blob: f5a68c86c3c09498ebb4880e907f0a1ce89ab485 [file] [log] [blame]
Danil Malyshevcf852dc2011-07-13 07:57:58 +00001//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "RuntimeDyldImpl.h"
19using namespace llvm;
20using namespace llvm::object;
21
22namespace llvm {
23
24bool RuntimeDyldMachO::
25resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
26 unsigned Type, unsigned Size) {
27 // This just dispatches to the proper target specific routine.
28 switch (CPUType) {
29 default: assert(0 && "Unsupported CPU type!");
30 case mach::CTM_x86_64:
31 return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
32 isPCRel, Type, Size);
33 case mach::CTM_ARM:
34 return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
35 isPCRel, Type, Size);
36 }
37 llvm_unreachable("");
38}
39
40bool RuntimeDyldMachO::
41resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
42 bool isPCRel, unsigned Type,
43 unsigned Size) {
44 // If the relocation is PC-relative, the value to be encoded is the
45 // pointer difference.
46 if (isPCRel)
47 // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
48 // address. Is that expected? Only for branches, perhaps?
49 Value -= Address + 4;
50
51 switch(Type) {
52 default:
53 llvm_unreachable("Invalid relocation type!");
54 case macho::RIT_X86_64_Unsigned:
55 case macho::RIT_X86_64_Branch: {
56 // Mask in the target value a byte at a time (we don't have an alignment
57 // guarantee for the target address, so this is safest).
58 uint8_t *p = (uint8_t*)Address;
59 for (unsigned i = 0; i < Size; ++i) {
60 *p++ = (uint8_t)Value;
61 Value >>= 8;
62 }
63 return false;
64 }
65 case macho::RIT_X86_64_Signed:
66 case macho::RIT_X86_64_GOTLoad:
67 case macho::RIT_X86_64_GOT:
68 case macho::RIT_X86_64_Subtractor:
69 case macho::RIT_X86_64_Signed1:
70 case macho::RIT_X86_64_Signed2:
71 case macho::RIT_X86_64_Signed4:
72 case macho::RIT_X86_64_TLV:
73 return Error("Relocation type not implemented yet!");
74 }
75 return false;
76}
77
78bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
79 bool isPCRel, unsigned Type,
80 unsigned Size) {
81 // If the relocation is PC-relative, the value to be encoded is the
82 // pointer difference.
83 if (isPCRel) {
84 Value -= Address;
85 // ARM PCRel relocations have an effective-PC offset of two instructions
86 // (four bytes in Thumb mode, 8 bytes in ARM mode).
87 // FIXME: For now, assume ARM mode.
88 Value -= 8;
89 }
90
91 switch(Type) {
92 default:
93 llvm_unreachable("Invalid relocation type!");
94 case macho::RIT_Vanilla: {
95 llvm_unreachable("Invalid relocation type!");
96 // Mask in the target value a byte at a time (we don't have an alignment
97 // guarantee for the target address, so this is safest).
98 uint8_t *p = (uint8_t*)Address;
99 for (unsigned i = 0; i < Size; ++i) {
100 *p++ = (uint8_t)Value;
101 Value >>= 8;
102 }
103 break;
104 }
105 case macho::RIT_ARM_Branch24Bit: {
106 // Mask the value into the target address. We know instructions are
107 // 32-bit aligned, so we can do it all at once.
108 uint32_t *p = (uint32_t*)Address;
109 // The low two bits of the value are not encoded.
110 Value >>= 2;
111 // Mask the value to 24 bits.
112 Value &= 0xffffff;
113 // FIXME: If the destination is a Thumb function (and the instruction
114 // is a non-predicated BL instruction), we need to change it to a BLX
115 // instruction instead.
116
117 // Insert the value into the instruction.
118 *p = (*p & ~0xffffff) | Value;
119 break;
120 }
121 case macho::RIT_ARM_ThumbBranch22Bit:
122 case macho::RIT_ARM_ThumbBranch32Bit:
123 case macho::RIT_ARM_Half:
124 case macho::RIT_ARM_HalfDifference:
125 case macho::RIT_Pair:
126 case macho::RIT_Difference:
127 case macho::RIT_ARM_LocalDifference:
128 case macho::RIT_ARM_PreboundLazyPointer:
129 return Error("Relocation type not implemented yet!");
130 }
131 return false;
132}
133
134bool RuntimeDyldMachO::
135loadSegment32(const MachOObject *Obj,
136 const MachOObject::LoadCommandInfo *SegmentLCI,
137 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
138 InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
139 Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
140 if (!SegmentLC)
141 return Error("unable to load segment load command");
142
143 for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
144 InMemoryStruct<macho::Section> Sect;
145 Obj->ReadSection(*SegmentLCI, SectNum, Sect);
146 if (!Sect)
147 return Error("unable to load section: '" + Twine(SectNum) + "'");
148
149 // FIXME: For the time being, we're only loading text segments.
150 if (Sect->Flags != 0x80000400)
151 continue;
152
153 // Address and names of symbols in the section.
154 typedef std::pair<uint64_t, StringRef> SymbolEntry;
155 SmallVector<SymbolEntry, 64> Symbols;
156 // Index of all the names, in this section or not. Used when we're
157 // dealing with relocation entries.
158 SmallVector<StringRef, 64> SymbolNames;
159 for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
160 InMemoryStruct<macho::SymbolTableEntry> STE;
161 Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
162 if (!STE)
163 return Error("unable to read symbol: '" + Twine(i) + "'");
164 if (STE->SectionIndex > SegmentLC->NumSections)
165 return Error("invalid section index for symbol: '" + Twine(i) + "'");
166 // Get the symbol name.
167 StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
168 SymbolNames.push_back(Name);
169
170 // Just skip symbols not defined in this section.
171 if ((unsigned)STE->SectionIndex - 1 != SectNum)
172 continue;
173
174 // FIXME: Check the symbol type and flags.
175 if (STE->Type != 0xF) // external, defined in this section.
176 continue;
177 // Flags == 0x8 marks a thumb function for ARM, which is fine as it
178 // doesn't require any special handling here.
Jim Grosbachfadfd7b2011-11-01 18:10:23 +0000179 // Flags in the upper nibble we don't care about.
180 if ((STE->Flags & 0xf) != 0x0 && STE->Flags != 0x8)
Danil Malyshevcf852dc2011-07-13 07:57:58 +0000181 continue;
182
183 // Remember the symbol.
184 Symbols.push_back(SymbolEntry(STE->Value, Name));
185
186 DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
187 (Sect->Address + STE->Value) << "\n");
188 }
189 // Sort the symbols by address, just in case they didn't come in that way.
190 array_pod_sort(Symbols.begin(), Symbols.end());
191
192 // If there weren't any functions (odd, but just in case...)
193 if (!Symbols.size())
194 continue;
195
196 // Extract the function data.
197 uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
198 SegmentLC->FileSize).data();
199 for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
200 uint64_t StartOffset = Sect->Address + Symbols[i].first;
201 uint64_t EndOffset = Symbols[i + 1].first - 1;
202 DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
203 << " from [" << StartOffset << ", " << EndOffset << "]\n");
204 extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
205 }
206 // The last symbol we do after since the end address is calculated
207 // differently because there is no next symbol to reference.
208 uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
209 uint64_t EndOffset = Sect->Size - 1;
210 DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
211 << " from [" << StartOffset << ", " << EndOffset << "]\n");
212 extractFunction(Symbols[Symbols.size()-1].second,
213 Base + StartOffset, Base + EndOffset);
214
215 // Now extract the relocation information for each function and process it.
216 for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
217 InMemoryStruct<macho::RelocationEntry> RE;
218 Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
219 if (RE->Word0 & macho::RF_Scattered)
220 return Error("NOT YET IMPLEMENTED: scattered relocations.");
221 // Word0 of the relocation is the offset into the section where the
222 // relocation should be applied. We need to translate that into an
223 // offset into a function since that's our atom.
224 uint32_t Offset = RE->Word0;
225 // Look for the function containing the address. This is used for JIT
226 // code, so the number of functions in section is almost always going
227 // to be very small (usually just one), so until we have use cases
228 // where that's not true, just use a trivial linear search.
229 unsigned SymbolNum;
230 unsigned NumSymbols = Symbols.size();
231 assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
232 "No symbol containing relocation!");
233 for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
234 if (Symbols[SymbolNum + 1].first > Offset)
235 break;
236 // Adjust the offset to be relative to the symbol.
237 Offset -= Symbols[SymbolNum].first;
238 // Get the name of the symbol containing the relocation.
239 StringRef TargetName = SymbolNames[SymbolNum];
240
241 bool isExtern = (RE->Word1 >> 27) & 1;
242 // Figure out the source symbol of the relocation. If isExtern is true,
243 // this relocation references the symbol table, otherwise it references
244 // a section in the same object, numbered from 1 through NumSections
245 // (SectionBases is [0, NumSections-1]).
246 // FIXME: Some targets (ARM) use internal relocations even for
247 // externally visible symbols, if the definition is in the same
248 // file as the reference. We need to convert those back to by-name
249 // references. We can resolve the address based on the section
250 // offset and see if we have a symbol at that address. If we do,
251 // use that; otherwise, puke.
252 if (!isExtern)
253 return Error("Internal relocations not supported.");
254 uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
255 StringRef SourceName = SymbolNames[SourceNum];
256
257 // FIXME: Get the relocation addend from the target address.
258
259 // Now store the relocation information. Associate it with the source
260 // symbol.
261 Relocations[SourceName].push_back(RelocationEntry(TargetName,
262 Offset,
263 RE->Word1,
264 0 /*Addend*/));
265 DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
266 << " from '" << SourceName << "(Word1: "
267 << format("0x%x", RE->Word1) << ")\n");
268 }
269 }
270 return false;
271}
272
273
274bool RuntimeDyldMachO::
275loadSegment64(const MachOObject *Obj,
276 const MachOObject::LoadCommandInfo *SegmentLCI,
277 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
278 InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
279 Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
280 if (!Segment64LC)
281 return Error("unable to load segment load command");
282
283 for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
284 InMemoryStruct<macho::Section64> Sect;
285 Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
286 if (!Sect)
287 return Error("unable to load section: '" + Twine(SectNum) + "'");
288
289 // FIXME: For the time being, we're only loading text segments.
290 if (Sect->Flags != 0x80000400)
291 continue;
292
293 // Address and names of symbols in the section.
294 typedef std::pair<uint64_t, StringRef> SymbolEntry;
295 SmallVector<SymbolEntry, 64> Symbols;
296 // Index of all the names, in this section or not. Used when we're
297 // dealing with relocation entries.
298 SmallVector<StringRef, 64> SymbolNames;
299 for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
300 InMemoryStruct<macho::Symbol64TableEntry> STE;
301 Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
302 if (!STE)
303 return Error("unable to read symbol: '" + Twine(i) + "'");
304 if (STE->SectionIndex > Segment64LC->NumSections)
305 return Error("invalid section index for symbol: '" + Twine(i) + "'");
306 // Get the symbol name.
307 StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
308 SymbolNames.push_back(Name);
309
310 // Just skip symbols not defined in this section.
311 if ((unsigned)STE->SectionIndex - 1 != SectNum)
312 continue;
313
314 // FIXME: Check the symbol type and flags.
315 if (STE->Type != 0xF) // external, defined in this section.
316 continue;
Jim Grosbachfadfd7b2011-11-01 18:10:23 +0000317 // Flags in the upper nibble we don't care about.
318 if ((STE->Flags & 0xf) != 0x0)
Danil Malyshevcf852dc2011-07-13 07:57:58 +0000319 continue;
320
321 // Remember the symbol.
322 Symbols.push_back(SymbolEntry(STE->Value, Name));
323
324 DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
325 (Sect->Address + STE->Value) << "\n");
326 }
327 // Sort the symbols by address, just in case they didn't come in that way.
328 array_pod_sort(Symbols.begin(), Symbols.end());
329
330 // If there weren't any functions (odd, but just in case...)
331 if (!Symbols.size())
332 continue;
333
334 // Extract the function data.
335 uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
336 Segment64LC->FileSize).data();
337 for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
338 uint64_t StartOffset = Sect->Address + Symbols[i].first;
339 uint64_t EndOffset = Symbols[i + 1].first - 1;
340 DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
341 << " from [" << StartOffset << ", " << EndOffset << "]\n");
342 extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
343 }
344 // The last symbol we do after since the end address is calculated
345 // differently because there is no next symbol to reference.
346 uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
347 uint64_t EndOffset = Sect->Size - 1;
348 DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
349 << " from [" << StartOffset << ", " << EndOffset << "]\n");
350 extractFunction(Symbols[Symbols.size()-1].second,
351 Base + StartOffset, Base + EndOffset);
352
353 // Now extract the relocation information for each function and process it.
354 for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
355 InMemoryStruct<macho::RelocationEntry> RE;
356 Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
357 if (RE->Word0 & macho::RF_Scattered)
358 return Error("NOT YET IMPLEMENTED: scattered relocations.");
359 // Word0 of the relocation is the offset into the section where the
360 // relocation should be applied. We need to translate that into an
361 // offset into a function since that's our atom.
362 uint32_t Offset = RE->Word0;
363 // Look for the function containing the address. This is used for JIT
364 // code, so the number of functions in section is almost always going
365 // to be very small (usually just one), so until we have use cases
366 // where that's not true, just use a trivial linear search.
367 unsigned SymbolNum;
368 unsigned NumSymbols = Symbols.size();
369 assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
370 "No symbol containing relocation!");
371 for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
372 if (Symbols[SymbolNum + 1].first > Offset)
373 break;
374 // Adjust the offset to be relative to the symbol.
375 Offset -= Symbols[SymbolNum].first;
376 // Get the name of the symbol containing the relocation.
377 StringRef TargetName = SymbolNames[SymbolNum];
378
379 bool isExtern = (RE->Word1 >> 27) & 1;
380 // Figure out the source symbol of the relocation. If isExtern is true,
381 // this relocation references the symbol table, otherwise it references
382 // a section in the same object, numbered from 1 through NumSections
383 // (SectionBases is [0, NumSections-1]).
384 if (!isExtern)
385 return Error("Internal relocations not supported.");
386 uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
387 StringRef SourceName = SymbolNames[SourceNum];
388
389 // FIXME: Get the relocation addend from the target address.
390
391 // Now store the relocation information. Associate it with the source
392 // symbol.
393 Relocations[SourceName].push_back(RelocationEntry(TargetName,
394 Offset,
395 RE->Word1,
396 0 /*Addend*/));
397 DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
398 << " from '" << SourceName << "(Word1: "
399 << format("0x%x", RE->Word1) << ")\n");
400 }
401 }
402 return false;
403}
404
405bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
406 // If the linker is in an error state, don't do anything.
407 if (hasError())
408 return true;
409 // Load the Mach-O wrapper object.
410 std::string ErrorStr;
411 OwningPtr<MachOObject> Obj(
412 MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
413 if (!Obj)
414 return Error("unable to load object: '" + ErrorStr + "'");
415
416 // Get the CPU type information from the header.
417 const macho::Header &Header = Obj->getHeader();
418
419 // FIXME: Error checking that the loaded object is compatible with
420 // the system we're running on.
421 CPUType = Header.CPUType;
422 CPUSubtype = Header.CPUSubtype;
423
424 // Validate that the load commands match what we expect.
425 const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
426 *DysymtabLCI = 0;
427 for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
428 const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
429 switch (LCI.Command.Type) {
430 case macho::LCT_Segment:
431 case macho::LCT_Segment64:
432 if (SegmentLCI)
433 return Error("unexpected input object (multiple segments)");
434 SegmentLCI = &LCI;
435 break;
436 case macho::LCT_Symtab:
437 if (SymtabLCI)
438 return Error("unexpected input object (multiple symbol tables)");
439 SymtabLCI = &LCI;
440 break;
441 case macho::LCT_Dysymtab:
442 if (DysymtabLCI)
443 return Error("unexpected input object (multiple symbol tables)");
444 DysymtabLCI = &LCI;
445 break;
446 default:
447 return Error("unexpected input object (unexpected load command");
448 }
449 }
450
451 if (!SymtabLCI)
452 return Error("no symbol table found in object");
453 if (!SegmentLCI)
454 return Error("no symbol table found in object");
455
456 // Read and register the symbol table data.
457 InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
458 Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
459 if (!SymtabLC)
460 return Error("unable to load symbol table load command");
461 Obj->RegisterStringTable(*SymtabLC);
462
463 // Read the dynamic link-edit information, if present (not present in static
464 // objects).
465 if (DysymtabLCI) {
466 InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
467 Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
468 if (!DysymtabLC)
469 return Error("unable to load dynamic link-exit load command");
470
471 // FIXME: We don't support anything interesting yet.
472// if (DysymtabLC->LocalSymbolsIndex != 0)
473// return Error("NOT YET IMPLEMENTED: local symbol entries");
474// if (DysymtabLC->ExternalSymbolsIndex != 0)
475// return Error("NOT YET IMPLEMENTED: non-external symbol entries");
476// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
477// return Error("NOT YET IMPLEMENTED: undefined symbol entries");
478 }
479
480 // Load the segment load command.
481 if (SegmentLCI->Command.Type == macho::LCT_Segment) {
482 if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
483 return true;
484 } else {
485 if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
486 return true;
487 }
488
489 return false;
490}
491
492// Assign an address to a symbol name and resolve all the relocations
493// associated with it.
494void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
495 // Assign the address in our symbol table.
496 SymbolTable[Name] = Addr;
497
498 RelocationList &Relocs = Relocations[Name];
499 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
500 RelocationEntry &RE = Relocs[i];
501 uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
502 bool isPCRel = (RE.Data >> 24) & 1;
503 unsigned Type = (RE.Data >> 28) & 0xf;
504 unsigned Size = 1 << ((RE.Data >> 25) & 3);
505
506 DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
507 << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
508 << " from '" << Name << " (" << format("%p", Addr) << ")"
509 << "(" << (isPCRel ? "pcrel" : "absolute")
510 << ", type: " << Type << ", Size: " << Size << ").\n");
511
512 resolveRelocation(Target, Addr, isPCRel, Type, Size);
513 RE.isResolved = true;
514 }
515}
516
517bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
518 StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
519 if (Magic == "\xFE\xED\xFA\xCE") return true;
520 if (Magic == "\xCE\xFA\xED\xFE") return true;
521 if (Magic == "\xFE\xED\xFA\xCF") return true;
522 if (Magic == "\xCF\xFA\xED\xFE") return true;
523 return false;
524}
525
526} // end namespace llvm