blob: 66508376cdc99c38ac85219f63f4f8129dffce4f [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file contains a peephole optimizer for the X86.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner45370762003-12-01 05:15:28 +000017#include "Support/Statistic.h"
Chris Lattnere1cc79f2003-11-30 06:13:25 +000018using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000019
Chris Lattnera960d952003-01-13 01:01:59 +000020namespace {
Chris Lattner45370762003-12-01 05:15:28 +000021 Statistic<> NumPHOpts("x86-peephole",
22 "Number of peephole optimization performed");
Chris Lattnera960d952003-01-13 01:01:59 +000023 struct PH : public MachineFunctionPass {
24 virtual bool runOnMachineFunction(MachineFunction &MF);
25
26 bool PeepholeOptimize(MachineBasicBlock &MBB,
27 MachineBasicBlock::iterator &I);
28
29 virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
30 };
31}
32
Chris Lattnere1cc79f2003-11-30 06:13:25 +000033FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
Chris Lattnera960d952003-01-13 01:01:59 +000034
35bool PH::runOnMachineFunction(MachineFunction &MF) {
36 bool Changed = false;
37
38 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
Chris Lattneree3e4352003-01-16 18:07:13 +000039 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
Chris Lattner45370762003-12-01 05:15:28 +000040 if (PeepholeOptimize(*BI, I)) {
Chris Lattnera960d952003-01-13 01:01:59 +000041 Changed = true;
Chris Lattner45370762003-12-01 05:15:28 +000042 ++NumPHOpts;
43 } else
Chris Lattnera960d952003-01-13 01:01:59 +000044 ++I;
45
46 return Changed;
47}
48
49
50bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
51 MachineBasicBlock::iterator &I) {
52 MachineInstr *MI = *I;
53 MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
54 unsigned Size = 0;
55 switch (MI->getOpcode()) {
56 case X86::MOVrr8:
57 case X86::MOVrr16:
58 case X86::MOVrr32: // Destroy X = X copies...
59 if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
60 I = MBB.erase(I);
61 delete MI;
62 return true;
63 }
64 return false;
65
Chris Lattner43a5ff82003-10-20 05:53:31 +000066 // A large number of X86 instructions have forms which take an 8-bit
67 // immediate despite the fact that the operands are 16 or 32 bits. Because
68 // this can save three bytes of code size (and icache space), we want to
69 // shrink them if possible.
Chris Lattner43a5ff82003-10-20 05:53:31 +000070 case X86::IMULri16: case X86::IMULri32:
Chris Lattner43a5ff82003-10-20 05:53:31 +000071 assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
72 if (MI->getOperand(2).isImmediate()) {
73 int Val = MI->getOperand(2).getImmedValue();
74 // If the value is the same when signed extended from 8 bits...
75 if (Val == (signed int)(signed char)Val) {
76 unsigned Opcode;
77 switch (MI->getOpcode()) {
78 default: assert(0 && "Unknown opcode value!");
Alkis Evlogimenos14be6402004-02-04 22:17:40 +000079 case X86::IMULri16: Opcode = X86::IMULri16b; break;
80 case X86::IMULri32: Opcode = X86::IMULri32b; break;
81 }
82 unsigned R0 = MI->getOperand(0).getReg();
83 unsigned R1 = MI->getOperand(1).getReg();
84 *I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
85 delete MI;
86 return true;
87 }
88 }
89 return false;
90
91 case X86::ADDri16: case X86::ADDri32:
92 case X86::SUBri16: case X86::SUBri32:
93 case X86::ANDri16: case X86::ANDri32:
94 case X86::ORri16: case X86::ORri32:
95 case X86::XORri16: case X86::XORri32:
96 assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
97 if (MI->getOperand(1).isImmediate()) {
98 int Val = MI->getOperand(1).getImmedValue();
99 // If the value is the same when signed extended from 8 bits...
100 if (Val == (signed int)(signed char)Val) {
101 unsigned Opcode;
102 switch (MI->getOpcode()) {
103 default: assert(0 && "Unknown opcode value!");
Chris Lattner43a5ff82003-10-20 05:53:31 +0000104 case X86::ADDri16: Opcode = X86::ADDri16b; break;
105 case X86::ADDri32: Opcode = X86::ADDri32b; break;
106 case X86::SUBri16: Opcode = X86::SUBri16b; break;
107 case X86::SUBri32: Opcode = X86::SUBri32b; break;
Chris Lattner43a5ff82003-10-20 05:53:31 +0000108 case X86::ANDri16: Opcode = X86::ANDri16b; break;
109 case X86::ANDri32: Opcode = X86::ANDri32b; break;
110 case X86::ORri16: Opcode = X86::ORri16b; break;
111 case X86::ORri32: Opcode = X86::ORri32b; break;
112 case X86::XORri16: Opcode = X86::XORri16b; break;
113 case X86::XORri32: Opcode = X86::XORri32b; break;
114 }
115 unsigned R0 = MI->getOperand(0).getReg();
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000116 *I = BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val);
Chris Lattner43a5ff82003-10-20 05:53:31 +0000117 delete MI;
118 return true;
119 }
120 }
121 return false;
122
Chris Lattnera960d952003-01-13 01:01:59 +0000123#if 0
124 case X86::MOVir32: Size++;
125 case X86::MOVir16: Size++;
126 case X86::MOVir8:
127 // FIXME: We can only do this transformation if we know that flags are not
128 // used here, because XOR clobbers the flags!
129 if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
130 int Val = MI->getOperand(1).getImmedValue();
131 if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
132 static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32};
133 unsigned Reg = MI->getOperand(0).getReg();
134 *I = BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg);
135 delete MI;
136 return true;
137 } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
138 // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
139 }
140 }
141 return false;
142#endif
143 case X86::BSWAPr32: // Change bswap EAX, bswap EAX into nothing
144 if (Next->getOpcode() == X86::BSWAPr32 &&
145 MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
146 I = MBB.erase(MBB.erase(I));
147 delete MI;
148 delete Next;
149 return true;
150 }
151 return false;
152 default:
153 return false;
154 }
155}
Brian Gaeked0fde302003-11-11 22:41:34 +0000156
Chris Lattner45370762003-12-01 05:15:28 +0000157namespace {
158 class UseDefChains : public MachineFunctionPass {
159 std::vector<MachineInstr*> DefiningInst;
160 public:
161 // getDefinition - Return the machine instruction that defines the specified
162 // SSA virtual register.
163 MachineInstr *getDefinition(unsigned Reg) {
164 assert(Reg >= MRegisterInfo::FirstVirtualRegister &&
165 "use-def chains only exist for SSA registers!");
166 assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
167 "Unknown register number!");
168 assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
169 "Unknown register number!");
170 return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
171 }
172
173 // setDefinition - Update the use-def chains to indicate that MI defines
174 // register Reg.
175 void setDefinition(unsigned Reg, MachineInstr *MI) {
176 if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
177 DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
178 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
179 }
180
181 // removeDefinition - Update the use-def chains to forget about Reg
182 // entirely.
183 void removeDefinition(unsigned Reg) {
184 assert(getDefinition(Reg)); // Check validity
185 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
186 }
187
188 virtual bool runOnMachineFunction(MachineFunction &MF) {
189 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
190 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
191 MachineInstr *MI = *I;
192 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
193 MachineOperand &MO = MI->getOperand(i);
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000194 if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
195 MRegisterInfo::isVirtualRegister(MO.getReg()))
Chris Lattner45370762003-12-01 05:15:28 +0000196 setDefinition(MO.getReg(), MI);
197 }
198 }
199 return false;
200 }
201
202 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
203 AU.setPreservesAll();
204 MachineFunctionPass::getAnalysisUsage(AU);
205 }
206
207 virtual void releaseMemory() {
208 std::vector<MachineInstr*>().swap(DefiningInst);
209 }
210 };
211
212 RegisterAnalysis<UseDefChains> X("use-def-chains",
213 "use-def chain construction for machine code");
214}
215
216
217namespace {
218 Statistic<> NumSSAPHOpts("x86-ssa-peephole",
219 "Number of SSA peephole optimization performed");
220
221 /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
222 /// pass is really a bad idea: a better instruction selector should completely
223 /// supersume it. However, that will take some time to develop, and the
224 /// simple things this can do are important now.
225 class SSAPH : public MachineFunctionPass {
226 UseDefChains *UDC;
227 public:
228 virtual bool runOnMachineFunction(MachineFunction &MF);
229
230 bool PeepholeOptimize(MachineBasicBlock &MBB,
231 MachineBasicBlock::iterator &I);
232
233 virtual const char *getPassName() const {
234 return "X86 SSA-based Peephole Optimizer";
235 }
236
237 /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
238 /// opcode of the instruction, then return true.
239 bool Propagate(MachineInstr *MI, unsigned DestOpNo,
240 MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
241 MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
242 if (NewOpcode) MI->setOpcode(NewOpcode);
243 return true;
244 }
245
246 /// OptimizeAddress - If we can fold the addressing arithmetic for this
247 /// memory instruction into the instruction itself, do so and return true.
248 bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
249
250 /// getDefininingInst - If the specified operand is a read of an SSA
251 /// register, return the machine instruction defining it, otherwise, return
252 /// null.
253 MachineInstr *getDefiningInst(MachineOperand &MO) {
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000254 if (MO.isDef() || !MO.isRegister() ||
255 !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
Chris Lattner45370762003-12-01 05:15:28 +0000256 return UDC->getDefinition(MO.getReg());
257 }
258
259 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
260 AU.addRequired<UseDefChains>();
261 AU.addPreserved<UseDefChains>();
262 MachineFunctionPass::getAnalysisUsage(AU);
263 }
264 };
265}
266
267FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
268
269bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
270 bool Changed = false;
271 bool LocalChanged;
272
273 UDC = &getAnalysis<UseDefChains>();
274
275 do {
276 LocalChanged = false;
277
278 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
279 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
280 if (PeepholeOptimize(*BI, I)) {
281 LocalChanged = true;
282 ++NumSSAPHOpts;
283 } else
284 ++I;
285 Changed |= LocalChanged;
286 } while (LocalChanged);
287
288 return Changed;
289}
290
291static bool isValidScaleAmount(unsigned Scale) {
292 return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
293}
294
295/// OptimizeAddress - If we can fold the addressing arithmetic for this
296/// memory instruction into the instruction itself, do so and return true.
297bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
298 MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
299 MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
300 MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
301 MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
302
303 unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
304 unsigned Scale = ScaleOp.getImmedValue();
305 unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
306
307 bool Changed = false;
308
309 // If the base register is unset, and the index register is set with a scale
310 // of 1, move it to be the base register.
311 if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
312 Scale == 1 && IndexReg != 0) {
313 BaseRegOp.setReg(IndexReg);
314 IndexRegOp.setReg(0);
315 return true;
316 }
317
318 // Attempt to fold instructions used by the base register into the instruction
319 if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
320 switch (DefInst->getOpcode()) {
321 case X86::MOVir32:
322 // If there is no displacement set for this instruction set one now.
323 // FIXME: If we can fold two immediates together, we should do so!
324 if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
325 if (DefInst->getOperand(1).isImmediate()) {
326 BaseRegOp.setReg(0);
327 return Propagate(MI, OpNo+3, DefInst, 1);
328 }
329 }
330 break;
331
332 case X86::ADDrr32:
333 // If the source is a register-register add, and we do not yet have an
334 // index register, fold the add into the memory address.
335 if (IndexReg == 0) {
336 BaseRegOp = DefInst->getOperand(1);
337 IndexRegOp = DefInst->getOperand(2);
338 ScaleOp.setImmedValue(1);
339 return true;
340 }
341 break;
342
343 case X86::SHLir32:
344 // If this shift could be folded into the index portion of the address if
345 // it were the index register, move it to the index register operand now,
346 // so it will be folded in below.
347 if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
348 DefInst->getOperand(2).getImmedValue() < 4) {
349 std::swap(BaseRegOp, IndexRegOp);
350 ScaleOp.setImmedValue(1); Scale = 1;
351 std::swap(IndexReg, BaseReg);
352 Changed = true;
353 break;
354 }
355 }
356 }
357
358 // Attempt to fold instructions used by the index into the instruction
359 if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
360 switch (DefInst->getOpcode()) {
361 case X86::SHLir32: {
362 // Figure out what the resulting scale would be if we folded this shift.
363 unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
364 if (isValidScaleAmount(ResScale)) {
365 IndexRegOp = DefInst->getOperand(1);
366 ScaleOp.setImmedValue(ResScale);
367 return true;
368 }
369 break;
370 }
371 }
372 }
373
374 return Changed;
375}
376
377bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
378 MachineBasicBlock::iterator &I) {
379 MachineInstr *MI = *I;
380 MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
381
382 bool Changed = false;
383
384 // Scan the operands of this instruction. If any operands are
385 // register-register copies, replace the operand with the source.
386 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
387 // Is this an SSA register use?
388 if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i)))
389 // If the operand is a vreg-vreg copy, it is always safe to replace the
390 // source value with the input operand.
391 if (DefInst->getOpcode() == X86::MOVrr8 ||
392 DefInst->getOpcode() == X86::MOVrr16 ||
393 DefInst->getOpcode() == X86::MOVrr32) {
394 // Don't propagate physical registers into PHI nodes...
395 if (MI->getOpcode() != X86::PHI ||
Chris Lattnerc31ecb92004-02-10 20:55:47 +0000396 (DefInst->getOperand(1).isRegister() &&
397 MRegisterInfo::isVirtualRegister(DefInst->getOperand(1).getReg())))
Chris Lattner45370762003-12-01 05:15:28 +0000398 Changed = Propagate(MI, i, DefInst, 1);
399 }
400
401
402 // Perform instruction specific optimizations.
403 switch (MI->getOpcode()) {
404
405 // Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
406 case X86::MOVrm32: case X86::MOVrm16: case X86::MOVrm8:
407 case X86::MOVim32: case X86::MOVim16: case X86::MOVim8:
408 // Check to see if we can fold the source instruction into this one...
409 if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
410 switch (SrcInst->getOpcode()) {
411 // Fold the immediate value into the store, if possible.
412 case X86::MOVir8: return Propagate(MI, 4, SrcInst, 1, X86::MOVim8);
413 case X86::MOVir16: return Propagate(MI, 4, SrcInst, 1, X86::MOVim16);
414 case X86::MOVir32: return Propagate(MI, 4, SrcInst, 1, X86::MOVim32);
415 default: break;
416 }
417 }
418
419 // If we can optimize the addressing expression, do so now.
420 if (OptimizeAddress(MI, 0))
421 return true;
422 break;
423
424 case X86::MOVmr32:
425 case X86::MOVmr16:
426 case X86::MOVmr8:
427 // If we can optimize the addressing expression, do so now.
428 if (OptimizeAddress(MI, 1))
429 return true;
430 break;
431
432 default: break;
433 }
434
435 return Changed;
436}