Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===---------------------------------------------------------------------===// |
| 2 | // Random ideas for the X86 backend. |
| 3 | //===---------------------------------------------------------------------===// |
| 4 | |
| 5 | Missing features: |
| 6 | - Support for SSE4: http://www.intel.com/software/penryn |
| 7 | http://softwarecommunity.intel.com/isn/Downloads/Intel%20SSE4%20Programming%20Reference.pdf |
| 8 | - support for 3DNow! |
| 9 | - weird abis? |
| 10 | |
| 11 | //===---------------------------------------------------------------------===// |
| 12 | |
| 13 | Add a MUL2U and MUL2S nodes to represent a multiply that returns both the |
| 14 | Hi and Lo parts (combination of MUL and MULH[SU] into one node). Add this to |
| 15 | X86, & make the dag combiner produce it when needed. This will eliminate one |
| 16 | imul from the code generated for: |
| 17 | |
| 18 | long long test(long long X, long long Y) { return X*Y; } |
| 19 | |
| 20 | by using the EAX result from the mul. We should add a similar node for |
| 21 | DIVREM. |
| 22 | |
| 23 | another case is: |
| 24 | |
| 25 | long long test(int X, int Y) { return (long long)X*Y; } |
| 26 | |
| 27 | ... which should only be one imul instruction. |
| 28 | |
| 29 | or: |
| 30 | |
| 31 | unsigned long long int t2(unsigned int a, unsigned int b) { |
| 32 | return (unsigned long long)a * b; |
| 33 | } |
| 34 | |
| 35 | ... which should be one mul instruction. |
| 36 | |
| 37 | |
| 38 | This can be done with a custom expander, but it would be nice to move this to |
| 39 | generic code. |
| 40 | |
| 41 | //===---------------------------------------------------------------------===// |
| 42 | |
| 43 | CodeGen/X86/lea-3.ll:test3 should be a single LEA, not a shift/move. The X86 |
| 44 | backend knows how to three-addressify this shift, but it appears the register |
| 45 | allocator isn't even asking it to do so in this case. We should investigate |
| 46 | why this isn't happening, it could have significant impact on other important |
| 47 | cases for X86 as well. |
| 48 | |
| 49 | //===---------------------------------------------------------------------===// |
| 50 | |
| 51 | This should be one DIV/IDIV instruction, not a libcall: |
| 52 | |
| 53 | unsigned test(unsigned long long X, unsigned Y) { |
| 54 | return X/Y; |
| 55 | } |
| 56 | |
| 57 | This can be done trivially with a custom legalizer. What about overflow |
| 58 | though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 |
| 59 | |
| 60 | //===---------------------------------------------------------------------===// |
| 61 | |
| 62 | Improvements to the multiply -> shift/add algorithm: |
| 63 | http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html |
| 64 | |
| 65 | //===---------------------------------------------------------------------===// |
| 66 | |
| 67 | Improve code like this (occurs fairly frequently, e.g. in LLVM): |
| 68 | long long foo(int x) { return 1LL << x; } |
| 69 | |
| 70 | http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html |
| 71 | http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html |
| 72 | http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html |
| 73 | |
| 74 | Another useful one would be ~0ULL >> X and ~0ULL << X. |
| 75 | |
| 76 | One better solution for 1LL << x is: |
| 77 | xorl %eax, %eax |
| 78 | xorl %edx, %edx |
| 79 | testb $32, %cl |
| 80 | sete %al |
| 81 | setne %dl |
| 82 | sall %cl, %eax |
| 83 | sall %cl, %edx |
| 84 | |
| 85 | But that requires good 8-bit subreg support. |
| 86 | |
| 87 | 64-bit shifts (in general) expand to really bad code. Instead of using |
| 88 | cmovs, we should expand to a conditional branch like GCC produces. |
| 89 | |
| 90 | //===---------------------------------------------------------------------===// |
| 91 | |
| 92 | Compile this: |
| 93 | _Bool f(_Bool a) { return a!=1; } |
| 94 | |
| 95 | into: |
| 96 | movzbl %dil, %eax |
| 97 | xorl $1, %eax |
| 98 | ret |
| 99 | |
| 100 | //===---------------------------------------------------------------------===// |
| 101 | |
| 102 | Some isel ideas: |
| 103 | |
| 104 | 1. Dynamic programming based approach when compile time if not an |
| 105 | issue. |
| 106 | 2. Code duplication (addressing mode) during isel. |
| 107 | 3. Other ideas from "Register-Sensitive Selection, Duplication, and |
| 108 | Sequencing of Instructions". |
| 109 | 4. Scheduling for reduced register pressure. E.g. "Minimum Register |
| 110 | Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs" |
| 111 | and other related papers. |
| 112 | http://citeseer.ist.psu.edu/govindarajan01minimum.html |
| 113 | |
| 114 | //===---------------------------------------------------------------------===// |
| 115 | |
| 116 | Should we promote i16 to i32 to avoid partial register update stalls? |
| 117 | |
| 118 | //===---------------------------------------------------------------------===// |
| 119 | |
| 120 | Leave any_extend as pseudo instruction and hint to register |
| 121 | allocator. Delay codegen until post register allocation. |
| 122 | |
| 123 | //===---------------------------------------------------------------------===// |
| 124 | |
| 125 | Count leading zeros and count trailing zeros: |
| 126 | |
| 127 | int clz(int X) { return __builtin_clz(X); } |
| 128 | int ctz(int X) { return __builtin_ctz(X); } |
| 129 | |
| 130 | $ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel |
| 131 | clz: |
| 132 | bsr %eax, DWORD PTR [%esp+4] |
| 133 | xor %eax, 31 |
| 134 | ret |
| 135 | ctz: |
| 136 | bsf %eax, DWORD PTR [%esp+4] |
| 137 | ret |
| 138 | |
| 139 | however, check that these are defined for 0 and 32. Our intrinsics are, GCC's |
| 140 | aren't. |
| 141 | |
| 142 | Another example (use predsimplify to eliminate a select): |
| 143 | |
| 144 | int foo (unsigned long j) { |
| 145 | if (j) |
| 146 | return __builtin_ffs (j) - 1; |
| 147 | else |
| 148 | return 0; |
| 149 | } |
| 150 | |
| 151 | //===---------------------------------------------------------------------===// |
| 152 | |
| 153 | It appears icc use push for parameter passing. Need to investigate. |
| 154 | |
| 155 | //===---------------------------------------------------------------------===// |
| 156 | |
| 157 | Only use inc/neg/not instructions on processors where they are faster than |
| 158 | add/sub/xor. They are slower on the P4 due to only updating some processor |
| 159 | flags. |
| 160 | |
| 161 | //===---------------------------------------------------------------------===// |
| 162 | |
| 163 | The instruction selector sometimes misses folding a load into a compare. The |
| 164 | pattern is written as (cmp reg, (load p)). Because the compare isn't |
| 165 | commutative, it is not matched with the load on both sides. The dag combiner |
| 166 | should be made smart enough to cannonicalize the load into the RHS of a compare |
| 167 | when it can invert the result of the compare for free. |
| 168 | |
| 169 | //===---------------------------------------------------------------------===// |
| 170 | |
| 171 | How about intrinsics? An example is: |
| 172 | *res = _mm_mulhi_epu16(*A, _mm_mul_epu32(*B, *C)); |
| 173 | |
| 174 | compiles to |
| 175 | pmuludq (%eax), %xmm0 |
| 176 | movl 8(%esp), %eax |
| 177 | movdqa (%eax), %xmm1 |
| 178 | pmulhuw %xmm0, %xmm1 |
| 179 | |
| 180 | The transformation probably requires a X86 specific pass or a DAG combiner |
| 181 | target specific hook. |
| 182 | |
| 183 | //===---------------------------------------------------------------------===// |
| 184 | |
| 185 | In many cases, LLVM generates code like this: |
| 186 | |
| 187 | _test: |
| 188 | movl 8(%esp), %eax |
| 189 | cmpl %eax, 4(%esp) |
| 190 | setl %al |
| 191 | movzbl %al, %eax |
| 192 | ret |
| 193 | |
| 194 | on some processors (which ones?), it is more efficient to do this: |
| 195 | |
| 196 | _test: |
| 197 | movl 8(%esp), %ebx |
| 198 | xor %eax, %eax |
| 199 | cmpl %ebx, 4(%esp) |
| 200 | setl %al |
| 201 | ret |
| 202 | |
| 203 | Doing this correctly is tricky though, as the xor clobbers the flags. |
| 204 | |
| 205 | //===---------------------------------------------------------------------===// |
| 206 | |
| 207 | We should generate bts/btr/etc instructions on targets where they are cheap or |
| 208 | when codesize is important. e.g., for: |
| 209 | |
| 210 | void setbit(int *target, int bit) { |
| 211 | *target |= (1 << bit); |
| 212 | } |
| 213 | void clearbit(int *target, int bit) { |
| 214 | *target &= ~(1 << bit); |
| 215 | } |
| 216 | |
| 217 | //===---------------------------------------------------------------------===// |
| 218 | |
| 219 | Instead of the following for memset char*, 1, 10: |
| 220 | |
| 221 | movl $16843009, 4(%edx) |
| 222 | movl $16843009, (%edx) |
| 223 | movw $257, 8(%edx) |
| 224 | |
| 225 | It might be better to generate |
| 226 | |
| 227 | movl $16843009, %eax |
| 228 | movl %eax, 4(%edx) |
| 229 | movl %eax, (%edx) |
| 230 | movw al, 8(%edx) |
| 231 | |
| 232 | when we can spare a register. It reduces code size. |
| 233 | |
| 234 | //===---------------------------------------------------------------------===// |
| 235 | |
| 236 | Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently |
| 237 | get this: |
| 238 | |
| 239 | int %test1(int %X) { |
| 240 | %Y = div int %X, 8 |
| 241 | ret int %Y |
| 242 | } |
| 243 | |
| 244 | _test1: |
| 245 | movl 4(%esp), %eax |
| 246 | movl %eax, %ecx |
| 247 | sarl $31, %ecx |
| 248 | shrl $29, %ecx |
| 249 | addl %ecx, %eax |
| 250 | sarl $3, %eax |
| 251 | ret |
| 252 | |
| 253 | GCC knows several different ways to codegen it, one of which is this: |
| 254 | |
| 255 | _test1: |
| 256 | movl 4(%esp), %eax |
| 257 | cmpl $-1, %eax |
| 258 | leal 7(%eax), %ecx |
| 259 | cmovle %ecx, %eax |
| 260 | sarl $3, %eax |
| 261 | ret |
| 262 | |
| 263 | which is probably slower, but it's interesting at least :) |
| 264 | |
| 265 | //===---------------------------------------------------------------------===// |
| 266 | |
| 267 | The first BB of this code: |
| 268 | |
| 269 | declare bool %foo() |
| 270 | int %bar() { |
| 271 | %V = call bool %foo() |
| 272 | br bool %V, label %T, label %F |
| 273 | T: |
| 274 | ret int 1 |
| 275 | F: |
| 276 | call bool %foo() |
| 277 | ret int 12 |
| 278 | } |
| 279 | |
| 280 | compiles to: |
| 281 | |
| 282 | _bar: |
| 283 | subl $12, %esp |
| 284 | call L_foo$stub |
| 285 | xorb $1, %al |
| 286 | testb %al, %al |
| 287 | jne LBB_bar_2 # F |
| 288 | |
| 289 | It would be better to emit "cmp %al, 1" than a xor and test. |
| 290 | |
| 291 | //===---------------------------------------------------------------------===// |
| 292 | |
| 293 | Enable X86InstrInfo::convertToThreeAddress(). |
| 294 | |
| 295 | //===---------------------------------------------------------------------===// |
| 296 | |
| 297 | We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl |
| 298 | We should leave these as libcalls for everything over a much lower threshold, |
| 299 | since libc is hand tuned for medium and large mem ops (avoiding RFO for large |
| 300 | stores, TLB preheating, etc) |
| 301 | |
| 302 | //===---------------------------------------------------------------------===// |
| 303 | |
| 304 | Optimize this into something reasonable: |
| 305 | x * copysign(1.0, y) * copysign(1.0, z) |
| 306 | |
| 307 | //===---------------------------------------------------------------------===// |
| 308 | |
| 309 | Optimize copysign(x, *y) to use an integer load from y. |
| 310 | |
| 311 | //===---------------------------------------------------------------------===// |
| 312 | |
| 313 | %X = weak global int 0 |
| 314 | |
| 315 | void %foo(int %N) { |
| 316 | %N = cast int %N to uint |
| 317 | %tmp.24 = setgt int %N, 0 |
| 318 | br bool %tmp.24, label %no_exit, label %return |
| 319 | |
| 320 | no_exit: |
| 321 | %indvar = phi uint [ 0, %entry ], [ %indvar.next, %no_exit ] |
| 322 | %i.0.0 = cast uint %indvar to int |
| 323 | volatile store int %i.0.0, int* %X |
| 324 | %indvar.next = add uint %indvar, 1 |
| 325 | %exitcond = seteq uint %indvar.next, %N |
| 326 | br bool %exitcond, label %return, label %no_exit |
| 327 | |
| 328 | return: |
| 329 | ret void |
| 330 | } |
| 331 | |
| 332 | compiles into: |
| 333 | |
| 334 | .text |
| 335 | .align 4 |
| 336 | .globl _foo |
| 337 | _foo: |
| 338 | movl 4(%esp), %eax |
| 339 | cmpl $1, %eax |
| 340 | jl LBB_foo_4 # return |
| 341 | LBB_foo_1: # no_exit.preheader |
| 342 | xorl %ecx, %ecx |
| 343 | LBB_foo_2: # no_exit |
| 344 | movl L_X$non_lazy_ptr, %edx |
| 345 | movl %ecx, (%edx) |
| 346 | incl %ecx |
| 347 | cmpl %eax, %ecx |
| 348 | jne LBB_foo_2 # no_exit |
| 349 | LBB_foo_3: # return.loopexit |
| 350 | LBB_foo_4: # return |
| 351 | ret |
| 352 | |
| 353 | We should hoist "movl L_X$non_lazy_ptr, %edx" out of the loop after |
| 354 | remateralization is implemented. This can be accomplished with 1) a target |
| 355 | dependent LICM pass or 2) makeing SelectDAG represent the whole function. |
| 356 | |
| 357 | //===---------------------------------------------------------------------===// |
| 358 | |
| 359 | The following tests perform worse with LSR: |
| 360 | |
| 361 | lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor. |
| 362 | |
| 363 | //===---------------------------------------------------------------------===// |
| 364 | |
| 365 | We are generating far worse code than gcc: |
| 366 | |
| 367 | volatile short X, Y; |
| 368 | |
| 369 | void foo(int N) { |
| 370 | int i; |
| 371 | for (i = 0; i < N; i++) { X = i; Y = i*4; } |
| 372 | } |
| 373 | |
| 374 | LBB1_1: #bb.preheader |
| 375 | xorl %ecx, %ecx |
| 376 | xorw %dx, %dx |
| 377 | LBB1_2: #bb |
| 378 | movl L_X$non_lazy_ptr, %esi |
| 379 | movw %dx, (%esi) |
| 380 | movw %dx, %si |
| 381 | shlw $2, %si |
| 382 | movl L_Y$non_lazy_ptr, %edi |
| 383 | movw %si, (%edi) |
| 384 | incl %ecx |
| 385 | incw %dx |
| 386 | cmpl %eax, %ecx |
| 387 | jne LBB1_2 #bb |
| 388 | |
| 389 | vs. |
| 390 | |
| 391 | xorl %edx, %edx |
| 392 | movl L_X$non_lazy_ptr-"L00000000001$pb"(%ebx), %esi |
| 393 | movl L_Y$non_lazy_ptr-"L00000000001$pb"(%ebx), %ecx |
| 394 | L4: |
| 395 | movw %dx, (%esi) |
| 396 | leal 0(,%edx,4), %eax |
| 397 | movw %ax, (%ecx) |
| 398 | addl $1, %edx |
| 399 | cmpl %edx, %edi |
| 400 | jne L4 |
| 401 | |
| 402 | There are 3 issues: |
| 403 | |
| 404 | 1. Lack of post regalloc LICM. |
Christopher Lamb | 2087a5e | 2007-08-10 21:29:05 +0000 | [diff] [blame] | 405 | 2. LSR unable to reused IV for a different type (i16 vs. i32) even though |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 406 | the cast would be free. |
| 407 | |
| 408 | //===---------------------------------------------------------------------===// |
| 409 | |
| 410 | Teach the coalescer to coalesce vregs of different register classes. e.g. FR32 / |
| 411 | FR64 to VR128. |
| 412 | |
| 413 | //===---------------------------------------------------------------------===// |
| 414 | |
| 415 | mov $reg, 48(%esp) |
| 416 | ... |
| 417 | leal 48(%esp), %eax |
| 418 | mov %eax, (%esp) |
| 419 | call _foo |
| 420 | |
| 421 | Obviously it would have been better for the first mov (or any op) to store |
| 422 | directly %esp[0] if there are no other uses. |
| 423 | |
| 424 | //===---------------------------------------------------------------------===// |
| 425 | |
| 426 | Adding to the list of cmp / test poor codegen issues: |
| 427 | |
| 428 | int test(__m128 *A, __m128 *B) { |
| 429 | if (_mm_comige_ss(*A, *B)) |
| 430 | return 3; |
| 431 | else |
| 432 | return 4; |
| 433 | } |
| 434 | |
| 435 | _test: |
| 436 | movl 8(%esp), %eax |
| 437 | movaps (%eax), %xmm0 |
| 438 | movl 4(%esp), %eax |
| 439 | movaps (%eax), %xmm1 |
| 440 | comiss %xmm0, %xmm1 |
| 441 | setae %al |
| 442 | movzbl %al, %ecx |
| 443 | movl $3, %eax |
| 444 | movl $4, %edx |
| 445 | cmpl $0, %ecx |
| 446 | cmove %edx, %eax |
| 447 | ret |
| 448 | |
| 449 | Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There |
| 450 | are a number of issues. 1) We are introducing a setcc between the result of the |
| 451 | intrisic call and select. 2) The intrinsic is expected to produce a i32 value |
| 452 | so a any extend (which becomes a zero extend) is added. |
| 453 | |
| 454 | We probably need some kind of target DAG combine hook to fix this. |
| 455 | |
| 456 | //===---------------------------------------------------------------------===// |
| 457 | |
| 458 | We generate significantly worse code for this than GCC: |
| 459 | http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150 |
| 460 | http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701 |
| 461 | |
| 462 | There is also one case we do worse on PPC. |
| 463 | |
| 464 | //===---------------------------------------------------------------------===// |
| 465 | |
| 466 | If shorter, we should use things like: |
| 467 | movzwl %ax, %eax |
| 468 | instead of: |
| 469 | andl $65535, %EAX |
| 470 | |
| 471 | The former can also be used when the two-addressy nature of the 'and' would |
| 472 | require a copy to be inserted (in X86InstrInfo::convertToThreeAddress). |
| 473 | |
| 474 | //===---------------------------------------------------------------------===// |
| 475 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 476 | Consider this: |
| 477 | |
| 478 | typedef struct pair { float A, B; } pair; |
| 479 | void pairtest(pair P, float *FP) { |
| 480 | *FP = P.A+P.B; |
| 481 | } |
| 482 | |
| 483 | We currently generate this code with llvmgcc4: |
| 484 | |
| 485 | _pairtest: |
| 486 | movl 8(%esp), %eax |
| 487 | movl 4(%esp), %ecx |
| 488 | movd %eax, %xmm0 |
| 489 | movd %ecx, %xmm1 |
| 490 | addss %xmm0, %xmm1 |
| 491 | movl 12(%esp), %eax |
| 492 | movss %xmm1, (%eax) |
| 493 | ret |
| 494 | |
| 495 | we should be able to generate: |
| 496 | _pairtest: |
| 497 | movss 4(%esp), %xmm0 |
| 498 | movl 12(%esp), %eax |
| 499 | addss 8(%esp), %xmm0 |
| 500 | movss %xmm0, (%eax) |
| 501 | ret |
| 502 | |
| 503 | The issue is that llvmgcc4 is forcing the struct to memory, then passing it as |
| 504 | integer chunks. It does this so that structs like {short,short} are passed in |
| 505 | a single 32-bit integer stack slot. We should handle the safe cases above much |
| 506 | nicer, while still handling the hard cases. |
| 507 | |
| 508 | While true in general, in this specific case we could do better by promoting |
| 509 | load int + bitcast to float -> load fload. This basically needs alignment info, |
| 510 | the code is already implemented (but disabled) in dag combine). |
| 511 | |
| 512 | //===---------------------------------------------------------------------===// |
| 513 | |
| 514 | Another instruction selector deficiency: |
| 515 | |
| 516 | void %bar() { |
| 517 | %tmp = load int (int)** %foo |
| 518 | %tmp = tail call int %tmp( int 3 ) |
| 519 | ret void |
| 520 | } |
| 521 | |
| 522 | _bar: |
| 523 | subl $12, %esp |
| 524 | movl L_foo$non_lazy_ptr, %eax |
| 525 | movl (%eax), %eax |
| 526 | call *%eax |
| 527 | addl $12, %esp |
| 528 | ret |
| 529 | |
| 530 | The current isel scheme will not allow the load to be folded in the call since |
| 531 | the load's chain result is read by the callseq_start. |
| 532 | |
| 533 | //===---------------------------------------------------------------------===// |
| 534 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 535 | For this: |
| 536 | |
| 537 | int test(int a) |
| 538 | { |
| 539 | return a * 3; |
| 540 | } |
| 541 | |
| 542 | We currently emits |
| 543 | imull $3, 4(%esp), %eax |
| 544 | |
| 545 | Perhaps this is what we really should generate is? Is imull three or four |
| 546 | cycles? Note: ICC generates this: |
| 547 | movl 4(%esp), %eax |
| 548 | leal (%eax,%eax,2), %eax |
| 549 | |
| 550 | The current instruction priority is based on pattern complexity. The former is |
| 551 | more "complex" because it folds a load so the latter will not be emitted. |
| 552 | |
| 553 | Perhaps we should use AddedComplexity to give LEA32r a higher priority? We |
| 554 | should always try to match LEA first since the LEA matching code does some |
| 555 | estimate to determine whether the match is profitable. |
| 556 | |
| 557 | However, if we care more about code size, then imull is better. It's two bytes |
| 558 | shorter than movl + leal. |
| 559 | |
| 560 | //===---------------------------------------------------------------------===// |
| 561 | |
Chris Lattner | a86af9a | 2007-08-11 18:19:07 +0000 | [diff] [blame] | 562 | Implement CTTZ, CTLZ with bsf and bsr. GCC produces: |
| 563 | |
| 564 | int ctz_(unsigned X) { return __builtin_ctz(X); } |
| 565 | int clz_(unsigned X) { return __builtin_clz(X); } |
| 566 | int ffs_(unsigned X) { return __builtin_ffs(X); } |
| 567 | |
| 568 | _ctz_: |
| 569 | bsfl 4(%esp), %eax |
| 570 | ret |
| 571 | _clz_: |
| 572 | bsrl 4(%esp), %eax |
| 573 | xorl $31, %eax |
| 574 | ret |
| 575 | _ffs_: |
| 576 | movl $-1, %edx |
| 577 | bsfl 4(%esp), %eax |
| 578 | cmove %edx, %eax |
| 579 | addl $1, %eax |
| 580 | ret |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 581 | |
| 582 | //===---------------------------------------------------------------------===// |
| 583 | |
| 584 | It appears gcc place string data with linkonce linkage in |
| 585 | .section __TEXT,__const_coal,coalesced instead of |
| 586 | .section __DATA,__const_coal,coalesced. |
| 587 | Take a look at darwin.h, there are other Darwin assembler directives that we |
| 588 | do not make use of. |
| 589 | |
| 590 | //===---------------------------------------------------------------------===// |
| 591 | |
| 592 | int %foo(int* %a, int %t) { |
| 593 | entry: |
| 594 | br label %cond_true |
| 595 | |
| 596 | cond_true: ; preds = %cond_true, %entry |
| 597 | %x.0.0 = phi int [ 0, %entry ], [ %tmp9, %cond_true ] |
| 598 | %t_addr.0.0 = phi int [ %t, %entry ], [ %tmp7, %cond_true ] |
| 599 | %tmp2 = getelementptr int* %a, int %x.0.0 |
| 600 | %tmp3 = load int* %tmp2 ; <int> [#uses=1] |
| 601 | %tmp5 = add int %t_addr.0.0, %x.0.0 ; <int> [#uses=1] |
| 602 | %tmp7 = add int %tmp5, %tmp3 ; <int> [#uses=2] |
| 603 | %tmp9 = add int %x.0.0, 1 ; <int> [#uses=2] |
| 604 | %tmp = setgt int %tmp9, 39 ; <bool> [#uses=1] |
| 605 | br bool %tmp, label %bb12, label %cond_true |
| 606 | |
| 607 | bb12: ; preds = %cond_true |
| 608 | ret int %tmp7 |
| 609 | } |
| 610 | |
| 611 | is pessimized by -loop-reduce and -indvars |
| 612 | |
| 613 | //===---------------------------------------------------------------------===// |
| 614 | |
| 615 | u32 to float conversion improvement: |
| 616 | |
| 617 | float uint32_2_float( unsigned u ) { |
| 618 | float fl = (int) (u & 0xffff); |
| 619 | float fh = (int) (u >> 16); |
| 620 | fh *= 0x1.0p16f; |
| 621 | return fh + fl; |
| 622 | } |
| 623 | |
| 624 | 00000000 subl $0x04,%esp |
| 625 | 00000003 movl 0x08(%esp,1),%eax |
| 626 | 00000007 movl %eax,%ecx |
| 627 | 00000009 shrl $0x10,%ecx |
| 628 | 0000000c cvtsi2ss %ecx,%xmm0 |
| 629 | 00000010 andl $0x0000ffff,%eax |
| 630 | 00000015 cvtsi2ss %eax,%xmm1 |
| 631 | 00000019 mulss 0x00000078,%xmm0 |
| 632 | 00000021 addss %xmm1,%xmm0 |
| 633 | 00000025 movss %xmm0,(%esp,1) |
| 634 | 0000002a flds (%esp,1) |
| 635 | 0000002d addl $0x04,%esp |
| 636 | 00000030 ret |
| 637 | |
| 638 | //===---------------------------------------------------------------------===// |
| 639 | |
| 640 | When using fastcc abi, align stack slot of argument of type double on 8 byte |
| 641 | boundary to improve performance. |
| 642 | |
| 643 | //===---------------------------------------------------------------------===// |
| 644 | |
| 645 | Codegen: |
| 646 | |
| 647 | int f(int a, int b) { |
| 648 | if (a == 4 || a == 6) |
| 649 | b++; |
| 650 | return b; |
| 651 | } |
| 652 | |
| 653 | |
| 654 | as: |
| 655 | |
| 656 | or eax, 2 |
| 657 | cmp eax, 6 |
| 658 | jz label |
| 659 | |
| 660 | //===---------------------------------------------------------------------===// |
| 661 | |
| 662 | GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting |
| 663 | simplifications for integer "x cmp y ? a : b". For example, instead of: |
| 664 | |
| 665 | int G; |
| 666 | void f(int X, int Y) { |
| 667 | G = X < 0 ? 14 : 13; |
| 668 | } |
| 669 | |
| 670 | compiling to: |
| 671 | |
| 672 | _f: |
| 673 | movl $14, %eax |
| 674 | movl $13, %ecx |
| 675 | movl 4(%esp), %edx |
| 676 | testl %edx, %edx |
| 677 | cmovl %eax, %ecx |
| 678 | movl %ecx, _G |
| 679 | ret |
| 680 | |
| 681 | it could be: |
| 682 | _f: |
| 683 | movl 4(%esp), %eax |
| 684 | sarl $31, %eax |
| 685 | notl %eax |
| 686 | addl $14, %eax |
| 687 | movl %eax, _G |
| 688 | ret |
| 689 | |
| 690 | etc. |
| 691 | |
| 692 | //===---------------------------------------------------------------------===// |
| 693 | |
| 694 | Currently we don't have elimination of redundant stack manipulations. Consider |
| 695 | the code: |
| 696 | |
| 697 | int %main() { |
| 698 | entry: |
| 699 | call fastcc void %test1( ) |
| 700 | call fastcc void %test2( sbyte* cast (void ()* %test1 to sbyte*) ) |
| 701 | ret int 0 |
| 702 | } |
| 703 | |
| 704 | declare fastcc void %test1() |
| 705 | |
| 706 | declare fastcc void %test2(sbyte*) |
| 707 | |
| 708 | |
| 709 | This currently compiles to: |
| 710 | |
| 711 | subl $16, %esp |
| 712 | call _test5 |
| 713 | addl $12, %esp |
| 714 | subl $16, %esp |
| 715 | movl $_test5, (%esp) |
| 716 | call _test6 |
| 717 | addl $12, %esp |
| 718 | |
| 719 | The add\sub pair is really unneeded here. |
| 720 | |
| 721 | //===---------------------------------------------------------------------===// |
| 722 | |
| 723 | We currently compile sign_extend_inreg into two shifts: |
| 724 | |
| 725 | long foo(long X) { |
| 726 | return (long)(signed char)X; |
| 727 | } |
| 728 | |
| 729 | becomes: |
| 730 | |
| 731 | _foo: |
| 732 | movl 4(%esp), %eax |
| 733 | shll $24, %eax |
| 734 | sarl $24, %eax |
| 735 | ret |
| 736 | |
| 737 | This could be: |
| 738 | |
| 739 | _foo: |
| 740 | movsbl 4(%esp),%eax |
| 741 | ret |
| 742 | |
| 743 | //===---------------------------------------------------------------------===// |
| 744 | |
| 745 | Consider the expansion of: |
| 746 | |
| 747 | uint %test3(uint %X) { |
| 748 | %tmp1 = rem uint %X, 255 |
| 749 | ret uint %tmp1 |
| 750 | } |
| 751 | |
| 752 | Currently it compiles to: |
| 753 | |
| 754 | ... |
| 755 | movl $2155905153, %ecx |
| 756 | movl 8(%esp), %esi |
| 757 | movl %esi, %eax |
| 758 | mull %ecx |
| 759 | ... |
| 760 | |
| 761 | This could be "reassociated" into: |
| 762 | |
| 763 | movl $2155905153, %eax |
| 764 | movl 8(%esp), %ecx |
| 765 | mull %ecx |
| 766 | |
| 767 | to avoid the copy. In fact, the existing two-address stuff would do this |
| 768 | except that mul isn't a commutative 2-addr instruction. I guess this has |
| 769 | to be done at isel time based on the #uses to mul? |
| 770 | |
| 771 | //===---------------------------------------------------------------------===// |
| 772 | |
| 773 | Make sure the instruction which starts a loop does not cross a cacheline |
| 774 | boundary. This requires knowning the exact length of each machine instruction. |
| 775 | That is somewhat complicated, but doable. Example 256.bzip2: |
| 776 | |
| 777 | In the new trace, the hot loop has an instruction which crosses a cacheline |
| 778 | boundary. In addition to potential cache misses, this can't help decoding as I |
| 779 | imagine there has to be some kind of complicated decoder reset and realignment |
| 780 | to grab the bytes from the next cacheline. |
| 781 | |
| 782 | 532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines |
| 783 | 942 942 0x3d03 movl %dh, (1809(%esp, %esi) |
| 784 | 937 937 0x3d0a incl %esi |
| 785 | 3 3 0x3d0b cmpb %bl, %dl |
| 786 | 27 27 0x3d0d jnz 0x000062db <main+11707> |
| 787 | |
| 788 | //===---------------------------------------------------------------------===// |
| 789 | |
| 790 | In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE. |
| 791 | |
| 792 | //===---------------------------------------------------------------------===// |
| 793 | |
| 794 | This could be a single 16-bit load. |
| 795 | |
| 796 | int f(char *p) { |
| 797 | if ((p[0] == 1) & (p[1] == 2)) return 1; |
| 798 | return 0; |
| 799 | } |
| 800 | |
| 801 | //===---------------------------------------------------------------------===// |
| 802 | |
| 803 | We should inline lrintf and probably other libc functions. |
| 804 | |
| 805 | //===---------------------------------------------------------------------===// |
| 806 | |
| 807 | Start using the flags more. For example, compile: |
| 808 | |
| 809 | int add_zf(int *x, int y, int a, int b) { |
| 810 | if ((*x += y) == 0) |
| 811 | return a; |
| 812 | else |
| 813 | return b; |
| 814 | } |
| 815 | |
| 816 | to: |
| 817 | addl %esi, (%rdi) |
| 818 | movl %edx, %eax |
| 819 | cmovne %ecx, %eax |
| 820 | ret |
| 821 | instead of: |
| 822 | |
| 823 | _add_zf: |
| 824 | addl (%rdi), %esi |
| 825 | movl %esi, (%rdi) |
| 826 | testl %esi, %esi |
| 827 | cmove %edx, %ecx |
| 828 | movl %ecx, %eax |
| 829 | ret |
| 830 | |
| 831 | and: |
| 832 | |
| 833 | int add_zf(int *x, int y, int a, int b) { |
| 834 | if ((*x + y) < 0) |
| 835 | return a; |
| 836 | else |
| 837 | return b; |
| 838 | } |
| 839 | |
| 840 | to: |
| 841 | |
| 842 | add_zf: |
| 843 | addl (%rdi), %esi |
| 844 | movl %edx, %eax |
| 845 | cmovns %ecx, %eax |
| 846 | ret |
| 847 | |
| 848 | instead of: |
| 849 | |
| 850 | _add_zf: |
| 851 | addl (%rdi), %esi |
| 852 | testl %esi, %esi |
| 853 | cmovs %edx, %ecx |
| 854 | movl %ecx, %eax |
| 855 | ret |
| 856 | |
| 857 | //===---------------------------------------------------------------------===// |
| 858 | |
| 859 | This: |
| 860 | #include <math.h> |
| 861 | int foo(double X) { return isnan(X); } |
| 862 | |
| 863 | compiles to (-m64): |
| 864 | |
| 865 | _foo: |
| 866 | pxor %xmm1, %xmm1 |
| 867 | ucomisd %xmm1, %xmm0 |
| 868 | setp %al |
| 869 | movzbl %al, %eax |
| 870 | ret |
| 871 | |
| 872 | the pxor is not needed, we could compare the value against itself. |
| 873 | |
| 874 | //===---------------------------------------------------------------------===// |
| 875 | |
| 876 | These two functions have identical effects: |
| 877 | |
| 878 | unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;} |
| 879 | unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;} |
| 880 | |
| 881 | We currently compile them to: |
| 882 | |
| 883 | _f: |
| 884 | movl 4(%esp), %eax |
| 885 | movl %eax, %ecx |
| 886 | incl %ecx |
| 887 | movl 8(%esp), %edx |
| 888 | cmpl %edx, %ecx |
| 889 | jne LBB1_2 #UnifiedReturnBlock |
| 890 | LBB1_1: #cond_true |
| 891 | addl $2, %eax |
| 892 | ret |
| 893 | LBB1_2: #UnifiedReturnBlock |
| 894 | movl %ecx, %eax |
| 895 | ret |
| 896 | _f2: |
| 897 | movl 4(%esp), %eax |
| 898 | movl %eax, %ecx |
| 899 | incl %ecx |
| 900 | cmpl 8(%esp), %ecx |
| 901 | sete %cl |
| 902 | movzbl %cl, %ecx |
| 903 | leal 1(%ecx,%eax), %eax |
| 904 | ret |
| 905 | |
| 906 | both of which are inferior to GCC's: |
| 907 | |
| 908 | _f: |
| 909 | movl 4(%esp), %edx |
| 910 | leal 1(%edx), %eax |
| 911 | addl $2, %edx |
| 912 | cmpl 8(%esp), %eax |
| 913 | cmove %edx, %eax |
| 914 | ret |
| 915 | _f2: |
| 916 | movl 4(%esp), %eax |
| 917 | addl $1, %eax |
| 918 | xorl %edx, %edx |
| 919 | cmpl 8(%esp), %eax |
| 920 | sete %dl |
| 921 | addl %edx, %eax |
| 922 | ret |
| 923 | |
| 924 | //===---------------------------------------------------------------------===// |
| 925 | |
| 926 | This code: |
| 927 | |
| 928 | void test(int X) { |
| 929 | if (X) abort(); |
| 930 | } |
| 931 | |
| 932 | is currently compiled to: |
| 933 | |
| 934 | _test: |
| 935 | subl $12, %esp |
| 936 | cmpl $0, 16(%esp) |
| 937 | jne LBB1_1 |
| 938 | addl $12, %esp |
| 939 | ret |
| 940 | LBB1_1: |
| 941 | call L_abort$stub |
| 942 | |
| 943 | It would be better to produce: |
| 944 | |
| 945 | _test: |
| 946 | subl $12, %esp |
| 947 | cmpl $0, 16(%esp) |
| 948 | jne L_abort$stub |
| 949 | addl $12, %esp |
| 950 | ret |
| 951 | |
| 952 | This can be applied to any no-return function call that takes no arguments etc. |
| 953 | Alternatively, the stack save/restore logic could be shrink-wrapped, producing |
| 954 | something like this: |
| 955 | |
| 956 | _test: |
| 957 | cmpl $0, 4(%esp) |
| 958 | jne LBB1_1 |
| 959 | ret |
| 960 | LBB1_1: |
| 961 | subl $12, %esp |
| 962 | call L_abort$stub |
| 963 | |
| 964 | Both are useful in different situations. Finally, it could be shrink-wrapped |
| 965 | and tail called, like this: |
| 966 | |
| 967 | _test: |
| 968 | cmpl $0, 4(%esp) |
| 969 | jne LBB1_1 |
| 970 | ret |
| 971 | LBB1_1: |
| 972 | pop %eax # realign stack. |
| 973 | call L_abort$stub |
| 974 | |
| 975 | Though this probably isn't worth it. |
| 976 | |
| 977 | //===---------------------------------------------------------------------===// |
| 978 | |
| 979 | We need to teach the codegen to convert two-address INC instructions to LEA |
Chris Lattner | 0d64ec3 | 2007-08-11 18:16:46 +0000 | [diff] [blame] | 980 | when the flags are dead (likewise dec). For example, on X86-64, compile: |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 981 | |
| 982 | int foo(int A, int B) { |
| 983 | return A+1; |
| 984 | } |
| 985 | |
| 986 | to: |
| 987 | |
| 988 | _foo: |
| 989 | leal 1(%edi), %eax |
| 990 | ret |
| 991 | |
| 992 | instead of: |
| 993 | |
| 994 | _foo: |
| 995 | incl %edi |
| 996 | movl %edi, %eax |
| 997 | ret |
| 998 | |
| 999 | Another example is: |
| 1000 | |
| 1001 | ;; X's live range extends beyond the shift, so the register allocator |
| 1002 | ;; cannot coalesce it with Y. Because of this, a copy needs to be |
| 1003 | ;; emitted before the shift to save the register value before it is |
| 1004 | ;; clobbered. However, this copy is not needed if the register |
| 1005 | ;; allocator turns the shift into an LEA. This also occurs for ADD. |
| 1006 | |
| 1007 | ; Check that the shift gets turned into an LEA. |
| 1008 | ; RUN: llvm-upgrade < %s | llvm-as | llc -march=x86 -x86-asm-syntax=intel | \ |
| 1009 | ; RUN: not grep {mov E.X, E.X} |
| 1010 | |
| 1011 | %G = external global int |
| 1012 | |
| 1013 | int %test1(int %X, int %Y) { |
| 1014 | %Z = add int %X, %Y |
| 1015 | volatile store int %Y, int* %G |
| 1016 | volatile store int %Z, int* %G |
| 1017 | ret int %X |
| 1018 | } |
| 1019 | |
| 1020 | int %test2(int %X) { |
| 1021 | %Z = add int %X, 1 ;; inc |
| 1022 | volatile store int %Z, int* %G |
| 1023 | ret int %X |
| 1024 | } |
| 1025 | |
| 1026 | //===---------------------------------------------------------------------===// |
| 1027 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1028 | This: |
| 1029 | #include <xmmintrin.h> |
| 1030 | unsigned test(float f) { |
| 1031 | return _mm_cvtsi128_si32( (__m128i) _mm_set_ss( f )); |
| 1032 | } |
| 1033 | |
| 1034 | Compiles to: |
| 1035 | _test: |
| 1036 | movss 4(%esp), %xmm0 |
| 1037 | movd %xmm0, %eax |
| 1038 | ret |
| 1039 | |
| 1040 | it should compile to a move from the stack slot directly into eax. DAGCombine |
| 1041 | has this xform, but it is currently disabled until the alignment fields of |
| 1042 | the load/store nodes are trustworthy. |
| 1043 | |
| 1044 | //===---------------------------------------------------------------------===// |
| 1045 | |
| 1046 | Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with |
| 1047 | a neg instead of a sub instruction. Consider: |
| 1048 | |
| 1049 | int test(char X) { return 7-X; } |
| 1050 | |
| 1051 | we currently produce: |
| 1052 | _test: |
| 1053 | movl $7, %eax |
| 1054 | movsbl 4(%esp), %ecx |
| 1055 | subl %ecx, %eax |
| 1056 | ret |
| 1057 | |
| 1058 | We would use one fewer register if codegen'd as: |
| 1059 | |
| 1060 | movsbl 4(%esp), %eax |
| 1061 | neg %eax |
| 1062 | add $7, %eax |
| 1063 | ret |
| 1064 | |
| 1065 | Note that this isn't beneficial if the load can be folded into the sub. In |
| 1066 | this case, we want a sub: |
| 1067 | |
| 1068 | int test(int X) { return 7-X; } |
| 1069 | _test: |
| 1070 | movl $7, %eax |
| 1071 | subl 4(%esp), %eax |
| 1072 | ret |
| 1073 | |
| 1074 | //===---------------------------------------------------------------------===// |
| 1075 | |
| 1076 | For code like: |
| 1077 | phi (undef, x) |
| 1078 | |
| 1079 | We get an implicit def on the undef side. If the phi is spilled, we then get: |
| 1080 | implicitdef xmm1 |
| 1081 | store xmm1 -> stack |
| 1082 | |
| 1083 | It should be possible to teach the x86 backend to "fold" the store into the |
| 1084 | implicitdef, which just deletes the implicit def. |
| 1085 | |
| 1086 | These instructions should go away: |
| 1087 | #IMPLICIT_DEF %xmm1 |
| 1088 | movaps %xmm1, 192(%esp) |
| 1089 | movaps %xmm1, 224(%esp) |
| 1090 | movaps %xmm1, 176(%esp) |
Chris Lattner | a3c76a4 | 2007-08-03 00:17:42 +0000 | [diff] [blame] | 1091 | |
| 1092 | //===---------------------------------------------------------------------===// |
| 1093 | |
| 1094 | This is a "commutable two-address" register coallescing deficiency: |
| 1095 | |
| 1096 | define <4 x float> @test1(<4 x float> %V) { |
| 1097 | entry: |
Chris Lattner | a86af9a | 2007-08-11 18:19:07 +0000 | [diff] [blame] | 1098 | %tmp8 = shufflevector <4 x float> %V, <4 x float> undef, |
| 1099 | <4 x i32> < i32 3, i32 2, i32 1, i32 0 > |
| 1100 | %add = add <4 x float> %tmp8, %V |
Chris Lattner | a3c76a4 | 2007-08-03 00:17:42 +0000 | [diff] [blame] | 1101 | ret <4 x float> %add |
| 1102 | } |
| 1103 | |
| 1104 | this codegens to: |
| 1105 | |
| 1106 | _test1: |
| 1107 | pshufd $27, %xmm0, %xmm1 |
| 1108 | addps %xmm0, %xmm1 |
| 1109 | movaps %xmm1, %xmm0 |
| 1110 | ret |
| 1111 | |
| 1112 | instead of: |
| 1113 | |
| 1114 | _test1: |
| 1115 | pshufd $27, %xmm0, %xmm1 |
| 1116 | addps %xmm1, %xmm0 |
| 1117 | ret |
| 1118 | |
Chris Lattner | 32f6587 | 2007-08-20 02:14:33 +0000 | [diff] [blame] | 1119 | //===---------------------------------------------------------------------===// |
| 1120 | |
| 1121 | Leaf functions that require one 4-byte spill slot have a prolog like this: |
| 1122 | |
| 1123 | _foo: |
| 1124 | pushl %esi |
| 1125 | subl $4, %esp |
| 1126 | ... |
| 1127 | and an epilog like this: |
| 1128 | addl $4, %esp |
| 1129 | popl %esi |
| 1130 | ret |
| 1131 | |
| 1132 | It would be smaller, and potentially faster, to push eax on entry and to |
| 1133 | pop into a dummy register instead of using addl/subl of esp. Just don't pop |
| 1134 | into any return registers :) |
| 1135 | |
| 1136 | //===---------------------------------------------------------------------===// |
Chris Lattner | 44b03cb | 2007-08-23 15:22:07 +0000 | [diff] [blame] | 1137 | |
| 1138 | The X86 backend should fold (branch (or (setcc, setcc))) into multiple |
| 1139 | branches. We generate really poor code for: |
| 1140 | |
| 1141 | double testf(double a) { |
| 1142 | return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0); |
| 1143 | } |
| 1144 | |
| 1145 | For example, the entry BB is: |
| 1146 | |
| 1147 | _testf: |
| 1148 | subl $20, %esp |
| 1149 | pxor %xmm0, %xmm0 |
| 1150 | movsd 24(%esp), %xmm1 |
| 1151 | ucomisd %xmm0, %xmm1 |
| 1152 | setnp %al |
| 1153 | sete %cl |
| 1154 | testb %cl, %al |
| 1155 | jne LBB1_5 # UnifiedReturnBlock |
| 1156 | LBB1_1: # cond_true |
| 1157 | |
| 1158 | |
| 1159 | it would be better to replace the last four instructions with: |
| 1160 | |
| 1161 | jp LBB1_1 |
| 1162 | je LBB1_5 |
| 1163 | LBB1_1: |
| 1164 | |
| 1165 | We also codegen the inner ?: into a diamond: |
| 1166 | |
| 1167 | cvtss2sd LCPI1_0(%rip), %xmm2 |
| 1168 | cvtss2sd LCPI1_1(%rip), %xmm3 |
| 1169 | ucomisd %xmm1, %xmm0 |
| 1170 | ja LBB1_3 # cond_true |
| 1171 | LBB1_2: # cond_true |
| 1172 | movapd %xmm3, %xmm2 |
| 1173 | LBB1_3: # cond_true |
| 1174 | movapd %xmm2, %xmm0 |
| 1175 | ret |
| 1176 | |
| 1177 | We should sink the load into xmm3 into the LBB1_2 block. This should |
| 1178 | be pretty easy, and will nuke all the copies. |
| 1179 | |
| 1180 | //===---------------------------------------------------------------------===// |
Chris Lattner | 4084d49 | 2007-09-10 21:43:18 +0000 | [diff] [blame] | 1181 | |
| 1182 | This: |
| 1183 | #include <algorithm> |
| 1184 | inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b) |
| 1185 | { return std::make_pair(a + b, a + b < a); } |
| 1186 | bool no_overflow(unsigned a, unsigned b) |
| 1187 | { return !full_add(a, b).second; } |
| 1188 | |
| 1189 | Should compile to: |
| 1190 | |
| 1191 | |
| 1192 | _Z11no_overflowjj: |
| 1193 | addl %edi, %esi |
| 1194 | setae %al |
| 1195 | ret |
| 1196 | |
| 1197 | on x86-64, not: |
| 1198 | |
| 1199 | __Z11no_overflowjj: |
| 1200 | addl %edi, %esi |
| 1201 | cmpl %edi, %esi |
| 1202 | setae %al |
| 1203 | movzbl %al, %eax |
| 1204 | ret |
| 1205 | |
| 1206 | |
| 1207 | //===---------------------------------------------------------------------===// |
Evan Cheng | 35127a6 | 2007-09-10 22:16:37 +0000 | [diff] [blame] | 1208 | |
| 1209 | Re-materialize MOV32r0 etc. with xor instead of changing them to moves if the |
| 1210 | condition register is dead. xor reg reg is shorter than mov reg, #0. |
Chris Lattner | a487bf7 | 2007-09-26 06:29:31 +0000 | [diff] [blame] | 1211 | |
| 1212 | //===---------------------------------------------------------------------===// |
| 1213 | |
| 1214 | We aren't matching RMW instructions aggressively |
| 1215 | enough. Here's a reduced testcase (more in PR1160): |
| 1216 | |
| 1217 | define void @test(i32* %huge_ptr, i32* %target_ptr) { |
| 1218 | %A = load i32* %huge_ptr ; <i32> [#uses=1] |
| 1219 | %B = load i32* %target_ptr ; <i32> [#uses=1] |
| 1220 | %C = or i32 %A, %B ; <i32> [#uses=1] |
| 1221 | store i32 %C, i32* %target_ptr |
| 1222 | ret void |
| 1223 | } |
| 1224 | |
| 1225 | $ llvm-as < t.ll | llc -march=x86-64 |
| 1226 | |
| 1227 | _test: |
| 1228 | movl (%rdi), %eax |
| 1229 | orl (%rsi), %eax |
| 1230 | movl %eax, (%rsi) |
| 1231 | ret |
| 1232 | |
| 1233 | That should be something like: |
| 1234 | |
| 1235 | _test: |
| 1236 | movl (%rdi), %eax |
| 1237 | orl %eax, (%rsi) |
| 1238 | ret |
| 1239 | |
| 1240 | //===---------------------------------------------------------------------===// |
| 1241 | |
Bill Wendling | 7f436dd | 2007-10-02 20:42:59 +0000 | [diff] [blame] | 1242 | The following code: |
| 1243 | |
Bill Wendling | c2036e3 | 2007-10-02 20:54:32 +0000 | [diff] [blame^] | 1244 | bb114.preheader: ; preds = %cond_next94 |
| 1245 | %tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1] |
| 1246 | %tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1] |
| 1247 | %tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1] |
| 1248 | %tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1] |
| 1249 | %tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1] |
| 1250 | %tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2] |
| 1251 | %tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1] |
| 1252 | %tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1] |
| 1253 | %tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1] |
| 1254 | %tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1] |
| 1255 | %tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1] |
| 1256 | br label %bb114 |
| 1257 | |
| 1258 | produces: |
| 1259 | |
Bill Wendling | 7f436dd | 2007-10-02 20:42:59 +0000 | [diff] [blame] | 1260 | LBB3_5: # bb114.preheader |
| 1261 | movswl -68(%ebp), %eax |
| 1262 | movl $32, %ecx |
| 1263 | movl %ecx, -80(%ebp) |
| 1264 | subl %eax, -80(%ebp) |
| 1265 | movswl -52(%ebp), %eax |
| 1266 | movl %ecx, -84(%ebp) |
| 1267 | subl %eax, -84(%ebp) |
| 1268 | movswl -70(%ebp), %eax |
| 1269 | movl %ecx, -88(%ebp) |
| 1270 | subl %eax, -88(%ebp) |
| 1271 | movswl -50(%ebp), %eax |
| 1272 | subl %eax, %ecx |
| 1273 | movl %ecx, -76(%ebp) |
| 1274 | movswl -42(%ebp), %eax |
| 1275 | movl %eax, -92(%ebp) |
| 1276 | movswl -66(%ebp), %eax |
| 1277 | movl %eax, -96(%ebp) |
| 1278 | movw $0, -98(%ebp) |
| 1279 | |
Bill Wendling | c2036e3 | 2007-10-02 20:54:32 +0000 | [diff] [blame^] | 1280 | This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't |
Bill Wendling | 7f436dd | 2007-10-02 20:42:59 +0000 | [diff] [blame] | 1281 | change, so we could simply subtract %eax from %ecx first and then use %ecx (or |
| 1282 | vice-versa). |
| 1283 | |
| 1284 | //===---------------------------------------------------------------------===// |
| 1285 | |