blob: 9a2c39d72e3f4beac60a1e084b8060d8e3160ab1 [file] [log] [blame]
Daniel Dunbarbb146722008-10-02 01:17:28 +00001//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header file implements the operating system Host concept.
11//
12//===----------------------------------------------------------------------===//
13
Benjamin Kramer4750c1d2012-06-26 21:36:32 +000014#include "llvm/ADT/SmallVector.h"
Hal Finkel4db738a2012-06-12 03:03:13 +000015#include "llvm/ADT/StringRef.h"
16#include "llvm/ADT/StringSwitch.h"
17#include "llvm/Support/DataStream.h"
18#include "llvm/Support/Debug.h"
Michael J. Spencer1f6efa32010-11-29 18:16:10 +000019#include "llvm/Support/Host.h"
Hal Finkel4db738a2012-06-12 03:03:13 +000020#include "llvm/Support/raw_ostream.h"
Daniel Dunbarbb146722008-10-02 01:17:28 +000021#include "llvm/Config/config.h"
Daniel Dunbar067d0242009-11-14 10:09:12 +000022#include <string.h>
Daniel Dunbarbb146722008-10-02 01:17:28 +000023
24// Include the platform-specific parts of this class.
25#ifdef LLVM_ON_UNIX
26#include "Unix/Host.inc"
27#endif
28#ifdef LLVM_ON_WIN32
Michael J. Spencer1f6efa32010-11-29 18:16:10 +000029#include "Windows/Host.inc"
Daniel Dunbarbb146722008-10-02 01:17:28 +000030#endif
Benjamin Kramerac07b3d2009-11-19 12:17:31 +000031#ifdef _MSC_VER
32#include <intrin.h>
33#endif
Hal Finkel4db738a2012-06-12 03:03:13 +000034#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
35#include <mach/mach.h>
36#include <mach/mach_host.h>
37#include <mach/host_info.h>
38#include <mach/machine.h>
39#endif
Daniel Dunbarbb146722008-10-02 01:17:28 +000040
Daniel Dunbar067d0242009-11-14 10:09:12 +000041//===----------------------------------------------------------------------===//
42//
43// Implementations of the CPU detection routines
44//
45//===----------------------------------------------------------------------===//
46
47using namespace llvm;
48
49#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
50 || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
51
52/// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
53/// specified arguments. If we can't run cpuid on the host, return true.
54static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX,
55 unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
56#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
57 #if defined(__GNUC__)
58 // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
59 asm ("movq\t%%rbx, %%rsi\n\t"
60 "cpuid\n\t"
61 "xchgq\t%%rbx, %%rsi\n\t"
62 : "=a" (*rEAX),
63 "=S" (*rEBX),
64 "=c" (*rECX),
65 "=d" (*rEDX)
66 : "a" (value));
67 return false;
68 #elif defined(_MSC_VER)
69 int registers[4];
70 __cpuid(registers, value);
71 *rEAX = registers[0];
72 *rEBX = registers[1];
73 *rECX = registers[2];
74 *rEDX = registers[3];
75 return false;
David Blaikiefdebc382012-01-17 04:43:56 +000076 #else
77 return true;
Daniel Dunbar067d0242009-11-14 10:09:12 +000078 #endif
79#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
80 #if defined(__GNUC__)
81 asm ("movl\t%%ebx, %%esi\n\t"
82 "cpuid\n\t"
83 "xchgl\t%%ebx, %%esi\n\t"
84 : "=a" (*rEAX),
85 "=S" (*rEBX),
86 "=c" (*rECX),
87 "=d" (*rEDX)
88 : "a" (value));
89 return false;
90 #elif defined(_MSC_VER)
91 __asm {
92 mov eax,value
93 cpuid
94 mov esi,rEAX
95 mov dword ptr [esi],eax
96 mov esi,rEBX
97 mov dword ptr [esi],ebx
98 mov esi,rECX
99 mov dword ptr [esi],ecx
100 mov esi,rEDX
101 mov dword ptr [esi],edx
102 }
103 return false;
David Blaikiefdebc382012-01-17 04:43:56 +0000104// pedantic #else returns to appease -Wunreachable-code (so we don't generate
105// postprocessed code that looks like "return true; return false;")
106 #else
107 return true;
Daniel Dunbar067d0242009-11-14 10:09:12 +0000108 #endif
David Blaikiefdebc382012-01-17 04:43:56 +0000109#else
Daniel Dunbar067d0242009-11-14 10:09:12 +0000110 return true;
David Blaikiefdebc382012-01-17 04:43:56 +0000111#endif
Daniel Dunbar067d0242009-11-14 10:09:12 +0000112}
113
Chris Lattner9c7f0752010-09-06 05:19:44 +0000114static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
115 unsigned &Model) {
Daniel Dunbar067d0242009-11-14 10:09:12 +0000116 Family = (EAX >> 8) & 0xf; // Bits 8 - 11
117 Model = (EAX >> 4) & 0xf; // Bits 4 - 7
118 if (Family == 6 || Family == 0xf) {
119 if (Family == 0xf)
120 // Examine extended family ID if family ID is F.
121 Family += (EAX >> 20) & 0xff; // Bits 20 - 27
122 // Examine extended model ID if family ID is 6 or F.
123 Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
124 }
125}
Daniel Dunbar067d0242009-11-14 10:09:12 +0000126
127std::string sys::getHostCPUName() {
Daniel Dunbar067d0242009-11-14 10:09:12 +0000128 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
129 if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
130 return "generic";
131 unsigned Family = 0;
132 unsigned Model = 0;
133 DetectX86FamilyModel(EAX, Family, Model);
134
Chris Lattner9c7f0752010-09-06 05:19:44 +0000135 bool HasSSE3 = (ECX & 0x1);
Daniel Dunbar067d0242009-11-14 10:09:12 +0000136 GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
137 bool Em64T = (EDX >> 29) & 0x1;
Daniel Dunbar067d0242009-11-14 10:09:12 +0000138
139 union {
140 unsigned u[3];
141 char c[12];
142 } text;
143
144 GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
145 if (memcmp(text.c, "GenuineIntel", 12) == 0) {
146 switch (Family) {
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000147 case 3:
148 return "i386";
149 case 4:
150 switch (Model) {
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000151 case 0: // Intel486 DX processors
152 case 1: // Intel486 DX processors
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000153 case 2: // Intel486 SX processors
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000154 case 3: // Intel487 processors, IntelDX2 OverDrive processors,
155 // IntelDX2 processors
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000156 case 4: // Intel486 SL processor
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000157 case 5: // IntelSX2 processors
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000158 case 7: // Write-Back Enhanced IntelDX2 processors
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000159 case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000160 default: return "i486";
Daniel Dunbar067d0242009-11-14 10:09:12 +0000161 }
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000162 case 5:
163 switch (Model) {
164 case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000165 // Pentium processors (60, 66)
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000166 case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
167 // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
168 // 150, 166, 200)
169 case 3: // Pentium OverDrive processors for Intel486 processor-based
170 // systems
171 return "pentium";
172
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000173 case 4: // Pentium OverDrive processor with MMX technology for Pentium
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000174 // processor (75, 90, 100, 120, 133), Pentium processor with
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000175 // MMX technology (166, 200)
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000176 return "pentium-mmx";
177
178 default: return "pentium";
179 }
180 case 6:
181 switch (Model) {
182 case 1: // Pentium Pro processor
183 return "pentiumpro";
184
185 case 3: // Intel Pentium II OverDrive processor, Pentium II processor,
186 // model 03
187 case 5: // Pentium II processor, model 05, Pentium II Xeon processor,
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000188 // model 05, and Intel Celeron processor, model 05
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000189 case 6: // Celeron processor, model 06
190 return "pentium2";
191
192 case 7: // Pentium III processor, model 07, and Pentium III Xeon
193 // processor, model 07
194 case 8: // Pentium III processor, model 08, Pentium III Xeon processor,
195 // model 08, and Celeron processor, model 08
196 case 10: // Pentium III Xeon processor, model 0Ah
197 case 11: // Pentium III processor, model 0Bh
198 return "pentium3";
199
200 case 9: // Intel Pentium M processor, Intel Celeron M processor model 09.
201 case 13: // Intel Pentium M processor, Intel Celeron M processor, model
202 // 0Dh. All processors are manufactured using the 90 nm process.
203 return "pentium-m";
204
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000205 case 14: // Intel Core Duo processor, Intel Core Solo processor, model
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000206 // 0Eh. All processors are manufactured using the 65 nm process.
207 return "yonah";
208
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000209 case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
210 // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
211 // mobile processor, Intel Core 2 Extreme processor, Intel
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000212 // Pentium Dual-Core processor, Intel Xeon processor, model
213 // 0Fh. All processors are manufactured using the 65 nm process.
214 case 22: // Intel Celeron processor model 16h. All processors are
215 // manufactured using the 65 nm process
216 return "core2";
217
218 case 21: // Intel EP80579 Integrated Processor and Intel EP80579
219 // Integrated Processor with Intel QuickAssist Technology
220 return "i686"; // FIXME: ???
221
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000222 case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000223 // 17h. All processors are manufactured using the 45 nm process.
224 //
225 // 45nm: Penryn , Wolfdale, Yorkfield (XE)
226 return "penryn";
227
228 case 26: // Intel Core i7 processor and Intel Xeon processor. All
229 // processors are manufactured using the 45 nm process.
230 case 29: // Intel Xeon processor MP. All processors are manufactured using
231 // the 45 nm process.
Jakob Stoklund Olesen71c60952010-09-19 17:54:28 +0000232 case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
233 // As found in a Summer 2010 model iMac.
Chris Lattner222920d2010-09-19 00:31:58 +0000234 case 37: // Intel Core i7, laptop version.
Benjamin Kramercf847bf2011-08-25 18:05:56 +0000235 case 44: // Intel Core i7 processor and Intel Xeon processor. All
236 // processors are manufactured using the 32 nm process.
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000237 return "corei7";
Bob Wilson7c3a5ca2011-07-08 22:33:59 +0000238
239 // SandyBridge:
240 case 42: // Intel Core i7 processor. All processors are manufactured
241 // using the 32 nm process.
Chris Lattner78a113c2011-06-09 06:38:17 +0000242 case 45:
Benjamin Kramereb274e62011-05-20 15:11:26 +0000243 return "corei7-avx";
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000244
Evan Chengaff59682012-04-23 22:41:39 +0000245 // Ivy Bridge:
246 case 58:
247 return "core-avx-i";
248
Preston Gurd79bbe852012-05-02 21:38:46 +0000249 case 28: // Most 45 nm Intel Atom processors
250 case 38: // 45 nm Atom Lincroft
251 case 39: // 32 nm Atom Medfield
Preston Gurdfd012b22012-07-19 19:05:37 +0000252 case 53: // 32 nm Atom Midview
253 case 54: // 32 nm Atom Midview
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000254 return "atom";
255
Bob Wilson0d38d3a2012-05-09 17:47:03 +0000256 default: return (Em64T) ? "x86-64" : "i686";
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000257 }
258 case 15: {
259 switch (Model) {
260 case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
261 // model 00h and manufactured using the 0.18 micron process.
262 case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
263 // processor MP, and Intel Celeron processor. All processors are
264 // model 01h and manufactured using the 0.18 micron process.
NAKAMURA Takumid4d4c7f2010-09-09 13:30:48 +0000265 case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000266 // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
267 // processor, and Mobile Intel Celeron processor. All processors
268 // are model 02h and manufactured using the 0.13 micron process.
269 return (Em64T) ? "x86-64" : "pentium4";
270
271 case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
272 // processor. All processors are model 03h and manufactured using
273 // the 90 nm process.
274 case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
275 // Pentium D processor, Intel Xeon processor, Intel Xeon
276 // processor MP, Intel Celeron D processor. All processors are
277 // model 04h and manufactured using the 90 nm process.
278 case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
279 // Extreme Edition, Intel Xeon processor, Intel Xeon processor
280 // MP, Intel Celeron D processor. All processors are model 06h
281 // and manufactured using the 65 nm process.
282 return (Em64T) ? "nocona" : "prescott";
283
Daniel Dunbara7ac3ce2009-11-14 21:36:19 +0000284 default:
285 return (Em64T) ? "x86-64" : "pentium4";
286 }
287 }
288
Daniel Dunbar067d0242009-11-14 10:09:12 +0000289 default:
Benjamin Kramer110e7bb2009-11-17 17:57:04 +0000290 return "generic";
Daniel Dunbar067d0242009-11-14 10:09:12 +0000291 }
292 } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
293 // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
294 // appears to be no way to generate the wide variety of AMD-specific targets
295 // from the information returned from CPUID.
296 switch (Family) {
297 case 4:
298 return "i486";
299 case 5:
300 switch (Model) {
301 case 6:
302 case 7: return "k6";
303 case 8: return "k6-2";
304 case 9:
305 case 13: return "k6-3";
306 default: return "pentium";
307 }
308 case 6:
309 switch (Model) {
310 case 4: return "athlon-tbird";
311 case 6:
312 case 7:
313 case 8: return "athlon-mp";
314 case 10: return "athlon-xp";
315 default: return "athlon";
316 }
317 case 15:
Chris Lattner9c7f0752010-09-06 05:19:44 +0000318 if (HasSSE3)
Daniel Dunbar067d0242009-11-14 10:09:12 +0000319 return "k8-sse3";
Chris Lattner9c7f0752010-09-06 05:19:44 +0000320 switch (Model) {
321 case 1: return "opteron";
322 case 5: return "athlon-fx"; // also opteron
323 default: return "athlon64";
Daniel Dunbar067d0242009-11-14 10:09:12 +0000324 }
325 case 16:
326 return "amdfam10";
Benjamin Kramer66a7fd72012-01-10 11:50:02 +0000327 case 20:
328 return "btver1";
Benjamin Kramer618f89f2011-12-01 18:24:17 +0000329 case 21:
330 return "bdver1";
Daniel Dunbar067d0242009-11-14 10:09:12 +0000331 default:
Benjamin Kramer110e7bb2009-11-17 17:57:04 +0000332 return "generic";
Daniel Dunbar067d0242009-11-14 10:09:12 +0000333 }
Daniel Dunbar067d0242009-11-14 10:09:12 +0000334 }
Torok Edwin546d8d02009-12-14 12:38:18 +0000335 return "generic";
Torok Edwinc4174d62009-12-13 08:59:40 +0000336}
Hal Finkel4db738a2012-06-12 03:03:13 +0000337#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
338std::string sys::getHostCPUName() {
339 host_basic_info_data_t hostInfo;
340 mach_msg_type_number_t infoCount;
341
342 infoCount = HOST_BASIC_INFO_COUNT;
343 host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
344 &infoCount);
345
346 if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic";
347
348 switch(hostInfo.cpu_subtype) {
349 case CPU_SUBTYPE_POWERPC_601: return "601";
350 case CPU_SUBTYPE_POWERPC_602: return "602";
351 case CPU_SUBTYPE_POWERPC_603: return "603";
352 case CPU_SUBTYPE_POWERPC_603e: return "603e";
353 case CPU_SUBTYPE_POWERPC_603ev: return "603ev";
354 case CPU_SUBTYPE_POWERPC_604: return "604";
355 case CPU_SUBTYPE_POWERPC_604e: return "604e";
356 case CPU_SUBTYPE_POWERPC_620: return "620";
357 case CPU_SUBTYPE_POWERPC_750: return "750";
358 case CPU_SUBTYPE_POWERPC_7400: return "7400";
359 case CPU_SUBTYPE_POWERPC_7450: return "7450";
360 case CPU_SUBTYPE_POWERPC_970: return "970";
361 default: ;
362 }
363
364 return "generic";
365}
366#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
367std::string sys::getHostCPUName() {
368 // Access to the Processor Version Register (PVR) on PowerPC is privileged,
369 // and so we must use an operating-system interface to determine the current
370 // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
371 const char *generic = "generic";
372
373 // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
374 // memory buffer because the 'file' has 0 size (it can be read from only
375 // as a stream).
376
377 std::string Err;
378 DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
379 if (!DS) {
380 DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
381 return generic;
382 }
383
384 // The cpu line is second (after the 'processor: 0' line), so if this
385 // buffer is too small then something has changed (or is wrong).
386 char buffer[1024];
387 size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
388 delete DS;
389
390 const char *CPUInfoStart = buffer;
391 const char *CPUInfoEnd = buffer + CPUInfoSize;
392
393 const char *CIP = CPUInfoStart;
394
395 const char *CPUStart = 0;
396 size_t CPULen = 0;
397
398 // We need to find the first line which starts with cpu, spaces, and a colon.
399 // After the colon, there may be some additional spaces and then the cpu type.
400 while (CIP < CPUInfoEnd && CPUStart == 0) {
401 if (CIP < CPUInfoEnd && *CIP == '\n')
402 ++CIP;
403
404 if (CIP < CPUInfoEnd && *CIP == 'c') {
405 ++CIP;
406 if (CIP < CPUInfoEnd && *CIP == 'p') {
407 ++CIP;
408 if (CIP < CPUInfoEnd && *CIP == 'u') {
409 ++CIP;
410 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
411 ++CIP;
412
413 if (CIP < CPUInfoEnd && *CIP == ':') {
414 ++CIP;
415 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
416 ++CIP;
417
418 if (CIP < CPUInfoEnd) {
419 CPUStart = CIP;
420 while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
421 *CIP != ',' && *CIP != '\n'))
422 ++CIP;
423 CPULen = CIP - CPUStart;
424 }
425 }
426 }
427 }
428 }
429
430 if (CPUStart == 0)
431 while (CIP < CPUInfoEnd && *CIP != '\n')
432 ++CIP;
433 }
434
435 if (CPUStart == 0)
436 return generic;
437
438 return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
439 .Case("604e", "604e")
440 .Case("604", "604")
441 .Case("7400", "7400")
442 .Case("7410", "7400")
443 .Case("7447", "7400")
444 .Case("7455", "7450")
445 .Case("G4", "g4")
Hal Finkel6670c822012-06-12 16:39:23 +0000446 .Case("POWER4", "970")
Hal Finkel4db738a2012-06-12 03:03:13 +0000447 .Case("PPC970FX", "970")
448 .Case("PPC970MP", "970")
449 .Case("G5", "g5")
450 .Case("POWER5", "g5")
451 .Case("A2", "a2")
452 .Case("POWER6", "pwr6")
453 .Case("POWER7", "pwr7")
454 .Default(generic);
455}
Benjamin Kramer4750c1d2012-06-26 21:36:32 +0000456#elif defined(__linux__) && defined(__arm__)
457std::string sys::getHostCPUName() {
458 // The cpuid register on arm is not accessible from user space. On Linux,
459 // it is exposed through the /proc/cpuinfo file.
460 // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
461 // memory buffer because the 'file' has 0 size (it can be read from only
462 // as a stream).
463
464 std::string Err;
465 DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err);
466 if (!DS) {
467 DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n");
468 return "generic";
469 }
470
471 // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
472 // in all cases.
473 char buffer[1024];
474 size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer));
475 delete DS;
476
477 StringRef Str(buffer, CPUInfoSize);
478
479 SmallVector<StringRef, 32> Lines;
480 Str.split(Lines, "\n");
481
482 // Look for the CPU implementer line.
483 StringRef Implementer;
484 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
485 if (Lines[I].startswith("CPU implementer"))
486 Implementer = Lines[I].substr(15).ltrim("\t :");
487
488 if (Implementer == "0x41") // ARM Ltd.
489 // Look for the CPU part line.
490 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
491 if (Lines[I].startswith("CPU part"))
492 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
493 // values correspond to the "Part number" in the CP15/c0 register. The
494 // contents are specified in the various processor manuals.
495 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
496 .Case("0x926", "arm926ej-s")
497 .Case("0xb02", "mpcore")
498 .Case("0xb36", "arm1136j-s")
499 .Case("0xb56", "arm1156t2-s")
500 .Case("0xb76", "arm1176jz-s")
501 .Case("0xc08", "cortex-a8")
502 .Case("0xc09", "cortex-a9")
503 .Case("0xc20", "cortex-m0")
504 .Case("0xc23", "cortex-m3")
505 .Case("0xc24", "cortex-m4")
506 .Default("generic");
507
508 return "generic";
509}
Torok Edwinc4174d62009-12-13 08:59:40 +0000510#else
511std::string sys::getHostCPUName() {
Benjamin Kramer110e7bb2009-11-17 17:57:04 +0000512 return "generic";
Daniel Dunbar067d0242009-11-14 10:09:12 +0000513}
Torok Edwinc4174d62009-12-13 08:59:40 +0000514#endif
Xerxes Ranby1c8183d2010-01-19 21:26:05 +0000515
516bool sys::getHostCPUFeatures(StringMap<bool> &Features){
517 return false;
518}