blob: a6c370c2fd3100edf965d688d585fd2843696e81 [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattnercb533582003-08-03 21:14:38 +000031#define DEBUG_TYPE "fp"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000037#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000038#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000039#include "llvm/Target/TargetMachine.h"
Chris Lattner847df252004-01-30 22:25:18 +000040#include "llvm/Function.h" // FIXME: remove when using MBB CFG!
41#include "llvm/Support/CFG.h" // FIXME: remove when using MBB CFG!
Chris Lattnera11136b2003-08-01 22:21:34 +000042#include "Support/Debug.h"
Chris Lattner847df252004-01-30 22:25:18 +000043#include "Support/DepthFirstIterator.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include "Support/Statistic.h"
45#include <algorithm>
Chris Lattner847df252004-01-30 22:25:18 +000046#include <set>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000047using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000048
Chris Lattnera960d952003-01-13 01:01:59 +000049namespace {
50 Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
51 Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
52
53 struct FPS : public MachineFunctionPass {
54 virtual bool runOnMachineFunction(MachineFunction &MF);
55
56 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
57
58 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59 AU.addRequired<LiveVariables>();
60 MachineFunctionPass::getAnalysisUsage(AU);
61 }
62 private:
63 LiveVariables *LV; // Live variable info for current function...
64 MachineBasicBlock *MBB; // Current basic block
65 unsigned Stack[8]; // FP<n> Registers in each stack slot...
66 unsigned RegMap[8]; // Track which stack slot contains each register
67 unsigned StackTop; // The current top of the FP stack.
68
69 void dumpStack() const {
70 std::cerr << "Stack contents:";
71 for (unsigned i = 0; i != StackTop; ++i) {
72 std::cerr << " FP" << Stack[i];
73 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
74 }
75 std::cerr << "\n";
76 }
77 private:
78 // getSlot - Return the stack slot number a particular register number is
79 // in...
80 unsigned getSlot(unsigned RegNo) const {
81 assert(RegNo < 8 && "Regno out of range!");
82 return RegMap[RegNo];
83 }
84
85 // getStackEntry - Return the X86::FP<n> register in register ST(i)
86 unsigned getStackEntry(unsigned STi) const {
87 assert(STi < StackTop && "Access past stack top!");
88 return Stack[StackTop-1-STi];
89 }
90
91 // getSTReg - Return the X86::ST(i) register which contains the specified
92 // FP<RegNo> register
93 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +000094 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +000095 }
96
Chris Lattner4a06f352004-02-02 19:23:15 +000097 // pushReg - Push the specified FP<n> register onto the stack
Chris Lattnera960d952003-01-13 01:01:59 +000098 void pushReg(unsigned Reg) {
99 assert(Reg < 8 && "Register number out of range!");
100 assert(StackTop < 8 && "Stack overflow!");
101 Stack[StackTop] = Reg;
102 RegMap[Reg] = StackTop++;
103 }
104
105 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
106 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
107 if (!isAtTop(RegNo)) {
108 unsigned Slot = getSlot(RegNo);
109 unsigned STReg = getSTReg(RegNo);
110 unsigned RegOnTop = getStackEntry(0);
111
112 // Swap the slots the regs are in
113 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
114
115 // Swap stack slot contents
116 assert(RegMap[RegOnTop] < StackTop);
117 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
118
119 // Emit an fxch to update the runtime processors version of the state
120 MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
121 I = 1+MBB->insert(I, MI);
122 NumFXCH++;
123 }
124 }
125
126 void duplicateToTop(unsigned RegNo, unsigned AsReg,
127 MachineBasicBlock::iterator &I) {
128 unsigned STReg = getSTReg(RegNo);
129 pushReg(AsReg); // New register on top of stack
130
131 MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
132 I = 1+MBB->insert(I, MI);
133 }
134
135 // popStackAfter - Pop the current value off of the top of the FP stack
136 // after the specified instruction.
137 void popStackAfter(MachineBasicBlock::iterator &I);
138
139 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
140
141 void handleZeroArgFP(MachineBasicBlock::iterator &I);
142 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000143 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000144 void handleTwoArgFP(MachineBasicBlock::iterator &I);
145 void handleSpecialFP(MachineBasicBlock::iterator &I);
146 };
147}
148
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000149FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000150
151/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
152/// register references into FP stack references.
153///
154bool FPS::runOnMachineFunction(MachineFunction &MF) {
155 LV = &getAnalysis<LiveVariables>();
156 StackTop = 0;
157
Chris Lattner847df252004-01-30 22:25:18 +0000158 // Figure out the mapping of MBB's to BB's.
159 //
160 // FIXME: Eventually we should be able to traverse the MBB CFG directly, and
161 // we will need to extend this when one llvm basic block can codegen to
162 // multiple MBBs.
163 //
164 // FIXME again: Just use the mapping established by LiveVariables!
165 //
166 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
Chris Lattnera960d952003-01-13 01:01:59 +0000167 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Chris Lattner847df252004-01-30 22:25:18 +0000168 MBBMap[I->getBasicBlock()] = I;
169
170 // Process the function in depth first order so that we process at least one
171 // of the predecessors for every reachable block in the function.
172 std::set<const BasicBlock*> Processed;
173 const BasicBlock *Entry = MF.getFunction()->begin();
174
175 bool Changed = false;
176 for (df_ext_iterator<const BasicBlock*, std::set<const BasicBlock*> >
177 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
178 I != E; ++I)
179 Changed |= processBasicBlock(MF, *MBBMap[*I]);
180
181 assert(MBBMap.size() == Processed.size() &&
182 "Doesn't handle unreachable code yet!");
183
Chris Lattnera960d952003-01-13 01:01:59 +0000184 return Changed;
185}
186
187/// processBasicBlock - Loop over all of the instructions in the basic block,
188/// transforming FP instructions into their stack form.
189///
190bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
191 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
192 bool Changed = false;
193 MBB = &BB;
194
195 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
196 MachineInstr *MI = *I;
Chris Lattnera960d952003-01-13 01:01:59 +0000197 unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
Chris Lattner847df252004-01-30 22:25:18 +0000198 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
199 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000200
Chris Lattner847df252004-01-30 22:25:18 +0000201 MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
Chris Lattnera960d952003-01-13 01:01:59 +0000202
203 ++NumFP; // Keep track of # of pseudo instrs
204 DEBUG(std::cerr << "\nFPInst:\t";
205 MI->print(std::cerr, MF.getTarget()));
206
207 // Get dead variables list now because the MI pointer may be deleted as part
208 // of processing!
209 LiveVariables::killed_iterator IB = LV->dead_begin(MI);
210 LiveVariables::killed_iterator IE = LV->dead_end(MI);
211
212 DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
213 LiveVariables::killed_iterator I = LV->killed_begin(MI);
214 LiveVariables::killed_iterator E = LV->killed_end(MI);
215 if (I != E) {
216 std::cerr << "Killed Operands:";
217 for (; I != E; ++I)
218 std::cerr << " %" << MRI->getName(I->second);
219 std::cerr << "\n";
220 });
221
222 switch (Flags & X86II::FPTypeMask) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000223 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
224 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
225 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
226 case X86II::TwoArgFP: handleTwoArgFP(I); break;
227 case X86II::SpecialFP: handleSpecialFP(I); break;
Chris Lattnera960d952003-01-13 01:01:59 +0000228 default: assert(0 && "Unknown FP Type!");
229 }
230
231 // Check to see if any of the values defined by this instruction are dead
232 // after definition. If so, pop them.
233 for (; IB != IE; ++IB) {
234 unsigned Reg = IB->second;
235 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
236 DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
237 ++I; // Insert fxch AFTER the instruction
Misha Brukman5560c9d2003-08-18 14:43:39 +0000238 moveToTop(Reg-X86::FP0, I); // Insert fxch if necessary
Chris Lattnera960d952003-01-13 01:01:59 +0000239 --I; // Move to fxch or old instruction
240 popStackAfter(I); // Pop the top of the stack, killing value
241 }
242 }
243
244 // Print out all of the instructions expanded to if -debug
245 DEBUG(if (*I == PrevMI) {
246 std::cerr<< "Just deleted pseudo instruction\n";
247 } else {
248 MachineBasicBlock::iterator Start = I;
249 // Rewind to first instruction newly inserted.
250 while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
Brian Gaeked7908f62003-06-27 00:00:48 +0000251 std::cerr << "Inserted instructions:\n\t";
252 (*Start)->print(std::cerr, MF.getTarget());
Chris Lattnera960d952003-01-13 01:01:59 +0000253 while (++Start != I+1);
254 }
255 dumpStack();
256 );
257
258 Changed = true;
259 }
260
261 assert(StackTop == 0 && "Stack not empty at end of basic block?");
262 return Changed;
263}
264
265//===----------------------------------------------------------------------===//
266// Efficient Lookup Table Support
267//===----------------------------------------------------------------------===//
268
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000269namespace {
270 struct TableEntry {
271 unsigned from;
272 unsigned to;
273 bool operator<(const TableEntry &TE) const { return from < TE.from; }
274 bool operator<(unsigned V) const { return from < V; }
275 };
276}
Chris Lattnera960d952003-01-13 01:01:59 +0000277
278static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
279 for (unsigned i = 0; i != NumEntries-1; ++i)
280 if (!(Table[i] < Table[i+1])) return false;
281 return true;
282}
283
284static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
285 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
286 if (I != Table+N && I->from == Opcode)
287 return I->to;
288 return -1;
289}
290
291#define ARRAY_SIZE(TABLE) \
292 (sizeof(TABLE)/sizeof(TABLE[0]))
293
294#ifdef NDEBUG
295#define ASSERT_SORTED(TABLE)
296#else
297#define ASSERT_SORTED(TABLE) \
298 { static bool TABLE##Checked = false; \
299 if (!TABLE##Checked) \
300 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
301 "All lookup tables must be sorted for efficient access!"); \
302 }
303#endif
304
305
306//===----------------------------------------------------------------------===//
307// Helper Methods
308//===----------------------------------------------------------------------===//
309
310// PopTable - Sorted map of instructions to their popping version. The first
311// element is an instruction, the second is the version which pops.
312//
313static const TableEntry PopTable[] = {
Chris Lattner113455b2003-08-03 21:56:36 +0000314 { X86::FADDrST0 , X86::FADDPrST0 },
315
316 { X86::FDIVRrST0, X86::FDIVRPrST0 },
317 { X86::FDIVrST0 , X86::FDIVPrST0 },
318
Chris Lattnera960d952003-01-13 01:01:59 +0000319 { X86::FISTr16 , X86::FISTPr16 },
320 { X86::FISTr32 , X86::FISTPr32 },
321
Chris Lattnera960d952003-01-13 01:01:59 +0000322 { X86::FMULrST0 , X86::FMULPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000323
Chris Lattner113455b2003-08-03 21:56:36 +0000324 { X86::FSTr32 , X86::FSTPr32 },
325 { X86::FSTr64 , X86::FSTPr64 },
326 { X86::FSTrr , X86::FSTPrr },
327
328 { X86::FSUBRrST0, X86::FSUBRPrST0 },
329 { X86::FSUBrST0 , X86::FSUBPrST0 },
330
Chris Lattnera960d952003-01-13 01:01:59 +0000331 { X86::FUCOMPr , X86::FUCOMPPr },
Chris Lattner113455b2003-08-03 21:56:36 +0000332 { X86::FUCOMr , X86::FUCOMPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000333};
334
335/// popStackAfter - Pop the current value off of the top of the FP stack after
336/// the specified instruction. This attempts to be sneaky and combine the pop
337/// into the instruction itself if possible. The iterator is left pointing to
338/// the last instruction, be it a new pop instruction inserted, or the old
339/// instruction if it was modified in place.
340///
341void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
342 ASSERT_SORTED(PopTable);
343 assert(StackTop > 0 && "Cannot pop empty stack!");
344 RegMap[Stack[--StackTop]] = ~0; // Update state
345
346 // Check to see if there is a popping version of this instruction...
347 int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
348 if (Opcode != -1) {
349 (*I)->setOpcode(Opcode);
350 if (Opcode == X86::FUCOMPPr)
351 (*I)->RemoveOperand(0);
352
353 } else { // Insert an explicit pop
354 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
355 I = MBB->insert(I+1, MI);
356 }
357}
358
359static unsigned getFPReg(const MachineOperand &MO) {
360 assert(MO.isPhysicalRegister() && "Expected an FP register!");
361 unsigned Reg = MO.getReg();
362 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
363 return Reg - X86::FP0;
364}
365
366
367//===----------------------------------------------------------------------===//
368// Instruction transformation implementation
369//===----------------------------------------------------------------------===//
370
371/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000372///
Chris Lattnera960d952003-01-13 01:01:59 +0000373void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
374 MachineInstr *MI = *I;
375 unsigned DestReg = getFPReg(MI->getOperand(0));
376 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
377
378 // Result gets pushed on the stack...
379 pushReg(DestReg);
380}
381
Chris Lattner4a06f352004-02-02 19:23:15 +0000382/// handleOneArgFP - fst <mem>, ST(0)
383///
Chris Lattnera960d952003-01-13 01:01:59 +0000384void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
385 MachineInstr *MI = *I;
386 assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
387
Chris Lattner4a06f352004-02-02 19:23:15 +0000388 // Is this the last use of the source register?
Chris Lattnera960d952003-01-13 01:01:59 +0000389 unsigned Reg = getFPReg(MI->getOperand(4));
390 bool KillsSrc = false;
391 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
392 E = LV->killed_end(MI); KI != E; ++KI)
393 KillsSrc |= KI->second == X86::FP0+Reg;
394
395 // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
396 // If we have one _and_ we don't want to pop the operand, duplicate the value
397 // on the stack instead of moving it. This ensure that popping the value is
398 // always ok.
399 //
400 if ((MI->getOpcode() == X86::FSTPr80 ||
401 MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
402 duplicateToTop(Reg, 7 /*temp register*/, I);
403 } else {
404 moveToTop(Reg, I); // Move to the top of the stack...
405 }
406 MI->RemoveOperand(4); // Remove explicit ST(0) operand
407
408 if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
409 assert(StackTop > 0 && "Stack empty??");
410 --StackTop;
411 } else if (KillsSrc) { // Last use of operand?
412 popStackAfter(I);
413 }
414}
415
Chris Lattner4a06f352004-02-02 19:23:15 +0000416
417/// handleOneArgFPRW - fchs - ST(0) = -ST(0)
418///
419void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
420 MachineInstr *MI = *I;
421 assert(MI->getNumOperands() == 2 && "Can only handle fst* instructions!");
422
423 // Is this the last use of the source register?
424 unsigned Reg = getFPReg(MI->getOperand(1));
425 bool KillsSrc = false;
426 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
427 E = LV->killed_end(MI); KI != E; ++KI)
428 KillsSrc |= KI->second == X86::FP0+Reg;
429
430 if (KillsSrc) {
431 // If this is the last use of the source register, just make sure it's on
432 // the top of the stack.
433 moveToTop(Reg, I);
434 assert(StackTop > 0 && "Stack cannot be empty!");
435 --StackTop;
436 pushReg(getFPReg(MI->getOperand(0)));
437 } else {
438 // If this is not the last use of the source register, _copy_ it to the top
439 // of the stack.
440 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
441 }
442
443 MI->RemoveOperand(1); // Drop the source operand.
444 MI->RemoveOperand(0); // Drop the destination operand.
445}
446
447
Chris Lattnera960d952003-01-13 01:01:59 +0000448//===----------------------------------------------------------------------===//
449// Define tables of various ways to map pseudo instructions
450//
451
452// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
453static const TableEntry ForwardST0Table[] = {
454 { X86::FpADD, X86::FADDST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000455 { X86::FpDIV, X86::FDIVST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000456 { X86::FpMUL, X86::FMULST0r },
457 { X86::FpSUB, X86::FSUBST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000458 { X86::FpUCOM, X86::FUCOMr },
459};
460
461// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
462static const TableEntry ReverseST0Table[] = {
463 { X86::FpADD, X86::FADDST0r }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000464 { X86::FpDIV, X86::FDIVRST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000465 { X86::FpMUL, X86::FMULST0r }, // commutative
466 { X86::FpSUB, X86::FSUBRST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000467 { X86::FpUCOM, ~0 },
468};
469
470// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
471static const TableEntry ForwardSTiTable[] = {
472 { X86::FpADD, X86::FADDrST0 }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000473 { X86::FpDIV, X86::FDIVRrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000474 { X86::FpMUL, X86::FMULrST0 }, // commutative
475 { X86::FpSUB, X86::FSUBRrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000476 { X86::FpUCOM, X86::FUCOMr },
477};
478
479// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
480static const TableEntry ReverseSTiTable[] = {
481 { X86::FpADD, X86::FADDrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000482 { X86::FpDIV, X86::FDIVrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000483 { X86::FpMUL, X86::FMULrST0 },
484 { X86::FpSUB, X86::FSUBrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000485 { X86::FpUCOM, ~0 },
486};
487
488
489/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
490/// instructions which need to be simplified and possibly transformed.
491///
492/// Result: ST(0) = fsub ST(0), ST(i)
493/// ST(i) = fsub ST(0), ST(i)
494/// ST(0) = fsubr ST(0), ST(i)
495/// ST(i) = fsubr ST(0), ST(i)
496///
497/// In addition to three address instructions, this also handles the FpUCOM
498/// instruction which only has two operands, but no destination. This
499/// instruction is also annoying because there is no "reverse" form of it
500/// available.
501///
502void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
503 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
504 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
505 MachineInstr *MI = *I;
506
507 unsigned NumOperands = MI->getNumOperands();
508 assert(NumOperands == 3 ||
509 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
510 "Illegal TwoArgFP instruction!");
511 unsigned Dest = getFPReg(MI->getOperand(0));
512 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
513 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
514 bool KillsOp0 = false, KillsOp1 = false;
515
516 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
517 E = LV->killed_end(MI); KI != E; ++KI) {
518 KillsOp0 |= (KI->second == X86::FP0+Op0);
519 KillsOp1 |= (KI->second == X86::FP0+Op1);
520 }
521
522 // If this is an FpUCOM instruction, we must make sure the first operand is on
523 // the top of stack, the other one can be anywhere...
524 if (MI->getOpcode() == X86::FpUCOM)
525 moveToTop(Op0, I);
526
527 unsigned TOS = getStackEntry(0);
528
529 // One of our operands must be on the top of the stack. If neither is yet, we
530 // need to move one.
531 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
532 // We can choose to move either operand to the top of the stack. If one of
533 // the operands is killed by this instruction, we want that one so that we
534 // can update right on top of the old version.
535 if (KillsOp0) {
536 moveToTop(Op0, I); // Move dead operand to TOS.
537 TOS = Op0;
538 } else if (KillsOp1) {
539 moveToTop(Op1, I);
540 TOS = Op1;
541 } else {
542 // All of the operands are live after this instruction executes, so we
543 // cannot update on top of any operand. Because of this, we must
544 // duplicate one of the stack elements to the top. It doesn't matter
545 // which one we pick.
546 //
547 duplicateToTop(Op0, Dest, I);
548 Op0 = TOS = Dest;
549 KillsOp0 = true;
550 }
551 } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
552 // If we DO have one of our operands at the top of the stack, but we don't
553 // have a dead operand, we must duplicate one of the operands to a new slot
554 // on the stack.
555 duplicateToTop(Op0, Dest, I);
556 Op0 = TOS = Dest;
557 KillsOp0 = true;
558 }
559
560 // Now we know that one of our operands is on the top of the stack, and at
561 // least one of our operands is killed by this instruction.
562 assert((TOS == Op0 || TOS == Op1) &&
563 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
564 "Stack conditions not set up right!");
565
566 // We decide which form to use based on what is on the top of the stack, and
567 // which operand is killed by this instruction.
568 const TableEntry *InstTable;
569 bool isForward = TOS == Op0;
570 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
571 if (updateST0) {
572 if (isForward)
573 InstTable = ForwardST0Table;
574 else
575 InstTable = ReverseST0Table;
576 } else {
577 if (isForward)
578 InstTable = ForwardSTiTable;
579 else
580 InstTable = ReverseSTiTable;
581 }
582
583 int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
584 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
585
586 // NotTOS - The register which is not on the top of stack...
587 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
588
589 // Replace the old instruction with a new instruction
590 *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
591
592 // If both operands are killed, pop one off of the stack in addition to
593 // overwriting the other one.
594 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
595 assert(!updateST0 && "Should have updated other operand!");
596 popStackAfter(I); // Pop the top of stack
597 }
598
599 // Insert an explicit pop of the "updated" operand for FUCOM
600 if (MI->getOpcode() == X86::FpUCOM) {
601 if (KillsOp0 && !KillsOp1)
602 popStackAfter(I); // If we kill the first operand, pop it!
603 else if (KillsOp1 && Op0 != Op1) {
604 if (getStackEntry(0) == Op1) {
605 popStackAfter(I); // If it's right at the top of stack, just pop it
606 } else {
607 // Otherwise, move the top of stack into the dead slot, killing the
608 // operand without having to add in an explicit xchg then pop.
609 //
610 unsigned STReg = getSTReg(Op1);
611 unsigned OldSlot = getSlot(Op1);
612 unsigned TopReg = Stack[StackTop-1];
613 Stack[OldSlot] = TopReg;
614 RegMap[TopReg] = OldSlot;
615 RegMap[Op1] = ~0;
616 Stack[--StackTop] = ~0;
617
618 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
619 I = MBB->insert(I+1, MI);
620 }
621 }
622 }
623
624 // Update stack information so that we know the destination register is now on
625 // the stack.
626 if (MI->getOpcode() != X86::FpUCOM) {
627 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
628 assert(UpdatedSlot < StackTop && Dest < 7);
629 Stack[UpdatedSlot] = Dest;
630 RegMap[Dest] = UpdatedSlot;
631 }
632 delete MI; // Remove the old instruction
633}
634
635
636/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000637/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000638/// instructions.
639///
640void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
641 MachineInstr *MI = *I;
642 switch (MI->getOpcode()) {
643 default: assert(0 && "Unknown SpecialFP instruction!");
644 case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
645 assert(StackTop == 0 && "Stack should be empty after a call!");
646 pushReg(getFPReg(MI->getOperand(0)));
647 break;
648 case X86::FpSETRESULT:
649 assert(StackTop == 1 && "Stack should have one element on it to return!");
650 --StackTop; // "Forget" we have something on the top of stack!
651 break;
652 case X86::FpMOV: {
653 unsigned SrcReg = getFPReg(MI->getOperand(1));
654 unsigned DestReg = getFPReg(MI->getOperand(0));
655 bool KillsSrc = false;
656 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
657 E = LV->killed_end(MI); KI != E; ++KI)
658 KillsSrc |= KI->second == X86::FP0+SrcReg;
659
660 if (KillsSrc) {
661 // If the input operand is killed, we can just change the owner of the
662 // incoming stack slot into the result.
663 unsigned Slot = getSlot(SrcReg);
664 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
665 Stack[Slot] = DestReg;
666 RegMap[DestReg] = Slot;
667
668 } else {
669 // For FMOV we just duplicate the specified value to a new stack slot.
670 // This could be made better, but would require substantial changes.
671 duplicateToTop(SrcReg, DestReg, I);
672 }
673 break;
674 }
675 }
676
677 I = MBB->erase(I)-1; // Remove the pseudo instruction
Chris Lattner90685742003-12-20 10:12:17 +0000678 delete MI;
Chris Lattnera960d952003-01-13 01:01:59 +0000679}