blob: e4f567ffd5d9a59f5d823527df7883344dd20841 [file] [log] [blame]
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +00001//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which inserts x86 AVX vzeroupper instructions
11// before calls to SSE encoded functions. This avoids transition latency
12// penalty when tranfering control between AVX encoded instructions and old
13// SSE encoding mode.
14//
15//===----------------------------------------------------------------------===//
16
Eli Friedmanbd00a932011-11-04 23:46:11 +000017#define DEBUG_TYPE "x86-vzeroupper"
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +000018#include "X86.h"
19#include "X86InstrInfo.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
Eli Friedmanbd00a932011-11-04 23:46:11 +000023#include "llvm/CodeGen/MachineRegisterInfo.h"
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +000024#include "llvm/CodeGen/Passes.h"
Eli Friedmanbd00a932011-11-04 23:46:11 +000025#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +000027#include "llvm/Target/TargetInstrInfo.h"
28using namespace llvm;
29
30STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
31
32namespace {
33 struct VZeroUpperInserter : public MachineFunctionPass {
34 static char ID;
35 VZeroUpperInserter() : MachineFunctionPass(ID) {}
36
37 virtual bool runOnMachineFunction(MachineFunction &MF);
38
39 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
40
41 virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
42
43 private:
44 const TargetInstrInfo *TII; // Machine instruction info.
45 MachineBasicBlock *MBB; // Current basic block
Eli Friedmanbd00a932011-11-04 23:46:11 +000046
47 // Any YMM register live-in to this function?
48 bool FnHasLiveInYmm;
49
50 // BBState - Contains the state of each MBB: unknown, clean, dirty
51 SmallVector<uint8_t, 8> BBState;
52
53 // BBSolved - Keep track of all MBB which had been already analyzed
54 // and there is no further processing required.
55 BitVector BBSolved;
56
57 // Machine Basic Blocks are classified according this pass:
58 //
59 // ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
60 // until the MBB exit there isn't a instruction using YMM to change
61 // the state to dirty, or one of the incoming predecessors is unknown
62 // and there's not a dirty predecessor between them.
63 //
64 // ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
65 // instructions using YMM and be marked ST_CLEAN, as long as the state
66 // is cleaned by a vzeroupper before any call.
67 //
68 // ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
69 // vzeroupper instruction.
70 //
71 // ST_INIT - Placeholder for an empty state set
72 //
73 enum {
74 ST_UNKNOWN = 0,
75 ST_CLEAN = 1,
76 ST_DIRTY = 2,
77 ST_INIT = 3
78 };
79
80 // computeState - Given two states, compute the resulting state, in
81 // the following way
82 //
83 // 1) One dirty state yields another dirty state
84 // 2) All states must be clean for the result to be clean
85 // 3) If none above and one unknown, the result state is also unknown
86 //
87 unsigned computeState(unsigned PrevState, unsigned CurState) {
88 if (PrevState == ST_INIT)
89 return CurState;
90
91 if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
92 return ST_DIRTY;
93
94 if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
95 return ST_CLEAN;
96
97 return ST_UNKNOWN;
98 }
99
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000100 };
101 char VZeroUpperInserter::ID = 0;
102}
103
104FunctionPass *llvm::createX86IssueVZeroUpperPass() {
105 return new VZeroUpperInserter();
106}
107
Eli Friedmanbd00a932011-11-04 23:46:11 +0000108static bool isYmmReg(unsigned Reg) {
109 if (Reg >= X86::YMM0 && Reg <= X86::YMM15)
110 return true;
111
112 return false;
113}
114
115static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
116 for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
117 E = MRI.livein_end(); I != E; ++I)
118 if (isYmmReg(I->first))
119 return true;
120
121 return false;
122}
123
124static bool hasYmmReg(MachineInstr *MI) {
125 for (int i = 0, e = MI->getNumOperands(); i != e; ++i) {
126 const MachineOperand &MO = MI->getOperand(i);
127 if (!MO.isReg())
128 continue;
129 if (MO.isDebug())
130 continue;
131 if (isYmmReg(MO.getReg()))
132 return true;
133 }
134 return false;
135}
136
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000137/// runOnMachineFunction - Loop over all of the basic blocks, inserting
138/// vzero upper instructions before function calls.
139bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
140 TII = MF.getTarget().getInstrInfo();
Eli Friedmanbd00a932011-11-04 23:46:11 +0000141 MachineRegisterInfo &MRI = MF.getRegInfo();
142 bool EverMadeChange = false;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000143
Eli Friedmanbd00a932011-11-04 23:46:11 +0000144 // Fast check: if the function doesn't use any ymm registers, we don't need
145 // to insert any VZEROUPPER instructions. This is constant-time, so it is
146 // cheap in the common case of no ymm use.
147 bool YMMUsed = false;
Craig Topperc9099502012-04-20 06:31:50 +0000148 const TargetRegisterClass *RC = &X86::VR256RegClass;
Eli Friedmanbd00a932011-11-04 23:46:11 +0000149 for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
150 i != e; i++) {
151 if (MRI.isPhysRegUsed(*i)) {
152 YMMUsed = true;
153 break;
154 }
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000155 }
Eli Friedmanbd00a932011-11-04 23:46:11 +0000156 if (!YMMUsed)
157 return EverMadeChange;
158
159 // Pre-compute the existence of any live-in YMM registers to this function
160 FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
161
162 assert(BBState.empty());
163 BBState.resize(MF.getNumBlockIDs(), 0);
164 BBSolved.resize(MF.getNumBlockIDs(), 0);
165
166 // Each BB state depends on all predecessors, loop over until everything
167 // converges. (Once we converge, we can implicitly mark everything that is
168 // still ST_UNKNOWN as ST_CLEAN.)
169 while (1) {
170 bool MadeChange = false;
171
172 // Process all basic blocks.
173 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
174 MadeChange |= processBasicBlock(MF, *I);
175
176 // If this iteration over the code changed anything, keep iterating.
177 if (!MadeChange) break;
178 EverMadeChange = true;
179 }
180
181 BBState.clear();
182 BBSolved.clear();
183 return EverMadeChange;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000184}
185
186/// processBasicBlock - Loop over all of the instructions in the basic block,
187/// inserting vzero upper instructions before function calls.
188bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
189 MachineBasicBlock &BB) {
190 bool Changed = false;
Eli Friedmanbd00a932011-11-04 23:46:11 +0000191 unsigned BBNum = BB.getNumber();
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000192 MBB = &BB;
193
Eli Friedmanbd00a932011-11-04 23:46:11 +0000194 // Don't process already solved BBs
195 if (BBSolved[BBNum])
196 return false; // No changes
197
198 // Check the state of all predecessors
199 unsigned EntryState = ST_INIT;
200 for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
201 PE = BB.pred_end(); PI != PE; ++PI) {
202 EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
203 if (EntryState == ST_DIRTY)
204 break;
205 }
206
207
Benjamin Kramerd9b0b022012-06-02 10:20:22 +0000208 // The entry MBB for the function may set the initial state to dirty if
Eli Friedmanbd00a932011-11-04 23:46:11 +0000209 // the function receives any YMM incoming arguments
210 if (MBB == MF.begin()) {
211 EntryState = ST_CLEAN;
212 if (FnHasLiveInYmm)
213 EntryState = ST_DIRTY;
214 }
215
216 // The current state is initialized according to the predecessors
217 unsigned CurState = EntryState;
218 bool BBHasCall = false;
219
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000220 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
221 MachineInstr *MI = I;
222 DebugLoc dl = I->getDebugLoc();
Evan Cheng5a96b3d2011-12-07 07:15:52 +0000223 bool isControlFlow = MI->isCall() || MI->isReturn();
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000224
Eli Friedmanbd00a932011-11-04 23:46:11 +0000225 // Shortcut: don't need to check regular instructions in dirty state.
226 if (!isControlFlow && CurState == ST_DIRTY)
227 continue;
228
229 if (hasYmmReg(MI)) {
230 // We found a ymm-using instruction; this could be an AVX instruction,
231 // or it could be control flow.
232 CurState = ST_DIRTY;
233 continue;
234 }
235
236 // Check for control-flow out of the current function (which might
237 // indirectly execute SSE instructions).
238 if (!isControlFlow)
239 continue;
240
241 BBHasCall = true;
242
243 // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
244 // registers. This instruction has zero latency. In addition, the processor
245 // changes back to Clean state, after which execution of Intel SSE
246 // instructions or Intel AVX instructions has no transition penalty. Add
247 // the VZEROUPPER instruction before any function call/return that might
248 // execute SSE code.
249 // FIXME: In some cases, we may want to move the VZEROUPPER into a
250 // predecessor block.
251 if (CurState == ST_DIRTY) {
252 // Only insert the VZEROUPPER in case the entry state isn't unknown.
253 // When unknown, only compute the information within the block to have
254 // it available in the exit if possible, but don't change the block.
255 if (EntryState != ST_UNKNOWN) {
256 BuildMI(*MBB, I, dl, TII->get(X86::VZEROUPPER));
257 ++NumVZU;
258 }
259
260 // After the inserted VZEROUPPER the state becomes clean again, but
261 // other YMM may appear before other subsequent calls or even before
262 // the end of the BB.
263 CurState = ST_CLEAN;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000264 }
265 }
266
Eli Friedmanbd00a932011-11-04 23:46:11 +0000267 DEBUG(dbgs() << "MBB #" << BBNum
268 << ", current state: " << CurState << '\n');
269
270 // A BB can only be considered solved when we both have done all the
271 // necessary transformations, and have computed the exit state. This happens
272 // in two cases:
273 // 1) We know the entry state: this immediately implies the exit state and
274 // all the necessary transformations.
275 // 2) There are no calls, and and a non-call instruction marks this block:
276 // no transformations are necessary, and we know the exit state.
277 if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
278 BBSolved[BBNum] = true;
279
280 if (CurState != BBState[BBNum])
281 Changed = true;
282
283 BBState[BBNum] = CurState;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000284 return Changed;
285}