blob: 64f8e5c006e687e5e9ca558cef54ec95cb36aabc [file] [log] [blame]
Misha Brukmanca9309f2004-08-11 23:42:15 +00001//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "isel"
11#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "PPC64TargetMachine.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
19#include "llvm/Pass.h"
20#include "llvm/CodeGen/IntrinsicLowering.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
29#include "Support/Debug.h"
30#include "Support/Statistic.h"
31#include <vector>
32using namespace llvm;
33
34namespace {
35 Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
36
37 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
39 ///
40 enum TypeClass {
41 cByte, cShort, cInt, cFP32, cFP64, cLong
42 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
49 switch (Ty->getTypeID()) {
50 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
Misha Brukmancc6b01b2004-08-12 02:53:01 +000055 case Type::UIntTyID: return cInt; // Ints are class #2
Misha Brukmanca9309f2004-08-11 23:42:15 +000056
57 case Type::FloatTyID: return cFP32; // Single float is #3
58 case Type::DoubleTyID: return cFP64; // Double Point is #4
59
Misha Brukmancc6b01b2004-08-12 02:53:01 +000060 case Type::PointerTyID:
Misha Brukmanca9309f2004-08-11 23:42:15 +000061 case Type::LongTyID:
Misha Brukmancc6b01b2004-08-12 02:53:01 +000062 case Type::ULongTyID: return cLong; // Longs and pointers are class #5
Misha Brukmanca9309f2004-08-11 23:42:15 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
71 if (Ty == Type::BoolTy) return cInt;
72 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
77 PPC64TargetMachine &TM;
78 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
81
82 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
83
84 // External functions used in the Module
85 Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
86 *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
87 *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
88
89 // MBBMap - Mapping between LLVM BB -> Machine BB
90 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
91
92 // AllocaMap - Mapping from fixed sized alloca instructions to the
93 // FrameIndex for the alloca.
94 std::map<AllocaInst*, unsigned> AllocaMap;
95
96 // A Reg to hold the base address used for global loads and stores, and a
97 // flag to set whether or not we need to emit it for this function.
98 unsigned GlobalBaseReg;
99 bool GlobalBaseInitialized;
100
101 ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC64TargetMachine&>(tm)),
102 F(0), BB(0) {}
103
104 bool doInitialization(Module &M) {
105 // Add external functions that we may call
106 Type *i = Type::IntTy;
107 Type *d = Type::DoubleTy;
108 Type *f = Type::FloatTy;
109 Type *l = Type::LongTy;
110 Type *ul = Type::ULongTy;
111 Type *voidPtr = PointerType::get(Type::SByteTy);
112 // float fmodf(float, float);
113 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
114 // double fmod(double, double);
115 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
116 // int __cmpdi2(long, long);
117 __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
118 // long __moddi3(long, long);
119 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
120 // long __divdi3(long, long);
121 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
122 // unsigned long __umoddi3(unsigned long, unsigned long);
123 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
124 // unsigned long __udivdi3(unsigned long, unsigned long);
125 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
126 // long __fixsfdi(float)
127 __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
128 // long __fixdfdi(double)
129 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
130 // unsigned long __fixunssfdi(float)
131 __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
132 // unsigned long __fixunsdfdi(double)
133 __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
134 // float __floatdisf(long)
135 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
136 // double __floatdidf(long)
137 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
138 // void* malloc(size_t)
139 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
140 // void free(void*)
141 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
142 return false;
143 }
144
145 /// runOnFunction - Top level implementation of instruction selection for
146 /// the entire function.
147 ///
148 bool runOnFunction(Function &Fn) {
149 // First pass over the function, lower any unknown intrinsic functions
150 // with the IntrinsicLowering class.
151 LowerUnknownIntrinsicFunctionCalls(Fn);
152
153 F = &MachineFunction::construct(&Fn, TM);
154
155 // Create all of the machine basic blocks for the function...
156 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
157 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
158
159 BB = &F->front();
160
161 // Make sure we re-emit a set of the global base reg if necessary
162 GlobalBaseInitialized = false;
163
164 // Copy incoming arguments off of the stack...
165 LoadArgumentsToVirtualRegs(Fn);
166
167 // Instruction select everything except PHI nodes
168 visit(Fn);
169
170 // Select the PHI nodes
171 SelectPHINodes();
172
173 RegMap.clear();
174 MBBMap.clear();
175 AllocaMap.clear();
176 F = 0;
177 // We always build a machine code representation for the function
178 return true;
179 }
180
181 virtual const char *getPassName() const {
182 return "PowerPC Simple Instruction Selection";
183 }
184
185 /// visitBasicBlock - This method is called when we are visiting a new basic
186 /// block. This simply creates a new MachineBasicBlock to emit code into
187 /// and adds it to the current MachineFunction. Subsequent visit* for
188 /// instructions will be invoked for all instructions in the basic block.
189 ///
190 void visitBasicBlock(BasicBlock &LLVM_BB) {
191 BB = MBBMap[&LLVM_BB];
192 }
193
194 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
195 /// function, lowering any calls to unknown intrinsic functions into the
196 /// equivalent LLVM code.
197 ///
198 void LowerUnknownIntrinsicFunctionCalls(Function &F);
199
200 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
201 /// from the stack into virtual registers.
202 ///
203 void LoadArgumentsToVirtualRegs(Function &F);
204
205 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
206 /// because we have to generate our sources into the source basic blocks,
207 /// not the current one.
208 ///
209 void SelectPHINodes();
210
211 // Visitation methods for various instructions. These methods simply emit
212 // fixed PowerPC code for each instruction.
213
214 // Control flow operators
215 void visitReturnInst(ReturnInst &RI);
216 void visitBranchInst(BranchInst &BI);
217
218 struct ValueRecord {
219 Value *Val;
220 unsigned Reg;
221 const Type *Ty;
222 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
223 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
224 };
225
226 // This struct is for recording the necessary operations to emit the GEP
227 struct CollapsedGepOp {
228 bool isMul;
229 Value *index;
230 ConstantSInt *size;
231 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
232 isMul(mul), index(i), size(s) {}
233 };
234
235 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
236 const std::vector<ValueRecord> &Args, bool isVarArg);
237 void visitCallInst(CallInst &I);
238 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
239
240 // Arithmetic operators
241 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
242 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
243 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
244 void visitMul(BinaryOperator &B);
245
246 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
247 void visitRem(BinaryOperator &B) { visitDivRem(B); }
248 void visitDivRem(BinaryOperator &B);
249
250 // Bitwise operators
251 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
252 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
253 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
254
255 // Comparison operators...
256 void visitSetCondInst(SetCondInst &I);
257 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
258 MachineBasicBlock *MBB,
259 MachineBasicBlock::iterator MBBI);
260 void visitSelectInst(SelectInst &SI);
261
262
263 // Memory Instructions
264 void visitLoadInst(LoadInst &I);
265 void visitStoreInst(StoreInst &I);
266 void visitGetElementPtrInst(GetElementPtrInst &I);
267 void visitAllocaInst(AllocaInst &I);
268 void visitMallocInst(MallocInst &I);
269 void visitFreeInst(FreeInst &I);
270
271 // Other operators
272 void visitShiftInst(ShiftInst &I);
273 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
274 void visitCastInst(CastInst &I);
275 void visitVANextInst(VANextInst &I);
276 void visitVAArgInst(VAArgInst &I);
277
278 void visitInstruction(Instruction &I) {
279 std::cerr << "Cannot instruction select: " << I;
280 abort();
281 }
282
283 /// promote32 - Make a value 32-bits wide, and put it somewhere.
284 ///
285 void promote32(unsigned targetReg, const ValueRecord &VR);
286
287 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
288 /// constant expression GEP support.
289 ///
290 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
291 Value *Src, User::op_iterator IdxBegin,
292 User::op_iterator IdxEnd, unsigned TargetReg,
293 bool CollapseRemainder, ConstantSInt **Remainder,
294 unsigned *PendingAddReg);
295
296 /// emitCastOperation - Common code shared between visitCastInst and
297 /// constant expression cast support.
298 ///
299 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
300 Value *Src, const Type *DestTy, unsigned TargetReg);
301
302 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
303 /// and constant expression support.
304 ///
305 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
306 MachineBasicBlock::iterator IP,
307 Value *Op0, Value *Op1,
308 unsigned OperatorClass, unsigned TargetReg);
309
310 /// emitBinaryFPOperation - This method handles emission of floating point
311 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
312 void emitBinaryFPOperation(MachineBasicBlock *BB,
313 MachineBasicBlock::iterator IP,
314 Value *Op0, Value *Op1,
315 unsigned OperatorClass, unsigned TargetReg);
316
317 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
318 Value *Op0, Value *Op1, unsigned TargetReg);
319
320 void doMultiply(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 unsigned DestReg, Value *Op0, Value *Op1);
323
324 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
325 /// value of the ContantInt *CI
326 void doMultiplyConst(MachineBasicBlock *MBB,
327 MachineBasicBlock::iterator IP,
328 unsigned DestReg, Value *Op0, ConstantInt *CI);
329
330 void emitDivRemOperation(MachineBasicBlock *BB,
331 MachineBasicBlock::iterator IP,
332 Value *Op0, Value *Op1, bool isDiv,
333 unsigned TargetReg);
334
335 /// emitSetCCOperation - Common code shared between visitSetCondInst and
336 /// constant expression support.
337 ///
338 void emitSetCCOperation(MachineBasicBlock *BB,
339 MachineBasicBlock::iterator IP,
340 Value *Op0, Value *Op1, unsigned Opcode,
341 unsigned TargetReg);
342
343 /// emitShiftOperation - Common code shared between visitShiftInst and
344 /// constant expression support.
345 ///
346 void emitShiftOperation(MachineBasicBlock *MBB,
347 MachineBasicBlock::iterator IP,
348 Value *Op, Value *ShiftAmount, bool isLeftShift,
349 const Type *ResultTy, unsigned DestReg);
350
351 /// emitSelectOperation - Common code shared between visitSelectInst and the
352 /// constant expression support.
353 ///
354 void emitSelectOperation(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator IP,
356 Value *Cond, Value *TrueVal, Value *FalseVal,
357 unsigned DestReg);
358
359 /// copyGlobalBaseToRegister - Output the instructions required to put the
360 /// base address to use for accessing globals into a register.
361 ///
362 void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
363 MachineBasicBlock::iterator IP,
364 unsigned R);
365
366 /// copyConstantToRegister - Output the instructions required to put the
367 /// specified constant into the specified register.
368 ///
369 void copyConstantToRegister(MachineBasicBlock *MBB,
370 MachineBasicBlock::iterator MBBI,
371 Constant *C, unsigned Reg);
372
373 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
374 unsigned LHS, unsigned RHS);
375
376 /// makeAnotherReg - This method returns the next register number we haven't
377 /// yet used.
378 ///
379 unsigned makeAnotherReg(const Type *Ty) {
Misha Brukmanadde6992004-08-17 04:57:37 +0000380 assert(dynamic_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo()) &&
Misha Brukmanca9309f2004-08-11 23:42:15 +0000381 "Current target doesn't have PPC reg info??");
Misha Brukmanadde6992004-08-17 04:57:37 +0000382 const PPC64RegisterInfo *PPCRI =
383 static_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo());
Misha Brukmanca9309f2004-08-11 23:42:15 +0000384 // Add the mapping of regnumber => reg class to MachineFunction
385 const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
386 return F->getSSARegMap()->createVirtualRegister(RC);
387 }
388
389 /// getReg - This method turns an LLVM value into a register number.
390 ///
391 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
392 unsigned getReg(Value *V) {
393 // Just append to the end of the current bb.
394 MachineBasicBlock::iterator It = BB->end();
395 return getReg(V, BB, It);
396 }
397 unsigned getReg(Value *V, MachineBasicBlock *MBB,
398 MachineBasicBlock::iterator IPt);
399
400 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
401 /// is okay to use as an immediate argument to a certain binary operation
402 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
403
404 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
405 /// that is to be statically allocated with the initial stack frame
406 /// adjustment.
407 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
408 };
409}
410
411/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
412/// instruction in the entry block, return it. Otherwise, return a null
413/// pointer.
414static AllocaInst *dyn_castFixedAlloca(Value *V) {
415 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
416 BasicBlock *BB = AI->getParent();
417 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
418 return AI;
419 }
420 return 0;
421}
422
423/// getReg - This method turns an LLVM value into a register number.
424///
425unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
426 MachineBasicBlock::iterator IPt) {
427 if (Constant *C = dyn_cast<Constant>(V)) {
428 unsigned Reg = makeAnotherReg(V->getType());
429 copyConstantToRegister(MBB, IPt, C, Reg);
430 return Reg;
431 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
432 unsigned Reg = makeAnotherReg(V->getType());
433 unsigned FI = getFixedSizedAllocaFI(AI);
434 addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
435 return Reg;
436 }
437
438 unsigned &Reg = RegMap[V];
439 if (Reg == 0) {
440 Reg = makeAnotherReg(V->getType());
441 RegMap[V] = Reg;
442 }
443
444 return Reg;
445}
446
447/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
448/// is okay to use as an immediate argument to a certain binary operator.
449///
450/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
451bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
452 ConstantSInt *Op1Cs;
453 ConstantUInt *Op1Cu;
454
455 // ADDI, Compare, and non-indexed Load take SIMM
456 bool cond1 = (Operator == 0)
457 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
458 && (Op1Cs->getValue() <= 32767)
459 && (Op1Cs->getValue() >= -32768);
460
461 // SUBI takes -SIMM since it is a mnemonic for ADDI
462 bool cond2 = (Operator == 1)
463 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
464 && (Op1Cs->getValue() <= 32768)
465 && (Op1Cs->getValue() >= -32767);
466
467 // ANDIo, ORI, and XORI take unsigned values
468 bool cond3 = (Operator >= 2)
469 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
470 && (Op1Cs->getValue() >= 0)
471 && (Op1Cs->getValue() <= 32767);
472
473 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
474 bool cond4 = (Operator < 2)
475 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
476 && (Op1Cu->getValue() <= 32767);
477
478 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
479 bool cond5 = (Operator >= 2)
480 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
481 && (Op1Cu->getValue() <= 65535);
482
483 if (cond1 || cond2 || cond3 || cond4 || cond5)
484 return true;
485
486 return false;
487}
488
489/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
490/// that is to be statically allocated with the initial stack frame
491/// adjustment.
492unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
493 // Already computed this?
494 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
495 if (I != AllocaMap.end() && I->first == AI) return I->second;
496
497 const Type *Ty = AI->getAllocatedType();
498 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
499 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
500 TySize *= CUI->getValue(); // Get total allocated size...
501 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
502
503 // Create a new stack object using the frame manager...
504 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
505 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
506 return FrameIdx;
507}
508
509
510/// copyGlobalBaseToRegister - Output the instructions required to put the
511/// base address to use for accessing globals into a register.
512///
513void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
514 MachineBasicBlock::iterator IP,
515 unsigned R) {
516 if (!GlobalBaseInitialized) {
517 // Insert the set of GlobalBaseReg into the first MBB of the function
518 MachineBasicBlock &FirstMBB = F->front();
519 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
520 GlobalBaseReg = makeAnotherReg(Type::IntTy);
521 BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
522 BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
523 GlobalBaseInitialized = true;
524 }
525 // Emit our copy of GlobalBaseReg to the destination register in the
526 // current MBB
527 BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
528 .addReg(GlobalBaseReg);
529}
530
531/// copyConstantToRegister - Output the instructions required to put the
532/// specified constant into the specified register.
533///
534void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
535 MachineBasicBlock::iterator IP,
536 Constant *C, unsigned R) {
537 if (C->getType()->isIntegral()) {
538 unsigned Class = getClassB(C->getType());
539
540 if (Class == cLong) {
541 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
542 uint64_t uval = CUI->getValue();
543 if (uval < (1LL << 32)) {
544 ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
545 copyConstantToRegister(MBB, IP, CU, R);
546 return;
547 }
548 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
549 int64_t val = CUI->getValue();
550 if (val < (1LL << 31)) {
551 ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
552 copyConstantToRegister(MBB, IP, CU, R);
553 return;
554 }
555 } else {
556 std::cerr << "Unhandled long constant type!\n";
557 abort();
558 }
559 // Spill long to the constant pool and load it
560 MachineConstantPool *CP = F->getConstantPool();
561 unsigned CPI = CP->getConstantPoolIndex(C);
562 BuildMI(*MBB, IP, PPC::LD, 1, R)
563 .addReg(PPC::R2).addConstantPoolIndex(CPI);
564 }
565
566 assert(Class <= cInt && "Type not handled yet!");
567
568 // Handle bool
569 if (C->getType() == Type::BoolTy) {
570 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
571 return;
572 }
573
574 // Handle int
575 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
576 unsigned uval = CUI->getValue();
577 if (uval < 32768) {
578 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
579 } else {
580 unsigned Temp = makeAnotherReg(Type::IntTy);
581 BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
582 BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
583 }
584 return;
585 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
586 int sval = CSI->getValue();
587 if (sval < 32768 && sval >= -32768) {
588 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
589 } else {
590 unsigned Temp = makeAnotherReg(Type::IntTy);
591 BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
592 BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
593 }
594 return;
595 }
596 std::cerr << "Unhandled integer constant!\n";
597 abort();
598 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
599 // We need to spill the constant to memory...
600 MachineConstantPool *CP = F->getConstantPool();
601 unsigned CPI = CP->getConstantPoolIndex(CFP);
602 const Type *Ty = CFP->getType();
603 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
604 BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
605 } else if (isa<ConstantPointerNull>(C)) {
606 // Copy zero (null pointer) to the register.
607 BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
608 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmancc6b01b2004-08-12 02:53:01 +0000609 static unsigned OpcodeTable[] = {
610 PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD
611 };
612 unsigned Opcode = OpcodeTable[getClassB(GV->getType())];
613 BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2);
Misha Brukmanca9309f2004-08-11 23:42:15 +0000614 } else {
615 std::cerr << "Offending constant: " << *C << "\n";
616 assert(0 && "Type not handled yet!");
617 }
618}
619
620/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
621/// the stack into virtual registers.
622void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
623 unsigned ArgOffset = 24;
624 unsigned GPR_remaining = 8;
625 unsigned FPR_remaining = 13;
626 unsigned GPR_idx = 0, FPR_idx = 0;
627 static const unsigned GPR[] = {
628 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
629 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
630 };
631 static const unsigned FPR[] = {
632 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
633 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
634 };
635
636 MachineFrameInfo *MFI = F->getFrameInfo();
637
638 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
639 bool ArgLive = !I->use_empty();
640 unsigned Reg = ArgLive ? getReg(*I) : 0;
641 int FI; // Frame object index
642
643 switch (getClassB(I->getType())) {
644 case cByte:
645 if (ArgLive) {
646 FI = MFI->CreateFixedObject(4, ArgOffset);
647 if (GPR_remaining > 0) {
648 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
649 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
650 .addReg(GPR[GPR_idx]);
651 } else {
652 addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
653 }
654 }
655 break;
656 case cShort:
657 if (ArgLive) {
658 FI = MFI->CreateFixedObject(4, ArgOffset);
659 if (GPR_remaining > 0) {
660 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
661 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
662 .addReg(GPR[GPR_idx]);
663 } else {
664 addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
665 }
666 }
667 break;
668 case cInt:
669 if (ArgLive) {
670 FI = MFI->CreateFixedObject(4, ArgOffset);
671 if (GPR_remaining > 0) {
672 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
673 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
674 .addReg(GPR[GPR_idx]);
675 } else {
676 addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
677 }
678 }
679 break;
680 case cLong:
681 if (ArgLive) {
682 FI = MFI->CreateFixedObject(8, ArgOffset);
683 if (GPR_remaining > 1) {
684 BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
685 BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
686 .addReg(GPR[GPR_idx]);
687 } else {
688 addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
689 }
690 }
691 // longs require 4 additional bytes
692 ArgOffset += 4;
693 break;
694 case cFP32:
695 if (ArgLive) {
696 FI = MFI->CreateFixedObject(4, ArgOffset);
697
698 if (FPR_remaining > 0) {
699 BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
700 BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
701 FPR_remaining--;
702 FPR_idx++;
703 } else {
704 addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
705 }
706 }
707 break;
708 case cFP64:
709 if (ArgLive) {
710 FI = MFI->CreateFixedObject(8, ArgOffset);
711
712 if (FPR_remaining > 0) {
713 BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
714 BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
715 FPR_remaining--;
716 FPR_idx++;
717 } else {
718 addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
719 }
720 }
721
722 // doubles require 4 additional bytes and use 2 GPRs of param space
723 ArgOffset += 4;
724 if (GPR_remaining > 0) {
725 GPR_remaining--;
726 GPR_idx++;
727 }
728 break;
729 default:
730 assert(0 && "Unhandled argument type!");
731 }
732 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
733 if (GPR_remaining > 0) {
734 GPR_remaining--; // uses up 2 GPRs
735 GPR_idx++;
736 }
737 }
738
739 // If the function takes variable number of arguments, add a frame offset for
740 // the start of the first vararg value... this is used to expand
741 // llvm.va_start.
742 if (Fn.getFunctionType()->isVarArg())
743 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
744}
745
746
747/// SelectPHINodes - Insert machine code to generate phis. This is tricky
748/// because we have to generate our sources into the source basic blocks, not
749/// the current one.
750///
751void ISel::SelectPHINodes() {
752 const TargetInstrInfo &TII = *TM.getInstrInfo();
753 const Function &LF = *F->getFunction(); // The LLVM function...
754 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
755 const BasicBlock *BB = I;
756 MachineBasicBlock &MBB = *MBBMap[I];
757
758 // Loop over all of the PHI nodes in the LLVM basic block...
759 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
760 for (BasicBlock::const_iterator I = BB->begin();
761 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
762
763 // Create a new machine instr PHI node, and insert it.
764 unsigned PHIReg = getReg(*PN);
765 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
766 PPC::PHI, PN->getNumOperands(), PHIReg);
767
768 // PHIValues - Map of blocks to incoming virtual registers. We use this
769 // so that we only initialize one incoming value for a particular block,
770 // even if the block has multiple entries in the PHI node.
771 //
772 std::map<MachineBasicBlock*, unsigned> PHIValues;
773
774 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
775 MachineBasicBlock *PredMBB = 0;
776 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
777 PE = MBB.pred_end (); PI != PE; ++PI)
778 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
779 PredMBB = *PI;
780 break;
781 }
782 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
783
784 unsigned ValReg;
785 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
786 PHIValues.lower_bound(PredMBB);
787
788 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
789 // We already inserted an initialization of the register for this
790 // predecessor. Recycle it.
791 ValReg = EntryIt->second;
792 } else {
793 // Get the incoming value into a virtual register.
794 //
795 Value *Val = PN->getIncomingValue(i);
796
797 // If this is a constant or GlobalValue, we may have to insert code
798 // into the basic block to compute it into a virtual register.
799 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
800 isa<GlobalValue>(Val)) {
801 // Simple constants get emitted at the end of the basic block,
802 // before any terminator instructions. We "know" that the code to
803 // move a constant into a register will never clobber any flags.
804 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
805 } else {
806 // Because we don't want to clobber any values which might be in
807 // physical registers with the computation of this constant (which
808 // might be arbitrarily complex if it is a constant expression),
809 // just insert the computation at the top of the basic block.
810 MachineBasicBlock::iterator PI = PredMBB->begin();
811
812 // Skip over any PHI nodes though!
813 while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
814 ++PI;
815
816 ValReg = getReg(Val, PredMBB, PI);
817 }
818
819 // Remember that we inserted a value for this PHI for this predecessor
820 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
821 }
822
823 PhiMI->addRegOperand(ValReg);
824 PhiMI->addMachineBasicBlockOperand(PredMBB);
825 }
826
827 // Now that we emitted all of the incoming values for the PHI node, make
828 // sure to reposition the InsertPoint after the PHI that we just added.
829 // This is needed because we might have inserted a constant into this
830 // block, right after the PHI's which is before the old insert point!
831 PHIInsertPoint = PhiMI;
832 ++PHIInsertPoint;
833 }
834 }
835}
836
837
838// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
839// it into the conditional branch or select instruction which is the only user
840// of the cc instruction. This is the case if the conditional branch is the
841// only user of the setcc, and if the setcc is in the same basic block as the
842// conditional branch.
843//
844static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
845 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
846 if (SCI->hasOneUse()) {
847 Instruction *User = cast<Instruction>(SCI->use_back());
848 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
849 SCI->getParent() == User->getParent())
850 return SCI;
851 }
852 return 0;
853}
854
855
856// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
857// the load or store instruction that is the only user of the GEP.
858//
859static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
860 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
861 if (GEPI->hasOneUse()) {
862 Instruction *User = cast<Instruction>(GEPI->use_back());
863 if (isa<StoreInst>(User) &&
864 GEPI->getParent() == User->getParent() &&
865 User->getOperand(0) != GEPI &&
866 User->getOperand(1) == GEPI) {
867 ++GEPFolds;
868 return GEPI;
869 }
870 if (isa<LoadInst>(User) &&
871 GEPI->getParent() == User->getParent() &&
872 User->getOperand(0) == GEPI) {
873 ++GEPFolds;
874 return GEPI;
875 }
876 }
877 return 0;
878}
879
880
881// Return a fixed numbering for setcc instructions which does not depend on the
882// order of the opcodes.
883//
884static unsigned getSetCCNumber(unsigned Opcode) {
885 switch (Opcode) {
886 default: assert(0 && "Unknown setcc instruction!");
887 case Instruction::SetEQ: return 0;
888 case Instruction::SetNE: return 1;
889 case Instruction::SetLT: return 2;
890 case Instruction::SetGE: return 3;
891 case Instruction::SetGT: return 4;
892 case Instruction::SetLE: return 5;
893 }
894}
895
896static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
897 switch (Opcode) {
898 default: assert(0 && "Unknown setcc instruction!");
899 case Instruction::SetEQ: return PPC::BEQ;
900 case Instruction::SetNE: return PPC::BNE;
901 case Instruction::SetLT: return PPC::BLT;
902 case Instruction::SetGE: return PPC::BGE;
903 case Instruction::SetGT: return PPC::BGT;
904 case Instruction::SetLE: return PPC::BLE;
905 }
906}
907
908/// emitUCOM - emits an unordered FP compare.
909void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
910 unsigned LHS, unsigned RHS) {
911 BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
912}
913
914/// EmitComparison - emits a comparison of the two operands, returning the
915/// extended setcc code to use. The result is in CR0.
916///
917unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
918 MachineBasicBlock *MBB,
919 MachineBasicBlock::iterator IP) {
920 // The arguments are already supposed to be of the same type.
921 const Type *CompTy = Op0->getType();
922 unsigned Class = getClassB(CompTy);
923 unsigned Op0r = getReg(Op0, MBB, IP);
924
925 // Before we do a comparison, we have to make sure that we're truncating our
926 // registers appropriately.
927 if (Class == cByte) {
928 unsigned TmpReg = makeAnotherReg(CompTy);
929 if (CompTy->isSigned())
930 BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
931 else
932 BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
933 .addImm(24).addImm(31);
934 Op0r = TmpReg;
935 } else if (Class == cShort) {
936 unsigned TmpReg = makeAnotherReg(CompTy);
937 if (CompTy->isSigned())
938 BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
939 else
940 BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
941 .addImm(16).addImm(31);
942 Op0r = TmpReg;
943 }
944
945 // Use crand for lt, gt and crandc for le, ge
946 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
947 unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
948 unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
949 if (Class == cLong) {
950 Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
951 OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
952 }
953
954 // Special case handling of: cmp R, i
955 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
956 unsigned Op1v = CI->getRawValue() & 0xFFFF;
957
958 // Treat compare like ADDI for the purposes of immediate suitability
959 if (canUseAsImmediateForOpcode(CI, 0)) {
960 BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
961 } else {
962 unsigned Op1r = getReg(Op1, MBB, IP);
963 BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
964 }
965 return OpNum;
966 }
967
968 unsigned Op1r = getReg(Op1, MBB, IP);
969
970 switch (Class) {
971 default: assert(0 && "Unknown type class!");
972 case cByte:
973 case cShort:
974 case cInt:
975 case cLong:
976 BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
977 break;
978
979 case cFP32:
980 case cFP64:
981 emitUCOM(MBB, IP, Op0r, Op1r);
982 break;
983 }
984
985 return OpNum;
986}
987
988/// visitSetCondInst - emit code to calculate the condition via
989/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
990///
991void ISel::visitSetCondInst(SetCondInst &I) {
992 if (canFoldSetCCIntoBranchOrSelect(&I))
993 return;
994
995 unsigned DestReg = getReg(I);
996 unsigned OpNum = I.getOpcode();
997 const Type *Ty = I.getOperand (0)->getType();
998
999 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
1000
1001 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
1002 MachineBasicBlock *thisMBB = BB;
1003 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1004 ilist<MachineBasicBlock>::iterator It = BB;
1005 ++It;
1006
1007 // thisMBB:
1008 // ...
1009 // cmpTY cr0, r1, r2
1010 // bCC copy1MBB
1011 // b copy0MBB
1012
1013 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1014 // if we could insert other, non-terminator instructions after the
1015 // bCC. But MBB->getFirstTerminator() can't understand this.
1016 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
1017 F->getBasicBlockList().insert(It, copy1MBB);
1018 BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
1019 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
1020 F->getBasicBlockList().insert(It, copy0MBB);
1021 BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
1022 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1023 F->getBasicBlockList().insert(It, sinkMBB);
1024 // Update machine-CFG edges
1025 BB->addSuccessor(copy1MBB);
1026 BB->addSuccessor(copy0MBB);
1027
1028 // copy1MBB:
1029 // %TrueValue = li 1
1030 // b sinkMBB
1031 BB = copy1MBB;
1032 unsigned TrueValue = makeAnotherReg(I.getType());
1033 BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
1034 BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
1035 // Update machine-CFG edges
1036 BB->addSuccessor(sinkMBB);
1037
1038 // copy0MBB:
1039 // %FalseValue = li 0
1040 // fallthrough
1041 BB = copy0MBB;
1042 unsigned FalseValue = makeAnotherReg(I.getType());
1043 BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
1044 // Update machine-CFG edges
1045 BB->addSuccessor(sinkMBB);
1046
1047 // sinkMBB:
1048 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1049 // ...
1050 BB = sinkMBB;
1051 BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
1052 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
1053}
1054
1055void ISel::visitSelectInst(SelectInst &SI) {
1056 unsigned DestReg = getReg(SI);
1057 MachineBasicBlock::iterator MII = BB->end();
1058 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1059 SI.getFalseValue(), DestReg);
1060}
1061
1062/// emitSelect - Common code shared between visitSelectInst and the constant
1063/// expression support.
1064/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1065/// no select instruction. FSEL only works for comparisons against zero.
1066void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1067 MachineBasicBlock::iterator IP,
1068 Value *Cond, Value *TrueVal, Value *FalseVal,
1069 unsigned DestReg) {
1070 unsigned SelectClass = getClassB(TrueVal->getType());
1071 unsigned Opcode;
1072
1073 // See if we can fold the setcc into the select instruction, or if we have
1074 // to get the register of the Cond value
1075 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1076 // We successfully folded the setcc into the select instruction.
1077 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1078 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
1079 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1080 } else {
1081 unsigned CondReg = getReg(Cond, MBB, IP);
1082 BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
1083 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
1084 }
1085
1086 // thisMBB:
1087 // ...
1088 // cmpTY cr0, r1, r2
1089 // bCC copy1MBB
1090 // b copy0MBB
1091
1092 MachineBasicBlock *thisMBB = BB;
1093 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1094 ilist<MachineBasicBlock>::iterator It = BB;
1095 ++It;
1096
1097 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1098 // if we could insert other, non-terminator instructions after the
1099 // bCC. But MBB->getFirstTerminator() can't understand this.
1100 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
1101 F->getBasicBlockList().insert(It, copy1MBB);
1102 BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
1103 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
1104 F->getBasicBlockList().insert(It, copy0MBB);
1105 BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
1106 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1107 F->getBasicBlockList().insert(It, sinkMBB);
1108 // Update machine-CFG edges
1109 BB->addSuccessor(copy1MBB);
1110 BB->addSuccessor(copy0MBB);
1111
1112 // copy1MBB:
1113 // %TrueValue = ...
1114 // b sinkMBB
1115 BB = copy1MBB;
1116 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1117 BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
1118 // Update machine-CFG edges
1119 BB->addSuccessor(sinkMBB);
1120
1121 // copy0MBB:
1122 // %FalseValue = ...
1123 // fallthrough
1124 BB = copy0MBB;
1125 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1126 // Update machine-CFG edges
1127 BB->addSuccessor(sinkMBB);
1128
1129 // sinkMBB:
1130 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1131 // ...
1132 BB = sinkMBB;
1133 BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
1134 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
1135 return;
1136}
1137
1138
1139
1140/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1141/// operand, in the specified target register.
1142///
1143void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1144 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1145
1146 Value *Val = VR.Val;
1147 const Type *Ty = VR.Ty;
1148 if (Val) {
1149 if (Constant *C = dyn_cast<Constant>(Val)) {
1150 Val = ConstantExpr::getCast(C, Type::IntTy);
1151 if (isa<ConstantExpr>(Val)) // Could not fold
1152 Val = C;
1153 else
1154 Ty = Type::IntTy; // Folded!
1155 }
1156
1157 // If this is a simple constant, just emit a load directly to avoid the copy
1158 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1159 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1160
1161 if (TheVal < 32768 && TheVal >= -32768) {
1162 BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
1163 } else {
1164 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1165 BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
1166 BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
1167 .addImm(TheVal & 0xFFFF);
1168 }
1169 return;
1170 }
1171 }
1172
1173 // Make sure we have the register number for this value...
1174 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1175 switch (getClassB(Ty)) {
1176 case cByte:
1177 // Extend value into target register (8->32)
1178 if (isUnsigned)
1179 BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1180 .addZImm(24).addZImm(31);
1181 else
1182 BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
1183 break;
1184 case cShort:
1185 // Extend value into target register (16->32)
1186 if (isUnsigned)
1187 BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1188 .addZImm(16).addZImm(31);
1189 else
1190 BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
1191 break;
1192 case cInt:
1193 case cLong:
1194 // Move value into target register (32->32)
1195 BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
1196 break;
1197 default:
1198 assert(0 && "Unpromotable operand class in promote32");
1199 }
1200}
1201
1202/// visitReturnInst - implemented with BLR
1203///
1204void ISel::visitReturnInst(ReturnInst &I) {
1205 // Only do the processing if this is a non-void return
1206 if (I.getNumOperands() > 0) {
1207 Value *RetVal = I.getOperand(0);
1208 switch (getClassB(RetVal->getType())) {
1209 case cByte: // integral return values: extend or move into r3 and return
1210 case cShort:
1211 case cInt:
1212 case cLong:
1213 promote32(PPC::R3, ValueRecord(RetVal));
1214 break;
1215 case cFP32:
1216 case cFP64: { // Floats & Doubles: Return in f1
1217 unsigned RetReg = getReg(RetVal);
1218 BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
1219 break;
1220 }
1221 default:
1222 visitInstruction(I);
1223 }
1224 }
Misha Brukmana1b6ae92004-08-12 03:30:03 +00001225 BuildMI(BB, PPC::BLR, 1).addImm(1);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001226}
1227
1228// getBlockAfter - Return the basic block which occurs lexically after the
1229// specified one.
1230static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1231 Function::iterator I = BB; ++I; // Get iterator to next block
1232 return I != BB->getParent()->end() ? &*I : 0;
1233}
1234
1235/// visitBranchInst - Handle conditional and unconditional branches here. Note
1236/// that since code layout is frozen at this point, that if we are trying to
1237/// jump to a block that is the immediate successor of the current block, we can
1238/// just make a fall-through (but we don't currently).
1239///
1240void ISel::visitBranchInst(BranchInst &BI) {
1241 // Update machine-CFG edges
1242 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
1243 if (BI.isConditional())
1244 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
1245
1246 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1247
1248 if (!BI.isConditional()) { // Unconditional branch?
1249 if (BI.getSuccessor(0) != NextBB)
1250 BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1251 return;
1252 }
1253
1254 // See if we can fold the setcc into the branch itself...
1255 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1256 if (SCI == 0) {
1257 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1258 // computed some other way...
1259 unsigned condReg = getReg(BI.getCondition());
1260 BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
1261 .addImm(0);
1262 if (BI.getSuccessor(1) == NextBB) {
1263 if (BI.getSuccessor(0) != NextBB)
1264 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
1265 .addMBB(MBBMap[BI.getSuccessor(0)])
1266 .addMBB(MBBMap[BI.getSuccessor(1)]);
1267 } else {
1268 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
1269 .addMBB(MBBMap[BI.getSuccessor(1)])
1270 .addMBB(MBBMap[BI.getSuccessor(0)]);
1271 if (BI.getSuccessor(0) != NextBB)
1272 BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1273 }
1274 return;
1275 }
1276
1277 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1278 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1279 MachineBasicBlock::iterator MII = BB->end();
1280 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1281
1282 if (BI.getSuccessor(0) != NextBB) {
1283 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
1284 .addMBB(MBBMap[BI.getSuccessor(0)])
1285 .addMBB(MBBMap[BI.getSuccessor(1)]);
1286 if (BI.getSuccessor(1) != NextBB)
1287 BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
1288 } else {
1289 // Change to the inverse condition...
1290 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmanadde6992004-08-17 04:57:37 +00001291 Opcode = PPC64InstrInfo::invertPPCBranchOpcode(Opcode);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001292 BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
1293 .addMBB(MBBMap[BI.getSuccessor(1)])
1294 .addMBB(MBBMap[BI.getSuccessor(0)]);
1295 }
1296 }
1297}
1298
1299/// doCall - This emits an abstract call instruction, setting up the arguments
1300/// and the return value as appropriate. For the actual function call itself,
1301/// it inserts the specified CallMI instruction into the stream.
1302///
1303void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1304 const std::vector<ValueRecord> &Args, bool isVarArg) {
1305 // Count how many bytes are to be pushed on the stack, including the linkage
1306 // area, and parameter passing area.
1307 unsigned NumBytes = 24;
1308 unsigned ArgOffset = 24;
1309
1310 if (!Args.empty()) {
1311 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1312 switch (getClassB(Args[i].Ty)) {
1313 case cByte: case cShort: case cInt:
1314 NumBytes += 4; break;
1315 case cLong:
1316 NumBytes += 8; break;
1317 case cFP32:
1318 NumBytes += 4; break;
1319 case cFP64:
1320 NumBytes += 8; break;
1321 break;
1322 default: assert(0 && "Unknown class!");
1323 }
1324
1325 // Just to be safe, we'll always reserve the full 32 bytes worth of
1326 // argument passing space in case any called code gets funky on us.
1327 if (NumBytes < 24 + 32) NumBytes = 24 + 32;
1328
1329 // Adjust the stack pointer for the new arguments...
1330 // These functions are automatically eliminated by the prolog/epilog pass
1331 BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1332
1333 // Arguments go on the stack in reverse order, as specified by the ABI.
1334 // Offset to the paramater area on the stack is 24.
1335 int GPR_remaining = 8, FPR_remaining = 13;
1336 unsigned GPR_idx = 0, FPR_idx = 0;
1337 static const unsigned GPR[] = {
1338 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1339 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1340 };
1341 static const unsigned FPR[] = {
1342 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
1343 PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
1344 PPC::F13
1345 };
1346
1347 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1348 unsigned ArgReg;
1349 switch (getClassB(Args[i].Ty)) {
1350 case cByte:
1351 case cShort:
1352 // Promote arg to 32 bits wide into a temporary register...
1353 ArgReg = makeAnotherReg(Type::UIntTy);
1354 promote32(ArgReg, Args[i]);
1355
1356 // Reg or stack?
1357 if (GPR_remaining > 0) {
1358 BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
1359 .addReg(ArgReg);
1360 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1361 }
1362 if (GPR_remaining <= 0 || isVarArg) {
1363 BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
1364 .addReg(PPC::R1);
1365 }
1366 break;
1367 case cInt:
1368 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1369
1370 // Reg or stack?
1371 if (GPR_remaining > 0) {
1372 BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
1373 .addReg(ArgReg);
1374 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1375 }
1376 if (GPR_remaining <= 0 || isVarArg) {
1377 BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
1378 .addReg(PPC::R1);
1379 }
1380 break;
1381 case cLong:
1382 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1383
1384 // Reg or stack?
1385 if (GPR_remaining > 0) {
1386 BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
1387 .addReg(ArgReg);
1388 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1389 }
1390 if (GPR_remaining <= 0 || isVarArg) {
1391 BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset)
1392 .addReg(PPC::R1);
1393 }
1394 ArgOffset += 4; // 8 byte entry, not 4.
1395 break;
1396 case cFP32:
1397 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1398 // Reg or stack?
1399 if (FPR_remaining > 0) {
1400 BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1401 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1402 FPR_remaining--;
1403 FPR_idx++;
1404
1405 // If this is a vararg function, and there are GPRs left, also
1406 // pass the float in an int. Otherwise, put it on the stack.
1407 if (isVarArg) {
1408 BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
1409 .addReg(PPC::R1);
1410 if (GPR_remaining > 0) {
1411 BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
1412 .addSImm(ArgOffset).addReg(ArgReg);
1413 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1414 }
1415 }
1416 } else {
1417 BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
1418 .addReg(PPC::R1);
1419 }
1420 break;
1421 case cFP64:
1422 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1423 // Reg or stack?
1424 if (FPR_remaining > 0) {
1425 BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1426 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1427 FPR_remaining--;
1428 FPR_idx++;
1429 // For vararg functions, must pass doubles via int regs as well
1430 if (isVarArg) {
1431 BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
1432 .addReg(PPC::R1);
1433
1434 if (GPR_remaining > 0) {
1435 BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset)
1436 .addReg(PPC::R1);
1437 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1438 }
1439 }
1440 } else {
1441 BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
1442 .addReg(PPC::R1);
1443 }
1444 // Doubles use 8 bytes
1445 ArgOffset += 4;
1446 break;
1447
1448 default: assert(0 && "Unknown class!");
1449 }
1450 ArgOffset += 4;
1451 GPR_remaining--;
1452 GPR_idx++;
1453 }
1454 } else {
1455 BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
1456 }
1457
1458 BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
1459 BB->push_back(CallMI);
Misha Brukmana1b6ae92004-08-12 03:30:03 +00001460 BuildMI(BB, PPC::NOP, 0);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001461
1462 // These functions are automatically eliminated by the prolog/epilog pass
1463 BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
1464
1465 // If there is a return value, scavenge the result from the location the call
1466 // leaves it in...
1467 //
1468 if (Ret.Ty != Type::VoidTy) {
1469 unsigned DestClass = getClassB(Ret.Ty);
1470 switch (DestClass) {
1471 case cByte:
1472 case cShort:
1473 case cInt:
1474 case cLong:
1475 // Integral results are in r3
1476 BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
1477 break;
1478 case cFP32: // Floating-point return values live in f1
1479 case cFP64:
1480 BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
1481 break;
1482 default: assert(0 && "Unknown class!");
1483 }
1484 }
1485}
1486
1487
1488/// visitCallInst - Push args on stack and do a procedure call instruction.
1489void ISel::visitCallInst(CallInst &CI) {
1490 MachineInstr *TheCall;
1491 Function *F = CI.getCalledFunction();
1492 if (F) {
1493 // Is it an intrinsic function call?
1494 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1495 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1496 return;
1497 }
1498 // Emit a CALL instruction with PC-relative displacement.
1499 TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001500 } else { // Emit an indirect call through the CTR
1501 unsigned Reg = getReg(CI.getCalledValue());
1502 BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
1503 TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
1504 }
1505
1506 std::vector<ValueRecord> Args;
1507 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1508 Args.push_back(ValueRecord(CI.getOperand(i)));
1509
1510 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1511 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1512 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
1513}
1514
1515
1516/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1517///
1518static Value *dyncastIsNan(Value *V) {
1519 if (CallInst *CI = dyn_cast<CallInst>(V))
1520 if (Function *F = CI->getCalledFunction())
1521 if (F->getIntrinsicID() == Intrinsic::isunordered)
1522 return CI->getOperand(1);
1523 return 0;
1524}
1525
1526/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1527/// or's whos operands are all calls to the isnan predicate.
1528static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1529 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1530
1531 // Check all uses, which will be or's of isnans if this predicate is true.
1532 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1533 Instruction *I = cast<Instruction>(*UI);
1534 if (I->getOpcode() != Instruction::Or) return false;
1535 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1536 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1537 }
1538
1539 return true;
1540}
1541
1542/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1543/// function, lowering any calls to unknown intrinsic functions into the
1544/// equivalent LLVM code.
1545///
1546void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1547 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1548 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1549 if (CallInst *CI = dyn_cast<CallInst>(I++))
1550 if (Function *F = CI->getCalledFunction())
1551 switch (F->getIntrinsicID()) {
1552 case Intrinsic::not_intrinsic:
1553 case Intrinsic::vastart:
1554 case Intrinsic::vacopy:
1555 case Intrinsic::vaend:
1556 case Intrinsic::returnaddress:
1557 case Intrinsic::frameaddress:
1558 // FIXME: should lower these ourselves
1559 // case Intrinsic::isunordered:
1560 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1561 // guaranteed to be faster than anything we generate ourselves
1562 // We directly implement these intrinsics
1563 break;
1564 case Intrinsic::readio: {
1565 // On PPC, memory operations are in-order. Lower this intrinsic
1566 // into a volatile load.
1567 Instruction *Before = CI->getPrev();
1568 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1569 CI->replaceAllUsesWith(LI);
1570 BB->getInstList().erase(CI);
1571 break;
1572 }
1573 case Intrinsic::writeio: {
1574 // On PPC, memory operations are in-order. Lower this intrinsic
1575 // into a volatile store.
1576 Instruction *Before = CI->getPrev();
1577 StoreInst *SI = new StoreInst(CI->getOperand(1),
1578 CI->getOperand(2), true, CI);
1579 CI->replaceAllUsesWith(SI);
1580 BB->getInstList().erase(CI);
1581 break;
1582 }
1583 default:
1584 // All other intrinsic calls we must lower.
1585 Instruction *Before = CI->getPrev();
1586 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1587 if (Before) { // Move iterator to instruction after call
1588 I = Before; ++I;
1589 } else {
1590 I = BB->begin();
1591 }
1592 }
1593}
1594
1595void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1596 unsigned TmpReg1, TmpReg2, TmpReg3;
1597 switch (ID) {
1598 case Intrinsic::vastart:
1599 // Get the address of the first vararg value...
1600 TmpReg1 = getReg(CI);
1601 addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1602 0, false);
1603 return;
1604
1605 case Intrinsic::vacopy:
1606 TmpReg1 = getReg(CI);
1607 TmpReg2 = getReg(CI.getOperand(1));
1608 BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1609 return;
1610 case Intrinsic::vaend: return;
1611
1612 case Intrinsic::returnaddress:
1613 TmpReg1 = getReg(CI);
1614 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1615 MachineFrameInfo *MFI = F->getFrameInfo();
1616 unsigned NumBytes = MFI->getStackSize();
1617
1618 BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
1619 .addReg(PPC::R1);
1620 } else {
1621 // Values other than zero are not implemented yet.
1622 BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
1623 }
1624 return;
1625
1626 case Intrinsic::frameaddress:
1627 TmpReg1 = getReg(CI);
1628 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1629 BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
1630 } else {
1631 // Values other than zero are not implemented yet.
1632 BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
1633 }
1634 return;
1635
1636#if 0
1637 // This may be useful for supporting isunordered
1638 case Intrinsic::isnan:
1639 // If this is only used by 'isunordered' style comparisons, don't emit it.
1640 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1641 TmpReg1 = getReg(CI.getOperand(1));
1642 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
1643 TmpReg2 = makeAnotherReg(Type::IntTy);
1644 BuildMI(BB, PPC::MFCR, TmpReg2);
1645 TmpReg3 = getReg(CI);
1646 BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1647 return;
1648#endif
1649
1650 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1651 }
1652}
1653
1654/// visitSimpleBinary - Implement simple binary operators for integral types...
1655/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1656/// Xor.
1657///
1658void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1659 unsigned DestReg = getReg(B);
1660 MachineBasicBlock::iterator MI = BB->end();
1661 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1662 unsigned Class = getClassB(B.getType());
1663
1664 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1665}
1666
1667/// emitBinaryFPOperation - This method handles emission of floating point
1668/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1669void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1670 MachineBasicBlock::iterator IP,
1671 Value *Op0, Value *Op1,
1672 unsigned OperatorClass, unsigned DestReg) {
1673
1674 // Special case: op Reg, <const fp>
1675 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1676 // Create a constant pool entry for this constant.
1677 MachineConstantPool *CP = F->getConstantPool();
1678 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1679 const Type *Ty = Op1->getType();
1680 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1681
1682 static const unsigned OpcodeTab[][4] = {
1683 { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
1684 { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
1685 };
1686
1687 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1688 unsigned Op1Reg = getReg(Op1C, BB, IP);
1689 unsigned Op0r = getReg(Op0, BB, IP);
1690 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
1691 return;
1692 }
1693
1694 // Special case: R1 = op <const fp>, R2
1695 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1696 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
1697 // -0.0 - X === -X
1698 unsigned op1Reg = getReg(Op1, BB, IP);
1699 BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
1700 return;
1701 } else {
1702 // R1 = op CST, R2 --> R1 = opr R2, CST
1703
1704 // Create a constant pool entry for this constant.
1705 MachineConstantPool *CP = F->getConstantPool();
1706 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1707 const Type *Ty = Op0C->getType();
1708 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1709
1710 static const unsigned OpcodeTab[][4] = {
1711 { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
1712 { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
1713 };
1714
1715 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1716 unsigned Op0Reg = getReg(Op0C, BB, IP);
1717 unsigned Op1Reg = getReg(Op1, BB, IP);
1718 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
1719 return;
1720 }
1721
1722 // General case.
1723 static const unsigned OpcodeTab[] = {
1724 PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV
1725 };
1726
1727 unsigned Opcode = OpcodeTab[OperatorClass];
1728 unsigned Op0r = getReg(Op0, BB, IP);
1729 unsigned Op1r = getReg(Op1, BB, IP);
1730 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1731}
1732
1733/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1734/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1735/// Or, 4 for Xor.
1736///
1737/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1738/// and constant expression support.
1739///
1740void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1741 MachineBasicBlock::iterator IP,
1742 Value *Op0, Value *Op1,
1743 unsigned OperatorClass, unsigned DestReg) {
1744 unsigned Class = getClassB(Op0->getType());
1745
1746 // Arithmetic and Bitwise operators
1747 static const unsigned OpcodeTab[] = {
1748 PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
1749 };
1750 static const unsigned ImmOpcodeTab[] = {
1751 PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
1752 };
1753 static const unsigned RImmOpcodeTab[] = {
1754 PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
1755 };
1756
1757 if (Class == cFP32 || Class == cFP64) {
1758 assert(OperatorClass < 2 && "No logical ops for FP!");
1759 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1760 return;
1761 }
1762
1763 if (Op0->getType() == Type::BoolTy) {
1764 if (OperatorClass == 3)
1765 // If this is an or of two isnan's, emit an FP comparison directly instead
1766 // of or'ing two isnan's together.
1767 if (Value *LHS = dyncastIsNan(Op0))
1768 if (Value *RHS = dyncastIsNan(Op1)) {
1769 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
1770 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1771 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
1772 BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
1773 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1774 .addImm(31).addImm(31);
1775 return;
1776 }
1777 }
1778
1779 // Special case: op <const int>, Reg
1780 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
1781 // sub 0, X -> subfic
1782 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
1783 unsigned Op1r = getReg(Op1, MBB, IP);
1784 int imm = CI->getRawValue() & 0xFFFF;
1785 BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
1786 return;
1787 }
1788
1789 // If it is easy to do, swap the operands and emit an immediate op
1790 if (Class != cLong && OperatorClass != 1 &&
1791 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1792 unsigned Op1r = getReg(Op1, MBB, IP);
1793 int imm = CI->getRawValue() & 0xFFFF;
1794
1795 if (OperatorClass < 2)
1796 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1797 .addSImm(imm);
1798 else
1799 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1800 .addZImm(imm);
1801 return;
1802 }
1803 }
1804
1805 // Special case: op Reg, <const int>
1806 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1807 unsigned Op0r = getReg(Op0, MBB, IP);
1808
1809 // xor X, -1 -> not X
1810 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1811 BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1812 return;
1813 }
1814
1815 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1816 int immediate = Op1C->getRawValue() & 0xFFFF;
1817
1818 if (OperatorClass < 2)
1819 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
1820 .addSImm(immediate);
1821 else
1822 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
1823 .addZImm(immediate);
1824 } else {
1825 unsigned Op1r = getReg(Op1, MBB, IP);
1826 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1827 .addReg(Op1r);
1828 }
1829 return;
1830 }
1831
1832 // We couldn't generate an immediate variant of the op, load both halves into
1833 // registers and emit the appropriate opcode.
1834 unsigned Op0r = getReg(Op0, MBB, IP);
1835 unsigned Op1r = getReg(Op1, MBB, IP);
1836
1837 unsigned Opcode = OpcodeTab[OperatorClass];
1838 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1839 return;
1840}
1841
1842// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1843// returns zero when the input is not exactly a power of two.
1844static unsigned ExactLog2(unsigned Val) {
1845 if (Val == 0 || (Val & (Val-1))) return 0;
1846 unsigned Count = 0;
1847 while (Val != 1) {
1848 Val >>= 1;
1849 ++Count;
1850 }
1851 return Count;
1852}
1853
1854/// doMultiply - Emit appropriate instructions to multiply together the
1855/// Values Op0 and Op1, and put the result in DestReg.
1856///
1857void ISel::doMultiply(MachineBasicBlock *MBB,
1858 MachineBasicBlock::iterator IP,
1859 unsigned DestReg, Value *Op0, Value *Op1) {
1860 unsigned Class0 = getClass(Op0->getType());
1861 unsigned Class1 = getClass(Op1->getType());
1862
1863 unsigned Op0r = getReg(Op0, MBB, IP);
1864 unsigned Op1r = getReg(Op1, MBB, IP);
1865
1866 // 64 x 64 -> 64
1867 if (Class0 == cLong && Class1 == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00001868 BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001869 return;
1870 }
1871
1872 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
1873 if (Class0 == cLong && Class1 <= cInt) {
Nate Begeman5a104b02004-08-13 02:20:47 +00001874 // FIXME: CLEAR or SIGN EXTEND Op1
1875 BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001876 return;
1877 }
1878
1879 // 32 x 32 -> 32
1880 if (Class0 <= cInt && Class1 <= cInt) {
1881 BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
1882 return;
1883 }
1884
1885 assert(0 && "doMultiply cannot operate on unknown type!");
1886}
1887
1888/// doMultiplyConst - This method will multiply the value in Op0 by the
1889/// value of the ContantInt *CI
1890void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1891 MachineBasicBlock::iterator IP,
1892 unsigned DestReg, Value *Op0, ConstantInt *CI) {
1893 unsigned Class = getClass(Op0->getType());
1894
1895 // Mul op0, 0 ==> 0
1896 if (CI->isNullValue()) {
1897 BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
1898 return;
1899 }
1900
1901 // Mul op0, 1 ==> op0
1902 if (CI->equalsInt(1)) {
1903 unsigned Op0r = getReg(Op0, MBB, IP);
1904 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1905 return;
1906 }
1907
1908 // If the element size is exactly a power of 2, use a shift to get it.
1909 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
1910 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
1911 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
1912 return;
1913 }
1914
1915 // If 32 bits or less and immediate is in right range, emit mul by immediate
1916 if (Class == cByte || Class == cShort || Class == cInt) {
1917 if (canUseAsImmediateForOpcode(CI, 0)) {
1918 unsigned Op0r = getReg(Op0, MBB, IP);
1919 unsigned imm = CI->getRawValue() & 0xFFFF;
1920 BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
1921 return;
1922 }
1923 }
1924
1925 doMultiply(MBB, IP, DestReg, Op0, CI);
1926}
1927
1928void ISel::visitMul(BinaryOperator &I) {
1929 unsigned ResultReg = getReg(I);
1930
1931 Value *Op0 = I.getOperand(0);
1932 Value *Op1 = I.getOperand(1);
1933
1934 MachineBasicBlock::iterator IP = BB->end();
1935 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1936}
1937
1938void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1939 Value *Op0, Value *Op1, unsigned DestReg) {
1940 TypeClass Class = getClass(Op0->getType());
1941
1942 switch (Class) {
1943 case cByte:
1944 case cShort:
1945 case cInt:
1946 case cLong:
1947 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1948 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
1949 } else {
1950 doMultiply(MBB, IP, DestReg, Op0, Op1);
1951 }
1952 return;
1953 case cFP32:
1954 case cFP64:
1955 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1956 return;
1957 break;
1958 }
1959}
1960
1961
1962/// visitDivRem - Handle division and remainder instructions... these
1963/// instruction both require the same instructions to be generated, they just
1964/// select the result from a different register. Note that both of these
1965/// instructions work differently for signed and unsigned operands.
1966///
1967void ISel::visitDivRem(BinaryOperator &I) {
1968 unsigned ResultReg = getReg(I);
1969 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1970
1971 MachineBasicBlock::iterator IP = BB->end();
1972 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1973 ResultReg);
1974}
1975
1976void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1977 MachineBasicBlock::iterator IP,
1978 Value *Op0, Value *Op1, bool isDiv,
1979 unsigned ResultReg) {
1980 const Type *Ty = Op0->getType();
1981 unsigned Class = getClass(Ty);
1982 switch (Class) {
1983 case cFP32:
1984 if (isDiv) {
1985 // Floating point divide...
1986 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1987 return;
1988 } else {
1989 // Floating point remainder via fmodf(float x, float y);
1990 unsigned Op0Reg = getReg(Op0, BB, IP);
1991 unsigned Op1Reg = getReg(Op1, BB, IP);
1992 MachineInstr *TheCall =
1993 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
1994 std::vector<ValueRecord> Args;
1995 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
1996 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
1997 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00001998 }
1999 return;
2000 case cFP64:
2001 if (isDiv) {
2002 // Floating point divide...
2003 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2004 return;
2005 } else {
2006 // Floating point remainder via fmod(double x, double y);
2007 unsigned Op0Reg = getReg(Op0, BB, IP);
2008 unsigned Op1Reg = getReg(Op1, BB, IP);
2009 MachineInstr *TheCall =
2010 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
2011 std::vector<ValueRecord> Args;
2012 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2013 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
2014 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002015 }
2016 return;
2017 case cLong: {
2018 static Function* const Funcs[] =
2019 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
2020 unsigned Op0Reg = getReg(Op0, BB, IP);
2021 unsigned Op1Reg = getReg(Op1, BB, IP);
2022 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2023 MachineInstr *TheCall =
2024 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
2025
2026 std::vector<ValueRecord> Args;
2027 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2028 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
2029 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002030 return;
2031 }
2032 case cByte: case cShort: case cInt:
2033 break; // Small integrals, handled below...
2034 default: assert(0 && "Unknown class!");
2035 }
2036
2037 // Special case signed division by power of 2.
2038 if (isDiv)
2039 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2040 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2041 int V = CI->getValue();
2042
2043 if (V == 1) { // X /s 1 => X
2044 unsigned Op0Reg = getReg(Op0, BB, IP);
2045 BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2046 return;
2047 }
2048
2049 if (V == -1) { // X /s -1 => -X
2050 unsigned Op0Reg = getReg(Op0, BB, IP);
2051 BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
2052 return;
2053 }
2054
2055 unsigned log2V = ExactLog2(V);
2056 if (log2V != 0 && Ty->isSigned()) {
2057 unsigned Op0Reg = getReg(Op0, BB, IP);
2058 unsigned TmpReg = makeAnotherReg(Op0->getType());
2059
2060 BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
2061 BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
2062 return;
2063 }
2064 }
2065
2066 unsigned Op0Reg = getReg(Op0, BB, IP);
2067 unsigned Op1Reg = getReg(Op1, BB, IP);
2068 unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
2069
2070 if (isDiv) {
2071 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2072 } else { // Remainder
2073 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2074 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2075
2076 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
2077 BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2078 BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
2079 }
2080}
2081
2082
2083/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2084/// for constant immediate shift values, and for constant immediate
2085/// shift values equal to 1. Even the general case is sort of special,
2086/// because the shift amount has to be in CL, not just any old register.
2087///
2088void ISel::visitShiftInst(ShiftInst &I) {
2089 MachineBasicBlock::iterator IP = BB->end();
2090 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2091 I.getOpcode() == Instruction::Shl, I.getType(),
2092 getReg(I));
2093}
2094
2095/// emitShiftOperation - Common code shared between visitShiftInst and
2096/// constant expression support.
2097///
2098void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2099 MachineBasicBlock::iterator IP,
2100 Value *Op, Value *ShiftAmount, bool isLeftShift,
2101 const Type *ResultTy, unsigned DestReg) {
2102 unsigned SrcReg = getReg (Op, MBB, IP);
2103 bool isSigned = ResultTy->isSigned ();
2104 unsigned Class = getClass (ResultTy);
2105
2106 // Longs, as usual, are handled specially...
2107 if (Class == cLong) {
2108 // If we have a constant shift, we can generate much more efficient code
2109 // than otherwise...
2110 //
2111 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2112 unsigned Amount = CUI->getValue();
Nate Begeman5a104b02004-08-13 02:20:47 +00002113 assert(Amount < 64 && "Invalid immediate shift amount!");
2114 if (isLeftShift) {
2115 BuildMI(*MBB, IP, PPC::RLDICR, 3, DestReg).addReg(SrcReg).addImm(Amount)
2116 .addImm(63-Amount);
2117 } else {
2118 if (isSigned) {
2119 BuildMI(*MBB, IP, PPC::SRADI, 2, DestReg).addReg(SrcReg)
2120 .addImm(Amount);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002121 } else {
Nate Begeman5a104b02004-08-13 02:20:47 +00002122 BuildMI(*MBB, IP, PPC::RLDICL, 3, DestReg).addReg(SrcReg)
2123 .addImm(64-Amount).addImm(Amount);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002124 }
2125 }
2126 } else {
Nate Begeman5a104b02004-08-13 02:20:47 +00002127 unsigned ShiftReg = getReg (ShiftAmount, MBB, IP);
2128
Misha Brukmanca9309f2004-08-11 23:42:15 +00002129 if (isLeftShift) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002130 BuildMI(*MBB, IP, PPC::SLD, 2, DestReg).addReg(SrcReg).addReg(ShiftReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002131 } else {
Nate Begeman5a104b02004-08-13 02:20:47 +00002132 unsigned Opcode = (isSigned) ? PPC::SRAD : PPC::SRD;
2133 BuildMI(*MBB, IP, Opcode, DestReg).addReg(SrcReg).addReg(ShiftReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002134 }
2135 }
2136 return;
2137 }
2138
2139 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2140 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2141 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2142 unsigned Amount = CUI->getValue();
2143
2144 if (isLeftShift) {
2145 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2146 .addImm(Amount).addImm(0).addImm(31-Amount);
2147 } else {
2148 if (isSigned) {
2149 BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2150 } else {
2151 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2152 .addImm(32-Amount).addImm(Amount).addImm(31);
2153 }
2154 }
2155 } else { // The shift amount is non-constant.
2156 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2157
2158 if (isLeftShift) {
2159 BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
2160 .addReg(ShiftAmountReg);
2161 } else {
2162 BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
2163 .addReg(SrcReg).addReg(ShiftAmountReg);
2164 }
2165 }
2166}
2167
2168
2169/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2170/// mapping of LLVM classes to PPC load instructions, with the exception of
2171/// signed byte loads, which need a sign extension following them.
2172///
2173void ISel::visitLoadInst(LoadInst &I) {
2174 // Immediate opcodes, for reg+imm addressing
2175 static const unsigned ImmOpcodes[] = {
2176 PPC::LBZ, PPC::LHZ, PPC::LWZ,
2177 PPC::LFS, PPC::LFD, PPC::LWZ
2178 };
2179 // Indexed opcodes, for reg+reg addressing
2180 static const unsigned IdxOpcodes[] = {
2181 PPC::LBZX, PPC::LHZX, PPC::LWZX,
2182 PPC::LFSX, PPC::LFDX, PPC::LWZX
2183 };
2184
2185 unsigned Class = getClassB(I.getType());
2186 unsigned ImmOpcode = ImmOpcodes[Class];
2187 unsigned IdxOpcode = IdxOpcodes[Class];
2188 unsigned DestReg = getReg(I);
2189 Value *SourceAddr = I.getOperand(0);
2190
2191 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
2192 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
2193
2194 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
2195 unsigned FI = getFixedSizedAllocaFI(AI);
2196 if (Class == cByte && I.getType()->isSigned()) {
2197 unsigned TmpReg = makeAnotherReg(I.getType());
2198 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
2199 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2200 } else {
2201 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2202 }
2203 return;
2204 }
2205
2206 // If this load is the only use of the GEP instruction that is its address,
2207 // then we can fold the GEP directly into the load instruction.
2208 // emitGEPOperation with a second to last arg of 'true' will place the
2209 // base register for the GEP into baseReg, and the constant offset from that
2210 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2211 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2212 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2213 unsigned baseReg = getReg(GEPI);
2214 unsigned pendingAdd;
2215 ConstantSInt *offset;
2216
2217 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2218 GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
2219
2220 if (pendingAdd == 0 && Class != cLong &&
2221 canUseAsImmediateForOpcode(offset, 0)) {
2222 if (Class == cByte && I.getType()->isSigned()) {
2223 unsigned TmpReg = makeAnotherReg(I.getType());
2224 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2225 .addReg(baseReg);
2226 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2227 } else {
2228 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2229 .addReg(baseReg);
2230 }
2231 return;
2232 }
2233
2234 unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
2235
2236 if (Class == cByte && I.getType()->isSigned()) {
2237 unsigned TmpReg = makeAnotherReg(I.getType());
2238 BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
2239 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2240 } else {
2241 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2242 }
2243 return;
2244 }
2245
2246 // The fallback case, where the load was from a source that could not be
2247 // folded into the load instruction.
2248 unsigned SrcAddrReg = getReg(SourceAddr);
2249
2250 if (Class == cByte && I.getType()->isSigned()) {
2251 unsigned TmpReg = makeAnotherReg(I.getType());
2252 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2253 BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
2254 } else {
2255 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2256 }
2257}
2258
2259/// visitStoreInst - Implement LLVM store instructions
2260///
2261void ISel::visitStoreInst(StoreInst &I) {
2262 // Immediate opcodes, for reg+imm addressing
2263 static const unsigned ImmOpcodes[] = {
2264 PPC::STB, PPC::STH, PPC::STW,
2265 PPC::STFS, PPC::STFD, PPC::STW
2266 };
2267 // Indexed opcodes, for reg+reg addressing
2268 static const unsigned IdxOpcodes[] = {
2269 PPC::STBX, PPC::STHX, PPC::STWX,
2270 PPC::STFSX, PPC::STFDX, PPC::STWX
2271 };
2272
2273 Value *SourceAddr = I.getOperand(1);
2274 const Type *ValTy = I.getOperand(0)->getType();
2275 unsigned Class = getClassB(ValTy);
2276 unsigned ImmOpcode = ImmOpcodes[Class];
2277 unsigned IdxOpcode = IdxOpcodes[Class];
2278 unsigned ValReg = getReg(I.getOperand(0));
2279
2280 // If this store is the only use of the GEP instruction that is its address,
2281 // then we can fold the GEP directly into the store instruction.
2282 // emitGEPOperation with a second to last arg of 'true' will place the
2283 // base register for the GEP into baseReg, and the constant offset from that
2284 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2285 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2286 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2287 unsigned baseReg = getReg(GEPI);
2288 unsigned pendingAdd;
2289 ConstantSInt *offset;
2290
2291 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2292 GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
2293
2294 if (0 == pendingAdd && Class != cLong &&
2295 canUseAsImmediateForOpcode(offset, 0)) {
2296 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2297 .addReg(baseReg);
2298 return;
2299 }
2300
2301 unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
2302 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2303 return;
2304 }
2305
2306 // If the store address wasn't the only use of a GEP, we fall back to the
2307 // standard path: store the ValReg at the value in AddressReg.
2308 unsigned AddressReg = getReg(I.getOperand(1));
2309 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2310}
2311
2312
2313/// visitCastInst - Here we have various kinds of copying with or without sign
2314/// extension going on.
2315///
2316void ISel::visitCastInst(CastInst &CI) {
2317 Value *Op = CI.getOperand(0);
2318
2319 unsigned SrcClass = getClassB(Op->getType());
2320 unsigned DestClass = getClassB(CI.getType());
2321
2322 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2323 // of the case are GEP instructions, then the cast does not need to be
2324 // generated explicitly, it will be folded into the GEP.
2325 if (DestClass == cLong && SrcClass == cInt) {
2326 bool AllUsesAreGEPs = true;
2327 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2328 if (!isa<GetElementPtrInst>(*I)) {
2329 AllUsesAreGEPs = false;
2330 break;
2331 }
2332
2333 // No need to codegen this cast if all users are getelementptr instrs...
2334 if (AllUsesAreGEPs) return;
2335 }
2336
2337 unsigned DestReg = getReg(CI);
2338 MachineBasicBlock::iterator MI = BB->end();
2339 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2340}
2341
2342/// emitCastOperation - Common code shared between visitCastInst and constant
2343/// expression cast support.
2344///
2345void ISel::emitCastOperation(MachineBasicBlock *MBB,
2346 MachineBasicBlock::iterator IP,
2347 Value *Src, const Type *DestTy,
2348 unsigned DestReg) {
2349 const Type *SrcTy = Src->getType();
2350 unsigned SrcClass = getClassB(SrcTy);
2351 unsigned DestClass = getClassB(DestTy);
2352 unsigned SrcReg = getReg(Src, MBB, IP);
2353
2354 // Implement casts to bool by using compare on the operand followed by set if
2355 // not zero on the result.
2356 if (DestTy == Type::BoolTy) {
2357 switch (SrcClass) {
2358 case cByte:
2359 case cShort:
2360 case cInt:
2361 case cLong: {
2362 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2363 BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
2364 BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
2365 break;
2366 }
2367 case cFP32:
2368 case cFP64:
2369 // FSEL perhaps?
2370 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
2371 abort();
2372 }
2373 return;
2374 }
2375
2376 // Handle cast of Float -> Double
2377 if (SrcClass == cFP32 && DestClass == cFP64) {
2378 BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
2379 return;
2380 }
2381
2382 // Handle cast of Double -> Float
2383 if (SrcClass == cFP64 && DestClass == cFP32) {
2384 BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
2385 return;
2386 }
2387
2388 // Handle casts from integer to floating point now...
2389 if (DestClass == cFP32 || DestClass == cFP64) {
2390
2391 // Emit a library call for long to float conversion
2392 if (SrcClass == cLong) {
2393 std::vector<ValueRecord> Args;
2394 Args.push_back(ValueRecord(SrcReg, SrcTy));
2395 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
2396 MachineInstr *TheCall =
2397 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
2398 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002399 return;
2400 }
2401
2402 // Make sure we're dealing with a full 32 bits
2403 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2404 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2405
2406 SrcReg = TmpReg;
2407
2408 // Spill the integer to memory and reload it from there.
2409 // Also spill room for a special conversion constant
2410 int ConstantFrameIndex =
2411 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2412 int ValueFrameIdx =
2413 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2414
2415 unsigned constantHi = makeAnotherReg(Type::IntTy);
2416 unsigned constantLo = makeAnotherReg(Type::IntTy);
2417 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2418 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2419
2420 if (!SrcTy->isSigned()) {
2421 BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
2422 BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0);
2423 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
2424 ConstantFrameIndex);
2425 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
2426 ConstantFrameIndex, 4);
2427 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
2428 ValueFrameIdx);
2429 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg),
2430 ValueFrameIdx, 4);
2431 addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
2432 ConstantFrameIndex);
2433 addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
2434 BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2435 } else {
2436 unsigned TempLo = makeAnotherReg(Type::IntTy);
2437 BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
2438 BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000);
2439 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
2440 ConstantFrameIndex);
2441 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
2442 ConstantFrameIndex, 4);
2443 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
2444 ValueFrameIdx);
2445 BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
2446 addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo),
2447 ValueFrameIdx, 4);
2448 addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
2449 ConstantFrameIndex);
2450 addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
2451 BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2452 }
2453 return;
2454 }
2455
2456 // Handle casts from floating point to integer now...
2457 if (SrcClass == cFP32 || SrcClass == cFP64) {
2458 static Function* const Funcs[] =
2459 { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
2460 // emit library call
2461 if (DestClass == cLong) {
2462 bool isDouble = SrcClass == cFP64;
2463 unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
2464 std::vector<ValueRecord> Args;
2465 Args.push_back(ValueRecord(SrcReg, SrcTy));
2466 Function *floatFn = Funcs[nameIndex];
2467 MachineInstr *TheCall =
2468 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
2469 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002470 return;
2471 }
2472
2473 int ValueFrameIdx =
2474 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2475
2476 if (DestTy->isSigned()) {
2477 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2478
2479 // Convert to integer in the FP reg and store it to a stack slot
2480 BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
2481 addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
2482 .addReg(TempReg), ValueFrameIdx);
2483
2484 // There is no load signed byte opcode, so we must emit a sign extend for
2485 // that particular size. Make sure to source the new integer from the
2486 // correct offset.
2487 if (DestClass == cByte) {
2488 unsigned TempReg2 = makeAnotherReg(DestTy);
2489 addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2),
2490 ValueFrameIdx, 7);
2491 BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
2492 } else {
2493 int offset = (DestClass == cShort) ? 6 : 4;
2494 unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
2495 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
2496 ValueFrameIdx, offset);
2497 }
2498 } else {
2499 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2500 double maxInt = (1LL << 32) - 1;
2501 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2502 double border = 1LL << 31;
2503 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2504 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2505 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2506 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2507 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2508 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2509 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2510 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2511 unsigned XorReg = makeAnotherReg(Type::IntTy);
2512 int FrameIdx =
2513 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2514 // Update machine-CFG edges
2515 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2516 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2517 MachineBasicBlock *OldMBB = BB;
2518 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2519 F->getBasicBlockList().insert(It, XorMBB);
2520 F->getBasicBlockList().insert(It, PhiMBB);
2521 BB->addSuccessor(XorMBB);
2522 BB->addSuccessor(PhiMBB);
2523
2524 // Convert from floating point to unsigned 32-bit value
2525 // Use 0 if incoming value is < 0.0
2526 BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2527 .addReg(Zero);
2528 // Use 2**32 - 1 if incoming value is >= 2**32
2529 BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2530 BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
2531 .addReg(UseZero).addReg(MaxInt);
2532 // Subtract 2**31
2533 BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2534 // Use difference if >= 2**31
2535 BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
2536 .addReg(Border);
2537 BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2538 .addReg(UseChoice);
2539 // Convert to integer
2540 BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2541 addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
2542 FrameIdx);
2543 if (DestClass == cByte) {
2544 addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
2545 FrameIdx, 7);
2546 } else if (DestClass == cShort) {
2547 addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
2548 FrameIdx, 6);
2549 } if (DestClass == cInt) {
2550 addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
2551 FrameIdx, 4);
2552 BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
2553 BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
2554
2555 // XorMBB:
2556 // add 2**31 if input was >= 2**31
2557 BB = XorMBB;
2558 BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2559 XorMBB->addSuccessor(PhiMBB);
2560
2561 // PhiMBB:
2562 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2563 BB = PhiMBB;
2564 BuildMI(BB, PPC::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
2565 .addReg(XorReg).addMBB(XorMBB);
2566 }
2567 }
2568 return;
2569 }
2570
2571 // Check our invariants
2572 assert((SrcClass <= cInt || SrcClass == cLong) &&
2573 "Unhandled source class for cast operation!");
2574 assert((DestClass <= cInt || DestClass == cLong) &&
2575 "Unhandled destination class for cast operation!");
2576
2577 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2578 bool destUnsigned = DestTy->isUnsigned();
2579
2580 // Unsigned -> Unsigned, clear if larger
2581 if (sourceUnsigned && destUnsigned) {
2582 // handle long dest class now to keep switch clean
2583 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002584 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002585 return;
2586 }
2587
2588 // handle u{ byte, short, int } x u{ byte, short, int }
2589 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2590 switch (SrcClass) {
2591 case cByte:
2592 case cShort:
2593 if (SrcClass == DestClass)
2594 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2595 else
2596 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2597 .addImm(0).addImm(clearBits).addImm(31);
2598 break;
2599 case cLong:
2600 ++SrcReg;
2601 // Fall through
2602 case cInt:
2603 if (DestClass == cInt)
2604 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2605 else
2606 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2607 .addImm(0).addImm(clearBits).addImm(31);
2608 break;
2609 }
2610 return;
2611 }
2612
2613 // Signed -> Signed
2614 if (!sourceUnsigned && !destUnsigned) {
2615 // handle long dest class now to keep switch clean
2616 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002617 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002618 return;
2619 }
2620
2621 // handle { byte, short, int } x { byte, short, int }
2622 switch (SrcClass) {
2623 case cByte:
2624 if (DestClass == cByte)
2625 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2626 else
2627 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2628 break;
2629 case cShort:
2630 if (DestClass == cByte)
2631 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2632 else if (DestClass == cShort)
2633 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2634 else
2635 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2636 break;
2637 case cLong:
2638 ++SrcReg;
2639 // Fall through
2640 case cInt:
2641 if (DestClass == cByte)
2642 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2643 else if (DestClass == cShort)
2644 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2645 else
2646 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2647 break;
2648 }
2649 return;
2650 }
2651
2652 // Unsigned -> Signed
2653 if (sourceUnsigned && !destUnsigned) {
2654 // handle long dest class now to keep switch clean
2655 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002656 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002657 return;
2658 }
2659
2660 // handle u{ byte, short, int } -> { byte, short, int }
2661 switch (SrcClass) {
2662 case cByte:
2663 if (DestClass == cByte)
2664 // uByte 255 -> signed byte == -1
2665 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2666 else
2667 // uByte 255 -> signed short/int == 255
2668 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2669 .addImm(24).addImm(31);
2670 break;
2671 case cShort:
2672 if (DestClass == cByte)
2673 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2674 else if (DestClass == cShort)
2675 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2676 else
2677 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2678 .addImm(16).addImm(31);
2679 break;
2680 case cLong:
2681 ++SrcReg;
2682 // Fall through
2683 case cInt:
2684 if (DestClass == cByte)
2685 BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
2686 else if (DestClass == cShort)
2687 BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
2688 else
2689 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2690 break;
2691 }
2692 return;
2693 }
2694
2695 // Signed -> Unsigned
2696 if (!sourceUnsigned && destUnsigned) {
2697 // handle long dest class now to keep switch clean
2698 if (DestClass == cLong) {
Nate Begeman5a104b02004-08-13 02:20:47 +00002699 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukmanca9309f2004-08-11 23:42:15 +00002700 return;
2701 }
2702
2703 // handle { byte, short, int } -> u{ byte, short, int }
2704 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
2705 switch (SrcClass) {
2706 case cByte:
2707 case cShort:
2708 if (DestClass == cByte || DestClass == cShort)
2709 // sbyte -1 -> ubyte 0x000000FF
2710 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2711 .addImm(0).addImm(clearBits).addImm(31);
2712 else
2713 // sbyte -1 -> ubyte 0xFFFFFFFF
2714 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2715 break;
2716 case cLong:
2717 ++SrcReg;
2718 // Fall through
2719 case cInt:
2720 if (DestClass == cInt)
2721 BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2722 else
2723 BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
2724 .addImm(0).addImm(clearBits).addImm(31);
2725 break;
2726 }
2727 return;
2728 }
2729
2730 // Anything we haven't handled already, we can't (yet) handle at all.
2731 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
2732 << "to " << DestTy->getDescription() << '\n';
2733 abort();
2734}
2735
2736/// visitVANextInst - Implement the va_next instruction...
2737///
2738void ISel::visitVANextInst(VANextInst &I) {
2739 unsigned VAList = getReg(I.getOperand(0));
2740 unsigned DestReg = getReg(I);
2741
2742 unsigned Size;
2743 switch (I.getArgType()->getTypeID()) {
2744 default:
2745 std::cerr << I;
2746 assert(0 && "Error: bad type for va_next instruction!");
2747 return;
2748 case Type::PointerTyID:
2749 case Type::UIntTyID:
2750 case Type::IntTyID:
2751 Size = 4;
2752 break;
2753 case Type::ULongTyID:
2754 case Type::LongTyID:
2755 case Type::DoubleTyID:
2756 Size = 8;
2757 break;
2758 }
2759
2760 // Increment the VAList pointer...
2761 BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
2762}
2763
2764void ISel::visitVAArgInst(VAArgInst &I) {
2765 unsigned VAList = getReg(I.getOperand(0));
2766 unsigned DestReg = getReg(I);
2767
2768 switch (I.getType()->getTypeID()) {
2769 default:
2770 std::cerr << I;
2771 assert(0 && "Error: bad type for va_next instruction!");
2772 return;
2773 case Type::PointerTyID:
2774 case Type::UIntTyID:
2775 case Type::IntTyID:
2776 BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
2777 break;
2778 case Type::ULongTyID:
2779 case Type::LongTyID:
2780 BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList);
2781 break;
2782 case Type::FloatTyID:
2783 BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
2784 break;
2785 case Type::DoubleTyID:
2786 BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
2787 break;
2788 }
2789}
2790
2791/// visitGetElementPtrInst - instruction-select GEP instructions
2792///
2793void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2794 if (canFoldGEPIntoLoadOrStore(&I))
2795 return;
2796
2797 unsigned outputReg = getReg(I);
2798 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2799 outputReg, false, 0, 0);
2800}
2801
2802/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
2803/// constant expression GEP support.
2804///
2805void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2806 MachineBasicBlock::iterator IP,
2807 Value *Src, User::op_iterator IdxBegin,
2808 User::op_iterator IdxEnd, unsigned TargetReg,
2809 bool GEPIsFolded, ConstantSInt **RemainderPtr,
2810 unsigned *PendingAddReg) {
2811 const TargetData &TD = TM.getTargetData();
2812 const Type *Ty = Src->getType();
2813 unsigned basePtrReg = getReg(Src, MBB, IP);
2814 int64_t constValue = 0;
2815
2816 // Record the operations to emit the GEP in a vector so that we can emit them
2817 // after having analyzed the entire instruction.
2818 std::vector<CollapsedGepOp> ops;
2819
2820 // GEPs have zero or more indices; we must perform a struct access
2821 // or array access for each one.
2822 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
2823 ++oi) {
2824 Value *idx = *oi;
2825 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2826 // It's a struct access. idx is the index into the structure,
2827 // which names the field. Use the TargetData structure to
2828 // pick out what the layout of the structure is in memory.
2829 // Use the (constant) structure index's value to find the
2830 // right byte offset from the StructLayout class's list of
2831 // structure member offsets.
2832 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
2833 unsigned memberOffset =
2834 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
2835
2836 // StructType member offsets are always constant values. Add it to the
2837 // running total.
2838 constValue += memberOffset;
2839
2840 // The next type is the member of the structure selected by the
2841 // index.
2842 Ty = StTy->getElementType (fieldIndex);
2843 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
2844 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2845 // operand. Handle this case directly now...
2846 if (CastInst *CI = dyn_cast<CastInst>(idx))
2847 if (CI->getOperand(0)->getType() == Type::IntTy ||
2848 CI->getOperand(0)->getType() == Type::UIntTy)
2849 idx = CI->getOperand(0);
2850
2851 // It's an array or pointer access: [ArraySize x ElementType].
2852 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
2853 // must find the size of the pointed-to type (Not coincidentally, the next
2854 // type is the type of the elements in the array).
2855 Ty = SqTy->getElementType();
2856 unsigned elementSize = TD.getTypeSize(Ty);
2857
2858 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
2859 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
2860 constValue += CS->getValue() * elementSize;
2861 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
2862 constValue += CU->getValue() * elementSize;
2863 else
2864 assert(0 && "Invalid ConstantInt GEP index type!");
2865 } else {
2866 // Push current gep state to this point as an add
2867 ops.push_back(CollapsedGepOp(false, 0,
2868 ConstantSInt::get(Type::IntTy,constValue)));
2869
2870 // Push multiply gep op and reset constant value
2871 ops.push_back(CollapsedGepOp(true, idx,
2872 ConstantSInt::get(Type::IntTy, elementSize)));
2873
2874 constValue = 0;
2875 }
2876 }
2877 }
2878 // Emit instructions for all the collapsed ops
2879 bool pendingAdd = false;
2880 unsigned pendingAddReg = 0;
2881
2882 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
2883 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
2884 CollapsedGepOp& cgo = *cgo_i;
2885 unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
2886
2887 // If we didn't emit an add last time through the loop, we need to now so
2888 // that the base reg is updated appropriately.
2889 if (pendingAdd) {
2890 assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
2891 BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2892 .addReg(pendingAddReg);
2893 basePtrReg = nextBasePtrReg;
2894 nextBasePtrReg = makeAnotherReg(Type::IntTy);
2895 pendingAddReg = 0;
2896 pendingAdd = false;
2897 }
2898
2899 if (cgo.isMul) {
2900 // We know the elementSize is a constant, so we can emit a constant mul
2901 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2902 doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
2903 pendingAddReg = basePtrReg;
2904 pendingAdd = true;
2905 } else {
2906 // Try and generate an immediate addition if possible
2907 if (cgo.size->isNullValue()) {
2908 BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
2909 .addReg(basePtrReg);
2910 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
2911 BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
2912 .addSImm(cgo.size->getValue());
2913 } else {
2914 unsigned Op1r = getReg(cgo.size, MBB, IP);
2915 BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2916 .addReg(Op1r);
2917 }
2918 }
2919
2920 basePtrReg = nextBasePtrReg;
2921 }
2922 // Add the current base register plus any accumulated constant value
2923 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
2924
2925 // If we are emitting this during a fold, copy the current base register to
2926 // the target, and save the current constant offset so the folding load or
2927 // store can try and use it as an immediate.
2928 if (GEPIsFolded) {
2929 // If this is a folded GEP and the last element was an index, then we need
2930 // to do some extra work to turn a shift/add/stw into a shift/stwx
2931 if (pendingAdd && 0 == remainder->getValue()) {
2932 assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
2933 *PendingAddReg = pendingAddReg;
2934 } else {
2935 *PendingAddReg = 0;
2936 if (pendingAdd) {
2937 unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
2938 assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
2939 BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2940 .addReg(pendingAddReg);
2941 basePtrReg = nextBasePtrReg;
2942 }
2943 }
2944 BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
2945 .addReg(basePtrReg);
2946 *RemainderPtr = remainder;
2947 return;
2948 }
2949
2950 // If we still have a pending add at this point, emit it now
2951 if (pendingAdd) {
2952 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2953 BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
2954 .addReg(basePtrReg);
2955 basePtrReg = TmpReg;
2956 }
2957
2958 // After we have processed all the indices, the result is left in
2959 // basePtrReg. Move it to the register where we were expected to
2960 // put the answer.
2961 if (remainder->isNullValue()) {
2962 BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
2963 .addReg(basePtrReg);
2964 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
2965 BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
2966 .addSImm(remainder->getValue());
2967 } else {
2968 unsigned Op1r = getReg(remainder, MBB, IP);
2969 BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
2970 }
2971}
2972
2973/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2974/// frame manager, otherwise do it the hard way.
2975///
2976void ISel::visitAllocaInst(AllocaInst &I) {
2977 // If this is a fixed size alloca in the entry block for the function, we
2978 // statically stack allocate the space, so we don't need to do anything here.
2979 //
2980 if (dyn_castFixedAlloca(&I)) return;
2981
2982 // Find the data size of the alloca inst's getAllocatedType.
2983 const Type *Ty = I.getAllocatedType();
2984 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2985
2986 // Create a register to hold the temporary result of multiplying the type size
2987 // constant by the variable amount.
2988 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2989
2990 // TotalSizeReg = mul <numelements>, <TypeSize>
2991 MachineBasicBlock::iterator MBBI = BB->end();
2992 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
2993 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
2994
2995 // AddedSize = add <TotalSizeReg>, 15
2996 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2997 BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
2998
2999 // AlignedSize = and <AddedSize>, ~15
3000 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
3001 BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
3002 .addImm(0).addImm(27);
3003
3004 // Subtract size from stack pointer, thereby allocating some space.
3005 BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
3006
3007 // Put a pointer to the space into the result register, by copying
3008 // the stack pointer.
3009 BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
3010
3011 // Inform the Frame Information that we have just allocated a variable-sized
3012 // object.
3013 F->getFrameInfo()->CreateVariableSizedObject();
3014}
3015
3016/// visitMallocInst - Malloc instructions are code generated into direct calls
3017/// to the library malloc.
3018///
3019void ISel::visitMallocInst(MallocInst &I) {
3020 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3021 unsigned Arg;
3022
3023 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3024 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3025 } else {
3026 Arg = makeAnotherReg(Type::UIntTy);
3027 MachineBasicBlock::iterator MBBI = BB->end();
3028 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
3029 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
3030 }
3031
3032 std::vector<ValueRecord> Args;
3033 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3034 MachineInstr *TheCall =
3035 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
3036 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00003037}
3038
3039
3040/// visitFreeInst - Free instructions are code gen'd to call the free libc
3041/// function.
3042///
3043void ISel::visitFreeInst(FreeInst &I) {
3044 std::vector<ValueRecord> Args;
3045 Args.push_back(ValueRecord(I.getOperand(0)));
3046 MachineInstr *TheCall =
3047 BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
3048 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmanca9309f2004-08-11 23:42:15 +00003049}
3050
3051/// createPPC64ISelSimple - This pass converts an LLVM function into a machine
3052/// code representation is a very simple peep-hole fashion.
3053///
3054FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) {
3055 return new ISel(TM);
3056}