blob: 59ebb1521956fa14e3552f1a2f96bfbd957504cb [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file contains a peephole optimizer for the X86.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner61b08f12004-02-10 21:18:55 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattner45370762003-12-01 05:15:28 +000018#include "Support/Statistic.h"
Chris Lattnere1cc79f2003-11-30 06:13:25 +000019using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000020
Chris Lattnera960d952003-01-13 01:01:59 +000021namespace {
Chris Lattner45370762003-12-01 05:15:28 +000022 Statistic<> NumPHOpts("x86-peephole",
23 "Number of peephole optimization performed");
Chris Lattnera960d952003-01-13 01:01:59 +000024 struct PH : public MachineFunctionPass {
25 virtual bool runOnMachineFunction(MachineFunction &MF);
26
27 bool PeepholeOptimize(MachineBasicBlock &MBB,
28 MachineBasicBlock::iterator &I);
29
30 virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
31 };
32}
33
Chris Lattnere1cc79f2003-11-30 06:13:25 +000034FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
Chris Lattnera960d952003-01-13 01:01:59 +000035
36bool PH::runOnMachineFunction(MachineFunction &MF) {
37 bool Changed = false;
38
39 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
Chris Lattneree3e4352003-01-16 18:07:13 +000040 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
Chris Lattner45370762003-12-01 05:15:28 +000041 if (PeepholeOptimize(*BI, I)) {
Chris Lattnera960d952003-01-13 01:01:59 +000042 Changed = true;
Chris Lattner45370762003-12-01 05:15:28 +000043 ++NumPHOpts;
44 } else
Chris Lattnera960d952003-01-13 01:01:59 +000045 ++I;
46
47 return Changed;
48}
49
50
51bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
52 MachineBasicBlock::iterator &I) {
53 MachineInstr *MI = *I;
54 MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
55 unsigned Size = 0;
56 switch (MI->getOpcode()) {
57 case X86::MOVrr8:
58 case X86::MOVrr16:
59 case X86::MOVrr32: // Destroy X = X copies...
60 if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
61 I = MBB.erase(I);
62 delete MI;
63 return true;
64 }
65 return false;
66
Chris Lattner43a5ff82003-10-20 05:53:31 +000067 // A large number of X86 instructions have forms which take an 8-bit
68 // immediate despite the fact that the operands are 16 or 32 bits. Because
69 // this can save three bytes of code size (and icache space), we want to
70 // shrink them if possible.
Chris Lattner43a5ff82003-10-20 05:53:31 +000071 case X86::IMULri16: case X86::IMULri32:
Chris Lattner43a5ff82003-10-20 05:53:31 +000072 assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
73 if (MI->getOperand(2).isImmediate()) {
74 int Val = MI->getOperand(2).getImmedValue();
75 // If the value is the same when signed extended from 8 bits...
76 if (Val == (signed int)(signed char)Val) {
77 unsigned Opcode;
78 switch (MI->getOpcode()) {
79 default: assert(0 && "Unknown opcode value!");
Alkis Evlogimenos14be6402004-02-04 22:17:40 +000080 case X86::IMULri16: Opcode = X86::IMULri16b; break;
81 case X86::IMULri32: Opcode = X86::IMULri32b; break;
82 }
83 unsigned R0 = MI->getOperand(0).getReg();
84 unsigned R1 = MI->getOperand(1).getReg();
85 *I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
86 delete MI;
87 return true;
88 }
89 }
90 return false;
91
92 case X86::ADDri16: case X86::ADDri32:
93 case X86::SUBri16: case X86::SUBri32:
94 case X86::ANDri16: case X86::ANDri32:
95 case X86::ORri16: case X86::ORri32:
96 case X86::XORri16: case X86::XORri32:
97 assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
98 if (MI->getOperand(1).isImmediate()) {
99 int Val = MI->getOperand(1).getImmedValue();
100 // If the value is the same when signed extended from 8 bits...
101 if (Val == (signed int)(signed char)Val) {
102 unsigned Opcode;
103 switch (MI->getOpcode()) {
104 default: assert(0 && "Unknown opcode value!");
Chris Lattner43a5ff82003-10-20 05:53:31 +0000105 case X86::ADDri16: Opcode = X86::ADDri16b; break;
106 case X86::ADDri32: Opcode = X86::ADDri32b; break;
107 case X86::SUBri16: Opcode = X86::SUBri16b; break;
108 case X86::SUBri32: Opcode = X86::SUBri32b; break;
Chris Lattner43a5ff82003-10-20 05:53:31 +0000109 case X86::ANDri16: Opcode = X86::ANDri16b; break;
110 case X86::ANDri32: Opcode = X86::ANDri32b; break;
111 case X86::ORri16: Opcode = X86::ORri16b; break;
112 case X86::ORri32: Opcode = X86::ORri32b; break;
113 case X86::XORri16: Opcode = X86::XORri16b; break;
114 case X86::XORri32: Opcode = X86::XORri32b; break;
115 }
116 unsigned R0 = MI->getOperand(0).getReg();
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000117 *I = BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val);
Chris Lattner43a5ff82003-10-20 05:53:31 +0000118 delete MI;
119 return true;
120 }
121 }
122 return false;
123
Chris Lattnera960d952003-01-13 01:01:59 +0000124#if 0
125 case X86::MOVir32: Size++;
126 case X86::MOVir16: Size++;
127 case X86::MOVir8:
128 // FIXME: We can only do this transformation if we know that flags are not
129 // used here, because XOR clobbers the flags!
130 if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
131 int Val = MI->getOperand(1).getImmedValue();
132 if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
133 static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32};
134 unsigned Reg = MI->getOperand(0).getReg();
135 *I = BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg);
136 delete MI;
137 return true;
138 } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
139 // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
140 }
141 }
142 return false;
143#endif
144 case X86::BSWAPr32: // Change bswap EAX, bswap EAX into nothing
145 if (Next->getOpcode() == X86::BSWAPr32 &&
146 MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
147 I = MBB.erase(MBB.erase(I));
148 delete MI;
149 delete Next;
150 return true;
151 }
152 return false;
153 default:
154 return false;
155 }
156}
Brian Gaeked0fde302003-11-11 22:41:34 +0000157
Chris Lattner45370762003-12-01 05:15:28 +0000158namespace {
159 class UseDefChains : public MachineFunctionPass {
160 std::vector<MachineInstr*> DefiningInst;
161 public:
162 // getDefinition - Return the machine instruction that defines the specified
163 // SSA virtual register.
164 MachineInstr *getDefinition(unsigned Reg) {
165 assert(Reg >= MRegisterInfo::FirstVirtualRegister &&
166 "use-def chains only exist for SSA registers!");
167 assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
168 "Unknown register number!");
169 assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
170 "Unknown register number!");
171 return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
172 }
173
174 // setDefinition - Update the use-def chains to indicate that MI defines
175 // register Reg.
176 void setDefinition(unsigned Reg, MachineInstr *MI) {
177 if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
178 DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
179 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
180 }
181
182 // removeDefinition - Update the use-def chains to forget about Reg
183 // entirely.
184 void removeDefinition(unsigned Reg) {
185 assert(getDefinition(Reg)); // Check validity
186 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
187 }
188
189 virtual bool runOnMachineFunction(MachineFunction &MF) {
190 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
191 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
192 MachineInstr *MI = *I;
193 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
194 MachineOperand &MO = MI->getOperand(i);
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000195 if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
196 MRegisterInfo::isVirtualRegister(MO.getReg()))
Chris Lattner45370762003-12-01 05:15:28 +0000197 setDefinition(MO.getReg(), MI);
198 }
199 }
200 return false;
201 }
202
203 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
204 AU.setPreservesAll();
205 MachineFunctionPass::getAnalysisUsage(AU);
206 }
207
208 virtual void releaseMemory() {
209 std::vector<MachineInstr*>().swap(DefiningInst);
210 }
211 };
212
213 RegisterAnalysis<UseDefChains> X("use-def-chains",
214 "use-def chain construction for machine code");
215}
216
217
218namespace {
219 Statistic<> NumSSAPHOpts("x86-ssa-peephole",
220 "Number of SSA peephole optimization performed");
221
222 /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
223 /// pass is really a bad idea: a better instruction selector should completely
224 /// supersume it. However, that will take some time to develop, and the
225 /// simple things this can do are important now.
226 class SSAPH : public MachineFunctionPass {
227 UseDefChains *UDC;
228 public:
229 virtual bool runOnMachineFunction(MachineFunction &MF);
230
231 bool PeepholeOptimize(MachineBasicBlock &MBB,
232 MachineBasicBlock::iterator &I);
233
234 virtual const char *getPassName() const {
235 return "X86 SSA-based Peephole Optimizer";
236 }
237
238 /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
239 /// opcode of the instruction, then return true.
240 bool Propagate(MachineInstr *MI, unsigned DestOpNo,
241 MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
242 MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
243 if (NewOpcode) MI->setOpcode(NewOpcode);
244 return true;
245 }
246
247 /// OptimizeAddress - If we can fold the addressing arithmetic for this
248 /// memory instruction into the instruction itself, do so and return true.
249 bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
250
251 /// getDefininingInst - If the specified operand is a read of an SSA
252 /// register, return the machine instruction defining it, otherwise, return
253 /// null.
254 MachineInstr *getDefiningInst(MachineOperand &MO) {
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000255 if (MO.isDef() || !MO.isRegister() ||
256 !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
Chris Lattner45370762003-12-01 05:15:28 +0000257 return UDC->getDefinition(MO.getReg());
258 }
259
260 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
261 AU.addRequired<UseDefChains>();
262 AU.addPreserved<UseDefChains>();
263 MachineFunctionPass::getAnalysisUsage(AU);
264 }
265 };
266}
267
268FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
269
270bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
271 bool Changed = false;
272 bool LocalChanged;
273
274 UDC = &getAnalysis<UseDefChains>();
275
276 do {
277 LocalChanged = false;
278
279 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
280 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
281 if (PeepholeOptimize(*BI, I)) {
282 LocalChanged = true;
283 ++NumSSAPHOpts;
284 } else
285 ++I;
286 Changed |= LocalChanged;
287 } while (LocalChanged);
288
289 return Changed;
290}
291
292static bool isValidScaleAmount(unsigned Scale) {
293 return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
294}
295
296/// OptimizeAddress - If we can fold the addressing arithmetic for this
297/// memory instruction into the instruction itself, do so and return true.
298bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
299 MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
300 MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
301 MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
302 MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
303
304 unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
305 unsigned Scale = ScaleOp.getImmedValue();
306 unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
307
308 bool Changed = false;
309
310 // If the base register is unset, and the index register is set with a scale
311 // of 1, move it to be the base register.
312 if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
313 Scale == 1 && IndexReg != 0) {
314 BaseRegOp.setReg(IndexReg);
315 IndexRegOp.setReg(0);
316 return true;
317 }
318
319 // Attempt to fold instructions used by the base register into the instruction
320 if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
321 switch (DefInst->getOpcode()) {
322 case X86::MOVir32:
323 // If there is no displacement set for this instruction set one now.
324 // FIXME: If we can fold two immediates together, we should do so!
325 if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
326 if (DefInst->getOperand(1).isImmediate()) {
327 BaseRegOp.setReg(0);
328 return Propagate(MI, OpNo+3, DefInst, 1);
329 }
330 }
331 break;
332
333 case X86::ADDrr32:
334 // If the source is a register-register add, and we do not yet have an
335 // index register, fold the add into the memory address.
336 if (IndexReg == 0) {
337 BaseRegOp = DefInst->getOperand(1);
338 IndexRegOp = DefInst->getOperand(2);
339 ScaleOp.setImmedValue(1);
340 return true;
341 }
342 break;
343
344 case X86::SHLir32:
345 // If this shift could be folded into the index portion of the address if
346 // it were the index register, move it to the index register operand now,
347 // so it will be folded in below.
348 if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
349 DefInst->getOperand(2).getImmedValue() < 4) {
350 std::swap(BaseRegOp, IndexRegOp);
351 ScaleOp.setImmedValue(1); Scale = 1;
352 std::swap(IndexReg, BaseReg);
353 Changed = true;
354 break;
355 }
356 }
357 }
358
359 // Attempt to fold instructions used by the index into the instruction
360 if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
361 switch (DefInst->getOpcode()) {
362 case X86::SHLir32: {
363 // Figure out what the resulting scale would be if we folded this shift.
364 unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
365 if (isValidScaleAmount(ResScale)) {
366 IndexRegOp = DefInst->getOperand(1);
367 ScaleOp.setImmedValue(ResScale);
368 return true;
369 }
370 break;
371 }
372 }
373 }
374
375 return Changed;
376}
377
378bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
379 MachineBasicBlock::iterator &I) {
380 MachineInstr *MI = *I;
381 MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
382
383 bool Changed = false;
384
385 // Scan the operands of this instruction. If any operands are
386 // register-register copies, replace the operand with the source.
387 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
388 // Is this an SSA register use?
389 if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i)))
390 // If the operand is a vreg-vreg copy, it is always safe to replace the
391 // source value with the input operand.
392 if (DefInst->getOpcode() == X86::MOVrr8 ||
393 DefInst->getOpcode() == X86::MOVrr16 ||
394 DefInst->getOpcode() == X86::MOVrr32) {
395 // Don't propagate physical registers into PHI nodes...
396 if (MI->getOpcode() != X86::PHI ||
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000397 (DefInst->getOperand(1).isRegister() &&
398 MRegisterInfo::isVirtualRegister(DefInst->getOperand(1).getReg())))
Chris Lattner45370762003-12-01 05:15:28 +0000399 Changed = Propagate(MI, i, DefInst, 1);
400 }
401
402
403 // Perform instruction specific optimizations.
404 switch (MI->getOpcode()) {
405
406 // Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
407 case X86::MOVrm32: case X86::MOVrm16: case X86::MOVrm8:
408 case X86::MOVim32: case X86::MOVim16: case X86::MOVim8:
409 // Check to see if we can fold the source instruction into this one...
410 if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
411 switch (SrcInst->getOpcode()) {
412 // Fold the immediate value into the store, if possible.
413 case X86::MOVir8: return Propagate(MI, 4, SrcInst, 1, X86::MOVim8);
414 case X86::MOVir16: return Propagate(MI, 4, SrcInst, 1, X86::MOVim16);
415 case X86::MOVir32: return Propagate(MI, 4, SrcInst, 1, X86::MOVim32);
416 default: break;
417 }
418 }
419
420 // If we can optimize the addressing expression, do so now.
421 if (OptimizeAddress(MI, 0))
422 return true;
423 break;
424
425 case X86::MOVmr32:
426 case X86::MOVmr16:
427 case X86::MOVmr8:
428 // If we can optimize the addressing expression, do so now.
429 if (OptimizeAddress(MI, 1))
430 return true;
431 break;
432
433 default: break;
434 }
435
436 return Changed;
437}