blob: 40e3e8690f347d56b0340f41cd7fdfa2161e2218 [file] [log] [blame]
Evan Chenga8e29892007-01-19 07:51:42 +00001//===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Evan Chenga8e29892007-01-19 07:51:42 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the ARM addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
15#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
16
17#include "llvm/CodeGen/SelectionDAGNodes.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000018#include "llvm/Support/ErrorHandling.h"
Evan Chenga8e29892007-01-19 07:51:42 +000019#include "llvm/Support/MathExtras.h"
20#include <cassert>
21
22namespace llvm {
23
24/// ARM_AM - ARM Addressing Mode Stuff
25namespace ARM_AM {
26 enum ShiftOpc {
27 no_shift = 0,
28 asr,
29 lsl,
30 lsr,
31 ror,
32 rrx
33 };
34
35 enum AddrOpc {
36 add = '+', sub = '-'
37 };
38
39 static inline const char *getShiftOpcStr(ShiftOpc Op) {
40 switch (Op) {
Torok Edwinc25e7582009-07-11 20:10:48 +000041 default: LLVM_UNREACHABLE("Unknown shift opc!");
Evan Chenga8e29892007-01-19 07:51:42 +000042 case ARM_AM::asr: return "asr";
43 case ARM_AM::lsl: return "lsl";
44 case ARM_AM::lsr: return "lsr";
45 case ARM_AM::ror: return "ror";
46 case ARM_AM::rrx: return "rrx";
47 }
48 }
49
Dan Gohman475871a2008-07-27 21:46:04 +000050 static inline ShiftOpc getShiftOpcForNode(SDValue N) {
Evan Chenga8e29892007-01-19 07:51:42 +000051 switch (N.getOpcode()) {
52 default: return ARM_AM::no_shift;
53 case ISD::SHL: return ARM_AM::lsl;
54 case ISD::SRL: return ARM_AM::lsr;
55 case ISD::SRA: return ARM_AM::asr;
56 case ISD::ROTR: return ARM_AM::ror;
57 //case ISD::ROTL: // Only if imm -> turn into ROTR.
58 // Can't handle RRX here, because it would require folding a flag into
59 // the addressing mode. :( This causes us to miss certain things.
60 //case ARMISD::RRX: return ARM_AM::rrx;
61 }
62 }
63
64 enum AMSubMode {
65 bad_am_submode = 0,
66 ia,
67 ib,
68 da,
69 db
70 };
71
72 static inline const char *getAMSubModeStr(AMSubMode Mode) {
73 switch (Mode) {
Torok Edwinc25e7582009-07-11 20:10:48 +000074 default: LLVM_UNREACHABLE("Unknown addressing sub-mode!");
Evan Chenga8e29892007-01-19 07:51:42 +000075 case ARM_AM::ia: return "ia";
76 case ARM_AM::ib: return "ib";
77 case ARM_AM::da: return "da";
78 case ARM_AM::db: return "db";
79 }
80 }
81
82 static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) {
83 switch (Mode) {
Torok Edwinc25e7582009-07-11 20:10:48 +000084 default: LLVM_UNREACHABLE("Unknown addressing sub-mode!");
Evan Chenga8e29892007-01-19 07:51:42 +000085 case ARM_AM::ia: return isLD ? "fd" : "ea";
86 case ARM_AM::ib: return isLD ? "ed" : "fa";
87 case ARM_AM::da: return isLD ? "fa" : "ed";
88 case ARM_AM::db: return isLD ? "ea" : "fd";
89 }
90 }
91
92 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
93 ///
94 static inline unsigned rotr32(unsigned Val, unsigned Amt) {
95 assert(Amt < 32 && "Invalid rotate amount");
96 return (Val >> Amt) | (Val << ((32-Amt)&31));
97 }
98
99 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
100 ///
101 static inline unsigned rotl32(unsigned Val, unsigned Amt) {
102 assert(Amt < 32 && "Invalid rotate amount");
103 return (Val << Amt) | (Val >> ((32-Amt)&31));
104 }
105
106 //===--------------------------------------------------------------------===//
107 // Addressing Mode #1: shift_operand with registers
108 //===--------------------------------------------------------------------===//
109 //
110 // This 'addressing mode' is used for arithmetic instructions. It can
111 // represent things like:
112 // reg
113 // reg [asr|lsl|lsr|ror|rrx] reg
114 // reg [asr|lsl|lsr|ror|rrx] imm
115 //
116 // This is stored three operands [rega, regb, opc]. The first is the base
117 // reg, the second is the shift amount (or reg0 if not present or imm). The
118 // third operand encodes the shift opcode and the imm if a reg isn't present.
119 //
120 static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
121 return ShOp | (Imm << 3);
122 }
123 static inline unsigned getSORegOffset(unsigned Op) {
124 return Op >> 3;
125 }
126 static inline ShiftOpc getSORegShOp(unsigned Op) {
127 return (ShiftOpc)(Op & 7);
128 }
129
130 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
131 /// the 8-bit imm value.
132 static inline unsigned getSOImmValImm(unsigned Imm) {
133 return Imm & 0xFF;
134 }
Bob Wilsond83712a2009-03-30 18:49:37 +0000135 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
Evan Chenga8e29892007-01-19 07:51:42 +0000136 /// the rotate amount.
137 static inline unsigned getSOImmValRot(unsigned Imm) {
138 return (Imm >> 8) * 2;
139 }
140
141 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
142 /// computing the rotate amount to use. If this immediate value cannot be
143 /// handled with a single shifter-op, determine a good rotate amount that will
144 /// take a maximal chunk of bits out of the immediate.
145 static inline unsigned getSOImmValRotate(unsigned Imm) {
146 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
147 // of zero.
148 if ((Imm & ~255U) == 0) return 0;
149
150 // Use CTZ to compute the rotate amount.
151 unsigned TZ = CountTrailingZeros_32(Imm);
152
153 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
154 // not 9.
155 unsigned RotAmt = TZ & ~1;
156
157 // If we can handle this spread, return it.
158 if ((rotr32(Imm, RotAmt) & ~255U) == 0)
159 return (32-RotAmt)&31; // HW rotates right, not left.
160
161 // For values like 0xF000000F, we should skip the first run of ones, then
162 // retry the hunt.
163 if (Imm & 1) {
164 unsigned TrailingOnes = CountTrailingZeros_32(~Imm);
165 if (TrailingOnes != 32) { // Avoid overflow on 0xFFFFFFFF
166 // Restart the search for a high-order bit after the initial seconds of
167 // ones.
168 unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1));
169
170 // Rotate amount must be even.
171 unsigned RotAmt2 = TZ2 & ~1;
172
173 // If this fits, use it.
174 if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0)
175 return (32-RotAmt2)&31; // HW rotates right, not left.
176 }
177 }
178
179 // Otherwise, we have no way to cover this span of bits with a single
180 // shifter_op immediate. Return a chunk of bits that will be useful to
181 // handle.
182 return (32-RotAmt)&31; // HW rotates right, not left.
183 }
184
185 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
186 /// into an shifter_operand immediate operand, return the 12-bit encoding for
187 /// it. If not, return -1.
188 static inline int getSOImmVal(unsigned Arg) {
189 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
190 // of zero.
191 if ((Arg & ~255U) == 0) return Arg;
192
193 unsigned RotAmt = getSOImmValRotate(Arg);
194
195 // If this cannot be handled with a single shifter_op, bail out.
196 if (rotr32(~255U, RotAmt) & Arg)
197 return -1;
198
199 // Encode this correctly.
200 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
201 }
202
203 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
204 /// or'ing together two SOImmVal's.
205 static inline bool isSOImmTwoPartVal(unsigned V) {
206 // If this can be handled with a single shifter_op, bail out.
207 V = rotr32(~255U, getSOImmValRotate(V)) & V;
208 if (V == 0)
209 return false;
210
211 // If this can be handled with two shifter_op's, accept.
212 V = rotr32(~255U, getSOImmValRotate(V)) & V;
213 return V == 0;
214 }
215
216 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
217 /// return the first chunk of it.
218 static inline unsigned getSOImmTwoPartFirst(unsigned V) {
219 return rotr32(255U, getSOImmValRotate(V)) & V;
220 }
221
222 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
223 /// return the second chunk of it.
224 static inline unsigned getSOImmTwoPartSecond(unsigned V) {
225 // Mask out the first hunk.
226 V = rotr32(~255U, getSOImmValRotate(V)) & V;
227
228 // Take what's left.
229 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
230 return V;
231 }
232
233 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
234 /// by a left shift. Returns the shift amount to use.
235 static inline unsigned getThumbImmValShift(unsigned Imm) {
236 // 8-bit (or less) immediates are trivially immediate operand with a shift
237 // of zero.
238 if ((Imm & ~255U) == 0) return 0;
239
240 // Use CTZ to compute the shift amount.
241 return CountTrailingZeros_32(Imm);
242 }
243
244 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
245 /// by left shifting a 8-bit immediate.
246 static inline bool isThumbImmShiftedVal(unsigned V) {
247 // If this can be handled with
248 V = (~255U << getThumbImmValShift(V)) & V;
249 return V == 0;
250 }
251
Evan Chengf49810c2009-06-23 17:48:47 +0000252 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
253 /// by a left shift. Returns the shift amount to use.
254 static inline unsigned getThumbImm16ValShift(unsigned Imm) {
255 // 16-bit (or less) immediates are trivially immediate operand with a shift
256 // of zero.
257 if ((Imm & ~65535U) == 0) return 0;
258
259 // Use CTZ to compute the shift amount.
260 return CountTrailingZeros_32(Imm);
261 }
262
263 /// isThumbImm16ShiftedVal - Return true if the specified value can be
264 /// obtained by left shifting a 16-bit immediate.
265 static inline bool isThumbImm16ShiftedVal(unsigned V) {
266 // If this can be handled with
267 V = (~65535U << getThumbImm16ValShift(V)) & V;
268 return V == 0;
269 }
270
Evan Chenga8e29892007-01-19 07:51:42 +0000271 /// getThumbImmNonShiftedVal - If V is a value that satisfies
272 /// isThumbImmShiftedVal, return the non-shiftd value.
273 static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
274 return V >> getThumbImmValShift(V);
275 }
276
Evan Chengf49810c2009-06-23 17:48:47 +0000277 /// getT2SOImmValSplat - Return the 12-bit encoded representation
278 /// if the specified value can be obtained by splatting the low 8 bits
279 /// into every other byte or every byte of a 32-bit value. i.e.,
280 /// 00000000 00000000 00000000 abcdefgh control = 0
281 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
282 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
283 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
284 /// Return -1 if none of the above apply.
285 /// See ARM Reference Manual A6.3.2.
Evan Cheng055b0312009-06-29 07:51:04 +0000286 static inline int getT2SOImmValSplat(unsigned V) {
Evan Chengf49810c2009-06-23 17:48:47 +0000287 unsigned u, Vs, Imm;
288 // control = 0
289 if ((V & 0xffffff00) == 0)
290 return V;
291
292 // If the value is zeroes in the first byte, just shift those off
293 Vs = ((V & 0xff) == 0) ? V >> 8 : V;
294 // Any passing value only has 8 bits of payload, splatted across the word
295 Imm = Vs & 0xff;
296 // Likewise, any passing values have the payload splatted into the 3rd byte
297 u = Imm | (Imm << 16);
298
299 // control = 1 or 2
300 if (Vs == u)
301 return (((Vs == V) ? 1 : 2) << 8) | Imm;
302
303 // control = 3
304 if (Vs == (u | (u << 8)))
305 return (3 << 8) | Imm;
306
307 return -1;
308 }
309
310 /// getT2SOImmValRotate - Return the 12-bit encoded representation if the
311 /// specified value is a rotated 8-bit value. Return -1 if no rotation
312 /// encoding is possible.
313 /// See ARM Reference Manual A6.3.2.
314 static inline int getT2SOImmValRotate (unsigned V) {
315 unsigned RotAmt = CountLeadingZeros_32(V);
316 if (RotAmt >= 24)
317 return -1;
318
319 // If 'Arg' can be handled with a single shifter_op return the value.
320 if ((rotr32(0xff000000U, RotAmt) & V) == V)
321 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
322
323 return -1;
324 }
325
326 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
327 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
328 /// encoding for it. If not, return -1.
329 /// See ARM Reference Manual A6.3.2.
330 static inline int getT2SOImmVal(unsigned Arg) {
331 // If 'Arg' is an 8-bit splat, then get the encoded value.
332 int Splat = getT2SOImmValSplat(Arg);
333 if (Splat != -1)
334 return Splat;
335
336 // If 'Arg' can be handled with a single shifter_op return the value.
337 int Rot = getT2SOImmValRotate(Arg);
338 if (Rot != -1)
339 return Rot;
340
341 return -1;
342 }
343
344
Evan Chenga8e29892007-01-19 07:51:42 +0000345 //===--------------------------------------------------------------------===//
346 // Addressing Mode #2
347 //===--------------------------------------------------------------------===//
348 //
349 // This is used for most simple load/store instructions.
350 //
351 // addrmode2 := reg +/- reg shop imm
352 // addrmode2 := reg +/- imm12
353 //
354 // The first operand is always a Reg. The second operand is a reg if in
355 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
356 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15.
357 //
358 // If this addressing mode is a frame index (before prolog/epilog insertion
359 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
360 // with no shift amount for the frame offset.
361 //
362 static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) {
363 assert(Imm12 < (1 << 12) && "Imm too large!");
364 bool isSub = Opc == sub;
365 return Imm12 | ((int)isSub << 12) | (SO << 13);
366 }
367 static inline unsigned getAM2Offset(unsigned AM2Opc) {
368 return AM2Opc & ((1 << 12)-1);
369 }
370 static inline AddrOpc getAM2Op(unsigned AM2Opc) {
371 return ((AM2Opc >> 12) & 1) ? sub : add;
372 }
373 static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
374 return (ShiftOpc)(AM2Opc >> 13);
375 }
376
377
378 //===--------------------------------------------------------------------===//
379 // Addressing Mode #3
380 //===--------------------------------------------------------------------===//
381 //
382 // This is used for sign-extending loads, and load/store-pair instructions.
383 //
384 // addrmode3 := reg +/- reg
385 // addrmode3 := reg +/- imm8
386 //
387 // The first operand is always a Reg. The second operand is a reg if in
388 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
389 // in bit 8, the immediate in bits 0-7.
390
391 /// getAM3Opc - This function encodes the addrmode3 opc field.
392 static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) {
393 bool isSub = Opc == sub;
394 return ((int)isSub << 8) | Offset;
395 }
396 static inline unsigned char getAM3Offset(unsigned AM3Opc) {
397 return AM3Opc & 0xFF;
398 }
399 static inline AddrOpc getAM3Op(unsigned AM3Opc) {
400 return ((AM3Opc >> 8) & 1) ? sub : add;
401 }
402
403 //===--------------------------------------------------------------------===//
404 // Addressing Mode #4
405 //===--------------------------------------------------------------------===//
406 //
407 // This is used for load / store multiple instructions.
408 //
409 // addrmode4 := reg, <mode>
410 //
411 // The four modes are:
412 // IA - Increment after
413 // IB - Increment before
414 // DA - Decrement after
415 // DB - Decrement before
416 //
417 // If the 4th bit (writeback)is set, then the base register is updated after
418 // the memory transfer.
419
420 static inline AMSubMode getAM4SubMode(unsigned Mode) {
421 return (AMSubMode)(Mode & 0x7);
422 }
423
424 static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) {
425 return (int)SubMode | ((int)WB << 3);
426 }
427
428 static inline bool getAM4WBFlag(unsigned Mode) {
429 return (Mode >> 3) & 1;
430 }
431
432 //===--------------------------------------------------------------------===//
433 // Addressing Mode #5
434 //===--------------------------------------------------------------------===//
435 //
436 // This is used for coprocessor instructions, such as FP load/stores.
437 //
438 // addrmode5 := reg +/- imm8*4
439 //
Bob Wilsond4d826e2009-07-01 21:22:45 +0000440 // The first operand is always a Reg. The second operand encodes the
441 // operation in bit 8 and the immediate in bits 0-7.
Evan Chenga8e29892007-01-19 07:51:42 +0000442 //
Bob Wilsond4d826e2009-07-01 21:22:45 +0000443 // This is also used for FP load/store multiple ops. The second operand
444 // encodes the writeback mode in bit 8 and the number of registers (or 2
445 // times the number of registers for DPR ops) in bits 0-7. In addition,
446 // bits 9-11 encode one of the following two sub-modes:
Evan Chenga8e29892007-01-19 07:51:42 +0000447 //
448 // IA - Increment after
449 // DB - Decrement before
450
451 /// getAM5Opc - This function encodes the addrmode5 opc field.
452 static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
453 bool isSub = Opc == sub;
454 return ((int)isSub << 8) | Offset;
455 }
456 static inline unsigned char getAM5Offset(unsigned AM5Opc) {
457 return AM5Opc & 0xFF;
458 }
459 static inline AddrOpc getAM5Op(unsigned AM5Opc) {
460 return ((AM5Opc >> 8) & 1) ? sub : add;
461 }
462
463 /// getAM5Opc - This function encodes the addrmode5 opc field for FLDM and
464 /// FSTM instructions.
465 static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB,
466 unsigned char Offset) {
467 assert((SubMode == ia || SubMode == db) &&
468 "Illegal addressing mode 5 sub-mode!");
469 return ((int)SubMode << 9) | ((int)WB << 8) | Offset;
470 }
471 static inline AMSubMode getAM5SubMode(unsigned AM5Opc) {
472 return (AMSubMode)((AM5Opc >> 9) & 0x7);
473 }
474 static inline bool getAM5WBFlag(unsigned AM5Opc) {
475 return ((AM5Opc >> 8) & 1);
476 }
Bob Wilson8b024a52009-07-01 23:16:05 +0000477
478 //===--------------------------------------------------------------------===//
479 // Addressing Mode #6
480 //===--------------------------------------------------------------------===//
481 //
482 // This is used for NEON load / store instructions.
483 //
484 // addrmode6 := reg with optional writeback
485 //
486 // This is stored in three operands [regaddr, regupdate, opc]. The first is
487 // the address register. The second register holds the value of a post-access
488 // increment for writeback or reg0 if no writeback or if the writeback
489 // increment is the size of the memory access. The third operand encodes
490 // whether there is writeback to the address register.
491
492 static inline unsigned getAM6Opc(bool WB = false) {
493 return (int)WB;
494 }
495
496 static inline bool getAM6WBFlag(unsigned Mode) {
497 return Mode & 1;
498 }
499
Evan Chenga8e29892007-01-19 07:51:42 +0000500} // end namespace ARM_AM
501} // end namespace llvm
502
503#endif
504