getConstant(32, MVT::i8));
4057 SDOperand Ops[] = {
4058 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4059 };
4060
4061 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4062 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4063 }
4064
4065 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4066 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4067 MVT::i32, Copy1.getValue(2));
4068 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4069 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4070 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4071}
4072
4073SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4074 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4075
4076 if (!Subtarget->is64Bit()) {
4077 // vastart just stores the address of the VarArgsFrameIndex slot into the
4078 // memory location argument.
4079 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4080 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4081 SV->getOffset());
4082 }
4083
4084 // __va_list_tag:
4085 // gp_offset (0 - 6 * 8)
4086 // fp_offset (48 - 48 + 8 * 16)
4087 // overflow_arg_area (point to parameters coming in memory).
4088 // reg_save_area
4089 SmallVector<SDOperand, 8> MemOps;
4090 SDOperand FIN = Op.getOperand(1);
4091 // Store gp_offset
4092 SDOperand Store = DAG.getStore(Op.getOperand(0),
4093 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4094 FIN, SV->getValue(), SV->getOffset());
4095 MemOps.push_back(Store);
4096
4097 // Store fp_offset
4098 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4099 DAG.getConstant(4, getPointerTy()));
4100 Store = DAG.getStore(Op.getOperand(0),
4101 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4102 FIN, SV->getValue(), SV->getOffset());
4103 MemOps.push_back(Store);
4104
4105 // Store ptr to overflow_arg_area
4106 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4107 DAG.getConstant(4, getPointerTy()));
4108 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4109 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4110 SV->getOffset());
4111 MemOps.push_back(Store);
4112
4113 // Store ptr to reg_save_area.
4114 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4115 DAG.getConstant(8, getPointerTy()));
4116 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4117 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4118 SV->getOffset());
4119 MemOps.push_back(Store);
4120 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4121}
4122
4123SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4124 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4125 SDOperand Chain = Op.getOperand(0);
4126 SDOperand DstPtr = Op.getOperand(1);
4127 SDOperand SrcPtr = Op.getOperand(2);
4128 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4129 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4130
4131 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4132 SrcSV->getValue(), SrcSV->getOffset());
4133 Chain = SrcPtr.getValue(1);
4134 for (unsigned i = 0; i < 3; ++i) {
4135 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4136 SrcSV->getValue(), SrcSV->getOffset());
4137 Chain = Val.getValue(1);
4138 Chain = DAG.getStore(Chain, Val, DstPtr,
4139 DstSV->getValue(), DstSV->getOffset());
4140 if (i == 2)
4141 break;
4142 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4143 DAG.getConstant(8, getPointerTy()));
4144 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4145 DAG.getConstant(8, getPointerTy()));
4146 }
4147 return Chain;
4148}
4149
4150SDOperand
4151X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4152 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4153 switch (IntNo) {
4154 default: return SDOperand(); // Don't custom lower most intrinsics.
4155 // Comparison intrinsics.
4156 case Intrinsic::x86_sse_comieq_ss:
4157 case Intrinsic::x86_sse_comilt_ss:
4158 case Intrinsic::x86_sse_comile_ss:
4159 case Intrinsic::x86_sse_comigt_ss:
4160 case Intrinsic::x86_sse_comige_ss:
4161 case Intrinsic::x86_sse_comineq_ss:
4162 case Intrinsic::x86_sse_ucomieq_ss:
4163 case Intrinsic::x86_sse_ucomilt_ss:
4164 case Intrinsic::x86_sse_ucomile_ss:
4165 case Intrinsic::x86_sse_ucomigt_ss:
4166 case Intrinsic::x86_sse_ucomige_ss:
4167 case Intrinsic::x86_sse_ucomineq_ss:
4168 case Intrinsic::x86_sse2_comieq_sd:
4169 case Intrinsic::x86_sse2_comilt_sd:
4170 case Intrinsic::x86_sse2_comile_sd:
4171 case Intrinsic::x86_sse2_comigt_sd:
4172 case Intrinsic::x86_sse2_comige_sd:
4173 case Intrinsic::x86_sse2_comineq_sd:
4174 case Intrinsic::x86_sse2_ucomieq_sd:
4175 case Intrinsic::x86_sse2_ucomilt_sd:
4176 case Intrinsic::x86_sse2_ucomile_sd:
4177 case Intrinsic::x86_sse2_ucomigt_sd:
4178 case Intrinsic::x86_sse2_ucomige_sd:
4179 case Intrinsic::x86_sse2_ucomineq_sd: {
4180 unsigned Opc = 0;
4181 ISD::CondCode CC = ISD::SETCC_INVALID;
4182 switch (IntNo) {
4183 default: break;
4184 case Intrinsic::x86_sse_comieq_ss:
4185 case Intrinsic::x86_sse2_comieq_sd:
4186 Opc = X86ISD::COMI;
4187 CC = ISD::SETEQ;
4188 break;
4189 case Intrinsic::x86_sse_comilt_ss:
4190 case Intrinsic::x86_sse2_comilt_sd:
4191 Opc = X86ISD::COMI;
4192 CC = ISD::SETLT;
4193 break;
4194 case Intrinsic::x86_sse_comile_ss:
4195 case Intrinsic::x86_sse2_comile_sd:
4196 Opc = X86ISD::COMI;
4197 CC = ISD::SETLE;
4198 break;
4199 case Intrinsic::x86_sse_comigt_ss:
4200 case Intrinsic::x86_sse2_comigt_sd:
4201 Opc = X86ISD::COMI;
4202 CC = ISD::SETGT;
4203 break;
4204 case Intrinsic::x86_sse_comige_ss:
4205 case Intrinsic::x86_sse2_comige_sd:
4206 Opc = X86ISD::COMI;
4207 CC = ISD::SETGE;
4208 break;
4209 case Intrinsic::x86_sse_comineq_ss:
4210 case Intrinsic::x86_sse2_comineq_sd:
4211 Opc = X86ISD::COMI;
4212 CC = ISD::SETNE;
4213 break;
4214 case Intrinsic::x86_sse_ucomieq_ss:
4215 case Intrinsic::x86_sse2_ucomieq_sd:
4216 Opc = X86ISD::UCOMI;
4217 CC = ISD::SETEQ;
4218 break;
4219 case Intrinsic::x86_sse_ucomilt_ss:
4220 case Intrinsic::x86_sse2_ucomilt_sd:
4221 Opc = X86ISD::UCOMI;
4222 CC = ISD::SETLT;
4223 break;
4224 case Intrinsic::x86_sse_ucomile_ss:
4225 case Intrinsic::x86_sse2_ucomile_sd:
4226 Opc = X86ISD::UCOMI;
4227 CC = ISD::SETLE;
4228 break;
4229 case Intrinsic::x86_sse_ucomigt_ss:
4230 case Intrinsic::x86_sse2_ucomigt_sd:
4231 Opc = X86ISD::UCOMI;
4232 CC = ISD::SETGT;
4233 break;
4234 case Intrinsic::x86_sse_ucomige_ss:
4235 case Intrinsic::x86_sse2_ucomige_sd:
4236 Opc = X86ISD::UCOMI;
4237 CC = ISD::SETGE;
4238 break;
4239 case Intrinsic::x86_sse_ucomineq_ss:
4240 case Intrinsic::x86_sse2_ucomineq_sd:
4241 Opc = X86ISD::UCOMI;
4242 CC = ISD::SETNE;
4243 break;
4244 }
4245
4246 unsigned X86CC;
4247 SDOperand LHS = Op.getOperand(1);
4248 SDOperand RHS = Op.getOperand(2);
4249 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4250
4251 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4252 SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4253 SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4254 VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4255 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4256 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4257 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4258 }
4259 }
4260}
4261
4262SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4263 // Depths > 0 not supported yet!
4264 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4265 return SDOperand();
4266
4267 // Just load the return address
4268 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4269 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4270}
4271
4272SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4273 // Depths > 0 not supported yet!
4274 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4275 return SDOperand();
4276
4277 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4278 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4279 DAG.getConstant(4, getPointerTy()));
4280}
4281
4282SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4283 SelectionDAG &DAG) {
4284 // Is not yet supported on x86-64
4285 if (Subtarget->is64Bit())
4286 return SDOperand();
4287
4288 return DAG.getConstant(8, getPointerTy());
4289}
4290
4291SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4292{
4293 assert(!Subtarget->is64Bit() &&
4294 "Lowering of eh_return builtin is not supported yet on x86-64");
4295
4296 MachineFunction &MF = DAG.getMachineFunction();
4297 SDOperand Chain = Op.getOperand(0);
4298 SDOperand Offset = Op.getOperand(1);
4299 SDOperand Handler = Op.getOperand(2);
4300
4301 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4302 getPointerTy());
4303
4304 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4305 DAG.getConstant(-4UL, getPointerTy()));
4306 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4307 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4308 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4309 MF.addLiveOut(X86::ECX);
4310
4311 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4312 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4313}
4314
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004315SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4316 SelectionDAG &DAG) {
4317 SDOperand Root = Op.getOperand(0);
4318 SDOperand Trmp = Op.getOperand(1); // trampoline
4319 SDOperand FPtr = Op.getOperand(2); // nested function
4320 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4321
4322 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4323
4324 if (Subtarget->is64Bit()) {
4325 return SDOperand(); // not yet supported
4326 } else {
4327 Function *Func = (Function *)
4328 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4329 unsigned CC = Func->getCallingConv();
4330 unsigned char NestReg;
4331
4332 switch (CC) {
4333 default:
4334 assert(0 && "Unsupported calling convention");
4335 case CallingConv::C:
4336 case CallingConv::Fast:
4337 case CallingConv::X86_StdCall: {
4338 // Pass 'nest' parameter in ECX.
4339 // Must be kept in sync with X86CallingConv.td
4340 NestReg = N86::ECX;
4341
4342 // Check that ECX wasn't needed by an 'inreg' parameter.
4343 const FunctionType *FTy = Func->getFunctionType();
4344 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4345
4346 if (Attrs && !Func->isVarArg()) {
4347 unsigned InRegCount = 0;
4348 unsigned Idx = 1;
4349
4350 for (FunctionType::param_iterator I = FTy->param_begin(),
4351 E = FTy->param_end(); I != E; ++I, ++Idx)
4352 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4353 // FIXME: should only count parameters that are lowered to integers.
4354 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4355
4356 if (InRegCount > 2) {
4357 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4358 abort();
4359 }
4360 }
4361 break;
4362 }
4363 case CallingConv::X86_FastCall:
4364 // Pass 'nest' parameter in EAX.
4365 // Must be kept in sync with X86CallingConv.td
4366 NestReg = N86::EAX;
4367 break;
4368 }
4369
4370 SDOperand OutChains[4];
4371 SDOperand Addr, Disp;
4372
4373 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4374 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4375
4376 const unsigned char MOV32ri = 0xB8;
4377 const unsigned char JMP = 0xE9;
4378
4379 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|NestReg, MVT::i8),
4380 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4381
4382 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4383 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4384 TrmpSV->getOffset() + 1, false, 1);
4385
4386 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4387 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4388 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4389
4390 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4391 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4392 TrmpSV->getOffset() + 6, false, 1);
4393
4394 return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4);
4395 }
4396}
4397
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004398/// LowerOperation - Provide custom lowering hooks for some operations.
4399///
4400SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4401 switch (Op.getOpcode()) {
4402 default: assert(0 && "Should not custom lower this!");
4403 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4404 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4405 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4406 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4407 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4408 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4409 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4410 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4411 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4412 case ISD::SHL_PARTS:
4413 case ISD::SRA_PARTS:
4414 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4415 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4416 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4417 case ISD::FABS: return LowerFABS(Op, DAG);
4418 case ISD::FNEG: return LowerFNEG(Op, DAG);
4419 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
4420 case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode());
4421 case ISD::SELECT: return LowerSELECT(Op, DAG);
4422 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4423 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4424 case ISD::CALL: return LowerCALL(Op, DAG);
4425 case ISD::RET: return LowerRET(Op, DAG);
4426 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4427 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4428 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4429 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4430 case ISD::VASTART: return LowerVASTART(Op, DAG);
4431 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4432 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4433 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4434 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4435 case ISD::FRAME_TO_ARGS_OFFSET:
4436 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4437 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4438 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004439 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004440 }
4441 return SDOperand();
4442}
4443
4444const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4445 switch (Opcode) {
4446 default: return NULL;
4447 case X86ISD::SHLD: return "X86ISD::SHLD";
4448 case X86ISD::SHRD: return "X86ISD::SHRD";
4449 case X86ISD::FAND: return "X86ISD::FAND";
4450 case X86ISD::FOR: return "X86ISD::FOR";
4451 case X86ISD::FXOR: return "X86ISD::FXOR";
4452 case X86ISD::FSRL: return "X86ISD::FSRL";
4453 case X86ISD::FILD: return "X86ISD::FILD";
4454 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4455 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4456 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4457 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4458 case X86ISD::FLD: return "X86ISD::FLD";
4459 case X86ISD::FST: return "X86ISD::FST";
4460 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4461 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4462 case X86ISD::CALL: return "X86ISD::CALL";
4463 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4464 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4465 case X86ISD::CMP: return "X86ISD::CMP";
4466 case X86ISD::COMI: return "X86ISD::COMI";
4467 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4468 case X86ISD::SETCC: return "X86ISD::SETCC";
4469 case X86ISD::CMOV: return "X86ISD::CMOV";
4470 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4471 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4472 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4473 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004474 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4475 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4476 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4477 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4478 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4479 case X86ISD::FMAX: return "X86ISD::FMAX";
4480 case X86ISD::FMIN: return "X86ISD::FMIN";
4481 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4482 case X86ISD::FRCP: return "X86ISD::FRCP";
4483 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4484 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4485 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
4486 }
4487}
4488
4489// isLegalAddressingMode - Return true if the addressing mode represented
4490// by AM is legal for this target, for a load/store of the specified type.
4491bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4492 const Type *Ty) const {
4493 // X86 supports extremely general addressing modes.
4494
4495 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4496 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4497 return false;
4498
4499 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004500 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004501 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4502 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004503
4504 // X86-64 only supports addr of globals in small code model.
4505 if (Subtarget->is64Bit()) {
4506 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4507 return false;
4508 // If lower 4G is not available, then we must use rip-relative addressing.
4509 if (AM.BaseOffs || AM.Scale > 1)
4510 return false;
4511 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004512 }
4513
4514 switch (AM.Scale) {
4515 case 0:
4516 case 1:
4517 case 2:
4518 case 4:
4519 case 8:
4520 // These scales always work.
4521 break;
4522 case 3:
4523 case 5:
4524 case 9:
4525 // These scales are formed with basereg+scalereg. Only accept if there is
4526 // no basereg yet.
4527 if (AM.HasBaseReg)
4528 return false;
4529 break;
4530 default: // Other stuff never works.
4531 return false;
4532 }
4533
4534 return true;
4535}
4536
4537
4538/// isShuffleMaskLegal - Targets can use this to indicate that they only
4539/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4540/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4541/// are assumed to be legal.
4542bool
4543X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4544 // Only do shuffles on 128-bit vector types for now.
4545 if (MVT::getSizeInBits(VT) == 64) return false;
4546 return (Mask.Val->getNumOperands() <= 4 ||
4547 isIdentityMask(Mask.Val) ||
4548 isIdentityMask(Mask.Val, true) ||
4549 isSplatMask(Mask.Val) ||
4550 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4551 X86::isUNPCKLMask(Mask.Val) ||
4552 X86::isUNPCKHMask(Mask.Val) ||
4553 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4554 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4555}
4556
4557bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4558 MVT::ValueType EVT,
4559 SelectionDAG &DAG) const {
4560 unsigned NumElts = BVOps.size();
4561 // Only do shuffles on 128-bit vector types for now.
4562 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4563 if (NumElts == 2) return true;
4564 if (NumElts == 4) {
4565 return (isMOVLMask(&BVOps[0], 4) ||
4566 isCommutedMOVL(&BVOps[0], 4, true) ||
4567 isSHUFPMask(&BVOps[0], 4) ||
4568 isCommutedSHUFP(&BVOps[0], 4));
4569 }
4570 return false;
4571}
4572
4573//===----------------------------------------------------------------------===//
4574// X86 Scheduler Hooks
4575//===----------------------------------------------------------------------===//
4576
4577MachineBasicBlock *
4578X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4579 MachineBasicBlock *BB) {
4580 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4581 switch (MI->getOpcode()) {
4582 default: assert(false && "Unexpected instr type to insert");
4583 case X86::CMOV_FR32:
4584 case X86::CMOV_FR64:
4585 case X86::CMOV_V4F32:
4586 case X86::CMOV_V2F64:
4587 case X86::CMOV_V2I64: {
4588 // To "insert" a SELECT_CC instruction, we actually have to insert the
4589 // diamond control-flow pattern. The incoming instruction knows the
4590 // destination vreg to set, the condition code register to branch on, the
4591 // true/false values to select between, and a branch opcode to use.
4592 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4593 ilist<MachineBasicBlock>::iterator It = BB;
4594 ++It;
4595
4596 // thisMBB:
4597 // ...
4598 // TrueVal = ...
4599 // cmpTY ccX, r1, r2
4600 // bCC copy1MBB
4601 // fallthrough --> copy0MBB
4602 MachineBasicBlock *thisMBB = BB;
4603 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4604 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4605 unsigned Opc =
4606 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4607 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4608 MachineFunction *F = BB->getParent();
4609 F->getBasicBlockList().insert(It, copy0MBB);
4610 F->getBasicBlockList().insert(It, sinkMBB);
4611 // Update machine-CFG edges by first adding all successors of the current
4612 // block to the new block which will contain the Phi node for the select.
4613 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4614 e = BB->succ_end(); i != e; ++i)
4615 sinkMBB->addSuccessor(*i);
4616 // Next, remove all successors of the current block, and add the true
4617 // and fallthrough blocks as its successors.
4618 while(!BB->succ_empty())
4619 BB->removeSuccessor(BB->succ_begin());
4620 BB->addSuccessor(copy0MBB);
4621 BB->addSuccessor(sinkMBB);
4622
4623 // copy0MBB:
4624 // %FalseValue = ...
4625 // # fallthrough to sinkMBB
4626 BB = copy0MBB;
4627
4628 // Update machine-CFG edges
4629 BB->addSuccessor(sinkMBB);
4630
4631 // sinkMBB:
4632 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4633 // ...
4634 BB = sinkMBB;
4635 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4636 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4637 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4638
4639 delete MI; // The pseudo instruction is gone now.
4640 return BB;
4641 }
4642
4643 case X86::FP32_TO_INT16_IN_MEM:
4644 case X86::FP32_TO_INT32_IN_MEM:
4645 case X86::FP32_TO_INT64_IN_MEM:
4646 case X86::FP64_TO_INT16_IN_MEM:
4647 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004648 case X86::FP64_TO_INT64_IN_MEM:
4649 case X86::FP80_TO_INT16_IN_MEM:
4650 case X86::FP80_TO_INT32_IN_MEM:
4651 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004652 // Change the floating point control register to use "round towards zero"
4653 // mode when truncating to an integer value.
4654 MachineFunction *F = BB->getParent();
4655 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4656 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4657
4658 // Load the old value of the high byte of the control word...
4659 unsigned OldCW =
4660 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4661 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4662
4663 // Set the high part to be round to zero...
4664 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4665 .addImm(0xC7F);
4666
4667 // Reload the modified control word now...
4668 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4669
4670 // Restore the memory image of control word to original value
4671 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4672 .addReg(OldCW);
4673
4674 // Get the X86 opcode to use.
4675 unsigned Opc;
4676 switch (MI->getOpcode()) {
4677 default: assert(0 && "illegal opcode!");
4678 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4679 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4680 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4681 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4682 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4683 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004684 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4685 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4686 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004687 }
4688
4689 X86AddressMode AM;
4690 MachineOperand &Op = MI->getOperand(0);
4691 if (Op.isRegister()) {
4692 AM.BaseType = X86AddressMode::RegBase;
4693 AM.Base.Reg = Op.getReg();
4694 } else {
4695 AM.BaseType = X86AddressMode::FrameIndexBase;
4696 AM.Base.FrameIndex = Op.getFrameIndex();
4697 }
4698 Op = MI->getOperand(1);
4699 if (Op.isImmediate())
4700 AM.Scale = Op.getImm();
4701 Op = MI->getOperand(2);
4702 if (Op.isImmediate())
4703 AM.IndexReg = Op.getImm();
4704 Op = MI->getOperand(3);
4705 if (Op.isGlobalAddress()) {
4706 AM.GV = Op.getGlobal();
4707 } else {
4708 AM.Disp = Op.getImm();
4709 }
4710 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4711 .addReg(MI->getOperand(4).getReg());
4712
4713 // Reload the original control word now.
4714 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4715
4716 delete MI; // The pseudo instruction is gone now.
4717 return BB;
4718 }
4719 }
4720}
4721
4722//===----------------------------------------------------------------------===//
4723// X86 Optimization Hooks
4724//===----------------------------------------------------------------------===//
4725
4726void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4727 uint64_t Mask,
4728 uint64_t &KnownZero,
4729 uint64_t &KnownOne,
4730 const SelectionDAG &DAG,
4731 unsigned Depth) const {
4732 unsigned Opc = Op.getOpcode();
4733 assert((Opc >= ISD::BUILTIN_OP_END ||
4734 Opc == ISD::INTRINSIC_WO_CHAIN ||
4735 Opc == ISD::INTRINSIC_W_CHAIN ||
4736 Opc == ISD::INTRINSIC_VOID) &&
4737 "Should use MaskedValueIsZero if you don't know whether Op"
4738 " is a target node!");
4739
4740 KnownZero = KnownOne = 0; // Don't know anything.
4741 switch (Opc) {
4742 default: break;
4743 case X86ISD::SETCC:
4744 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4745 break;
4746 }
4747}
4748
4749/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4750/// element of the result of the vector shuffle.
4751static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4752 MVT::ValueType VT = N->getValueType(0);
4753 SDOperand PermMask = N->getOperand(2);
4754 unsigned NumElems = PermMask.getNumOperands();
4755 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4756 i %= NumElems;
4757 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4758 return (i == 0)
4759 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4760 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4761 SDOperand Idx = PermMask.getOperand(i);
4762 if (Idx.getOpcode() == ISD::UNDEF)
4763 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4764 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4765 }
4766 return SDOperand();
4767}
4768
4769/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4770/// node is a GlobalAddress + an offset.
4771static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4772 unsigned Opc = N->getOpcode();
4773 if (Opc == X86ISD::Wrapper) {
4774 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4775 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4776 return true;
4777 }
4778 } else if (Opc == ISD::ADD) {
4779 SDOperand N1 = N->getOperand(0);
4780 SDOperand N2 = N->getOperand(1);
4781 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4782 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4783 if (V) {
4784 Offset += V->getSignExtended();
4785 return true;
4786 }
4787 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4788 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4789 if (V) {
4790 Offset += V->getSignExtended();
4791 return true;
4792 }
4793 }
4794 }
4795 return false;
4796}
4797
4798/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4799/// + Dist * Size.
4800static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4801 MachineFrameInfo *MFI) {
4802 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4803 return false;
4804
4805 SDOperand Loc = N->getOperand(1);
4806 SDOperand BaseLoc = Base->getOperand(1);
4807 if (Loc.getOpcode() == ISD::FrameIndex) {
4808 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4809 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00004810 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
4811 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004812 int FS = MFI->getObjectSize(FI);
4813 int BFS = MFI->getObjectSize(BFI);
4814 if (FS != BFS || FS != Size) return false;
4815 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4816 } else {
4817 GlobalValue *GV1 = NULL;
4818 GlobalValue *GV2 = NULL;
4819 int64_t Offset1 = 0;
4820 int64_t Offset2 = 0;
4821 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4822 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4823 if (isGA1 && isGA2 && GV1 == GV2)
4824 return Offset1 == (Offset2 + Dist*Size);
4825 }
4826
4827 return false;
4828}
4829
4830static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4831 const X86Subtarget *Subtarget) {
4832 GlobalValue *GV;
4833 int64_t Offset;
4834 if (isGAPlusOffset(Base, GV, Offset))
4835 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4836 else {
4837 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00004838 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004839 if (BFI < 0)
4840 // Fixed objects do not specify alignment, however the offsets are known.
4841 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4842 (MFI->getObjectOffset(BFI) % 16) == 0);
4843 else
4844 return MFI->getObjectAlignment(BFI) >= 16;
4845 }
4846 return false;
4847}
4848
4849
4850/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4851/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4852/// if the load addresses are consecutive, non-overlapping, and in the right
4853/// order.
4854static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4855 const X86Subtarget *Subtarget) {
4856 MachineFunction &MF = DAG.getMachineFunction();
4857 MachineFrameInfo *MFI = MF.getFrameInfo();
4858 MVT::ValueType VT = N->getValueType(0);
4859 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4860 SDOperand PermMask = N->getOperand(2);
4861 int NumElems = (int)PermMask.getNumOperands();
4862 SDNode *Base = NULL;
4863 for (int i = 0; i < NumElems; ++i) {
4864 SDOperand Idx = PermMask.getOperand(i);
4865 if (Idx.getOpcode() == ISD::UNDEF) {
4866 if (!Base) return SDOperand();
4867 } else {
4868 SDOperand Arg =
4869 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4870 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4871 return SDOperand();
4872 if (!Base)
4873 Base = Arg.Val;
4874 else if (!isConsecutiveLoad(Arg.Val, Base,
4875 i, MVT::getSizeInBits(EVT)/8,MFI))
4876 return SDOperand();
4877 }
4878 }
4879
4880 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00004881 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004882 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004883 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00004884 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004885 } else {
Dan Gohman11821702007-07-27 17:16:43 +00004886 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4887 LD->getSrcValueOffset(), LD->isVolatile(),
4888 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004889 }
4890}
4891
4892/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4893static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4894 const X86Subtarget *Subtarget) {
4895 SDOperand Cond = N->getOperand(0);
4896
4897 // If we have SSE[12] support, try to form min/max nodes.
4898 if (Subtarget->hasSSE2() &&
4899 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4900 if (Cond.getOpcode() == ISD::SETCC) {
4901 // Get the LHS/RHS of the select.
4902 SDOperand LHS = N->getOperand(1);
4903 SDOperand RHS = N->getOperand(2);
4904 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4905
4906 unsigned Opcode = 0;
4907 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4908 switch (CC) {
4909 default: break;
4910 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4911 case ISD::SETULE:
4912 case ISD::SETLE:
4913 if (!UnsafeFPMath) break;
4914 // FALL THROUGH.
4915 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
4916 case ISD::SETLT:
4917 Opcode = X86ISD::FMIN;
4918 break;
4919
4920 case ISD::SETOGT: // (X > Y) ? X : Y -> max
4921 case ISD::SETUGT:
4922 case ISD::SETGT:
4923 if (!UnsafeFPMath) break;
4924 // FALL THROUGH.
4925 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
4926 case ISD::SETGE:
4927 Opcode = X86ISD::FMAX;
4928 break;
4929 }
4930 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4931 switch (CC) {
4932 default: break;
4933 case ISD::SETOGT: // (X > Y) ? Y : X -> min
4934 case ISD::SETUGT:
4935 case ISD::SETGT:
4936 if (!UnsafeFPMath) break;
4937 // FALL THROUGH.
4938 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
4939 case ISD::SETGE:
4940 Opcode = X86ISD::FMIN;
4941 break;
4942
4943 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
4944 case ISD::SETULE:
4945 case ISD::SETLE:
4946 if (!UnsafeFPMath) break;
4947 // FALL THROUGH.
4948 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
4949 case ISD::SETLT:
4950 Opcode = X86ISD::FMAX;
4951 break;
4952 }
4953 }
4954
4955 if (Opcode)
4956 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4957 }
4958
4959 }
4960
4961 return SDOperand();
4962}
4963
4964
4965SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4966 DAGCombinerInfo &DCI) const {
4967 SelectionDAG &DAG = DCI.DAG;
4968 switch (N->getOpcode()) {
4969 default: break;
4970 case ISD::VECTOR_SHUFFLE:
4971 return PerformShuffleCombine(N, DAG, Subtarget);
4972 case ISD::SELECT:
4973 return PerformSELECTCombine(N, DAG, Subtarget);
4974 }
4975
4976 return SDOperand();
4977}
4978
4979//===----------------------------------------------------------------------===//
4980// X86 Inline Assembly Support
4981//===----------------------------------------------------------------------===//
4982
4983/// getConstraintType - Given a constraint letter, return the type of
4984/// constraint it is for this target.
4985X86TargetLowering::ConstraintType
4986X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4987 if (Constraint.size() == 1) {
4988 switch (Constraint[0]) {
4989 case 'A':
4990 case 'r':
4991 case 'R':
4992 case 'l':
4993 case 'q':
4994 case 'Q':
4995 case 'x':
4996 case 'Y':
4997 return C_RegisterClass;
4998 default:
4999 break;
5000 }
5001 }
5002 return TargetLowering::getConstraintType(Constraint);
5003}
5004
5005/// isOperandValidForConstraint - Return the specified operand (possibly
5006/// modified) if the specified SDOperand is valid for the specified target
5007/// constraint letter, otherwise return null.
5008SDOperand X86TargetLowering::
5009isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
5010 switch (Constraint) {
5011 default: break;
5012 case 'I':
5013 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5014 if (C->getValue() <= 31)
5015 return DAG.getTargetConstant(C->getValue(), Op.getValueType());
5016 }
5017 return SDOperand(0,0);
5018 case 'N':
5019 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5020 if (C->getValue() <= 255)
5021 return DAG.getTargetConstant(C->getValue(), Op.getValueType());
5022 }
5023 return SDOperand(0,0);
5024 case 'i': {
5025 // Literal immediates are always ok.
5026 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op))
5027 return DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5028
5029 // If we are in non-pic codegen mode, we allow the address of a global (with
5030 // an optional displacement) to be used with 'i'.
5031 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5032 int64_t Offset = 0;
5033
5034 // Match either (GA) or (GA+C)
5035 if (GA) {
5036 Offset = GA->getOffset();
5037 } else if (Op.getOpcode() == ISD::ADD) {
5038 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5039 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5040 if (C && GA) {
5041 Offset = GA->getOffset()+C->getValue();
5042 } else {
5043 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5044 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5045 if (C && GA)
5046 Offset = GA->getOffset()+C->getValue();
5047 else
5048 C = 0, GA = 0;
5049 }
5050 }
5051
5052 if (GA) {
5053 // If addressing this global requires a load (e.g. in PIC mode), we can't
5054 // match.
5055 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5056 false))
5057 return SDOperand(0, 0);
5058
5059 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5060 Offset);
5061 return Op;
5062 }
5063
5064 // Otherwise, not valid for this mode.
5065 return SDOperand(0, 0);
5066 }
5067 }
5068 return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
5069}
5070
5071std::vector<unsigned> X86TargetLowering::
5072getRegClassForInlineAsmConstraint(const std::string &Constraint,
5073 MVT::ValueType VT) const {
5074 if (Constraint.size() == 1) {
5075 // FIXME: not handling fp-stack yet!
5076 switch (Constraint[0]) { // GCC X86 Constraint Letters
5077 default: break; // Unknown constraint letter
5078 case 'A': // EAX/EDX
5079 if (VT == MVT::i32 || VT == MVT::i64)
5080 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5081 break;
5082 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5083 case 'Q': // Q_REGS
5084 if (VT == MVT::i32)
5085 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5086 else if (VT == MVT::i16)
5087 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5088 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005089 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005090 break;
5091 }
5092 }
5093
5094 return std::vector<unsigned>();
5095}
5096
5097std::pair<unsigned, const TargetRegisterClass*>
5098X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5099 MVT::ValueType VT) const {
5100 // First, see if this is a constraint that directly corresponds to an LLVM
5101 // register class.
5102 if (Constraint.size() == 1) {
5103 // GCC Constraint Letters
5104 switch (Constraint[0]) {
5105 default: break;
5106 case 'r': // GENERAL_REGS
5107 case 'R': // LEGACY_REGS
5108 case 'l': // INDEX_REGS
5109 if (VT == MVT::i64 && Subtarget->is64Bit())
5110 return std::make_pair(0U, X86::GR64RegisterClass);
5111 if (VT == MVT::i32)
5112 return std::make_pair(0U, X86::GR32RegisterClass);
5113 else if (VT == MVT::i16)
5114 return std::make_pair(0U, X86::GR16RegisterClass);
5115 else if (VT == MVT::i8)
5116 return std::make_pair(0U, X86::GR8RegisterClass);
5117 break;
5118 case 'y': // MMX_REGS if MMX allowed.
5119 if (!Subtarget->hasMMX()) break;
5120 return std::make_pair(0U, X86::VR64RegisterClass);
5121 break;
5122 case 'Y': // SSE_REGS if SSE2 allowed
5123 if (!Subtarget->hasSSE2()) break;
5124 // FALL THROUGH.
5125 case 'x': // SSE_REGS if SSE1 allowed
5126 if (!Subtarget->hasSSE1()) break;
5127
5128 switch (VT) {
5129 default: break;
5130 // Scalar SSE types.
5131 case MVT::f32:
5132 case MVT::i32:
5133 return std::make_pair(0U, X86::FR32RegisterClass);
5134 case MVT::f64:
5135 case MVT::i64:
5136 return std::make_pair(0U, X86::FR64RegisterClass);
5137 // Vector types.
5138 case MVT::v16i8:
5139 case MVT::v8i16:
5140 case MVT::v4i32:
5141 case MVT::v2i64:
5142 case MVT::v4f32:
5143 case MVT::v2f64:
5144 return std::make_pair(0U, X86::VR128RegisterClass);
5145 }
5146 break;
5147 }
5148 }
5149
5150 // Use the default implementation in TargetLowering to convert the register
5151 // constraint into a member of a register class.
5152 std::pair<unsigned, const TargetRegisterClass*> Res;
5153 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5154
5155 // Not found as a standard register?
5156 if (Res.second == 0) {
5157 // GCC calls "st(0)" just plain "st".
5158 if (StringsEqualNoCase("{st}", Constraint)) {
5159 Res.first = X86::ST0;
5160 Res.second = X86::RSTRegisterClass;
5161 }
5162
5163 return Res;
5164 }
5165
5166 // Otherwise, check to see if this is a register class of the wrong value
5167 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5168 // turn into {ax},{dx}.
5169 if (Res.second->hasType(VT))
5170 return Res; // Correct type already, nothing to do.
5171
5172 // All of the single-register GCC register classes map their values onto
5173 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5174 // really want an 8-bit or 32-bit register, map to the appropriate register
5175 // class and return the appropriate register.
5176 if (Res.second != X86::GR16RegisterClass)
5177 return Res;
5178
5179 if (VT == MVT::i8) {
5180 unsigned DestReg = 0;
5181 switch (Res.first) {
5182 default: break;
5183 case X86::AX: DestReg = X86::AL; break;
5184 case X86::DX: DestReg = X86::DL; break;
5185 case X86::CX: DestReg = X86::CL; break;
5186 case X86::BX: DestReg = X86::BL; break;
5187 }
5188 if (DestReg) {
5189 Res.first = DestReg;
5190 Res.second = Res.second = X86::GR8RegisterClass;
5191 }
5192 } else if (VT == MVT::i32) {
5193 unsigned DestReg = 0;
5194 switch (Res.first) {
5195 default: break;
5196 case X86::AX: DestReg = X86::EAX; break;
5197 case X86::DX: DestReg = X86::EDX; break;
5198 case X86::CX: DestReg = X86::ECX; break;
5199 case X86::BX: DestReg = X86::EBX; break;
5200 case X86::SI: DestReg = X86::ESI; break;
5201 case X86::DI: DestReg = X86::EDI; break;
5202 case X86::BP: DestReg = X86::EBP; break;
5203 case X86::SP: DestReg = X86::ESP; break;
5204 }
5205 if (DestReg) {
5206 Res.first = DestReg;
5207 Res.second = Res.second = X86::GR32RegisterClass;
5208 }
5209 } else if (VT == MVT::i64) {
5210 unsigned DestReg = 0;
5211 switch (Res.first) {
5212 default: break;
5213 case X86::AX: DestReg = X86::RAX; break;
5214 case X86::DX: DestReg = X86::RDX; break;
5215 case X86::CX: DestReg = X86::RCX; break;
5216 case X86::BX: DestReg = X86::RBX; break;
5217 case X86::SI: DestReg = X86::RSI; break;
5218 case X86::DI: DestReg = X86::RDI; break;
5219 case X86::BP: DestReg = X86::RBP; break;
5220 case X86::SP: DestReg = X86::RSP; break;
5221 }
5222 if (DestReg) {
5223 Res.first = DestReg;
5224 Res.second = Res.second = X86::GR64RegisterClass;
5225 }
5226 }
5227
5228 return Res;
5229}