blob: f2b96163f43d4aa235bde4f7bdab89ce0aabf0f5 [file] [log] [blame]
Justin Holewinski49683f32012-05-04 20:18:50 +00001//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to NVPTX assembly language.
12//
13//===----------------------------------------------------------------------===//
14
Bill Wendling0bcbd1d2012-06-28 00:05:13 +000015#include "NVPTXAsmPrinter.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000016#include "NVPTX.h"
17#include "NVPTXInstrInfo.h"
18#include "NVPTXTargetMachine.h"
19#include "NVPTXRegisterInfo.h"
Bill Wendling0bcbd1d2012-06-28 00:05:13 +000020#include "NVPTXUtilities.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000021#include "MCTargetDesc/NVPTXMCAsmInfo.h"
22#include "NVPTXNumRegisters.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000023#include "llvm/ADT/StringExtras.h"
Bill Wendling0bcbd1d2012-06-28 00:05:13 +000024#include "llvm/DebugInfo.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000025#include "llvm/Function.h"
Bill Wendling0bcbd1d2012-06-28 00:05:13 +000026#include "llvm/GlobalVariable.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000027#include "llvm/Module.h"
28#include "llvm/CodeGen/Analysis.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/MC/MCStreamer.h"
33#include "llvm/MC/MCSymbol.h"
34#include "llvm/Target/Mangler.h"
35#include "llvm/Target/TargetLoweringObjectFile.h"
36#include "llvm/Support/TargetRegistry.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/FormattedStream.h"
39#include "llvm/DerivedTypes.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000040#include "llvm/Support/TimeValue.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000041#include "llvm/Support/CommandLine.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000042#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Support/Path.h"
44#include "llvm/Assembly/Writer.h"
45#include "cl_common_defines.h"
Bill Wendling0bcbd1d2012-06-28 00:05:13 +000046#include <sstream>
Justin Holewinski49683f32012-05-04 20:18:50 +000047using namespace llvm;
48
49
50#include "NVPTXGenAsmWriter.inc"
51
52bool RegAllocNilUsed = true;
53
54#define DEPOTNAME "__local_depot"
55
56static cl::opt<bool>
57EmitLineNumbers("nvptx-emit-line-numbers",
58 cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
59 cl::init(true));
60
61namespace llvm {
62bool InterleaveSrcInPtx = false;
63}
64
65static cl::opt<bool, true>InterleaveSrc("nvptx-emit-src",
66 cl::ZeroOrMore,
67 cl::desc("NVPTX Specific: Emit source line in ptx file"),
68 cl::location(llvm::InterleaveSrcInPtx));
69
70
71
72
73// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we
74// cannot just link to the existing version.
75/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
76///
77using namespace nvptx;
78const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
79 MCContext &Ctx = AP.OutContext;
80
81 if (CV->isNullValue() || isa<UndefValue>(CV))
82 return MCConstantExpr::Create(0, Ctx);
83
84 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
85 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
86
87 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
88 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
89
90 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
91 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
92
93 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
94 if (CE == 0)
95 llvm_unreachable("Unknown constant value to lower!");
96
97
98 switch (CE->getOpcode()) {
99 default:
100 // If the code isn't optimized, there may be outstanding folding
101 // opportunities. Attempt to fold the expression using TargetData as a
102 // last resort before giving up.
103 if (Constant *C =
104 ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
105 if (C != CE)
106 return LowerConstant(C, AP);
107
108 // Otherwise report the problem to the user.
109 {
110 std::string S;
111 raw_string_ostream OS(S);
112 OS << "Unsupported expression in static initializer: ";
113 WriteAsOperand(OS, CE, /*PrintType=*/false,
114 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
115 report_fatal_error(OS.str());
116 }
117 case Instruction::GetElementPtr: {
118 const TargetData &TD = *AP.TM.getTargetData();
119 // Generate a symbolic expression for the byte address
120 const Constant *PtrVal = CE->getOperand(0);
121 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
122 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
123
124 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
125 if (Offset == 0)
126 return Base;
127
128 // Truncate/sext the offset to the pointer size.
129 if (TD.getPointerSizeInBits() != 64) {
130 int SExtAmount = 64-TD.getPointerSizeInBits();
131 Offset = (Offset << SExtAmount) >> SExtAmount;
132 }
133
134 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
135 Ctx);
136 }
137
138 case Instruction::Trunc:
139 // We emit the value and depend on the assembler to truncate the generated
140 // expression properly. This is important for differences between
141 // blockaddress labels. Since the two labels are in the same function, it
142 // is reasonable to treat their delta as a 32-bit value.
143 // FALL THROUGH.
144 case Instruction::BitCast:
145 return LowerConstant(CE->getOperand(0), AP);
146
147 case Instruction::IntToPtr: {
148 const TargetData &TD = *AP.TM.getTargetData();
149 // Handle casts to pointers by changing them into casts to the appropriate
150 // integer type. This promotes constant folding and simplifies this code.
151 Constant *Op = CE->getOperand(0);
152 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
153 false/*ZExt*/);
154 return LowerConstant(Op, AP);
155 }
156
157 case Instruction::PtrToInt: {
158 const TargetData &TD = *AP.TM.getTargetData();
159 // Support only foldable casts to/from pointers that can be eliminated by
160 // changing the pointer to the appropriately sized integer type.
161 Constant *Op = CE->getOperand(0);
162 Type *Ty = CE->getType();
163
164 const MCExpr *OpExpr = LowerConstant(Op, AP);
165
166 // We can emit the pointer value into this slot if the slot is an
167 // integer slot equal to the size of the pointer.
168 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
169 return OpExpr;
170
171 // Otherwise the pointer is smaller than the resultant integer, mask off
172 // the high bits so we are sure to get a proper truncation if the input is
173 // a constant expr.
174 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
175 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
176 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
177 }
178
179 // The MC library also has a right-shift operator, but it isn't consistently
180 // signed or unsigned between different targets.
181 case Instruction::Add:
182 case Instruction::Sub:
183 case Instruction::Mul:
184 case Instruction::SDiv:
185 case Instruction::SRem:
186 case Instruction::Shl:
187 case Instruction::And:
188 case Instruction::Or:
189 case Instruction::Xor: {
190 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
191 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
192 switch (CE->getOpcode()) {
193 default: llvm_unreachable("Unknown binary operator constant cast expr");
194 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
195 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
196 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
197 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
198 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
199 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
200 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
201 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
202 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
203 }
204 }
205 }
206}
207
208
209void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI)
210{
211 if (!EmitLineNumbers)
212 return;
213 if (ignoreLoc(MI))
214 return;
215
216 DebugLoc curLoc = MI.getDebugLoc();
217
218 if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
219 return;
220
221 if (prevDebugLoc == curLoc)
222 return;
223
224 prevDebugLoc = curLoc;
225
226 if (curLoc.isUnknown())
227 return;
228
229
230 const MachineFunction *MF = MI.getParent()->getParent();
231 //const TargetMachine &TM = MF->getTarget();
232
233 const LLVMContext &ctx = MF->getFunction()->getContext();
234 DIScope Scope(curLoc.getScope(ctx));
235
236 if (!Scope.Verify())
237 return;
238
239 StringRef fileName(Scope.getFilename());
240 StringRef dirName(Scope.getDirectory());
241 SmallString<128> FullPathName = dirName;
242 if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
243 sys::path::append(FullPathName, fileName);
244 fileName = FullPathName.str();
245 }
246
247 if (filenameMap.find(fileName.str()) == filenameMap.end())
248 return;
249
250
251 // Emit the line from the source file.
252 if (llvm::InterleaveSrcInPtx)
253 this->emitSrcInText(fileName.str(), curLoc.getLine());
254
255 std::stringstream temp;
256 temp << "\t.loc " << filenameMap[fileName.str()]
257 << " " << curLoc.getLine() << " " << curLoc.getCol();
258 OutStreamer.EmitRawText(Twine(temp.str().c_str()));
259}
260
261void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
262 SmallString<128> Str;
263 raw_svector_ostream OS(Str);
264 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
265 emitLineNumberAsDotLoc(*MI);
266 printInstruction(MI, OS);
267 OutStreamer.EmitRawText(OS.str());
268}
269
270void NVPTXAsmPrinter::printReturnValStr(const Function *F,
271 raw_ostream &O)
272{
273 const TargetData *TD = TM.getTargetData();
274 const TargetLowering *TLI = TM.getTargetLowering();
275
276 Type *Ty = F->getReturnType();
277
278 bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
279
280 if (Ty->getTypeID() == Type::VoidTyID)
281 return;
282
283 O << " (";
284
285 if (isABI) {
286 if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
287 unsigned size = 0;
288 if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
289 size = ITy->getBitWidth();
290 if (size < 32) size = 32;
291 } else {
292 assert(Ty->isFloatingPointTy() &&
293 "Floating point type expected here");
294 size = Ty->getPrimitiveSizeInBits();
295 }
296
297 O << ".param .b" << size << " func_retval0";
298 }
299 else if (isa<PointerType>(Ty)) {
300 O << ".param .b" << TLI->getPointerTy().getSizeInBits()
301 << " func_retval0";
302 } else {
303 if ((Ty->getTypeID() == Type::StructTyID) ||
304 isa<VectorType>(Ty)) {
305 SmallVector<EVT, 16> vtparts;
306 ComputeValueVTs(*TLI, Ty, vtparts);
307 unsigned totalsz = 0;
308 for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
309 unsigned elems = 1;
310 EVT elemtype = vtparts[i];
311 if (vtparts[i].isVector()) {
312 elems = vtparts[i].getVectorNumElements();
313 elemtype = vtparts[i].getVectorElementType();
314 }
315 for (unsigned j=0, je=elems; j!=je; ++j) {
316 unsigned sz = elemtype.getSizeInBits();
317 if (elemtype.isInteger() && (sz < 8)) sz = 8;
318 totalsz += sz/8;
319 }
320 }
321 unsigned retAlignment = 0;
322 if (!llvm::getAlign(*F, 0, retAlignment))
323 retAlignment = TD->getABITypeAlignment(Ty);
324 O << ".param .align "
325 << retAlignment
326 << " .b8 func_retval0["
327 << totalsz << "]";
328 } else
329 assert(false &&
330 "Unknown return type");
331 }
332 } else {
333 SmallVector<EVT, 16> vtparts;
334 ComputeValueVTs(*TLI, Ty, vtparts);
335 unsigned idx = 0;
336 for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
337 unsigned elems = 1;
338 EVT elemtype = vtparts[i];
339 if (vtparts[i].isVector()) {
340 elems = vtparts[i].getVectorNumElements();
341 elemtype = vtparts[i].getVectorElementType();
342 }
343
344 for (unsigned j=0, je=elems; j!=je; ++j) {
345 unsigned sz = elemtype.getSizeInBits();
346 if (elemtype.isInteger() && (sz < 32)) sz = 32;
347 O << ".reg .b" << sz << " func_retval" << idx;
348 if (j<je-1) O << ", ";
349 ++idx;
350 }
351 if (i < e-1)
352 O << ", ";
353 }
354 }
355 O << ") ";
356 return;
357}
358
359void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
360 raw_ostream &O) {
361 const Function *F = MF.getFunction();
362 printReturnValStr(F, O);
363}
364
365void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
366 SmallString<128> Str;
367 raw_svector_ostream O(Str);
368
369 // Set up
370 MRI = &MF->getRegInfo();
371 F = MF->getFunction();
372 emitLinkageDirective(F,O);
373 if (llvm::isKernelFunction(*F))
374 O << ".entry ";
375 else {
376 O << ".func ";
377 printReturnValStr(*MF, O);
378 }
379
380 O << *CurrentFnSym;
381
382 emitFunctionParamList(*MF, O);
383
384 if (llvm::isKernelFunction(*F))
385 emitKernelFunctionDirectives(*F, O);
386
387 OutStreamer.EmitRawText(O.str());
388
389 prevDebugLoc = DebugLoc();
390}
391
392void NVPTXAsmPrinter::EmitFunctionBodyStart() {
393 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
394 unsigned numRegClasses = TRI.getNumRegClasses();
395 VRidGlobal2LocalMap = new std::map<unsigned, unsigned>[numRegClasses+1];
396 OutStreamer.EmitRawText(StringRef("{\n"));
397 setAndEmitFunctionVirtualRegisters(*MF);
398
399 SmallString<128> Str;
400 raw_svector_ostream O(Str);
401 emitDemotedVars(MF->getFunction(), O);
402 OutStreamer.EmitRawText(O.str());
403}
404
405void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
406 OutStreamer.EmitRawText(StringRef("}\n"));
407 delete []VRidGlobal2LocalMap;
408}
409
410
411void
412NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function& F,
413 raw_ostream &O) const {
414 // If the NVVM IR has some of reqntid* specified, then output
415 // the reqntid directive, and set the unspecified ones to 1.
416 // If none of reqntid* is specified, don't output reqntid directive.
417 unsigned reqntidx, reqntidy, reqntidz;
418 bool specified = false;
419 if (llvm::getReqNTIDx(F, reqntidx) == false) reqntidx = 1;
420 else specified = true;
421 if (llvm::getReqNTIDy(F, reqntidy) == false) reqntidy = 1;
422 else specified = true;
423 if (llvm::getReqNTIDz(F, reqntidz) == false) reqntidz = 1;
424 else specified = true;
425
426 if (specified)
427 O << ".reqntid " << reqntidx << ", "
428 << reqntidy << ", " << reqntidz << "\n";
429
430 // If the NVVM IR has some of maxntid* specified, then output
431 // the maxntid directive, and set the unspecified ones to 1.
432 // If none of maxntid* is specified, don't output maxntid directive.
433 unsigned maxntidx, maxntidy, maxntidz;
434 specified = false;
435 if (llvm::getMaxNTIDx(F, maxntidx) == false) maxntidx = 1;
436 else specified = true;
437 if (llvm::getMaxNTIDy(F, maxntidy) == false) maxntidy = 1;
438 else specified = true;
439 if (llvm::getMaxNTIDz(F, maxntidz) == false) maxntidz = 1;
440 else specified = true;
441
442 if (specified)
443 O << ".maxntid " << maxntidx << ", "
444 << maxntidy << ", " << maxntidz << "\n";
445
446 unsigned mincta;
447 if (llvm::getMinCTASm(F, mincta))
448 O << ".minnctapersm " << mincta << "\n";
449}
450
451void
452NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec,
453 raw_ostream &O) {
454 const TargetRegisterClass * RC = MRI->getRegClass(vr);
455 unsigned id = RC->getID();
456
457 std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[id];
458 unsigned mapped_vr = regmap[vr];
459
460 if (!isVec) {
461 O << getNVPTXRegClassStr(RC) << mapped_vr;
462 return;
463 }
464 // Vector virtual register
465 if (getNVPTXVectorSize(RC) == 4)
466 O << "{"
467 << getNVPTXRegClassStr(RC) << mapped_vr << "_0, "
468 << getNVPTXRegClassStr(RC) << mapped_vr << "_1, "
469 << getNVPTXRegClassStr(RC) << mapped_vr << "_2, "
470 << getNVPTXRegClassStr(RC) << mapped_vr << "_3"
471 << "}";
472 else if (getNVPTXVectorSize(RC) == 2)
473 O << "{"
474 << getNVPTXRegClassStr(RC) << mapped_vr << "_0, "
475 << getNVPTXRegClassStr(RC) << mapped_vr << "_1"
476 << "}";
477 else
Craig Topper63663612012-05-24 07:02:50 +0000478 llvm_unreachable("Unsupported vector size");
Justin Holewinski49683f32012-05-04 20:18:50 +0000479}
480
481void
482NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec,
483 raw_ostream &O) {
484 getVirtualRegisterName(vr, isVec, O);
485}
486
487void NVPTXAsmPrinter::printVecModifiedImmediate(const MachineOperand &MO,
488 const char *Modifier,
489 raw_ostream &O) {
Craig Topper6fcf1292012-05-24 04:22:05 +0000490 static const char vecelem[] = {'0', '1', '2', '3', '0', '1', '2', '3'};
Justin Holewinski49683f32012-05-04 20:18:50 +0000491 int Imm = (int)MO.getImm();
492 if(0 == strcmp(Modifier, "vecelem"))
493 O << "_" << vecelem[Imm];
494 else if(0 == strcmp(Modifier, "vecv4comm1")) {
495 if((Imm < 0) || (Imm > 3))
496 O << "//";
497 }
498 else if(0 == strcmp(Modifier, "vecv4comm2")) {
499 if((Imm < 4) || (Imm > 7))
500 O << "//";
501 }
502 else if(0 == strcmp(Modifier, "vecv4pos")) {
503 if(Imm < 0) Imm = 0;
504 O << "_" << vecelem[Imm%4];
505 }
506 else if(0 == strcmp(Modifier, "vecv2comm1")) {
507 if((Imm < 0) || (Imm > 1))
508 O << "//";
509 }
510 else if(0 == strcmp(Modifier, "vecv2comm2")) {
511 if((Imm < 2) || (Imm > 3))
512 O << "//";
513 }
514 else if(0 == strcmp(Modifier, "vecv2pos")) {
515 if(Imm < 0) Imm = 0;
516 O << "_" << vecelem[Imm%2];
517 }
518 else
Craig Topper63663612012-05-24 07:02:50 +0000519 llvm_unreachable("Unknown Modifier on immediate operand");
Justin Holewinski49683f32012-05-04 20:18:50 +0000520}
521
522void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
523 raw_ostream &O, const char *Modifier) {
524 const MachineOperand &MO = MI->getOperand(opNum);
525 switch (MO.getType()) {
526 case MachineOperand::MO_Register:
527 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
528 if (MO.getReg() == NVPTX::VRDepot)
529 O << DEPOTNAME << getFunctionNumber();
530 else
531 O << getRegisterName(MO.getReg());
532 } else {
533 if (!Modifier)
534 emitVirtualRegister(MO.getReg(), false, O);
535 else {
536 if (strcmp(Modifier, "vecfull") == 0)
537 emitVirtualRegister(MO.getReg(), true, O);
538 else
Craig Topper63663612012-05-24 07:02:50 +0000539 llvm_unreachable(
Justin Holewinski49683f32012-05-04 20:18:50 +0000540 "Don't know how to handle the modifier on virtual register.");
541 }
542 }
543 return;
544
545 case MachineOperand::MO_Immediate:
546 if (!Modifier)
547 O << MO.getImm();
548 else if (strstr(Modifier, "vec") == Modifier)
549 printVecModifiedImmediate(MO, Modifier, O);
550 else
Craig Topper63663612012-05-24 07:02:50 +0000551 llvm_unreachable("Don't know how to handle modifier on immediate operand");
Justin Holewinski49683f32012-05-04 20:18:50 +0000552 return;
553
554 case MachineOperand::MO_FPImmediate:
555 printFPConstant(MO.getFPImm(), O);
556 break;
557
558 case MachineOperand::MO_GlobalAddress:
559 O << *Mang->getSymbol(MO.getGlobal());
560 break;
561
562 case MachineOperand::MO_ExternalSymbol: {
563 const char * symbname = MO.getSymbolName();
564 if (strstr(symbname, ".PARAM") == symbname) {
565 unsigned index;
566 sscanf(symbname+6, "%u[];", &index);
567 printParamName(index, O);
568 }
569 else if (strstr(symbname, ".HLPPARAM") == symbname) {
570 unsigned index;
571 sscanf(symbname+9, "%u[];", &index);
572 O << *CurrentFnSym << "_param_" << index << "_offset";
573 }
574 else
575 O << symbname;
576 break;
577 }
578
579 case MachineOperand::MO_MachineBasicBlock:
580 O << *MO.getMBB()->getSymbol();
581 return;
582
583 default:
Craig Topper63663612012-05-24 07:02:50 +0000584 llvm_unreachable("Operand type not supported.");
Justin Holewinski49683f32012-05-04 20:18:50 +0000585 }
586}
587
588void NVPTXAsmPrinter::
589printImplicitDef(const MachineInstr *MI, raw_ostream &O) const {
590#ifndef __OPTIMIZE__
591 O << "\t// Implicit def :";
592 //printOperand(MI, 0);
593 O << "\n";
594#endif
595}
596
597void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
598 raw_ostream &O, const char *Modifier) {
599 printOperand(MI, opNum, O);
600
601 if (Modifier && !strcmp(Modifier, "add")) {
602 O << ", ";
603 printOperand(MI, opNum+1, O);
604 } else {
605 if (MI->getOperand(opNum+1).isImm() &&
606 MI->getOperand(opNum+1).getImm() == 0)
607 return; // don't print ',0' or '+0'
608 O << "+";
609 printOperand(MI, opNum+1, O);
610 }
611}
612
613void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum,
614 raw_ostream &O, const char *Modifier)
615{
616 if (Modifier) {
617 const MachineOperand &MO = MI->getOperand(opNum);
618 int Imm = (int)MO.getImm();
619 if (!strcmp(Modifier, "volatile")) {
620 if (Imm)
621 O << ".volatile";
622 } else if (!strcmp(Modifier, "addsp")) {
623 switch (Imm) {
624 case NVPTX::PTXLdStInstCode::GLOBAL: O << ".global"; break;
625 case NVPTX::PTXLdStInstCode::SHARED: O << ".shared"; break;
626 case NVPTX::PTXLdStInstCode::LOCAL: O << ".local"; break;
627 case NVPTX::PTXLdStInstCode::PARAM: O << ".param"; break;
628 case NVPTX::PTXLdStInstCode::CONSTANT: O << ".const"; break;
629 case NVPTX::PTXLdStInstCode::GENERIC:
630 if (!nvptxSubtarget.hasGenericLdSt())
631 O << ".global";
632 break;
633 default:
634 assert("wrong value");
635 }
636 }
637 else if (!strcmp(Modifier, "sign")) {
638 if (Imm==NVPTX::PTXLdStInstCode::Signed)
639 O << "s";
640 else if (Imm==NVPTX::PTXLdStInstCode::Unsigned)
641 O << "u";
642 else
643 O << "f";
644 }
645 else if (!strcmp(Modifier, "vec")) {
646 if (Imm==NVPTX::PTXLdStInstCode::V2)
647 O << ".v2";
648 else if (Imm==NVPTX::PTXLdStInstCode::V4)
649 O << ".v4";
650 }
651 else
652 assert("unknown modifier");
653 }
654 else
655 assert("unknown modifier");
656}
657
658void NVPTXAsmPrinter::emitDeclaration (const Function *F, raw_ostream &O) {
659
660 emitLinkageDirective(F,O);
661 if (llvm::isKernelFunction(*F))
662 O << ".entry ";
663 else
664 O << ".func ";
665 printReturnValStr(F, O);
666 O << *CurrentFnSym << "\n";
667 emitFunctionParamList(F, O);
668 O << ";\n";
669}
670
671static bool usedInGlobalVarDef(const Constant *C)
672{
673 if (!C)
674 return false;
675
676 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
677 if (GV->getName().str() == "llvm.used")
678 return false;
679 return true;
680 }
681
682 for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
683 ui!=ue; ++ui) {
684 const Constant *C = dyn_cast<Constant>(*ui);
685 if (usedInGlobalVarDef(C))
686 return true;
687 }
688 return false;
689}
690
691static bool usedInOneFunc(const User *U, Function const *&oneFunc)
692{
693 if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
694 if (othergv->getName().str() == "llvm.used")
695 return true;
696 }
697
698 if (const Instruction *instr = dyn_cast<Instruction>(U)) {
699 if (instr->getParent() && instr->getParent()->getParent()) {
700 const Function *curFunc = instr->getParent()->getParent();
701 if (oneFunc && (curFunc != oneFunc))
702 return false;
703 oneFunc = curFunc;
704 return true;
705 }
706 else
707 return false;
708 }
709
710 if (const MDNode *md = dyn_cast<MDNode>(U))
711 if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
712 (md->getName().str() == "llvm.dbg.sp")))
713 return true;
714
715
716 for (User::const_use_iterator ui=U->use_begin(), ue=U->use_end();
717 ui!=ue; ++ui) {
718 if (usedInOneFunc(*ui, oneFunc) == false)
719 return false;
720 }
721 return true;
722}
723
724/* Find out if a global variable can be demoted to local scope.
725 * Currently, this is valid for CUDA shared variables, which have local
726 * scope and global lifetime. So the conditions to check are :
727 * 1. Is the global variable in shared address space?
728 * 2. Does it have internal linkage?
729 * 3. Is the global variable referenced only in one function?
730 */
731static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
732 if (gv->hasInternalLinkage() == false)
733 return false;
734 const PointerType *Pty = gv->getType();
735 if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
736 return false;
737
738 const Function *oneFunc = 0;
739
740 bool flag = usedInOneFunc(gv, oneFunc);
741 if (flag == false)
742 return false;
743 if (!oneFunc)
744 return false;
745 f = oneFunc;
746 return true;
747}
748
749static bool useFuncSeen(const Constant *C,
750 llvm::DenseMap<const Function *, bool> &seenMap) {
751 for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
752 ui!=ue; ++ui) {
753 if (const Constant *cu = dyn_cast<Constant>(*ui)) {
754 if (useFuncSeen(cu, seenMap))
755 return true;
756 } else if (const Instruction *I = dyn_cast<Instruction>(*ui)) {
757 const BasicBlock *bb = I->getParent();
758 if (!bb) continue;
759 const Function *caller = bb->getParent();
760 if (!caller) continue;
761 if (seenMap.find(caller) != seenMap.end())
762 return true;
763 }
764 }
765 return false;
766}
767
768void NVPTXAsmPrinter::emitDeclarations (Module &M, raw_ostream &O) {
769 llvm::DenseMap<const Function *, bool> seenMap;
770 for (Module::const_iterator FI=M.begin(), FE=M.end();
771 FI!=FE; ++FI) {
772 const Function *F = FI;
773
774 if (F->isDeclaration()) {
775 if (F->use_empty())
776 continue;
777 if (F->getIntrinsicID())
778 continue;
779 CurrentFnSym = Mang->getSymbol(F);
780 emitDeclaration(F, O);
781 continue;
782 }
783 for (Value::const_use_iterator iter=F->use_begin(),
784 iterEnd=F->use_end(); iter!=iterEnd; ++iter) {
785 if (const Constant *C = dyn_cast<Constant>(*iter)) {
786 if (usedInGlobalVarDef(C)) {
787 // The use is in the initialization of a global variable
788 // that is a function pointer, so print a declaration
789 // for the original function
790 CurrentFnSym = Mang->getSymbol(F);
791 emitDeclaration(F, O);
792 break;
793 }
794 // Emit a declaration of this function if the function that
795 // uses this constant expr has already been seen.
796 if (useFuncSeen(C, seenMap)) {
797 CurrentFnSym = Mang->getSymbol(F);
798 emitDeclaration(F, O);
799 break;
800 }
801 }
802
803 if (!isa<Instruction>(*iter)) continue;
804 const Instruction *instr = cast<Instruction>(*iter);
805 const BasicBlock *bb = instr->getParent();
806 if (!bb) continue;
807 const Function *caller = bb->getParent();
808 if (!caller) continue;
809
810 // If a caller has already been seen, then the caller is
811 // appearing in the module before the callee. so print out
812 // a declaration for the callee.
813 if (seenMap.find(caller) != seenMap.end()) {
814 CurrentFnSym = Mang->getSymbol(F);
815 emitDeclaration(F, O);
816 break;
817 }
818 }
819 seenMap[F] = true;
820 }
821}
822
823void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
824 DebugInfoFinder DbgFinder;
825 DbgFinder.processModule(M);
826
827 unsigned i=1;
828 for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
829 E = DbgFinder.compile_unit_end(); I != E; ++I) {
830 DICompileUnit DIUnit(*I);
831 StringRef Filename(DIUnit.getFilename());
832 StringRef Dirname(DIUnit.getDirectory());
833 SmallString<128> FullPathName = Dirname;
834 if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
835 sys::path::append(FullPathName, Filename);
836 Filename = FullPathName.str();
837 }
838 if (filenameMap.find(Filename.str()) != filenameMap.end())
839 continue;
840 filenameMap[Filename.str()] = i;
841 OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
842 ++i;
843 }
844
845 for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
846 E = DbgFinder.subprogram_end(); I != E; ++I) {
847 DISubprogram SP(*I);
848 StringRef Filename(SP.getFilename());
849 StringRef Dirname(SP.getDirectory());
850 SmallString<128> FullPathName = Dirname;
851 if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
852 sys::path::append(FullPathName, Filename);
853 Filename = FullPathName.str();
854 }
855 if (filenameMap.find(Filename.str()) != filenameMap.end())
856 continue;
857 filenameMap[Filename.str()] = i;
858 ++i;
859 }
860}
861
862bool NVPTXAsmPrinter::doInitialization (Module &M) {
863
864 SmallString<128> Str1;
865 raw_svector_ostream OS1(Str1);
866
867 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
868 MMI->AnalyzeModule(M);
869
870 // We need to call the parent's one explicitly.
871 //bool Result = AsmPrinter::doInitialization(M);
872
873 // Initialize TargetLoweringObjectFile.
874 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
875 .Initialize(OutContext, TM);
876
877 Mang = new Mangler(OutContext, *TM.getTargetData());
878
879 // Emit header before any dwarf directives are emitted below.
880 emitHeader(M, OS1);
881 OutStreamer.EmitRawText(OS1.str());
882
883
884 // Already commented out
885 //bool Result = AsmPrinter::doInitialization(M);
886
887
888 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
889 recordAndEmitFilenames(M);
890
891 SmallString<128> Str2;
892 raw_svector_ostream OS2(Str2);
893
894 emitDeclarations(M, OS2);
895
896 // Print out module-level global variables here.
897 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
898 I != E; ++I)
899 printModuleLevelGV(I, OS2);
900
901 OS2 << '\n';
902
903 OutStreamer.EmitRawText(OS2.str());
904 return false; // success
905}
906
907void NVPTXAsmPrinter::emitHeader (Module &M, raw_ostream &O) {
908 O << "//\n";
909 O << "// Generated by LLVM NVPTX Back-End\n";
910 O << "//\n";
911 O << "\n";
912
913 O << ".version 3.0\n";
914
915 O << ".target ";
916 O << nvptxSubtarget.getTargetName();
917
918 if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
919 O << ", texmode_independent";
920 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
921 if (!nvptxSubtarget.hasDouble())
922 O << ", map_f64_to_f32";
923 }
924
925 if (MAI->doesSupportDebugInformation())
926 O << ", debug";
927
928 O << "\n";
929
930 O << ".address_size ";
931 if (nvptxSubtarget.is64Bit())
932 O << "64";
933 else
934 O << "32";
935 O << "\n";
936
937 O << "\n";
938}
939
940bool NVPTXAsmPrinter::doFinalization(Module &M) {
941 // XXX Temproarily remove global variables so that doFinalization() will not
942 // emit them again (global variables are emitted at beginning).
943
944 Module::GlobalListType &global_list = M.getGlobalList();
945 int i, n = global_list.size();
946 GlobalVariable **gv_array = new GlobalVariable* [n];
947
948 // first, back-up GlobalVariable in gv_array
949 i = 0;
950 for (Module::global_iterator I = global_list.begin(), E = global_list.end();
951 I != E; ++I)
952 gv_array[i++] = &*I;
953
954 // second, empty global_list
955 while (!global_list.empty())
956 global_list.remove(global_list.begin());
957
958 // call doFinalization
959 bool ret = AsmPrinter::doFinalization(M);
960
961 // now we restore global variables
962 for (i = 0; i < n; i ++)
963 global_list.insert(global_list.end(), gv_array[i]);
964
965 delete[] gv_array;
966 return ret;
967
968
969 //bool Result = AsmPrinter::doFinalization(M);
970 // Instead of calling the parents doFinalization, we may
971 // clone parents doFinalization and customize here.
972 // Currently, we if NVISA out the EmitGlobals() in
973 // parent's doFinalization, which is too intrusive.
974 //
975 // Same for the doInitialization.
976 //return Result;
977}
978
979// This function emits appropriate linkage directives for
980// functions and global variables.
981//
982// extern function declaration -> .extern
983// extern function definition -> .visible
984// external global variable with init -> .visible
985// external without init -> .extern
986// appending -> not allowed, assert.
987
988void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue* V, raw_ostream &O)
989{
990 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
991 if (V->hasExternalLinkage()) {
992 if (isa<GlobalVariable>(V)) {
993 const GlobalVariable *GVar = cast<GlobalVariable>(V);
994 if (GVar) {
995 if (GVar->hasInitializer())
996 O << ".visible ";
997 else
998 O << ".extern ";
999 }
1000 } else if (V->isDeclaration())
1001 O << ".extern ";
1002 else
1003 O << ".visible ";
1004 } else if (V->hasAppendingLinkage()) {
1005 std::string msg;
1006 msg.append("Error: ");
1007 msg.append("Symbol ");
1008 if (V->hasName())
1009 msg.append(V->getName().str());
1010 msg.append("has unsupported appending linkage type");
1011 llvm_unreachable(msg.c_str());
1012 }
1013 }
1014}
1015
1016
1017void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable* GVar, raw_ostream &O,
1018 bool processDemoted) {
1019
1020 // Skip meta data
1021 if (GVar->hasSection()) {
1022 if (GVar->getSection() == "llvm.metadata")
1023 return;
1024 }
1025
1026 const TargetData *TD = TM.getTargetData();
1027
1028 // GlobalVariables are always constant pointers themselves.
1029 const PointerType *PTy = GVar->getType();
1030 Type *ETy = PTy->getElementType();
1031
1032 if (GVar->hasExternalLinkage()) {
1033 if (GVar->hasInitializer())
1034 O << ".visible ";
1035 else
1036 O << ".extern ";
1037 }
1038
1039 if (llvm::isTexture(*GVar)) {
1040 O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
1041 return;
1042 }
1043
1044 if (llvm::isSurface(*GVar)) {
1045 O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
1046 return;
1047 }
1048
1049 if (GVar->isDeclaration()) {
1050 // (extern) declarations, no definition or initializer
1051 // Currently the only known declaration is for an automatic __local
1052 // (.shared) promoted to global.
1053 emitPTXGlobalVariable(GVar, O);
1054 O << ";\n";
1055 return;
1056 }
1057
1058 if (llvm::isSampler(*GVar)) {
1059 O << ".global .samplerref " << llvm::getSamplerName(*GVar);
1060
1061 Constant *Initializer = NULL;
1062 if (GVar->hasInitializer())
1063 Initializer = GVar->getInitializer();
1064 ConstantInt *CI = NULL;
1065 if (Initializer)
1066 CI = dyn_cast<ConstantInt>(Initializer);
1067 if (CI) {
1068 unsigned sample=CI->getZExtValue();
1069
1070 O << " = { ";
1071
1072 for (int i =0, addr=((sample & __CLK_ADDRESS_MASK ) >>
1073 __CLK_ADDRESS_BASE) ; i < 3 ; i++) {
1074 O << "addr_mode_" << i << " = ";
1075 switch (addr) {
1076 case 0: O << "wrap"; break;
1077 case 1: O << "clamp_to_border"; break;
1078 case 2: O << "clamp_to_edge"; break;
1079 case 3: O << "wrap"; break;
1080 case 4: O << "mirror"; break;
1081 }
1082 O <<", ";
1083 }
1084 O << "filter_mode = ";
1085 switch (( sample & __CLK_FILTER_MASK ) >> __CLK_FILTER_BASE ) {
1086 case 0: O << "nearest"; break;
1087 case 1: O << "linear"; break;
1088 case 2: assert ( 0 && "Anisotropic filtering is not supported");
1089 default: O << "nearest"; break;
1090 }
1091 if (!(( sample &__CLK_NORMALIZED_MASK ) >> __CLK_NORMALIZED_BASE)) {
1092 O << ", force_unnormalized_coords = 1";
1093 }
1094 O << " }";
1095 }
1096
1097 O << ";\n";
1098 return;
1099 }
1100
1101 if (GVar->hasPrivateLinkage()) {
1102
1103 if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
1104 return;
1105
1106 // FIXME - need better way (e.g. Metadata) to avoid generating this global
1107 if (!strncmp(GVar->getName().data(), "filename", 8))
1108 return;
1109 if (GVar->use_empty())
1110 return;
1111 }
1112
1113 const Function *demotedFunc = 0;
1114 if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1115 O << "// " << GVar->getName().str() << " has been demoted\n";
1116 if (localDecls.find(demotedFunc) != localDecls.end())
1117 localDecls[demotedFunc].push_back(GVar);
1118 else {
1119 std::vector<GlobalVariable *> temp;
1120 temp.push_back(GVar);
1121 localDecls[demotedFunc] = temp;
1122 }
1123 return;
1124 }
1125
1126 O << ".";
1127 emitPTXAddressSpace(PTy->getAddressSpace(), O);
1128 if (GVar->getAlignment() == 0)
1129 O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1130 else
1131 O << " .align " << GVar->getAlignment();
1132
1133
1134 if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1135 O << " .";
1136 O << getPTXFundamentalTypeStr(ETy, false);
1137 O << " ";
1138 O << *Mang->getSymbol(GVar);
1139
1140 // Ptx allows variable initilization only for constant and global state
1141 // spaces.
1142 if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1143 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
1144 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
1145 && GVar->hasInitializer()) {
1146 Constant *Initializer = GVar->getInitializer();
1147 if (!Initializer->isNullValue()) {
1148 O << " = " ;
1149 printScalarConstant(Initializer, O);
1150 }
1151 }
1152 } else {
1153 unsigned int ElementSize =0;
1154
1155 // Although PTX has direct support for struct type and array type and
1156 // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1157 // targets that support these high level field accesses. Structs, arrays
1158 // and vectors are lowered into arrays of bytes.
1159 switch (ETy->getTypeID()) {
1160 case Type::StructTyID:
1161 case Type::ArrayTyID:
1162 case Type::VectorTyID:
1163 ElementSize = TD->getTypeStoreSize(ETy);
1164 // Ptx allows variable initilization only for constant and
1165 // global state spaces.
1166 if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1167 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
1168 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
1169 && GVar->hasInitializer()) {
1170 Constant *Initializer = GVar->getInitializer();
1171 if (!isa<UndefValue>(Initializer) &&
1172 !Initializer->isNullValue()) {
1173 AggBuffer aggBuffer(ElementSize, O, *this);
1174 bufferAggregateConstant(Initializer, &aggBuffer);
1175 if (aggBuffer.numSymbols) {
1176 if (nvptxSubtarget.is64Bit()) {
1177 O << " .u64 " << *Mang->getSymbol(GVar) <<"[" ;
1178 O << ElementSize/8;
1179 }
1180 else {
1181 O << " .u32 " << *Mang->getSymbol(GVar) <<"[" ;
1182 O << ElementSize/4;
1183 }
1184 O << "]";
1185 }
1186 else {
1187 O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
1188 O << ElementSize;
1189 O << "]";
1190 }
1191 O << " = {" ;
1192 aggBuffer.print();
1193 O << "}";
1194 }
1195 else {
1196 O << " .b8 " << *Mang->getSymbol(GVar) ;
1197 if (ElementSize) {
1198 O <<"[" ;
1199 O << ElementSize;
1200 O << "]";
1201 }
1202 }
1203 }
1204 else {
1205 O << " .b8 " << *Mang->getSymbol(GVar);
1206 if (ElementSize) {
1207 O <<"[" ;
1208 O << ElementSize;
1209 O << "]";
1210 }
1211 }
1212 break;
1213 default:
1214 assert( 0 && "type not supported yet");
1215 }
1216
1217 }
1218 O << ";\n";
1219}
1220
1221void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1222 if (localDecls.find(f) == localDecls.end())
1223 return;
1224
1225 std::vector<GlobalVariable *> &gvars = localDecls[f];
1226
1227 for (unsigned i=0, e=gvars.size(); i!=e; ++i) {
1228 O << "\t// demoted variable\n\t";
1229 printModuleLevelGV(gvars[i], O, true);
1230 }
1231}
1232
1233void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1234 raw_ostream &O) const {
1235 switch (AddressSpace) {
1236 case llvm::ADDRESS_SPACE_LOCAL:
1237 O << "local" ;
1238 break;
1239 case llvm::ADDRESS_SPACE_GLOBAL:
1240 O << "global" ;
1241 break;
1242 case llvm::ADDRESS_SPACE_CONST:
1243 // This logic should be consistent with that in
1244 // getCodeAddrSpace() (NVPTXISelDATToDAT.cpp)
1245 if (nvptxSubtarget.hasGenericLdSt())
1246 O << "global" ;
1247 else
1248 O << "const" ;
1249 break;
1250 case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
1251 O << "const" ;
1252 break;
1253 case llvm::ADDRESS_SPACE_SHARED:
1254 O << "shared" ;
1255 break;
1256 default:
Craig Topper63663612012-05-24 07:02:50 +00001257 llvm_unreachable("unexpected address space");
Justin Holewinski49683f32012-05-04 20:18:50 +00001258 }
1259}
1260
1261std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty,
1262 bool useB4PTR) const {
1263 switch (Ty->getTypeID()) {
1264 default:
1265 llvm_unreachable("unexpected type");
1266 break;
1267 case Type::IntegerTyID: {
1268 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1269 if (NumBits == 1)
1270 return "pred";
1271 else if (NumBits <= 64) {
1272 std::string name = "u";
1273 return name + utostr(NumBits);
1274 } else {
1275 llvm_unreachable("Integer too large");
1276 break;
1277 }
1278 break;
1279 }
1280 case Type::FloatTyID:
1281 return "f32";
1282 case Type::DoubleTyID:
1283 return "f64";
1284 case Type::PointerTyID:
1285 if (nvptxSubtarget.is64Bit())
1286 if (useB4PTR) return "b64";
1287 else return "u64";
1288 else
1289 if (useB4PTR) return "b32";
1290 else return "u32";
1291 }
1292 llvm_unreachable("unexpected type");
1293 return NULL;
1294}
1295
1296void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable* GVar,
1297 raw_ostream &O) {
1298
1299 const TargetData *TD = TM.getTargetData();
1300
1301 // GlobalVariables are always constant pointers themselves.
1302 const PointerType *PTy = GVar->getType();
1303 Type *ETy = PTy->getElementType();
1304
1305 O << ".";
1306 emitPTXAddressSpace(PTy->getAddressSpace(), O);
1307 if (GVar->getAlignment() == 0)
1308 O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1309 else
1310 O << " .align " << GVar->getAlignment();
1311
1312 if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1313 O << " .";
1314 O << getPTXFundamentalTypeStr(ETy);
1315 O << " ";
1316 O << *Mang->getSymbol(GVar);
1317 return;
1318 }
1319
1320 int64_t ElementSize =0;
1321
1322 // Although PTX has direct support for struct type and array type and LLVM IR
1323 // is very similar to PTX, the LLVM CodeGen does not support for targets that
1324 // support these high level field accesses. Structs and arrays are lowered
1325 // into arrays of bytes.
1326 switch (ETy->getTypeID()) {
1327 case Type::StructTyID:
1328 case Type::ArrayTyID:
1329 case Type::VectorTyID:
1330 ElementSize = TD->getTypeStoreSize(ETy);
1331 O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
1332 if (ElementSize) {
1333 O << itostr(ElementSize) ;
1334 }
1335 O << "]";
1336 break;
1337 default:
1338 assert( 0 && "type not supported yet");
1339 }
1340 return ;
1341}
1342
1343
1344static unsigned int
1345getOpenCLAlignment(const TargetData *TD,
1346 Type *Ty) {
1347 if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
1348 return TD->getPrefTypeAlignment(Ty);
1349
1350 const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1351 if (ATy)
1352 return getOpenCLAlignment(TD, ATy->getElementType());
1353
1354 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1355 if (VTy) {
1356 Type *ETy = VTy->getElementType();
1357 unsigned int numE = VTy->getNumElements();
1358 unsigned int alignE = TD->getPrefTypeAlignment(ETy);
1359 if (numE == 3)
1360 return 4*alignE;
1361 else
1362 return numE*alignE;
1363 }
1364
1365 const StructType *STy = dyn_cast<StructType>(Ty);
1366 if (STy) {
1367 unsigned int alignStruct = 1;
1368 // Go through each element of the struct and find the
1369 // largest alignment.
1370 for (unsigned i=0, e=STy->getNumElements(); i != e; i++) {
1371 Type *ETy = STy->getElementType(i);
1372 unsigned int align = getOpenCLAlignment(TD, ETy);
1373 if (align > alignStruct)
1374 alignStruct = align;
1375 }
1376 return alignStruct;
1377 }
1378
1379 const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
1380 if (FTy)
1381 return TD->getPointerPrefAlignment();
1382 return TD->getPrefTypeAlignment(Ty);
1383}
1384
1385void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1386 int paramIndex, raw_ostream &O) {
1387 if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1388 (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
1389 O << *CurrentFnSym << "_param_" << paramIndex;
1390 else {
1391 std::string argName = I->getName();
1392 const char *p = argName.c_str();
1393 while (*p) {
1394 if (*p == '.')
1395 O << "_";
1396 else
1397 O << *p;
1398 p++;
1399 }
1400 }
1401}
1402
1403void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
1404 Function::const_arg_iterator I, E;
1405 int i = 0;
1406
1407 if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1408 (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
1409 O << *CurrentFnSym << "_param_" << paramIndex;
1410 return;
1411 }
1412
1413 for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
1414 if (i==paramIndex) {
1415 printParamName(I, paramIndex, O);
1416 return;
1417 }
1418 }
1419 llvm_unreachable("paramIndex out of bound");
1420}
1421
1422void NVPTXAsmPrinter::emitFunctionParamList(const Function *F,
1423 raw_ostream &O) {
1424 const TargetData *TD = TM.getTargetData();
1425 const AttrListPtr &PAL = F->getAttributes();
1426 const TargetLowering *TLI = TM.getTargetLowering();
1427 Function::const_arg_iterator I, E;
1428 unsigned paramIndex = 0;
1429 bool first = true;
1430 bool isKernelFunc = llvm::isKernelFunction(*F);
1431 bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
1432 MVT thePointerTy = TLI->getPointerTy();
1433
1434 O << "(\n";
1435
1436 for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1437 const Type *Ty = I->getType();
1438
1439 if (!first)
1440 O << ",\n";
1441
1442 first = false;
1443
1444 // Handle image/sampler parameters
1445 if (llvm::isSampler(*I) || llvm::isImage(*I)) {
1446 if (llvm::isImage(*I)) {
1447 std::string sname = I->getName();
1448 if (llvm::isImageWriteOnly(*I))
1449 O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex;
1450 else // Default image is read_only
1451 O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex;
1452 }
1453 else // Should be llvm::isSampler(*I)
1454 O << "\t.param .samplerref " << *CurrentFnSym << "_param_"
1455 << paramIndex;
1456 continue;
1457 }
1458
1459 if (PAL.paramHasAttr(paramIndex+1, Attribute::ByVal) == false) {
1460 // Just a scalar
1461 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1462 if (isKernelFunc) {
1463 if (PTy) {
1464 // Special handling for pointer arguments to kernel
1465 O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1466
1467 if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
1468 Type *ETy = PTy->getElementType();
1469 int addrSpace = PTy->getAddressSpace();
1470 switch(addrSpace) {
1471 default:
1472 O << ".ptr ";
1473 break;
1474 case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
1475 O << ".ptr .const ";
1476 break;
1477 case llvm::ADDRESS_SPACE_SHARED:
1478 O << ".ptr .shared ";
1479 break;
1480 case llvm::ADDRESS_SPACE_GLOBAL:
1481 case llvm::ADDRESS_SPACE_CONST:
1482 O << ".ptr .global ";
1483 break;
1484 }
1485 O << ".align " << (int)getOpenCLAlignment(TD, ETy) << " ";
1486 }
1487 printParamName(I, paramIndex, O);
1488 continue;
1489 }
1490
1491 // non-pointer scalar to kernel func
1492 O << "\t.param ."
1493 << getPTXFundamentalTypeStr(Ty) << " ";
1494 printParamName(I, paramIndex, O);
1495 continue;
1496 }
1497 // Non-kernel function, just print .param .b<size> for ABI
1498 // and .reg .b<size> for non ABY
1499 unsigned sz = 0;
1500 if (isa<IntegerType>(Ty)) {
1501 sz = cast<IntegerType>(Ty)->getBitWidth();
1502 if (sz < 32) sz = 32;
1503 }
1504 else if (isa<PointerType>(Ty))
1505 sz = thePointerTy.getSizeInBits();
1506 else
1507 sz = Ty->getPrimitiveSizeInBits();
1508 if (isABI)
1509 O << "\t.param .b" << sz << " ";
1510 else
1511 O << "\t.reg .b" << sz << " ";
1512 printParamName(I, paramIndex, O);
1513 continue;
1514 }
1515
1516 // param has byVal attribute. So should be a pointer
1517 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1518 assert(PTy &&
1519 "Param with byval attribute should be a pointer type");
1520 Type *ETy = PTy->getElementType();
1521
1522 if (isABI || isKernelFunc) {
1523 // Just print .param .b8 .align <a> .param[size];
1524 // <a> = PAL.getparamalignment
1525 // size = typeallocsize of element type
1526 unsigned align = PAL.getParamAlignment(paramIndex+1);
1527 unsigned sz = TD->getTypeAllocSize(ETy);
1528 O << "\t.param .align " << align
1529 << " .b8 ";
1530 printParamName(I, paramIndex, O);
1531 O << "[" << sz << "]";
1532 continue;
1533 } else {
1534 // Split the ETy into constituent parts and
1535 // print .param .b<size> <name> for each part.
1536 // Further, if a part is vector, print the above for
1537 // each vector element.
1538 SmallVector<EVT, 16> vtparts;
1539 ComputeValueVTs(*TLI, ETy, vtparts);
1540 for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
1541 unsigned elems = 1;
1542 EVT elemtype = vtparts[i];
1543 if (vtparts[i].isVector()) {
1544 elems = vtparts[i].getVectorNumElements();
1545 elemtype = vtparts[i].getVectorElementType();
1546 }
1547
1548 for (unsigned j=0,je=elems; j!=je; ++j) {
1549 unsigned sz = elemtype.getSizeInBits();
1550 if (elemtype.isInteger() && (sz < 32)) sz = 32;
1551 O << "\t.reg .b" << sz << " ";
1552 printParamName(I, paramIndex, O);
1553 if (j<je-1) O << ",\n";
1554 ++paramIndex;
1555 }
1556 if (i<e-1)
1557 O << ",\n";
1558 }
1559 --paramIndex;
1560 continue;
1561 }
1562 }
1563
1564 O << "\n)\n";
1565}
1566
1567void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1568 raw_ostream &O) {
1569 const Function *F = MF.getFunction();
1570 emitFunctionParamList(F, O);
1571}
1572
1573
1574void NVPTXAsmPrinter::
1575setAndEmitFunctionVirtualRegisters(const MachineFunction &MF) {
1576 SmallString<128> Str;
1577 raw_svector_ostream O(Str);
1578
1579 // Map the global virtual register number to a register class specific
1580 // virtual register number starting from 1 with that class.
1581 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
1582 //unsigned numRegClasses = TRI->getNumRegClasses();
1583
1584 // Emit the Fake Stack Object
1585 const MachineFrameInfo *MFI = MF.getFrameInfo();
1586 int NumBytes = (int) MFI->getStackSize();
1587 if (NumBytes) {
1588 O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t"
1589 << DEPOTNAME
1590 << getFunctionNumber() << "[" << NumBytes << "];\n";
1591 if (nvptxSubtarget.is64Bit()) {
1592 O << "\t.reg .b64 \t%SP;\n";
1593 O << "\t.reg .b64 \t%SPL;\n";
1594 }
1595 else {
1596 O << "\t.reg .b32 \t%SP;\n";
1597 O << "\t.reg .b32 \t%SPL;\n";
1598 }
1599 }
1600
1601 // Go through all virtual registers to establish the mapping between the
1602 // global virtual
1603 // register number and the per class virtual register number.
1604 // We use the per class virtual register number in the ptx output.
1605 unsigned int numVRs = MRI->getNumVirtRegs();
1606 for (unsigned i=0; i< numVRs; i++) {
1607 unsigned int vr = TRI->index2VirtReg(i);
1608 const TargetRegisterClass *RC = MRI->getRegClass(vr);
1609 std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[RC->getID()];
1610 int n = regmap.size();
1611 regmap.insert(std::make_pair(vr, n+1));
1612 }
1613
1614 // Emit register declarations
1615 // @TODO: Extract out the real register usage
1616 O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1617 O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1618 O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1619 O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1620 O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
1621 O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1622 O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
1623
1624 // Emit declaration of the virtual registers or 'physical' registers for
1625 // each register class
1626 //for (unsigned i=0; i< numRegClasses; i++) {
1627 // std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[i];
1628 // const TargetRegisterClass *RC = TRI->getRegClass(i);
1629 // std::string rcname = getNVPTXRegClassName(RC);
1630 // std::string rcStr = getNVPTXRegClassStr(RC);
1631 // //int n = regmap.size();
1632 // if (!isNVPTXVectorRegClass(RC)) {
1633 // O << "\t.reg " << rcname << " \t" << rcStr << "<"
1634 // << NVPTXNumRegisters << ">;\n";
1635 // }
1636
1637 // Only declare those registers that may be used. And do not emit vector
1638 // registers as
1639 // they are all elementized to scalar registers.
1640 //if (n && !isNVPTXVectorRegClass(RC)) {
1641 // if (RegAllocNilUsed) {
1642 // O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1643 // << ">;\n";
1644 // }
1645 // else {
1646 // O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr)
1647 // << "<" << 32 << ">;\n";
1648 // }
1649 //}
1650 //}
1651
1652 OutStreamer.EmitRawText(O.str());
1653}
1654
1655
1656void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1657 APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1658 bool ignored;
1659 unsigned int numHex;
1660 const char *lead;
1661
1662 if (Fp->getType()->getTypeID()==Type::FloatTyID) {
1663 numHex = 8;
1664 lead = "0f";
1665 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1666 &ignored);
1667 } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1668 numHex = 16;
1669 lead = "0d";
1670 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1671 &ignored);
1672 } else
1673 llvm_unreachable("unsupported fp type");
1674
1675 APInt API = APF.bitcastToAPInt();
1676 std::string hexstr(utohexstr(API.getZExtValue()));
1677 O << lead;
1678 if (hexstr.length() < numHex)
1679 O << std::string(numHex - hexstr.length(), '0');
1680 O << utohexstr(API.getZExtValue());
1681}
1682
1683void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) {
1684 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1685 O << CI->getValue();
1686 return;
1687 }
1688 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1689 printFPConstant(CFP, O);
1690 return;
1691 }
1692 if (isa<ConstantPointerNull>(CPV)) {
1693 O << "0";
1694 return;
1695 }
1696 if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1697 O << *Mang->getSymbol(GVar);
1698 return;
1699 }
1700 if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1701 Value *v = Cexpr->stripPointerCasts();
1702 if (GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1703 O << *Mang->getSymbol(GVar);
1704 return;
1705 } else {
1706 O << *LowerConstant(CPV, *this);
1707 return;
1708 }
1709 }
1710 llvm_unreachable("Not scalar type found in printScalarConstant()");
1711}
1712
1713
1714void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes,
1715 AggBuffer *aggBuffer) {
1716
1717 const TargetData *TD = TM.getTargetData();
1718
1719 if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1720 int s = TD->getTypeAllocSize(CPV->getType());
1721 if (s<Bytes)
1722 s = Bytes;
1723 aggBuffer->addZeros(s);
1724 return;
1725 }
1726
1727 unsigned char *ptr;
1728 switch (CPV->getType()->getTypeID()) {
1729
1730 case Type::IntegerTyID: {
1731 const Type *ETy = CPV->getType();
1732 if ( ETy == Type::getInt8Ty(CPV->getContext()) ){
1733 unsigned char c =
1734 (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1735 ptr = &c;
1736 aggBuffer->addBytes(ptr, 1, Bytes);
1737 } else if ( ETy == Type::getInt16Ty(CPV->getContext()) ) {
1738 short int16 =
1739 (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1740 ptr = (unsigned char*)&int16;
1741 aggBuffer->addBytes(ptr, 2, Bytes);
1742 } else if ( ETy == Type::getInt32Ty(CPV->getContext()) ) {
1743 if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1744 int int32 =(int)(constInt->getZExtValue());
1745 ptr = (unsigned char*)&int32;
1746 aggBuffer->addBytes(ptr, 4, Bytes);
1747 break;
Craig Topper63663612012-05-24 07:02:50 +00001748 } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Justin Holewinski49683f32012-05-04 20:18:50 +00001749 if (ConstantInt *constInt =
1750 dyn_cast<ConstantInt>(ConstantFoldConstantExpression(
1751 Cexpr, TD))) {
1752 int int32 =(int)(constInt->getZExtValue());
1753 ptr = (unsigned char*)&int32;
1754 aggBuffer->addBytes(ptr, 4, Bytes);
1755 break;
1756 }
1757 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1758 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1759 aggBuffer->addSymbol(v);
1760 aggBuffer->addZeros(4);
1761 break;
1762 }
1763 }
Craig Topper63663612012-05-24 07:02:50 +00001764 llvm_unreachable("unsupported integer const type");
Justin Holewinski49683f32012-05-04 20:18:50 +00001765 } else if (ETy == Type::getInt64Ty(CPV->getContext()) ) {
1766 if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1767 long long int64 =(long long)(constInt->getZExtValue());
1768 ptr = (unsigned char*)&int64;
1769 aggBuffer->addBytes(ptr, 8, Bytes);
1770 break;
Craig Topper63663612012-05-24 07:02:50 +00001771 } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Justin Holewinski49683f32012-05-04 20:18:50 +00001772 if (ConstantInt *constInt = dyn_cast<ConstantInt>(
1773 ConstantFoldConstantExpression(Cexpr, TD))) {
1774 long long int64 =(long long)(constInt->getZExtValue());
1775 ptr = (unsigned char*)&int64;
1776 aggBuffer->addBytes(ptr, 8, Bytes);
1777 break;
1778 }
1779 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1780 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1781 aggBuffer->addSymbol(v);
1782 aggBuffer->addZeros(8);
1783 break;
1784 }
1785 }
1786 llvm_unreachable("unsupported integer const type");
Craig Topper63663612012-05-24 07:02:50 +00001787 } else
Justin Holewinski49683f32012-05-04 20:18:50 +00001788 llvm_unreachable("unsupported integer const type");
1789 break;
1790 }
1791 case Type::FloatTyID:
1792 case Type::DoubleTyID: {
1793 ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1794 const Type* Ty = CFP->getType();
1795 if (Ty == Type::getFloatTy(CPV->getContext())) {
1796 float float32 = (float)CFP->getValueAPF().convertToFloat();
1797 ptr = (unsigned char*)&float32;
1798 aggBuffer->addBytes(ptr, 4, Bytes);
1799 } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1800 double float64 = CFP->getValueAPF().convertToDouble();
1801 ptr = (unsigned char*)&float64;
1802 aggBuffer->addBytes(ptr, 8, Bytes);
1803 }
1804 else {
1805 llvm_unreachable("unsupported fp const type");
1806 }
1807 break;
1808 }
1809 case Type::PointerTyID: {
1810 if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1811 aggBuffer->addSymbol(GVar);
1812 }
1813 else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1814 Value *v = Cexpr->stripPointerCasts();
1815 aggBuffer->addSymbol(v);
1816 }
1817 unsigned int s = TD->getTypeAllocSize(CPV->getType());
1818 aggBuffer->addZeros(s);
1819 break;
1820 }
1821
1822 case Type::ArrayTyID:
1823 case Type::VectorTyID:
1824 case Type::StructTyID: {
1825 if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
1826 isa<ConstantStruct>(CPV)) {
1827 int ElementSize = TD->getTypeAllocSize(CPV->getType());
1828 bufferAggregateConstant(CPV, aggBuffer);
1829 if ( Bytes > ElementSize )
1830 aggBuffer->addZeros(Bytes-ElementSize);
1831 }
1832 else if (isa<ConstantAggregateZero>(CPV))
1833 aggBuffer->addZeros(Bytes);
1834 else
1835 llvm_unreachable("Unexpected Constant type");
1836 break;
1837 }
1838
1839 default:
1840 llvm_unreachable("unsupported type");
1841 }
1842}
1843
1844void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV,
1845 AggBuffer *aggBuffer) {
1846 const TargetData *TD = TM.getTargetData();
1847 int Bytes;
1848
1849 // Old constants
1850 if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1851 if (CPV->getNumOperands())
1852 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1853 bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1854 return;
1855 }
1856
1857 if (const ConstantDataSequential *CDS =
1858 dyn_cast<ConstantDataSequential>(CPV)) {
1859 if (CDS->getNumElements())
1860 for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1861 bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1862 aggBuffer);
1863 return;
1864 }
1865
1866
1867 if (isa<ConstantStruct>(CPV)) {
1868 if (CPV->getNumOperands()) {
1869 StructType *ST = cast<StructType>(CPV->getType());
1870 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1871 if ( i == (e - 1))
1872 Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
1873 TD->getTypeAllocSize(ST)
1874 - TD->getStructLayout(ST)->getElementOffset(i);
1875 else
1876 Bytes = TD->getStructLayout(ST)->getElementOffset(i+1) -
1877 TD->getStructLayout(ST)->getElementOffset(i);
1878 bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes,
1879 aggBuffer);
1880 }
1881 }
1882 return;
1883 }
Craig Topper63663612012-05-24 07:02:50 +00001884 llvm_unreachable("unsupported constant type in printAggregateConstant()");
Justin Holewinski49683f32012-05-04 20:18:50 +00001885}
1886
1887// buildTypeNameMap - Run through symbol table looking for type names.
1888//
1889
1890
1891bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
1892
1893 std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
1894
1895 if (PI != TypeNameMap.end() &&
1896 (!PI->second.compare("struct._image1d_t") ||
1897 !PI->second.compare("struct._image2d_t") ||
1898 !PI->second.compare("struct._image3d_t")))
1899 return true;
1900
1901 return false;
1902}
1903
1904/// PrintAsmOperand - Print out an operand for an inline asm expression.
1905///
1906bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1907 unsigned AsmVariant,
1908 const char *ExtraCode,
1909 raw_ostream &O) {
1910 if (ExtraCode && ExtraCode[0]) {
1911 if (ExtraCode[1] != 0) return true; // Unknown modifier.
1912
1913 switch (ExtraCode[0]) {
Jack Carter0518fca2012-06-26 13:49:27 +00001914 default:
1915 // See if this is a generic print operand
1916 return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
Justin Holewinski49683f32012-05-04 20:18:50 +00001917 case 'r':
1918 break;
1919 }
1920 }
1921
1922 printOperand(MI, OpNo, O);
1923
1924 return false;
1925}
1926
1927bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
1928 unsigned OpNo,
1929 unsigned AsmVariant,
1930 const char *ExtraCode,
1931 raw_ostream &O) {
1932 if (ExtraCode && ExtraCode[0])
1933 return true; // Unknown modifier
1934
1935 O << '[';
1936 printMemOperand(MI, OpNo, O);
1937 O << ']';
1938
1939 return false;
1940}
1941
1942bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI)
1943{
1944 switch(MI.getOpcode()) {
1945 default:
1946 return false;
1947 case NVPTX::CallArgBeginInst: case NVPTX::CallArgEndInst0:
1948 case NVPTX::CallArgEndInst1: case NVPTX::CallArgF32:
1949 case NVPTX::CallArgF64: case NVPTX::CallArgI16:
1950 case NVPTX::CallArgI32: case NVPTX::CallArgI32imm:
1951 case NVPTX::CallArgI64: case NVPTX::CallArgI8:
1952 case NVPTX::CallArgParam: case NVPTX::CallVoidInst:
1953 case NVPTX::CallVoidInstReg: case NVPTX::Callseq_End:
1954 case NVPTX::CallVoidInstReg64:
1955 case NVPTX::DeclareParamInst: case NVPTX::DeclareRetMemInst:
1956 case NVPTX::DeclareRetRegInst: case NVPTX::DeclareRetScalarInst:
1957 case NVPTX::DeclareScalarParamInst: case NVPTX::DeclareScalarRegInst:
1958 case NVPTX::StoreParamF32: case NVPTX::StoreParamF64:
1959 case NVPTX::StoreParamI16: case NVPTX::StoreParamI32:
1960 case NVPTX::StoreParamI64: case NVPTX::StoreParamI8:
1961 case NVPTX::StoreParamS32I8: case NVPTX::StoreParamU32I8:
1962 case NVPTX::StoreParamS32I16: case NVPTX::StoreParamU32I16:
1963 case NVPTX::StoreParamScalar2F32: case NVPTX::StoreParamScalar2F64:
1964 case NVPTX::StoreParamScalar2I16: case NVPTX::StoreParamScalar2I32:
1965 case NVPTX::StoreParamScalar2I64: case NVPTX::StoreParamScalar2I8:
1966 case NVPTX::StoreParamScalar4F32: case NVPTX::StoreParamScalar4I16:
1967 case NVPTX::StoreParamScalar4I32: case NVPTX::StoreParamScalar4I8:
1968 case NVPTX::StoreParamV2F32: case NVPTX::StoreParamV2F64:
1969 case NVPTX::StoreParamV2I16: case NVPTX::StoreParamV2I32:
1970 case NVPTX::StoreParamV2I64: case NVPTX::StoreParamV2I8:
1971 case NVPTX::StoreParamV4F32: case NVPTX::StoreParamV4I16:
1972 case NVPTX::StoreParamV4I32: case NVPTX::StoreParamV4I8:
1973 case NVPTX::StoreRetvalF32: case NVPTX::StoreRetvalF64:
1974 case NVPTX::StoreRetvalI16: case NVPTX::StoreRetvalI32:
1975 case NVPTX::StoreRetvalI64: case NVPTX::StoreRetvalI8:
1976 case NVPTX::StoreRetvalScalar2F32: case NVPTX::StoreRetvalScalar2F64:
1977 case NVPTX::StoreRetvalScalar2I16: case NVPTX::StoreRetvalScalar2I32:
1978 case NVPTX::StoreRetvalScalar2I64: case NVPTX::StoreRetvalScalar2I8:
1979 case NVPTX::StoreRetvalScalar4F32: case NVPTX::StoreRetvalScalar4I16:
1980 case NVPTX::StoreRetvalScalar4I32: case NVPTX::StoreRetvalScalar4I8:
1981 case NVPTX::StoreRetvalV2F32: case NVPTX::StoreRetvalV2F64:
1982 case NVPTX::StoreRetvalV2I16: case NVPTX::StoreRetvalV2I32:
1983 case NVPTX::StoreRetvalV2I64: case NVPTX::StoreRetvalV2I8:
1984 case NVPTX::StoreRetvalV4F32: case NVPTX::StoreRetvalV4I16:
1985 case NVPTX::StoreRetvalV4I32: case NVPTX::StoreRetvalV4I8:
1986 case NVPTX::LastCallArgF32: case NVPTX::LastCallArgF64:
1987 case NVPTX::LastCallArgI16: case NVPTX::LastCallArgI32:
1988 case NVPTX::LastCallArgI32imm: case NVPTX::LastCallArgI64:
1989 case NVPTX::LastCallArgI8: case NVPTX::LastCallArgParam:
1990 case NVPTX::LoadParamMemF32: case NVPTX::LoadParamMemF64:
1991 case NVPTX::LoadParamMemI16: case NVPTX::LoadParamMemI32:
1992 case NVPTX::LoadParamMemI64: case NVPTX::LoadParamMemI8:
1993 case NVPTX::LoadParamRegF32: case NVPTX::LoadParamRegF64:
1994 case NVPTX::LoadParamRegI16: case NVPTX::LoadParamRegI32:
1995 case NVPTX::LoadParamRegI64: case NVPTX::LoadParamRegI8:
1996 case NVPTX::LoadParamScalar2F32: case NVPTX::LoadParamScalar2F64:
1997 case NVPTX::LoadParamScalar2I16: case NVPTX::LoadParamScalar2I32:
1998 case NVPTX::LoadParamScalar2I64: case NVPTX::LoadParamScalar2I8:
1999 case NVPTX::LoadParamScalar4F32: case NVPTX::LoadParamScalar4I16:
2000 case NVPTX::LoadParamScalar4I32: case NVPTX::LoadParamScalar4I8:
2001 case NVPTX::LoadParamV2F32: case NVPTX::LoadParamV2F64:
2002 case NVPTX::LoadParamV2I16: case NVPTX::LoadParamV2I32:
2003 case NVPTX::LoadParamV2I64: case NVPTX::LoadParamV2I8:
2004 case NVPTX::LoadParamV4F32: case NVPTX::LoadParamV4I16:
2005 case NVPTX::LoadParamV4I32: case NVPTX::LoadParamV4I8:
2006 case NVPTX::PrototypeInst: case NVPTX::DBG_VALUE:
2007 return true;
2008 }
2009 return false;
2010}
2011
2012// Force static initialization.
2013extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
2014 RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2015 RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2016}
2017
2018
2019void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
2020 std::stringstream temp;
2021 LineReader * reader = this->getReader(filename.str());
2022 temp << "\n//";
2023 temp << filename.str();
2024 temp << ":";
2025 temp << line;
2026 temp << " ";
2027 temp << reader->readLine(line);
2028 temp << "\n";
2029 this->OutStreamer.EmitRawText(Twine(temp.str()));
2030}
2031
2032
2033LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
2034 if (reader == NULL) {
2035 reader = new LineReader(filename);
2036 }
2037
2038 if (reader->fileName() != filename) {
2039 delete reader;
2040 reader = new LineReader(filename);
2041 }
2042
2043 return reader;
2044}
2045
2046
2047std::string
2048LineReader::readLine(unsigned lineNum) {
2049 if (lineNum < theCurLine) {
2050 theCurLine = 0;
2051 fstr.seekg(0,std::ios::beg);
2052 }
2053 while (theCurLine < lineNum) {
2054 fstr.getline(buff,500);
2055 theCurLine++;
2056 }
2057 return buff;
2058}
2059
2060// Force static initialization.
2061extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2062 RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2063 RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2064}