blob: 02c881bae65db85f0b2c1210e6b7e74d5675206b [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
114 %result = shl i32 %X, i8 3
115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
151 ; Declare the string constant as a global constant. 
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00" 
153
154 ; External declaration of the puts function 
155 declare i32 @puts(i8* nocapture) nounwind 
156
157 ; Definition of main function
158 define i32 @main() { ; i32()*  
159 ; Convert [13 x i8]* to i8 *... 
160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
162 ; Call puts function to write out the string to stdout. 
163 call i32 @puts(i8* %cast210)
164 ret i32 0 
165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
265 "one definition rule" — "ODR"). Such languages can use the
266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
468A variable may be defined as a global "constant," which indicates that
469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
472initialization cannot be marked "constant" as there is a store to the
473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
504An explicit alignment may be specified for a global, which must be a
505power of 2. If not present, or if the alignment is set to zero, the
506alignment of the global is set by the target to whatever it feels
507convenient. If an explicit alignment is specified, the global is forced
508to have exactly that alignment. Targets and optimizers are not allowed
509to over-align the global if the global has an assigned section. In this
510case, the extra alignment could be observable: for example, code could
511assume that the globals are densely packed in their section and try to
512iterate over them as an array, alignment padding would break this
513iteration.
514
515For example, the following defines a global in a numbered address space
516with an initializer, section, and alignment:
517
518.. code-block:: llvm
519
520 @G = addrspace(5) constant float 1.0, section "foo", align 4
521
522The following example defines a thread-local global with the
523``initialexec`` TLS model:
524
525.. code-block:: llvm
526
527 @G = thread_local(initialexec) global i32 0, align 4
528
529.. _functionstructure:
530
531Functions
532---------
533
534LLVM function definitions consist of the "``define``" keyword, an
535optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
536style <visibility>`, an optional :ref:`calling convention <callingconv>`,
537an optional ``unnamed_addr`` attribute, a return type, an optional
538:ref:`parameter attribute <paramattrs>` for the return type, a function
539name, a (possibly empty) argument list (each with optional :ref:`parameter
540attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
541an optional section, an optional alignment, an optional :ref:`garbage
542collector name <gc>`, an opening curly brace, a list of basic blocks,
543and a closing curly brace.
544
545LLVM function declarations consist of the "``declare``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a possibly empty list of arguments, an optional alignment, and an
551optional :ref:`garbage collector name <gc>`.
552
553A function definition contains a list of basic blocks, forming the CFG
554(Control Flow Graph) for the function. Each basic block may optionally
555start with a label (giving the basic block a symbol table entry),
556contains a list of instructions, and ends with a
557:ref:`terminator <terminators>` instruction (such as a branch or function
558return).
559
560The first basic block in a function is special in two ways: it is
561immediately executed on entrance to the function, and it is not allowed
562to have predecessor basic blocks (i.e. there can not be any branches to
563the entry block of a function). Because the block can have no
564predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
565
566LLVM allows an explicit section to be specified for functions. If the
567target supports it, it will emit functions to the section specified.
568
569An explicit alignment may be specified for a function. If not present,
570or if the alignment is set to zero, the alignment of the function is set
571by the target to whatever it feels convenient. If an explicit alignment
572is specified, the function is forced to have at least that much
573alignment. All alignments must be a power of 2.
574
575If the ``unnamed_addr`` attribute is given, the address is know to not
576be significant and two identical functions can be merged.
577
578Syntax::
579
580 define [linkage] [visibility]
581 [cconv] [ret attrs]
582 <ResultType> @<FunctionName> ([argument list])
583 [fn Attrs] [section "name"] [align N]
584 [gc] { ... }
585
586Aliases
587-------
588
589Aliases act as "second name" for the aliasee value (which can be either
590function, global variable, another alias or bitcast of global value).
591Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
592:ref:`visibility style <visibility>`.
593
594Syntax::
595
596 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
597
598.. _namedmetadatastructure:
599
600Named Metadata
601--------------
602
603Named metadata is a collection of metadata. :ref:`Metadata
604nodes <metadata>` (but not metadata strings) are the only valid
605operands for a named metadata.
606
607Syntax::
608
609 ; Some unnamed metadata nodes, which are referenced by the named metadata.
610 !0 = metadata !{metadata !"zero"}
611 !1 = metadata !{metadata !"one"}
612 !2 = metadata !{metadata !"two"}
613 ; A named metadata.
614 !name = !{!0, !1, !2}
615
616.. _paramattrs:
617
618Parameter Attributes
619--------------------
620
621The return type and each parameter of a function type may have a set of
622*parameter attributes* associated with them. Parameter attributes are
623used to communicate additional information about the result or
624parameters of a function. Parameter attributes are considered to be part
625of the function, not of the function type, so functions with different
626parameter attributes can have the same function type.
627
628Parameter attributes are simple keywords that follow the type specified.
629If multiple parameter attributes are needed, they are space separated.
630For example:
631
632.. code-block:: llvm
633
634 declare i32 @printf(i8* noalias nocapture, ...)
635 declare i32 @atoi(i8 zeroext)
636 declare signext i8 @returns_signed_char()
637
638Note that any attributes for the function result (``nounwind``,
639``readonly``) come immediately after the argument list.
640
641Currently, only the following parameter attributes are defined:
642
643``zeroext``
644 This indicates to the code generator that the parameter or return
645 value should be zero-extended to the extent required by the target's
646 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
647 the caller (for a parameter) or the callee (for a return value).
648``signext``
649 This indicates to the code generator that the parameter or return
650 value should be sign-extended to the extent required by the target's
651 ABI (which is usually 32-bits) by the caller (for a parameter) or
652 the callee (for a return value).
653``inreg``
654 This indicates that this parameter or return value should be treated
655 in a special target-dependent fashion during while emitting code for
656 a function call or return (usually, by putting it in a register as
657 opposed to memory, though some targets use it to distinguish between
658 two different kinds of registers). Use of this attribute is
659 target-specific.
660``byval``
661 This indicates that the pointer parameter should really be passed by
662 value to the function. The attribute implies that a hidden copy of
663 the pointee is made between the caller and the callee, so the callee
664 is unable to modify the value in the caller. This attribute is only
665 valid on LLVM pointer arguments. It is generally used to pass
666 structs and arrays by value, but is also valid on pointers to
667 scalars. The copy is considered to belong to the caller not the
668 callee (for example, ``readonly`` functions should not write to
669 ``byval`` parameters). This is not a valid attribute for return
670 values.
671
672 The byval attribute also supports specifying an alignment with the
673 align attribute. It indicates the alignment of the stack slot to
674 form and the known alignment of the pointer specified to the call
675 site. If the alignment is not specified, then the code generator
676 makes a target-specific assumption.
677
678``sret``
679 This indicates that the pointer parameter specifies the address of a
680 structure that is the return value of the function in the source
681 program. This pointer must be guaranteed by the caller to be valid:
682 loads and stores to the structure may be assumed by the callee to
683 not to trap and to be properly aligned. This may only be applied to
684 the first parameter. This is not a valid attribute for return
685 values.
686``noalias``
687 This indicates that pointer values `*based* <pointeraliasing>` on
688 the argument or return value do not alias pointer values which are
689 not *based* on it, ignoring certain "irrelevant" dependencies. For a
690 call to the parent function, dependencies between memory references
691 from before or after the call and from those during the call are
692 "irrelevant" to the ``noalias`` keyword for the arguments and return
693 value used in that call. The caller shares the responsibility with
694 the callee for ensuring that these requirements are met. For further
695 details, please see the discussion of the NoAlias response in `alias
696 analysis <AliasAnalysis.html#MustMayNo>`_.
697
698 Note that this definition of ``noalias`` is intentionally similar
699 to the definition of ``restrict`` in C99 for function arguments,
700 though it is slightly weaker.
701
702 For function return values, C99's ``restrict`` is not meaningful,
703 while LLVM's ``noalias`` is.
704``nocapture``
705 This indicates that the callee does not make any copies of the
706 pointer that outlive the callee itself. This is not a valid
707 attribute for return values.
708
709.. _nest:
710
711``nest``
712 This indicates that the pointer parameter can be excised using the
713 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
714 attribute for return values.
715
716.. _gc:
717
718Garbage Collector Names
719-----------------------
720
721Each function may specify a garbage collector name, which is simply a
722string:
723
724.. code-block:: llvm
725
726 define void @f() gc "name" { ... }
727
728The compiler declares the supported values of *name*. Specifying a
729collector which will cause the compiler to alter its output in order to
730support the named garbage collection algorithm.
731
732.. _fnattrs:
733
734Function Attributes
735-------------------
736
737Function attributes are set to communicate additional information about
738a function. Function attributes are considered to be part of the
739function, not of the function type, so functions with different function
740attributes can have the same function type.
741
742Function attributes are simple keywords that follow the type specified.
743If multiple attributes are needed, they are space separated. For
744example:
745
746.. code-block:: llvm
747
748 define void @f() noinline { ... }
749 define void @f() alwaysinline { ... }
750 define void @f() alwaysinline optsize { ... }
751 define void @f() optsize { ... }
752
753``address_safety``
754 This attribute indicates that the address safety analysis is enabled
755 for this function.
756``alignstack(<n>)``
757 This attribute indicates that, when emitting the prologue and
758 epilogue, the backend should forcibly align the stack pointer.
759 Specify the desired alignment, which must be a power of two, in
760 parentheses.
761``alwaysinline``
762 This attribute indicates that the inliner should attempt to inline
763 this function into callers whenever possible, ignoring any active
764 inlining size threshold for this caller.
765``nonlazybind``
766 This attribute suppresses lazy symbol binding for the function. This
767 may make calls to the function faster, at the cost of extra program
768 startup time if the function is not called during program startup.
769``inlinehint``
770 This attribute indicates that the source code contained a hint that
771 inlining this function is desirable (such as the "inline" keyword in
772 C/C++). It is just a hint; it imposes no requirements on the
773 inliner.
774``naked``
775 This attribute disables prologue / epilogue emission for the
776 function. This can have very system-specific consequences.
777``noimplicitfloat``
778 This attributes disables implicit floating point instructions.
779``noinline``
780 This attribute indicates that the inliner should never inline this
781 function in any situation. This attribute may not be used together
782 with the ``alwaysinline`` attribute.
783``noredzone``
784 This attribute indicates that the code generator should not use a
785 red zone, even if the target-specific ABI normally permits it.
786``noreturn``
787 This function attribute indicates that the function never returns
788 normally. This produces undefined behavior at runtime if the
789 function ever does dynamically return.
790``nounwind``
791 This function attribute indicates that the function never returns
792 with an unwind or exceptional control flow. If the function does
793 unwind, its runtime behavior is undefined.
794``optsize``
795 This attribute suggests that optimization passes and code generator
796 passes make choices that keep the code size of this function low,
797 and otherwise do optimizations specifically to reduce code size.
798``readnone``
799 This attribute indicates that the function computes its result (or
800 decides to unwind an exception) based strictly on its arguments,
801 without dereferencing any pointer arguments or otherwise accessing
802 any mutable state (e.g. memory, control registers, etc) visible to
803 caller functions. It does not write through any pointer arguments
804 (including ``byval`` arguments) and never changes any state visible
805 to callers. This means that it cannot unwind exceptions by calling
806 the ``C++`` exception throwing methods.
807``readonly``
808 This attribute indicates that the function does not write through
809 any pointer arguments (including ``byval`` arguments) or otherwise
810 modify any state (e.g. memory, control registers, etc) visible to
811 caller functions. It may dereference pointer arguments and read
812 state that may be set in the caller. A readonly function always
813 returns the same value (or unwinds an exception identically) when
814 called with the same set of arguments and global state. It cannot
815 unwind an exception by calling the ``C++`` exception throwing
816 methods.
817``returns_twice``
818 This attribute indicates that this function can return twice. The C
819 ``setjmp`` is an example of such a function. The compiler disables
820 some optimizations (like tail calls) in the caller of these
821 functions.
822``ssp``
823 This attribute indicates that the function should emit a stack
824 smashing protector. It is in the form of a "canary"—a random value
825 placed on the stack before the local variables that's checked upon
826 return from the function to see if it has been overwritten. A
827 heuristic is used to determine if a function needs stack protectors
828 or not.
829
830 If a function that has an ``ssp`` attribute is inlined into a
831 function that doesn't have an ``ssp`` attribute, then the resulting
832 function will have an ``ssp`` attribute.
833``sspreq``
834 This attribute indicates that the function should *always* emit a
835 stack smashing protector. This overrides the ``ssp`` function
836 attribute.
837
838 If a function that has an ``sspreq`` attribute is inlined into a
839 function that doesn't have an ``sspreq`` attribute or which has an
840 ``ssp`` attribute, then the resulting function will have an
841 ``sspreq`` attribute.
842``uwtable``
843 This attribute indicates that the ABI being targeted requires that
844 an unwind table entry be produce for this function even if we can
845 show that no exceptions passes by it. This is normally the case for
846 the ELF x86-64 abi, but it can be disabled for some compilation
847 units.
James Molloy67ae1352012-12-20 16:04:27 +0000848``noduplicate``
849 This attribute indicates that calls to the function cannot be
850 duplicated. A call to a ``noduplicate`` function may be moved
851 within its parent function, but may not be duplicated within
852 its parent function.
853
854 A function containing a ``noduplicate`` call may still
855 be an inlining candidate, provided that the call is not
856 duplicated by inlining. That implies that the function has
857 internal linkage and only has one call site, so the original
858 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000859
860.. _moduleasm:
861
862Module-Level Inline Assembly
863----------------------------
864
865Modules may contain "module-level inline asm" blocks, which corresponds
866to the GCC "file scope inline asm" blocks. These blocks are internally
867concatenated by LLVM and treated as a single unit, but may be separated
868in the ``.ll`` file if desired. The syntax is very simple:
869
870.. code-block:: llvm
871
872 module asm "inline asm code goes here"
873 module asm "more can go here"
874
875The strings can contain any character by escaping non-printable
876characters. The escape sequence used is simply "\\xx" where "xx" is the
877two digit hex code for the number.
878
879The inline asm code is simply printed to the machine code .s file when
880assembly code is generated.
881
882Data Layout
883-----------
884
885A module may specify a target specific data layout string that specifies
886how data is to be laid out in memory. The syntax for the data layout is
887simply:
888
889.. code-block:: llvm
890
891 target datalayout = "layout specification"
892
893The *layout specification* consists of a list of specifications
894separated by the minus sign character ('-'). Each specification starts
895with a letter and may include other information after the letter to
896define some aspect of the data layout. The specifications accepted are
897as follows:
898
899``E``
900 Specifies that the target lays out data in big-endian form. That is,
901 the bits with the most significance have the lowest address
902 location.
903``e``
904 Specifies that the target lays out data in little-endian form. That
905 is, the bits with the least significance have the lowest address
906 location.
907``S<size>``
908 Specifies the natural alignment of the stack in bits. Alignment
909 promotion of stack variables is limited to the natural stack
910 alignment to avoid dynamic stack realignment. The stack alignment
911 must be a multiple of 8-bits. If omitted, the natural stack
912 alignment defaults to "unspecified", which does not prevent any
913 alignment promotions.
914``p[n]:<size>:<abi>:<pref>``
915 This specifies the *size* of a pointer and its ``<abi>`` and
916 ``<pref>``\erred alignments for address space ``n``. All sizes are in
917 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
918 preceding ``:`` should be omitted too. The address space, ``n`` is
919 optional, and if not specified, denotes the default address space 0.
920 The value of ``n`` must be in the range [1,2^23).
921``i<size>:<abi>:<pref>``
922 This specifies the alignment for an integer type of a given bit
923 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
924``v<size>:<abi>:<pref>``
925 This specifies the alignment for a vector type of a given bit
926 ``<size>``.
927``f<size>:<abi>:<pref>``
928 This specifies the alignment for a floating point type of a given bit
929 ``<size>``. Only values of ``<size>`` that are supported by the target
930 will work. 32 (float) and 64 (double) are supported on all targets; 80
931 or 128 (different flavors of long double) are also supported on some
932 targets.
933``a<size>:<abi>:<pref>``
934 This specifies the alignment for an aggregate type of a given bit
935 ``<size>``.
936``s<size>:<abi>:<pref>``
937 This specifies the alignment for a stack object of a given bit
938 ``<size>``.
939``n<size1>:<size2>:<size3>...``
940 This specifies a set of native integer widths for the target CPU in
941 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
942 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
943 this set are considered to support most general arithmetic operations
944 efficiently.
945
946When constructing the data layout for a given target, LLVM starts with a
947default set of specifications which are then (possibly) overridden by
948the specifications in the ``datalayout`` keyword. The default
949specifications are given in this list:
950
951- ``E`` - big endian
952- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
953- ``p1:32:32:32`` - 32-bit pointers with 32-bit alignment for address
954 space 1
955- ``p2:16:32:32`` - 16-bit pointers with 32-bit alignment for address
956 space 2
957- ``i1:8:8`` - i1 is 8-bit (byte) aligned
958- ``i8:8:8`` - i8 is 8-bit (byte) aligned
959- ``i16:16:16`` - i16 is 16-bit aligned
960- ``i32:32:32`` - i32 is 32-bit aligned
961- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
962 alignment of 64-bits
963- ``f32:32:32`` - float is 32-bit aligned
964- ``f64:64:64`` - double is 64-bit aligned
965- ``v64:64:64`` - 64-bit vector is 64-bit aligned
966- ``v128:128:128`` - 128-bit vector is 128-bit aligned
967- ``a0:0:1`` - aggregates are 8-bit aligned
968- ``s0:64:64`` - stack objects are 64-bit aligned
969
970When LLVM is determining the alignment for a given type, it uses the
971following rules:
972
973#. If the type sought is an exact match for one of the specifications,
974 that specification is used.
975#. If no match is found, and the type sought is an integer type, then
976 the smallest integer type that is larger than the bitwidth of the
977 sought type is used. If none of the specifications are larger than
978 the bitwidth then the largest integer type is used. For example,
979 given the default specifications above, the i7 type will use the
980 alignment of i8 (next largest) while both i65 and i256 will use the
981 alignment of i64 (largest specified).
982#. If no match is found, and the type sought is a vector type, then the
983 largest vector type that is smaller than the sought vector type will
984 be used as a fall back. This happens because <128 x double> can be
985 implemented in terms of 64 <2 x double>, for example.
986
987The function of the data layout string may not be what you expect.
988Notably, this is not a specification from the frontend of what alignment
989the code generator should use.
990
991Instead, if specified, the target data layout is required to match what
992the ultimate *code generator* expects. This string is used by the
993mid-level optimizers to improve code, and this only works if it matches
994what the ultimate code generator uses. If you would like to generate IR
995that does not embed this target-specific detail into the IR, then you
996don't have to specify the string. This will disable some optimizations
997that require precise layout information, but this also prevents those
998optimizations from introducing target specificity into the IR.
999
1000.. _pointeraliasing:
1001
1002Pointer Aliasing Rules
1003----------------------
1004
1005Any memory access must be done through a pointer value associated with
1006an address range of the memory access, otherwise the behavior is
1007undefined. Pointer values are associated with address ranges according
1008to the following rules:
1009
1010- A pointer value is associated with the addresses associated with any
1011 value it is *based* on.
1012- An address of a global variable is associated with the address range
1013 of the variable's storage.
1014- The result value of an allocation instruction is associated with the
1015 address range of the allocated storage.
1016- A null pointer in the default address-space is associated with no
1017 address.
1018- An integer constant other than zero or a pointer value returned from
1019 a function not defined within LLVM may be associated with address
1020 ranges allocated through mechanisms other than those provided by
1021 LLVM. Such ranges shall not overlap with any ranges of addresses
1022 allocated by mechanisms provided by LLVM.
1023
1024A pointer value is *based* on another pointer value according to the
1025following rules:
1026
1027- A pointer value formed from a ``getelementptr`` operation is *based*
1028 on the first operand of the ``getelementptr``.
1029- The result value of a ``bitcast`` is *based* on the operand of the
1030 ``bitcast``.
1031- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1032 values that contribute (directly or indirectly) to the computation of
1033 the pointer's value.
1034- The "*based* on" relationship is transitive.
1035
1036Note that this definition of *"based"* is intentionally similar to the
1037definition of *"based"* in C99, though it is slightly weaker.
1038
1039LLVM IR does not associate types with memory. The result type of a
1040``load`` merely indicates the size and alignment of the memory from
1041which to load, as well as the interpretation of the value. The first
1042operand type of a ``store`` similarly only indicates the size and
1043alignment of the store.
1044
1045Consequently, type-based alias analysis, aka TBAA, aka
1046``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1047:ref:`Metadata <metadata>` may be used to encode additional information
1048which specialized optimization passes may use to implement type-based
1049alias analysis.
1050
1051.. _volatile:
1052
1053Volatile Memory Accesses
1054------------------------
1055
1056Certain memory accesses, such as :ref:`load <i_load>`'s,
1057:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1058marked ``volatile``. The optimizers must not change the number of
1059volatile operations or change their order of execution relative to other
1060volatile operations. The optimizers *may* change the order of volatile
1061operations relative to non-volatile operations. This is not Java's
1062"volatile" and has no cross-thread synchronization behavior.
1063
1064.. _memmodel:
1065
1066Memory Model for Concurrent Operations
1067--------------------------------------
1068
1069The LLVM IR does not define any way to start parallel threads of
1070execution or to register signal handlers. Nonetheless, there are
1071platform-specific ways to create them, and we define LLVM IR's behavior
1072in their presence. This model is inspired by the C++0x memory model.
1073
1074For a more informal introduction to this model, see the :doc:`Atomics`.
1075
1076We define a *happens-before* partial order as the least partial order
1077that
1078
1079- Is a superset of single-thread program order, and
1080- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1081 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1082 techniques, like pthread locks, thread creation, thread joining,
1083 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1084 Constraints <ordering>`).
1085
1086Note that program order does not introduce *happens-before* edges
1087between a thread and signals executing inside that thread.
1088
1089Every (defined) read operation (load instructions, memcpy, atomic
1090loads/read-modify-writes, etc.) R reads a series of bytes written by
1091(defined) write operations (store instructions, atomic
1092stores/read-modify-writes, memcpy, etc.). For the purposes of this
1093section, initialized globals are considered to have a write of the
1094initializer which is atomic and happens before any other read or write
1095of the memory in question. For each byte of a read R, R\ :sub:`byte`
1096may see any write to the same byte, except:
1097
1098- If write\ :sub:`1` happens before write\ :sub:`2`, and
1099 write\ :sub:`2` happens before R\ :sub:`byte`, then
1100 R\ :sub:`byte` does not see write\ :sub:`1`.
1101- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1102 R\ :sub:`byte` does not see write\ :sub:`3`.
1103
1104Given that definition, R\ :sub:`byte` is defined as follows:
1105
1106- If R is volatile, the result is target-dependent. (Volatile is
1107 supposed to give guarantees which can support ``sig_atomic_t`` in
1108 C/C++, and may be used for accesses to addresses which do not behave
1109 like normal memory. It does not generally provide cross-thread
1110 synchronization.)
1111- Otherwise, if there is no write to the same byte that happens before
1112 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1113- Otherwise, if R\ :sub:`byte` may see exactly one write,
1114 R\ :sub:`byte` returns the value written by that write.
1115- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1116 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1117 Memory Ordering Constraints <ordering>` section for additional
1118 constraints on how the choice is made.
1119- Otherwise R\ :sub:`byte` returns ``undef``.
1120
1121R returns the value composed of the series of bytes it read. This
1122implies that some bytes within the value may be ``undef`` **without**
1123the entire value being ``undef``. Note that this only defines the
1124semantics of the operation; it doesn't mean that targets will emit more
1125than one instruction to read the series of bytes.
1126
1127Note that in cases where none of the atomic intrinsics are used, this
1128model places only one restriction on IR transformations on top of what
1129is required for single-threaded execution: introducing a store to a byte
1130which might not otherwise be stored is not allowed in general.
1131(Specifically, in the case where another thread might write to and read
1132from an address, introducing a store can change a load that may see
1133exactly one write into a load that may see multiple writes.)
1134
1135.. _ordering:
1136
1137Atomic Memory Ordering Constraints
1138----------------------------------
1139
1140Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1141:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1142:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1143an ordering parameter that determines which other atomic instructions on
1144the same address they *synchronize with*. These semantics are borrowed
1145from Java and C++0x, but are somewhat more colloquial. If these
1146descriptions aren't precise enough, check those specs (see spec
1147references in the :doc:`atomics guide <Atomics>`).
1148:ref:`fence <i_fence>` instructions treat these orderings somewhat
1149differently since they don't take an address. See that instruction's
1150documentation for details.
1151
1152For a simpler introduction to the ordering constraints, see the
1153:doc:`Atomics`.
1154
1155``unordered``
1156 The set of values that can be read is governed by the happens-before
1157 partial order. A value cannot be read unless some operation wrote
1158 it. This is intended to provide a guarantee strong enough to model
1159 Java's non-volatile shared variables. This ordering cannot be
1160 specified for read-modify-write operations; it is not strong enough
1161 to make them atomic in any interesting way.
1162``monotonic``
1163 In addition to the guarantees of ``unordered``, there is a single
1164 total order for modifications by ``monotonic`` operations on each
1165 address. All modification orders must be compatible with the
1166 happens-before order. There is no guarantee that the modification
1167 orders can be combined to a global total order for the whole program
1168 (and this often will not be possible). The read in an atomic
1169 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1170 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1171 order immediately before the value it writes. If one atomic read
1172 happens before another atomic read of the same address, the later
1173 read must see the same value or a later value in the address's
1174 modification order. This disallows reordering of ``monotonic`` (or
1175 stronger) operations on the same address. If an address is written
1176 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1177 read that address repeatedly, the other threads must eventually see
1178 the write. This corresponds to the C++0x/C1x
1179 ``memory_order_relaxed``.
1180``acquire``
1181 In addition to the guarantees of ``monotonic``, a
1182 *synchronizes-with* edge may be formed with a ``release`` operation.
1183 This is intended to model C++'s ``memory_order_acquire``.
1184``release``
1185 In addition to the guarantees of ``monotonic``, if this operation
1186 writes a value which is subsequently read by an ``acquire``
1187 operation, it *synchronizes-with* that operation. (This isn't a
1188 complete description; see the C++0x definition of a release
1189 sequence.) This corresponds to the C++0x/C1x
1190 ``memory_order_release``.
1191``acq_rel`` (acquire+release)
1192 Acts as both an ``acquire`` and ``release`` operation on its
1193 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1194``seq_cst`` (sequentially consistent)
1195 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1196 operation which only reads, ``release`` for an operation which only
1197 writes), there is a global total order on all
1198 sequentially-consistent operations on all addresses, which is
1199 consistent with the *happens-before* partial order and with the
1200 modification orders of all the affected addresses. Each
1201 sequentially-consistent read sees the last preceding write to the
1202 same address in this global order. This corresponds to the C++0x/C1x
1203 ``memory_order_seq_cst`` and Java volatile.
1204
1205.. _singlethread:
1206
1207If an atomic operation is marked ``singlethread``, it only *synchronizes
1208with* or participates in modification and seq\_cst total orderings with
1209other operations running in the same thread (for example, in signal
1210handlers).
1211
1212.. _fastmath:
1213
1214Fast-Math Flags
1215---------------
1216
1217LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1218:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1219:ref:`frem <i_frem>`) have the following flags that can set to enable
1220otherwise unsafe floating point operations
1221
1222``nnan``
1223 No NaNs - Allow optimizations to assume the arguments and result are not
1224 NaN. Such optimizations are required to retain defined behavior over
1225 NaNs, but the value of the result is undefined.
1226
1227``ninf``
1228 No Infs - Allow optimizations to assume the arguments and result are not
1229 +/-Inf. Such optimizations are required to retain defined behavior over
1230 +/-Inf, but the value of the result is undefined.
1231
1232``nsz``
1233 No Signed Zeros - Allow optimizations to treat the sign of a zero
1234 argument or result as insignificant.
1235
1236``arcp``
1237 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1238 argument rather than perform division.
1239
1240``fast``
1241 Fast - Allow algebraically equivalent transformations that may
1242 dramatically change results in floating point (e.g. reassociate). This
1243 flag implies all the others.
1244
1245.. _typesystem:
1246
1247Type System
1248===========
1249
1250The LLVM type system is one of the most important features of the
1251intermediate representation. Being typed enables a number of
1252optimizations to be performed on the intermediate representation
1253directly, without having to do extra analyses on the side before the
1254transformation. A strong type system makes it easier to read the
1255generated code and enables novel analyses and transformations that are
1256not feasible to perform on normal three address code representations.
1257
1258Type Classifications
1259--------------------
1260
1261The types fall into a few useful classifications:
1262
1263
1264.. list-table::
1265 :header-rows: 1
1266
1267 * - Classification
1268 - Types
1269
1270 * - :ref:`integer <t_integer>`
1271 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1272 ``i64``, ...
1273
1274 * - :ref:`floating point <t_floating>`
1275 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1276 ``ppc_fp128``
1277
1278
1279 * - first class
1280
1281 .. _t_firstclass:
1282
1283 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1284 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1285 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1286 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1287
1288 * - :ref:`primitive <t_primitive>`
1289 - :ref:`label <t_label>`,
1290 :ref:`void <t_void>`,
1291 :ref:`integer <t_integer>`,
1292 :ref:`floating point <t_floating>`,
1293 :ref:`x86mmx <t_x86mmx>`,
1294 :ref:`metadata <t_metadata>`.
1295
1296 * - :ref:`derived <t_derived>`
1297 - :ref:`array <t_array>`,
1298 :ref:`function <t_function>`,
1299 :ref:`pointer <t_pointer>`,
1300 :ref:`structure <t_struct>`,
1301 :ref:`vector <t_vector>`,
1302 :ref:`opaque <t_opaque>`.
1303
1304The :ref:`first class <t_firstclass>` types are perhaps the most important.
1305Values of these types are the only ones which can be produced by
1306instructions.
1307
1308.. _t_primitive:
1309
1310Primitive Types
1311---------------
1312
1313The primitive types are the fundamental building blocks of the LLVM
1314system.
1315
1316.. _t_integer:
1317
1318Integer Type
1319^^^^^^^^^^^^
1320
1321Overview:
1322"""""""""
1323
1324The integer type is a very simple type that simply specifies an
1325arbitrary bit width for the integer type desired. Any bit width from 1
1326bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1327
1328Syntax:
1329"""""""
1330
1331::
1332
1333 iN
1334
1335The number of bits the integer will occupy is specified by the ``N``
1336value.
1337
1338Examples:
1339"""""""""
1340
1341+----------------+------------------------------------------------+
1342| ``i1`` | a single-bit integer. |
1343+----------------+------------------------------------------------+
1344| ``i32`` | a 32-bit integer. |
1345+----------------+------------------------------------------------+
1346| ``i1942652`` | a really big integer of over 1 million bits. |
1347+----------------+------------------------------------------------+
1348
1349.. _t_floating:
1350
1351Floating Point Types
1352^^^^^^^^^^^^^^^^^^^^
1353
1354.. list-table::
1355 :header-rows: 1
1356
1357 * - Type
1358 - Description
1359
1360 * - ``half``
1361 - 16-bit floating point value
1362
1363 * - ``float``
1364 - 32-bit floating point value
1365
1366 * - ``double``
1367 - 64-bit floating point value
1368
1369 * - ``fp128``
1370 - 128-bit floating point value (112-bit mantissa)
1371
1372 * - ``x86_fp80``
1373 - 80-bit floating point value (X87)
1374
1375 * - ``ppc_fp128``
1376 - 128-bit floating point value (two 64-bits)
1377
1378.. _t_x86mmx:
1379
1380X86mmx Type
1381^^^^^^^^^^^
1382
1383Overview:
1384"""""""""
1385
1386The x86mmx type represents a value held in an MMX register on an x86
1387machine. The operations allowed on it are quite limited: parameters and
1388return values, load and store, and bitcast. User-specified MMX
1389instructions are represented as intrinsic or asm calls with arguments
1390and/or results of this type. There are no arrays, vectors or constants
1391of this type.
1392
1393Syntax:
1394"""""""
1395
1396::
1397
1398 x86mmx
1399
1400.. _t_void:
1401
1402Void Type
1403^^^^^^^^^
1404
1405Overview:
1406"""""""""
1407
1408The void type does not represent any value and has no size.
1409
1410Syntax:
1411"""""""
1412
1413::
1414
1415 void
1416
1417.. _t_label:
1418
1419Label Type
1420^^^^^^^^^^
1421
1422Overview:
1423"""""""""
1424
1425The label type represents code labels.
1426
1427Syntax:
1428"""""""
1429
1430::
1431
1432 label
1433
1434.. _t_metadata:
1435
1436Metadata Type
1437^^^^^^^^^^^^^
1438
1439Overview:
1440"""""""""
1441
1442The metadata type represents embedded metadata. No derived types may be
1443created from metadata except for :ref:`function <t_function>` arguments.
1444
1445Syntax:
1446"""""""
1447
1448::
1449
1450 metadata
1451
1452.. _t_derived:
1453
1454Derived Types
1455-------------
1456
1457The real power in LLVM comes from the derived types in the system. This
1458is what allows a programmer to represent arrays, functions, pointers,
1459and other useful types. Each of these types contain one or more element
1460types which may be a primitive type, or another derived type. For
1461example, it is possible to have a two dimensional array, using an array
1462as the element type of another array.
1463
1464.. _t_aggregate:
1465
1466Aggregate Types
1467^^^^^^^^^^^^^^^
1468
1469Aggregate Types are a subset of derived types that can contain multiple
1470member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1471aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1472aggregate types.
1473
1474.. _t_array:
1475
1476Array Type
1477^^^^^^^^^^
1478
1479Overview:
1480"""""""""
1481
1482The array type is a very simple derived type that arranges elements
1483sequentially in memory. The array type requires a size (number of
1484elements) and an underlying data type.
1485
1486Syntax:
1487"""""""
1488
1489::
1490
1491 [<# elements> x <elementtype>]
1492
1493The number of elements is a constant integer value; ``elementtype`` may
1494be any type with a size.
1495
1496Examples:
1497"""""""""
1498
1499+------------------+--------------------------------------+
1500| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1501+------------------+--------------------------------------+
1502| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1503+------------------+--------------------------------------+
1504| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1505+------------------+--------------------------------------+
1506
1507Here are some examples of multidimensional arrays:
1508
1509+-----------------------------+----------------------------------------------------------+
1510| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1511+-----------------------------+----------------------------------------------------------+
1512| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1513+-----------------------------+----------------------------------------------------------+
1514| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1515+-----------------------------+----------------------------------------------------------+
1516
1517There is no restriction on indexing beyond the end of the array implied
1518by a static type (though there are restrictions on indexing beyond the
1519bounds of an allocated object in some cases). This means that
1520single-dimension 'variable sized array' addressing can be implemented in
1521LLVM with a zero length array type. An implementation of 'pascal style
1522arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1523example.
1524
1525.. _t_function:
1526
1527Function Type
1528^^^^^^^^^^^^^
1529
1530Overview:
1531"""""""""
1532
1533The function type can be thought of as a function signature. It consists
1534of a return type and a list of formal parameter types. The return type
1535of a function type is a first class type or a void type.
1536
1537Syntax:
1538"""""""
1539
1540::
1541
1542 <returntype> (<parameter list>)
1543
1544...where '``<parameter list>``' is a comma-separated list of type
1545specifiers. Optionally, the parameter list may include a type ``...``,
1546which indicates that the function takes a variable number of arguments.
1547Variable argument functions can access their arguments with the
1548:ref:`variable argument handling intrinsic <int_varargs>` functions.
1549'``<returntype>``' is any type except :ref:`label <t_label>`.
1550
1551Examples:
1552"""""""""
1553
1554+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1555| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1556+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1557| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1558+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1559| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1560+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1561| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1562+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1563
1564.. _t_struct:
1565
1566Structure Type
1567^^^^^^^^^^^^^^
1568
1569Overview:
1570"""""""""
1571
1572The structure type is used to represent a collection of data members
1573together in memory. The elements of a structure may be any type that has
1574a size.
1575
1576Structures in memory are accessed using '``load``' and '``store``' by
1577getting a pointer to a field with the '``getelementptr``' instruction.
1578Structures in registers are accessed using the '``extractvalue``' and
1579'``insertvalue``' instructions.
1580
1581Structures may optionally be "packed" structures, which indicate that
1582the alignment of the struct is one byte, and that there is no padding
1583between the elements. In non-packed structs, padding between field types
1584is inserted as defined by the DataLayout string in the module, which is
1585required to match what the underlying code generator expects.
1586
1587Structures can either be "literal" or "identified". A literal structure
1588is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1589identified types are always defined at the top level with a name.
1590Literal types are uniqued by their contents and can never be recursive
1591or opaque since there is no way to write one. Identified types can be
1592recursive, can be opaqued, and are never uniqued.
1593
1594Syntax:
1595"""""""
1596
1597::
1598
1599 %T1 = type { <type list> } ; Identified normal struct type
1600 %T2 = type <{ <type list> }> ; Identified packed struct type
1601
1602Examples:
1603"""""""""
1604
1605+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1606| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1607+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1608| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
1609+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1610| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1611+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1612
1613.. _t_opaque:
1614
1615Opaque Structure Types
1616^^^^^^^^^^^^^^^^^^^^^^
1617
1618Overview:
1619"""""""""
1620
1621Opaque structure types are used to represent named structure types that
1622do not have a body specified. This corresponds (for example) to the C
1623notion of a forward declared structure.
1624
1625Syntax:
1626"""""""
1627
1628::
1629
1630 %X = type opaque
1631 %52 = type opaque
1632
1633Examples:
1634"""""""""
1635
1636+--------------+-------------------+
1637| ``opaque`` | An opaque type. |
1638+--------------+-------------------+
1639
1640.. _t_pointer:
1641
1642Pointer Type
1643^^^^^^^^^^^^
1644
1645Overview:
1646"""""""""
1647
1648The pointer type is used to specify memory locations. Pointers are
1649commonly used to reference objects in memory.
1650
1651Pointer types may have an optional address space attribute defining the
1652numbered address space where the pointed-to object resides. The default
1653address space is number zero. The semantics of non-zero address spaces
1654are target-specific.
1655
1656Note that LLVM does not permit pointers to void (``void*``) nor does it
1657permit pointers to labels (``label*``). Use ``i8*`` instead.
1658
1659Syntax:
1660"""""""
1661
1662::
1663
1664 <type> *
1665
1666Examples:
1667"""""""""
1668
1669+-------------------------+--------------------------------------------------------------------------------------------------------------+
1670| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1671+-------------------------+--------------------------------------------------------------------------------------------------------------+
1672| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1673+-------------------------+--------------------------------------------------------------------------------------------------------------+
1674| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1675+-------------------------+--------------------------------------------------------------------------------------------------------------+
1676
1677.. _t_vector:
1678
1679Vector Type
1680^^^^^^^^^^^
1681
1682Overview:
1683"""""""""
1684
1685A vector type is a simple derived type that represents a vector of
1686elements. Vector types are used when multiple primitive data are
1687operated in parallel using a single instruction (SIMD). A vector type
1688requires a size (number of elements) and an underlying primitive data
1689type. Vector types are considered :ref:`first class <t_firstclass>`.
1690
1691Syntax:
1692"""""""
1693
1694::
1695
1696 < <# elements> x <elementtype> >
1697
1698The number of elements is a constant integer value larger than 0;
1699elementtype may be any integer or floating point type, or a pointer to
1700these types. Vectors of size zero are not allowed.
1701
1702Examples:
1703"""""""""
1704
1705+-------------------+--------------------------------------------------+
1706| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1707+-------------------+--------------------------------------------------+
1708| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1709+-------------------+--------------------------------------------------+
1710| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1711+-------------------+--------------------------------------------------+
1712| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1713+-------------------+--------------------------------------------------+
1714
1715Constants
1716=========
1717
1718LLVM has several different basic types of constants. This section
1719describes them all and their syntax.
1720
1721Simple Constants
1722----------------
1723
1724**Boolean constants**
1725 The two strings '``true``' and '``false``' are both valid constants
1726 of the ``i1`` type.
1727**Integer constants**
1728 Standard integers (such as '4') are constants of the
1729 :ref:`integer <t_integer>` type. Negative numbers may be used with
1730 integer types.
1731**Floating point constants**
1732 Floating point constants use standard decimal notation (e.g.
1733 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1734 hexadecimal notation (see below). The assembler requires the exact
1735 decimal value of a floating-point constant. For example, the
1736 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1737 decimal in binary. Floating point constants must have a :ref:`floating
1738 point <t_floating>` type.
1739**Null pointer constants**
1740 The identifier '``null``' is recognized as a null pointer constant
1741 and must be of :ref:`pointer type <t_pointer>`.
1742
1743The one non-intuitive notation for constants is the hexadecimal form of
1744floating point constants. For example, the form
1745'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1746than) '``double 4.5e+15``'. The only time hexadecimal floating point
1747constants are required (and the only time that they are generated by the
1748disassembler) is when a floating point constant must be emitted but it
1749cannot be represented as a decimal floating point number in a reasonable
1750number of digits. For example, NaN's, infinities, and other special
1751values are represented in their IEEE hexadecimal format so that assembly
1752and disassembly do not cause any bits to change in the constants.
1753
1754When using the hexadecimal form, constants of types half, float, and
1755double are represented using the 16-digit form shown above (which
1756matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001757must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001758precision, respectively. Hexadecimal format is always used for long
1759double, and there are three forms of long double. The 80-bit format used
1760by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1761128-bit format used by PowerPC (two adjacent doubles) is represented by
1762``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1763represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1764supported target uses this format. Long doubles will only work if they
1765match the long double format on your target. The IEEE 16-bit format
1766(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1767digits. All hexadecimal formats are big-endian (sign bit at the left).
1768
1769There are no constants of type x86mmx.
1770
1771Complex Constants
1772-----------------
1773
1774Complex constants are a (potentially recursive) combination of simple
1775constants and smaller complex constants.
1776
1777**Structure constants**
1778 Structure constants are represented with notation similar to
1779 structure type definitions (a comma separated list of elements,
1780 surrounded by braces (``{}``)). For example:
1781 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1782 "``@G = external global i32``". Structure constants must have
1783 :ref:`structure type <t_struct>`, and the number and types of elements
1784 must match those specified by the type.
1785**Array constants**
1786 Array constants are represented with notation similar to array type
1787 definitions (a comma separated list of elements, surrounded by
1788 square brackets (``[]``)). For example:
1789 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1790 :ref:`array type <t_array>`, and the number and types of elements must
1791 match those specified by the type.
1792**Vector constants**
1793 Vector constants are represented with notation similar to vector
1794 type definitions (a comma separated list of elements, surrounded by
1795 less-than/greater-than's (``<>``)). For example:
1796 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1797 must have :ref:`vector type <t_vector>`, and the number and types of
1798 elements must match those specified by the type.
1799**Zero initialization**
1800 The string '``zeroinitializer``' can be used to zero initialize a
1801 value to zero of *any* type, including scalar and
1802 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1803 having to print large zero initializers (e.g. for large arrays) and
1804 is always exactly equivalent to using explicit zero initializers.
1805**Metadata node**
1806 A metadata node is a structure-like constant with :ref:`metadata
1807 type <t_metadata>`. For example:
1808 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1809 constants that are meant to be interpreted as part of the
1810 instruction stream, metadata is a place to attach additional
1811 information such as debug info.
1812
1813Global Variable and Function Addresses
1814--------------------------------------
1815
1816The addresses of :ref:`global variables <globalvars>` and
1817:ref:`functions <functionstructure>` are always implicitly valid
1818(link-time) constants. These constants are explicitly referenced when
1819the :ref:`identifier for the global <identifiers>` is used and always have
1820:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1821file:
1822
1823.. code-block:: llvm
1824
1825 @X = global i32 17
1826 @Y = global i32 42
1827 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1828
1829.. _undefvalues:
1830
1831Undefined Values
1832----------------
1833
1834The string '``undef``' can be used anywhere a constant is expected, and
1835indicates that the user of the value may receive an unspecified
1836bit-pattern. Undefined values may be of any type (other than '``label``'
1837or '``void``') and be used anywhere a constant is permitted.
1838
1839Undefined values are useful because they indicate to the compiler that
1840the program is well defined no matter what value is used. This gives the
1841compiler more freedom to optimize. Here are some examples of
1842(potentially surprising) transformations that are valid (in pseudo IR):
1843
1844.. code-block:: llvm
1845
1846 %A = add %X, undef
1847 %B = sub %X, undef
1848 %C = xor %X, undef
1849 Safe:
1850 %A = undef
1851 %B = undef
1852 %C = undef
1853
1854This is safe because all of the output bits are affected by the undef
1855bits. Any output bit can have a zero or one depending on the input bits.
1856
1857.. code-block:: llvm
1858
1859 %A = or %X, undef
1860 %B = and %X, undef
1861 Safe:
1862 %A = -1
1863 %B = 0
1864 Unsafe:
1865 %A = undef
1866 %B = undef
1867
1868These logical operations have bits that are not always affected by the
1869input. For example, if ``%X`` has a zero bit, then the output of the
1870'``and``' operation will always be a zero for that bit, no matter what
1871the corresponding bit from the '``undef``' is. As such, it is unsafe to
1872optimize or assume that the result of the '``and``' is '``undef``'.
1873However, it is safe to assume that all bits of the '``undef``' could be
18740, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1875all the bits of the '``undef``' operand to the '``or``' could be set,
1876allowing the '``or``' to be folded to -1.
1877
1878.. code-block:: llvm
1879
1880 %A = select undef, %X, %Y
1881 %B = select undef, 42, %Y
1882 %C = select %X, %Y, undef
1883 Safe:
1884 %A = %X (or %Y)
1885 %B = 42 (or %Y)
1886 %C = %Y
1887 Unsafe:
1888 %A = undef
1889 %B = undef
1890 %C = undef
1891
1892This set of examples shows that undefined '``select``' (and conditional
1893branch) conditions can go *either way*, but they have to come from one
1894of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1895both known to have a clear low bit, then ``%A`` would have to have a
1896cleared low bit. However, in the ``%C`` example, the optimizer is
1897allowed to assume that the '``undef``' operand could be the same as
1898``%Y``, allowing the whole '``select``' to be eliminated.
1899
1900.. code-block:: llvm
1901
1902 %A = xor undef, undef
1903
1904 %B = undef
1905 %C = xor %B, %B
1906
1907 %D = undef
1908 %E = icmp lt %D, 4
1909 %F = icmp gte %D, 4
1910
1911 Safe:
1912 %A = undef
1913 %B = undef
1914 %C = undef
1915 %D = undef
1916 %E = undef
1917 %F = undef
1918
1919This example points out that two '``undef``' operands are not
1920necessarily the same. This can be surprising to people (and also matches
1921C semantics) where they assume that "``X^X``" is always zero, even if
1922``X`` is undefined. This isn't true for a number of reasons, but the
1923short answer is that an '``undef``' "variable" can arbitrarily change
1924its value over its "live range". This is true because the variable
1925doesn't actually *have a live range*. Instead, the value is logically
1926read from arbitrary registers that happen to be around when needed, so
1927the value is not necessarily consistent over time. In fact, ``%A`` and
1928``%C`` need to have the same semantics or the core LLVM "replace all
1929uses with" concept would not hold.
1930
1931.. code-block:: llvm
1932
1933 %A = fdiv undef, %X
1934 %B = fdiv %X, undef
1935 Safe:
1936 %A = undef
1937 b: unreachable
1938
1939These examples show the crucial difference between an *undefined value*
1940and *undefined behavior*. An undefined value (like '``undef``') is
1941allowed to have an arbitrary bit-pattern. This means that the ``%A``
1942operation can be constant folded to '``undef``', because the '``undef``'
1943could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1944However, in the second example, we can make a more aggressive
1945assumption: because the ``undef`` is allowed to be an arbitrary value,
1946we are allowed to assume that it could be zero. Since a divide by zero
1947has *undefined behavior*, we are allowed to assume that the operation
1948does not execute at all. This allows us to delete the divide and all
1949code after it. Because the undefined operation "can't happen", the
1950optimizer can assume that it occurs in dead code.
1951
1952.. code-block:: llvm
1953
1954 a: store undef -> %X
1955 b: store %X -> undef
1956 Safe:
1957 a: <deleted>
1958 b: unreachable
1959
1960These examples reiterate the ``fdiv`` example: a store *of* an undefined
1961value can be assumed to not have any effect; we can assume that the
1962value is overwritten with bits that happen to match what was already
1963there. However, a store *to* an undefined location could clobber
1964arbitrary memory, therefore, it has undefined behavior.
1965
1966.. _poisonvalues:
1967
1968Poison Values
1969-------------
1970
1971Poison values are similar to :ref:`undef values <undefvalues>`, however
1972they also represent the fact that an instruction or constant expression
1973which cannot evoke side effects has nevertheless detected a condition
1974which results in undefined behavior.
1975
1976There is currently no way of representing a poison value in the IR; they
1977only exist when produced by operations such as :ref:`add <i_add>` with
1978the ``nsw`` flag.
1979
1980Poison value behavior is defined in terms of value *dependence*:
1981
1982- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
1983- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
1984 their dynamic predecessor basic block.
1985- Function arguments depend on the corresponding actual argument values
1986 in the dynamic callers of their functions.
1987- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
1988 instructions that dynamically transfer control back to them.
1989- :ref:`Invoke <i_invoke>` instructions depend on the
1990 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
1991 call instructions that dynamically transfer control back to them.
1992- Non-volatile loads and stores depend on the most recent stores to all
1993 of the referenced memory addresses, following the order in the IR
1994 (including loads and stores implied by intrinsics such as
1995 :ref:`@llvm.memcpy <int_memcpy>`.)
1996- An instruction with externally visible side effects depends on the
1997 most recent preceding instruction with externally visible side
1998 effects, following the order in the IR. (This includes :ref:`volatile
1999 operations <volatile>`.)
2000- An instruction *control-depends* on a :ref:`terminator
2001 instruction <terminators>` if the terminator instruction has
2002 multiple successors and the instruction is always executed when
2003 control transfers to one of the successors, and may not be executed
2004 when control is transferred to another.
2005- Additionally, an instruction also *control-depends* on a terminator
2006 instruction if the set of instructions it otherwise depends on would
2007 be different if the terminator had transferred control to a different
2008 successor.
2009- Dependence is transitive.
2010
2011Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2012with the additional affect that any instruction which has a *dependence*
2013on a poison value has undefined behavior.
2014
2015Here are some examples:
2016
2017.. code-block:: llvm
2018
2019 entry:
2020 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2021 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2022 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2023 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2024
2025 store i32 %poison, i32* @g ; Poison value stored to memory.
2026 %poison2 = load i32* @g ; Poison value loaded back from memory.
2027
2028 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2029
2030 %narrowaddr = bitcast i32* @g to i16*
2031 %wideaddr = bitcast i32* @g to i64*
2032 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2033 %poison4 = load i64* %wideaddr ; Returns a poison value.
2034
2035 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2036 br i1 %cmp, label %true, label %end ; Branch to either destination.
2037
2038 true:
2039 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2040 ; it has undefined behavior.
2041 br label %end
2042
2043 end:
2044 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2045 ; Both edges into this PHI are
2046 ; control-dependent on %cmp, so this
2047 ; always results in a poison value.
2048
2049 store volatile i32 0, i32* @g ; This would depend on the store in %true
2050 ; if %cmp is true, or the store in %entry
2051 ; otherwise, so this is undefined behavior.
2052
2053 br i1 %cmp, label %second_true, label %second_end
2054 ; The same branch again, but this time the
2055 ; true block doesn't have side effects.
2056
2057 second_true:
2058 ; No side effects!
2059 ret void
2060
2061 second_end:
2062 store volatile i32 0, i32* @g ; This time, the instruction always depends
2063 ; on the store in %end. Also, it is
2064 ; control-equivalent to %end, so this is
2065 ; well-defined (ignoring earlier undefined
2066 ; behavior in this example).
2067
2068.. _blockaddress:
2069
2070Addresses of Basic Blocks
2071-------------------------
2072
2073``blockaddress(@function, %block)``
2074
2075The '``blockaddress``' constant computes the address of the specified
2076basic block in the specified function, and always has an ``i8*`` type.
2077Taking the address of the entry block is illegal.
2078
2079This value only has defined behavior when used as an operand to the
2080':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2081against null. Pointer equality tests between labels addresses results in
2082undefined behavior — though, again, comparison against null is ok, and
2083no label is equal to the null pointer. This may be passed around as an
2084opaque pointer sized value as long as the bits are not inspected. This
2085allows ``ptrtoint`` and arithmetic to be performed on these values so
2086long as the original value is reconstituted before the ``indirectbr``
2087instruction.
2088
2089Finally, some targets may provide defined semantics when using the value
2090as the operand to an inline assembly, but that is target specific.
2091
2092Constant Expressions
2093--------------------
2094
2095Constant expressions are used to allow expressions involving other
2096constants to be used as constants. Constant expressions may be of any
2097:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2098that does not have side effects (e.g. load and call are not supported).
2099The following is the syntax for constant expressions:
2100
2101``trunc (CST to TYPE)``
2102 Truncate a constant to another type. The bit size of CST must be
2103 larger than the bit size of TYPE. Both types must be integers.
2104``zext (CST to TYPE)``
2105 Zero extend a constant to another type. The bit size of CST must be
2106 smaller than the bit size of TYPE. Both types must be integers.
2107``sext (CST to TYPE)``
2108 Sign extend a constant to another type. The bit size of CST must be
2109 smaller than the bit size of TYPE. Both types must be integers.
2110``fptrunc (CST to TYPE)``
2111 Truncate a floating point constant to another floating point type.
2112 The size of CST must be larger than the size of TYPE. Both types
2113 must be floating point.
2114``fpext (CST to TYPE)``
2115 Floating point extend a constant to another type. The size of CST
2116 must be smaller or equal to the size of TYPE. Both types must be
2117 floating point.
2118``fptoui (CST to TYPE)``
2119 Convert a floating point constant to the corresponding unsigned
2120 integer constant. TYPE must be a scalar or vector integer type. CST
2121 must be of scalar or vector floating point type. Both CST and TYPE
2122 must be scalars, or vectors of the same number of elements. If the
2123 value won't fit in the integer type, the results are undefined.
2124``fptosi (CST to TYPE)``
2125 Convert a floating point constant to the corresponding signed
2126 integer constant. TYPE must be a scalar or vector integer type. CST
2127 must be of scalar or vector floating point type. Both CST and TYPE
2128 must be scalars, or vectors of the same number of elements. If the
2129 value won't fit in the integer type, the results are undefined.
2130``uitofp (CST to TYPE)``
2131 Convert an unsigned integer constant to the corresponding floating
2132 point constant. TYPE must be a scalar or vector floating point type.
2133 CST must be of scalar or vector integer type. Both CST and TYPE must
2134 be scalars, or vectors of the same number of elements. If the value
2135 won't fit in the floating point type, the results are undefined.
2136``sitofp (CST to TYPE)``
2137 Convert a signed integer constant to the corresponding floating
2138 point constant. TYPE must be a scalar or vector floating point type.
2139 CST must be of scalar or vector integer type. Both CST and TYPE must
2140 be scalars, or vectors of the same number of elements. If the value
2141 won't fit in the floating point type, the results are undefined.
2142``ptrtoint (CST to TYPE)``
2143 Convert a pointer typed constant to the corresponding integer
2144 constant ``TYPE`` must be an integer type. ``CST`` must be of
2145 pointer type. The ``CST`` value is zero extended, truncated, or
2146 unchanged to make it fit in ``TYPE``.
2147``inttoptr (CST to TYPE)``
2148 Convert an integer constant to a pointer constant. TYPE must be a
2149 pointer type. CST must be of integer type. The CST value is zero
2150 extended, truncated, or unchanged to make it fit in a pointer size.
2151 This one is *really* dangerous!
2152``bitcast (CST to TYPE)``
2153 Convert a constant, CST, to another TYPE. The constraints of the
2154 operands are the same as those for the :ref:`bitcast
2155 instruction <i_bitcast>`.
2156``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2157 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2158 constants. As with the :ref:`getelementptr <i_getelementptr>`
2159 instruction, the index list may have zero or more indexes, which are
2160 required to make sense for the type of "CSTPTR".
2161``select (COND, VAL1, VAL2)``
2162 Perform the :ref:`select operation <i_select>` on constants.
2163``icmp COND (VAL1, VAL2)``
2164 Performs the :ref:`icmp operation <i_icmp>` on constants.
2165``fcmp COND (VAL1, VAL2)``
2166 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2167``extractelement (VAL, IDX)``
2168 Perform the :ref:`extractelement operation <i_extractelement>` on
2169 constants.
2170``insertelement (VAL, ELT, IDX)``
2171 Perform the :ref:`insertelement operation <i_insertelement>` on
2172 constants.
2173``shufflevector (VEC1, VEC2, IDXMASK)``
2174 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2175 constants.
2176``extractvalue (VAL, IDX0, IDX1, ...)``
2177 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2178 constants. The index list is interpreted in a similar manner as
2179 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2180 least one index value must be specified.
2181``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2182 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2183 The index list is interpreted in a similar manner as indices in a
2184 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2185 value must be specified.
2186``OPCODE (LHS, RHS)``
2187 Perform the specified operation of the LHS and RHS constants. OPCODE
2188 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2189 binary <bitwiseops>` operations. The constraints on operands are
2190 the same as those for the corresponding instruction (e.g. no bitwise
2191 operations on floating point values are allowed).
2192
2193Other Values
2194============
2195
2196Inline Assembler Expressions
2197----------------------------
2198
2199LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2200Inline Assembly <moduleasm>`) through the use of a special value. This
2201value represents the inline assembler as a string (containing the
2202instructions to emit), a list of operand constraints (stored as a
2203string), a flag that indicates whether or not the inline asm expression
2204has side effects, and a flag indicating whether the function containing
2205the asm needs to align its stack conservatively. An example inline
2206assembler expression is:
2207
2208.. code-block:: llvm
2209
2210 i32 (i32) asm "bswap $0", "=r,r"
2211
2212Inline assembler expressions may **only** be used as the callee operand
2213of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2214Thus, typically we have:
2215
2216.. code-block:: llvm
2217
2218 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2219
2220Inline asms with side effects not visible in the constraint list must be
2221marked as having side effects. This is done through the use of the
2222'``sideeffect``' keyword, like so:
2223
2224.. code-block:: llvm
2225
2226 call void asm sideeffect "eieio", ""()
2227
2228In some cases inline asms will contain code that will not work unless
2229the stack is aligned in some way, such as calls or SSE instructions on
2230x86, yet will not contain code that does that alignment within the asm.
2231The compiler should make conservative assumptions about what the asm
2232might contain and should generate its usual stack alignment code in the
2233prologue if the '``alignstack``' keyword is present:
2234
2235.. code-block:: llvm
2236
2237 call void asm alignstack "eieio", ""()
2238
2239Inline asms also support using non-standard assembly dialects. The
2240assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2241the inline asm is using the Intel dialect. Currently, ATT and Intel are
2242the only supported dialects. An example is:
2243
2244.. code-block:: llvm
2245
2246 call void asm inteldialect "eieio", ""()
2247
2248If multiple keywords appear the '``sideeffect``' keyword must come
2249first, the '``alignstack``' keyword second and the '``inteldialect``'
2250keyword last.
2251
2252Inline Asm Metadata
2253^^^^^^^^^^^^^^^^^^^
2254
2255The call instructions that wrap inline asm nodes may have a
2256"``!srcloc``" MDNode attached to it that contains a list of constant
2257integers. If present, the code generator will use the integer as the
2258location cookie value when report errors through the ``LLVMContext``
2259error reporting mechanisms. This allows a front-end to correlate backend
2260errors that occur with inline asm back to the source code that produced
2261it. For example:
2262
2263.. code-block:: llvm
2264
2265 call void asm sideeffect "something bad", ""(), !srcloc !42
2266 ...
2267 !42 = !{ i32 1234567 }
2268
2269It is up to the front-end to make sense of the magic numbers it places
2270in the IR. If the MDNode contains multiple constants, the code generator
2271will use the one that corresponds to the line of the asm that the error
2272occurs on.
2273
2274.. _metadata:
2275
2276Metadata Nodes and Metadata Strings
2277-----------------------------------
2278
2279LLVM IR allows metadata to be attached to instructions in the program
2280that can convey extra information about the code to the optimizers and
2281code generator. One example application of metadata is source-level
2282debug information. There are two metadata primitives: strings and nodes.
2283All metadata has the ``metadata`` type and is identified in syntax by a
2284preceding exclamation point ('``!``').
2285
2286A metadata string is a string surrounded by double quotes. It can
2287contain any character by escaping non-printable characters with
2288"``\xx``" where "``xx``" is the two digit hex code. For example:
2289"``!"test\00"``".
2290
2291Metadata nodes are represented with notation similar to structure
2292constants (a comma separated list of elements, surrounded by braces and
2293preceded by an exclamation point). Metadata nodes can have any values as
2294their operand. For example:
2295
2296.. code-block:: llvm
2297
2298 !{ metadata !"test\00", i32 10}
2299
2300A :ref:`named metadata <namedmetadatastructure>` is a collection of
2301metadata nodes, which can be looked up in the module symbol table. For
2302example:
2303
2304.. code-block:: llvm
2305
2306 !foo = metadata !{!4, !3}
2307
2308Metadata can be used as function arguments. Here ``llvm.dbg.value``
2309function is using two metadata arguments:
2310
2311.. code-block:: llvm
2312
2313 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2314
2315Metadata can be attached with an instruction. Here metadata ``!21`` is
2316attached to the ``add`` instruction using the ``!dbg`` identifier:
2317
2318.. code-block:: llvm
2319
2320 %indvar.next = add i64 %indvar, 1, !dbg !21
2321
2322More information about specific metadata nodes recognized by the
2323optimizers and code generator is found below.
2324
2325'``tbaa``' Metadata
2326^^^^^^^^^^^^^^^^^^^
2327
2328In LLVM IR, memory does not have types, so LLVM's own type system is not
2329suitable for doing TBAA. Instead, metadata is added to the IR to
2330describe a type system of a higher level language. This can be used to
2331implement typical C/C++ TBAA, but it can also be used to implement
2332custom alias analysis behavior for other languages.
2333
2334The current metadata format is very simple. TBAA metadata nodes have up
2335to three fields, e.g.:
2336
2337.. code-block:: llvm
2338
2339 !0 = metadata !{ metadata !"an example type tree" }
2340 !1 = metadata !{ metadata !"int", metadata !0 }
2341 !2 = metadata !{ metadata !"float", metadata !0 }
2342 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2343
2344The first field is an identity field. It can be any value, usually a
2345metadata string, which uniquely identifies the type. The most important
2346name in the tree is the name of the root node. Two trees with different
2347root node names are entirely disjoint, even if they have leaves with
2348common names.
2349
2350The second field identifies the type's parent node in the tree, or is
2351null or omitted for a root node. A type is considered to alias all of
2352its descendants and all of its ancestors in the tree. Also, a type is
2353considered to alias all types in other trees, so that bitcode produced
2354from multiple front-ends is handled conservatively.
2355
2356If the third field is present, it's an integer which if equal to 1
2357indicates that the type is "constant" (meaning
2358``pointsToConstantMemory`` should return true; see `other useful
2359AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2360
2361'``tbaa.struct``' Metadata
2362^^^^^^^^^^^^^^^^^^^^^^^^^^
2363
2364The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2365aggregate assignment operations in C and similar languages, however it
2366is defined to copy a contiguous region of memory, which is more than
2367strictly necessary for aggregate types which contain holes due to
2368padding. Also, it doesn't contain any TBAA information about the fields
2369of the aggregate.
2370
2371``!tbaa.struct`` metadata can describe which memory subregions in a
2372memcpy are padding and what the TBAA tags of the struct are.
2373
2374The current metadata format is very simple. ``!tbaa.struct`` metadata
2375nodes are a list of operands which are in conceptual groups of three.
2376For each group of three, the first operand gives the byte offset of a
2377field in bytes, the second gives its size in bytes, and the third gives
2378its tbaa tag. e.g.:
2379
2380.. code-block:: llvm
2381
2382 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2383
2384This describes a struct with two fields. The first is at offset 0 bytes
2385with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2386and has size 4 bytes and has tbaa tag !2.
2387
2388Note that the fields need not be contiguous. In this example, there is a
23894 byte gap between the two fields. This gap represents padding which
2390does not carry useful data and need not be preserved.
2391
2392'``fpmath``' Metadata
2393^^^^^^^^^^^^^^^^^^^^^
2394
2395``fpmath`` metadata may be attached to any instruction of floating point
2396type. It can be used to express the maximum acceptable error in the
2397result of that instruction, in ULPs, thus potentially allowing the
2398compiler to use a more efficient but less accurate method of computing
2399it. ULP is defined as follows:
2400
2401 If ``x`` is a real number that lies between two finite consecutive
2402 floating-point numbers ``a`` and ``b``, without being equal to one
2403 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2404 distance between the two non-equal finite floating-point numbers
2405 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2406
2407The metadata node shall consist of a single positive floating point
2408number representing the maximum relative error, for example:
2409
2410.. code-block:: llvm
2411
2412 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2413
2414'``range``' Metadata
2415^^^^^^^^^^^^^^^^^^^^
2416
2417``range`` metadata may be attached only to loads of integer types. It
2418expresses the possible ranges the loaded value is in. The ranges are
2419represented with a flattened list of integers. The loaded value is known
2420to be in the union of the ranges defined by each consecutive pair. Each
2421pair has the following properties:
2422
2423- The type must match the type loaded by the instruction.
2424- The pair ``a,b`` represents the range ``[a,b)``.
2425- Both ``a`` and ``b`` are constants.
2426- The range is allowed to wrap.
2427- The range should not represent the full or empty set. That is,
2428 ``a!=b``.
2429
2430In addition, the pairs must be in signed order of the lower bound and
2431they must be non-contiguous.
2432
2433Examples:
2434
2435.. code-block:: llvm
2436
2437 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2438 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2439 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2440 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2441 ...
2442 !0 = metadata !{ i8 0, i8 2 }
2443 !1 = metadata !{ i8 255, i8 2 }
2444 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2445 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2446
2447Module Flags Metadata
2448=====================
2449
2450Information about the module as a whole is difficult to convey to LLVM's
2451subsystems. The LLVM IR isn't sufficient to transmit this information.
2452The ``llvm.module.flags`` named metadata exists in order to facilitate
2453this. These flags are in the form of key / value pairs — much like a
2454dictionary — making it easy for any subsystem who cares about a flag to
2455look it up.
2456
2457The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2458Each triplet has the following form:
2459
2460- The first element is a *behavior* flag, which specifies the behavior
2461 when two (or more) modules are merged together, and it encounters two
2462 (or more) metadata with the same ID. The supported behaviors are
2463 described below.
2464- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002465 metadata. Each module may only have one flag entry for each unique ID (not
2466 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002467- The third element is the value of the flag.
2468
2469When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002470``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2471each unique metadata ID string, there will be exactly one entry in the merged
2472modules ``llvm.module.flags`` metadata table, and the value for that entry will
2473be determined by the merge behavior flag, as described below. The only exception
2474is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002475
2476The following behaviors are supported:
2477
2478.. list-table::
2479 :header-rows: 1
2480 :widths: 10 90
2481
2482 * - Value
2483 - Behavior
2484
2485 * - 1
2486 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002487 Emits an error if two values disagree, otherwise the resulting value
2488 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002489
2490 * - 2
2491 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002492 Emits a warning if two values disagree. The result value will be the
2493 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002494
2495 * - 3
2496 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002497 Adds a requirement that another module flag be present and have a
2498 specified value after linking is performed. The value must be a
2499 metadata pair, where the first element of the pair is the ID of the
2500 module flag to be restricted, and the second element of the pair is
2501 the value the module flag should be restricted to. This behavior can
2502 be used to restrict the allowable results (via triggering of an
2503 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002504
2505 * - 4
2506 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002507 Uses the specified value, regardless of the behavior or value of the
2508 other module. If both modules specify **Override**, but the values
2509 differ, an error will be emitted.
2510
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002511 * - 5
2512 - **Append**
2513 Appends the two values, which are required to be metadata nodes.
2514
2515 * - 6
2516 - **AppendUnique**
2517 Appends the two values, which are required to be metadata
2518 nodes. However, duplicate entries in the second list are dropped
2519 during the append operation.
2520
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002521It is an error for a particular unique flag ID to have multiple behaviors,
2522except in the case of **Require** (which adds restrictions on another metadata
2523value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002524
2525An example of module flags:
2526
2527.. code-block:: llvm
2528
2529 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2530 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2531 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2532 !3 = metadata !{ i32 3, metadata !"qux",
2533 metadata !{
2534 metadata !"foo", i32 1
2535 }
2536 }
2537 !llvm.module.flags = !{ !0, !1, !2, !3 }
2538
2539- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2540 if two or more ``!"foo"`` flags are seen is to emit an error if their
2541 values are not equal.
2542
2543- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2544 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002545 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002546
2547- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2548 behavior if two or more ``!"qux"`` flags are seen is to emit a
2549 warning if their values are not equal.
2550
2551- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2552
2553 ::
2554
2555 metadata !{ metadata !"foo", i32 1 }
2556
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002557 The behavior is to emit an error if the ``llvm.module.flags`` does not
2558 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2559 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002560
2561Objective-C Garbage Collection Module Flags Metadata
2562----------------------------------------------------
2563
2564On the Mach-O platform, Objective-C stores metadata about garbage
2565collection in a special section called "image info". The metadata
2566consists of a version number and a bitmask specifying what types of
2567garbage collection are supported (if any) by the file. If two or more
2568modules are linked together their garbage collection metadata needs to
2569be merged rather than appended together.
2570
2571The Objective-C garbage collection module flags metadata consists of the
2572following key-value pairs:
2573
2574.. list-table::
2575 :header-rows: 1
2576 :widths: 30 70
2577
2578 * - Key
2579 - Value
2580
2581 * - ``Objective-C Version``
2582 - **[Required]** — The Objective-C ABI version. Valid values are 1 and 2.
2583
2584 * - ``Objective-C Image Info Version``
2585 - **[Required]** — The version of the image info section. Currently
2586 always 0.
2587
2588 * - ``Objective-C Image Info Section``
2589 - **[Required]** — The section to place the metadata. Valid values are
2590 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2591 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2592 Objective-C ABI version 2.
2593
2594 * - ``Objective-C Garbage Collection``
2595 - **[Required]** — Specifies whether garbage collection is supported or
2596 not. Valid values are 0, for no garbage collection, and 2, for garbage
2597 collection supported.
2598
2599 * - ``Objective-C GC Only``
2600 - **[Optional]** — Specifies that only garbage collection is supported.
2601 If present, its value must be 6. This flag requires that the
2602 ``Objective-C Garbage Collection`` flag have the value 2.
2603
2604Some important flag interactions:
2605
2606- If a module with ``Objective-C Garbage Collection`` set to 0 is
2607 merged with a module with ``Objective-C Garbage Collection`` set to
2608 2, then the resulting module has the
2609 ``Objective-C Garbage Collection`` flag set to 0.
2610- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2611 merged with a module with ``Objective-C GC Only`` set to 6.
2612
2613Intrinsic Global Variables
2614==========================
2615
2616LLVM has a number of "magic" global variables that contain data that
2617affect code generation or other IR semantics. These are documented here.
2618All globals of this sort should have a section specified as
2619"``llvm.metadata``". This section and all globals that start with
2620"``llvm.``" are reserved for use by LLVM.
2621
2622The '``llvm.used``' Global Variable
2623-----------------------------------
2624
2625The ``@llvm.used`` global is an array with i8\* element type which has
2626:ref:`appending linkage <linkage_appending>`. This array contains a list of
2627pointers to global variables and functions which may optionally have a
2628pointer cast formed of bitcast or getelementptr. For example, a legal
2629use of it is:
2630
2631.. code-block:: llvm
2632
2633 @X = global i8 4
2634 @Y = global i32 123
2635
2636 @llvm.used = appending global [2 x i8*] [
2637 i8* @X,
2638 i8* bitcast (i32* @Y to i8*)
2639 ], section "llvm.metadata"
2640
2641If a global variable appears in the ``@llvm.used`` list, then the
2642compiler, assembler, and linker are required to treat the symbol as if
2643there is a reference to the global that it cannot see. For example, if a
2644variable has internal linkage and no references other than that from the
2645``@llvm.used`` list, it cannot be deleted. This is commonly used to
2646represent references from inline asms and other things the compiler
2647cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2648
2649On some targets, the code generator must emit a directive to the
2650assembler or object file to prevent the assembler and linker from
2651molesting the symbol.
2652
2653The '``llvm.compiler.used``' Global Variable
2654--------------------------------------------
2655
2656The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2657directive, except that it only prevents the compiler from touching the
2658symbol. On targets that support it, this allows an intelligent linker to
2659optimize references to the symbol without being impeded as it would be
2660by ``@llvm.used``.
2661
2662This is a rare construct that should only be used in rare circumstances,
2663and should not be exposed to source languages.
2664
2665The '``llvm.global_ctors``' Global Variable
2666-------------------------------------------
2667
2668.. code-block:: llvm
2669
2670 %0 = type { i32, void ()* }
2671 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2672
2673The ``@llvm.global_ctors`` array contains a list of constructor
2674functions and associated priorities. The functions referenced by this
2675array will be called in ascending order of priority (i.e. lowest first)
2676when the module is loaded. The order of functions with the same priority
2677is not defined.
2678
2679The '``llvm.global_dtors``' Global Variable
2680-------------------------------------------
2681
2682.. code-block:: llvm
2683
2684 %0 = type { i32, void ()* }
2685 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2686
2687The ``@llvm.global_dtors`` array contains a list of destructor functions
2688and associated priorities. The functions referenced by this array will
2689be called in descending order of priority (i.e. highest first) when the
2690module is loaded. The order of functions with the same priority is not
2691defined.
2692
2693Instruction Reference
2694=====================
2695
2696The LLVM instruction set consists of several different classifications
2697of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2698instructions <binaryops>`, :ref:`bitwise binary
2699instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2700:ref:`other instructions <otherops>`.
2701
2702.. _terminators:
2703
2704Terminator Instructions
2705-----------------------
2706
2707As mentioned :ref:`previously <functionstructure>`, every basic block in a
2708program ends with a "Terminator" instruction, which indicates which
2709block should be executed after the current block is finished. These
2710terminator instructions typically yield a '``void``' value: they produce
2711control flow, not values (the one exception being the
2712':ref:`invoke <i_invoke>`' instruction).
2713
2714The terminator instructions are: ':ref:`ret <i_ret>`',
2715':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2716':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2717':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2718
2719.. _i_ret:
2720
2721'``ret``' Instruction
2722^^^^^^^^^^^^^^^^^^^^^
2723
2724Syntax:
2725"""""""
2726
2727::
2728
2729 ret <type> <value> ; Return a value from a non-void function
2730 ret void ; Return from void function
2731
2732Overview:
2733"""""""""
2734
2735The '``ret``' instruction is used to return control flow (and optionally
2736a value) from a function back to the caller.
2737
2738There are two forms of the '``ret``' instruction: one that returns a
2739value and then causes control flow, and one that just causes control
2740flow to occur.
2741
2742Arguments:
2743""""""""""
2744
2745The '``ret``' instruction optionally accepts a single argument, the
2746return value. The type of the return value must be a ':ref:`first
2747class <t_firstclass>`' type.
2748
2749A function is not :ref:`well formed <wellformed>` if it it has a non-void
2750return type and contains a '``ret``' instruction with no return value or
2751a return value with a type that does not match its type, or if it has a
2752void return type and contains a '``ret``' instruction with a return
2753value.
2754
2755Semantics:
2756""""""""""
2757
2758When the '``ret``' instruction is executed, control flow returns back to
2759the calling function's context. If the caller is a
2760":ref:`call <i_call>`" instruction, execution continues at the
2761instruction after the call. If the caller was an
2762":ref:`invoke <i_invoke>`" instruction, execution continues at the
2763beginning of the "normal" destination block. If the instruction returns
2764a value, that value shall set the call or invoke instruction's return
2765value.
2766
2767Example:
2768""""""""
2769
2770.. code-block:: llvm
2771
2772 ret i32 5 ; Return an integer value of 5
2773 ret void ; Return from a void function
2774 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2775
2776.. _i_br:
2777
2778'``br``' Instruction
2779^^^^^^^^^^^^^^^^^^^^
2780
2781Syntax:
2782"""""""
2783
2784::
2785
2786 br i1 <cond>, label <iftrue>, label <iffalse>
2787 br label <dest> ; Unconditional branch
2788
2789Overview:
2790"""""""""
2791
2792The '``br``' instruction is used to cause control flow to transfer to a
2793different basic block in the current function. There are two forms of
2794this instruction, corresponding to a conditional branch and an
2795unconditional branch.
2796
2797Arguments:
2798""""""""""
2799
2800The conditional branch form of the '``br``' instruction takes a single
2801'``i1``' value and two '``label``' values. The unconditional form of the
2802'``br``' instruction takes a single '``label``' value as a target.
2803
2804Semantics:
2805""""""""""
2806
2807Upon execution of a conditional '``br``' instruction, the '``i1``'
2808argument is evaluated. If the value is ``true``, control flows to the
2809'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2810to the '``iffalse``' ``label`` argument.
2811
2812Example:
2813""""""""
2814
2815.. code-block:: llvm
2816
2817 Test:
2818 %cond = icmp eq i32 %a, %b
2819 br i1 %cond, label %IfEqual, label %IfUnequal
2820 IfEqual:
2821 ret i32 1
2822 IfUnequal:
2823 ret i32 0
2824
2825.. _i_switch:
2826
2827'``switch``' Instruction
2828^^^^^^^^^^^^^^^^^^^^^^^^
2829
2830Syntax:
2831"""""""
2832
2833::
2834
2835 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2836
2837Overview:
2838"""""""""
2839
2840The '``switch``' instruction is used to transfer control flow to one of
2841several different places. It is a generalization of the '``br``'
2842instruction, allowing a branch to occur to one of many possible
2843destinations.
2844
2845Arguments:
2846""""""""""
2847
2848The '``switch``' instruction uses three parameters: an integer
2849comparison value '``value``', a default '``label``' destination, and an
2850array of pairs of comparison value constants and '``label``'s. The table
2851is not allowed to contain duplicate constant entries.
2852
2853Semantics:
2854""""""""""
2855
2856The ``switch`` instruction specifies a table of values and destinations.
2857When the '``switch``' instruction is executed, this table is searched
2858for the given value. If the value is found, control flow is transferred
2859to the corresponding destination; otherwise, control flow is transferred
2860to the default destination.
2861
2862Implementation:
2863"""""""""""""""
2864
2865Depending on properties of the target machine and the particular
2866``switch`` instruction, this instruction may be code generated in
2867different ways. For example, it could be generated as a series of
2868chained conditional branches or with a lookup table.
2869
2870Example:
2871""""""""
2872
2873.. code-block:: llvm
2874
2875 ; Emulate a conditional br instruction
2876 %Val = zext i1 %value to i32
2877 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2878
2879 ; Emulate an unconditional br instruction
2880 switch i32 0, label %dest [ ]
2881
2882 ; Implement a jump table:
2883 switch i32 %val, label %otherwise [ i32 0, label %onzero
2884 i32 1, label %onone
2885 i32 2, label %ontwo ]
2886
2887.. _i_indirectbr:
2888
2889'``indirectbr``' Instruction
2890^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2891
2892Syntax:
2893"""""""
2894
2895::
2896
2897 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2898
2899Overview:
2900"""""""""
2901
2902The '``indirectbr``' instruction implements an indirect branch to a
2903label within the current function, whose address is specified by
2904"``address``". Address must be derived from a
2905:ref:`blockaddress <blockaddress>` constant.
2906
2907Arguments:
2908""""""""""
2909
2910The '``address``' argument is the address of the label to jump to. The
2911rest of the arguments indicate the full set of possible destinations
2912that the address may point to. Blocks are allowed to occur multiple
2913times in the destination list, though this isn't particularly useful.
2914
2915This destination list is required so that dataflow analysis has an
2916accurate understanding of the CFG.
2917
2918Semantics:
2919""""""""""
2920
2921Control transfers to the block specified in the address argument. All
2922possible destination blocks must be listed in the label list, otherwise
2923this instruction has undefined behavior. This implies that jumps to
2924labels defined in other functions have undefined behavior as well.
2925
2926Implementation:
2927"""""""""""""""
2928
2929This is typically implemented with a jump through a register.
2930
2931Example:
2932""""""""
2933
2934.. code-block:: llvm
2935
2936 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
2937
2938.. _i_invoke:
2939
2940'``invoke``' Instruction
2941^^^^^^^^^^^^^^^^^^^^^^^^
2942
2943Syntax:
2944"""""""
2945
2946::
2947
2948 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
2949 to label <normal label> unwind label <exception label>
2950
2951Overview:
2952"""""""""
2953
2954The '``invoke``' instruction causes control to transfer to a specified
2955function, with the possibility of control flow transfer to either the
2956'``normal``' label or the '``exception``' label. If the callee function
2957returns with the "``ret``" instruction, control flow will return to the
2958"normal" label. If the callee (or any indirect callees) returns via the
2959":ref:`resume <i_resume>`" instruction or other exception handling
2960mechanism, control is interrupted and continued at the dynamically
2961nearest "exception" label.
2962
2963The '``exception``' label is a `landing
2964pad <ExceptionHandling.html#overview>`_ for the exception. As such,
2965'``exception``' label is required to have the
2966":ref:`landingpad <i_landingpad>`" instruction, which contains the
2967information about the behavior of the program after unwinding happens,
2968as its first non-PHI instruction. The restrictions on the
2969"``landingpad``" instruction's tightly couples it to the "``invoke``"
2970instruction, so that the important information contained within the
2971"``landingpad``" instruction can't be lost through normal code motion.
2972
2973Arguments:
2974""""""""""
2975
2976This instruction requires several arguments:
2977
2978#. The optional "cconv" marker indicates which :ref:`calling
2979 convention <callingconv>` the call should use. If none is
2980 specified, the call defaults to using C calling conventions.
2981#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
2982 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
2983 are valid here.
2984#. '``ptr to function ty``': shall be the signature of the pointer to
2985 function value being invoked. In most cases, this is a direct
2986 function invocation, but indirect ``invoke``'s are just as possible,
2987 branching off an arbitrary pointer to function value.
2988#. '``function ptr val``': An LLVM value containing a pointer to a
2989 function to be invoked.
2990#. '``function args``': argument list whose types match the function
2991 signature argument types and parameter attributes. All arguments must
2992 be of :ref:`first class <t_firstclass>` type. If the function signature
2993 indicates the function accepts a variable number of arguments, the
2994 extra arguments can be specified.
2995#. '``normal label``': the label reached when the called function
2996 executes a '``ret``' instruction.
2997#. '``exception label``': the label reached when a callee returns via
2998 the :ref:`resume <i_resume>` instruction or other exception handling
2999 mechanism.
3000#. The optional :ref:`function attributes <fnattrs>` list. Only
3001 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3002 attributes are valid here.
3003
3004Semantics:
3005""""""""""
3006
3007This instruction is designed to operate as a standard '``call``'
3008instruction in most regards. The primary difference is that it
3009establishes an association with a label, which is used by the runtime
3010library to unwind the stack.
3011
3012This instruction is used in languages with destructors to ensure that
3013proper cleanup is performed in the case of either a ``longjmp`` or a
3014thrown exception. Additionally, this is important for implementation of
3015'``catch``' clauses in high-level languages that support them.
3016
3017For the purposes of the SSA form, the definition of the value returned
3018by the '``invoke``' instruction is deemed to occur on the edge from the
3019current block to the "normal" label. If the callee unwinds then no
3020return value is available.
3021
3022Example:
3023""""""""
3024
3025.. code-block:: llvm
3026
3027 %retval = invoke i32 @Test(i32 15) to label %Continue
3028 unwind label %TestCleanup ; {i32}:retval set
3029 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3030 unwind label %TestCleanup ; {i32}:retval set
3031
3032.. _i_resume:
3033
3034'``resume``' Instruction
3035^^^^^^^^^^^^^^^^^^^^^^^^
3036
3037Syntax:
3038"""""""
3039
3040::
3041
3042 resume <type> <value>
3043
3044Overview:
3045"""""""""
3046
3047The '``resume``' instruction is a terminator instruction that has no
3048successors.
3049
3050Arguments:
3051""""""""""
3052
3053The '``resume``' instruction requires one argument, which must have the
3054same type as the result of any '``landingpad``' instruction in the same
3055function.
3056
3057Semantics:
3058""""""""""
3059
3060The '``resume``' instruction resumes propagation of an existing
3061(in-flight) exception whose unwinding was interrupted with a
3062:ref:`landingpad <i_landingpad>` instruction.
3063
3064Example:
3065""""""""
3066
3067.. code-block:: llvm
3068
3069 resume { i8*, i32 } %exn
3070
3071.. _i_unreachable:
3072
3073'``unreachable``' Instruction
3074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3075
3076Syntax:
3077"""""""
3078
3079::
3080
3081 unreachable
3082
3083Overview:
3084"""""""""
3085
3086The '``unreachable``' instruction has no defined semantics. This
3087instruction is used to inform the optimizer that a particular portion of
3088the code is not reachable. This can be used to indicate that the code
3089after a no-return function cannot be reached, and other facts.
3090
3091Semantics:
3092""""""""""
3093
3094The '``unreachable``' instruction has no defined semantics.
3095
3096.. _binaryops:
3097
3098Binary Operations
3099-----------------
3100
3101Binary operators are used to do most of the computation in a program.
3102They require two operands of the same type, execute an operation on
3103them, and produce a single value. The operands might represent multiple
3104data, as is the case with the :ref:`vector <t_vector>` data type. The
3105result value has the same type as its operands.
3106
3107There are several different binary operators:
3108
3109.. _i_add:
3110
3111'``add``' Instruction
3112^^^^^^^^^^^^^^^^^^^^^
3113
3114Syntax:
3115"""""""
3116
3117::
3118
3119 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3120 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3121 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3122 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3123
3124Overview:
3125"""""""""
3126
3127The '``add``' instruction returns the sum of its two operands.
3128
3129Arguments:
3130""""""""""
3131
3132The two arguments to the '``add``' instruction must be
3133:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3134arguments must have identical types.
3135
3136Semantics:
3137""""""""""
3138
3139The value produced is the integer sum of the two operands.
3140
3141If the sum has unsigned overflow, the result returned is the
3142mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3143the result.
3144
3145Because LLVM integers use a two's complement representation, this
3146instruction is appropriate for both signed and unsigned integers.
3147
3148``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3149respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3150result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3151unsigned and/or signed overflow, respectively, occurs.
3152
3153Example:
3154""""""""
3155
3156.. code-block:: llvm
3157
3158 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3159
3160.. _i_fadd:
3161
3162'``fadd``' Instruction
3163^^^^^^^^^^^^^^^^^^^^^^
3164
3165Syntax:
3166"""""""
3167
3168::
3169
3170 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3171
3172Overview:
3173"""""""""
3174
3175The '``fadd``' instruction returns the sum of its two operands.
3176
3177Arguments:
3178""""""""""
3179
3180The two arguments to the '``fadd``' instruction must be :ref:`floating
3181point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3182Both arguments must have identical types.
3183
3184Semantics:
3185""""""""""
3186
3187The value produced is the floating point sum of the two operands. This
3188instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3189which are optimization hints to enable otherwise unsafe floating point
3190optimizations:
3191
3192Example:
3193""""""""
3194
3195.. code-block:: llvm
3196
3197 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3198
3199'``sub``' Instruction
3200^^^^^^^^^^^^^^^^^^^^^
3201
3202Syntax:
3203"""""""
3204
3205::
3206
3207 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3208 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3209 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3210 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3211
3212Overview:
3213"""""""""
3214
3215The '``sub``' instruction returns the difference of its two operands.
3216
3217Note that the '``sub``' instruction is used to represent the '``neg``'
3218instruction present in most other intermediate representations.
3219
3220Arguments:
3221""""""""""
3222
3223The two arguments to the '``sub``' instruction must be
3224:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3225arguments must have identical types.
3226
3227Semantics:
3228""""""""""
3229
3230The value produced is the integer difference of the two operands.
3231
3232If the difference has unsigned overflow, the result returned is the
3233mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3234the result.
3235
3236Because LLVM integers use a two's complement representation, this
3237instruction is appropriate for both signed and unsigned integers.
3238
3239``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3240respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3241result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3242unsigned and/or signed overflow, respectively, occurs.
3243
3244Example:
3245""""""""
3246
3247.. code-block:: llvm
3248
3249 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3250 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3251
3252.. _i_fsub:
3253
3254'``fsub``' Instruction
3255^^^^^^^^^^^^^^^^^^^^^^
3256
3257Syntax:
3258"""""""
3259
3260::
3261
3262 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3263
3264Overview:
3265"""""""""
3266
3267The '``fsub``' instruction returns the difference of its two operands.
3268
3269Note that the '``fsub``' instruction is used to represent the '``fneg``'
3270instruction present in most other intermediate representations.
3271
3272Arguments:
3273""""""""""
3274
3275The two arguments to the '``fsub``' instruction must be :ref:`floating
3276point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3277Both arguments must have identical types.
3278
3279Semantics:
3280""""""""""
3281
3282The value produced is the floating point difference of the two operands.
3283This instruction can also take any number of :ref:`fast-math
3284flags <fastmath>`, which are optimization hints to enable otherwise
3285unsafe floating point optimizations:
3286
3287Example:
3288""""""""
3289
3290.. code-block:: llvm
3291
3292 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3293 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3294
3295'``mul``' Instruction
3296^^^^^^^^^^^^^^^^^^^^^
3297
3298Syntax:
3299"""""""
3300
3301::
3302
3303 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3304 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3305 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3306 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3307
3308Overview:
3309"""""""""
3310
3311The '``mul``' instruction returns the product of its two operands.
3312
3313Arguments:
3314""""""""""
3315
3316The two arguments to the '``mul``' instruction must be
3317:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3318arguments must have identical types.
3319
3320Semantics:
3321""""""""""
3322
3323The value produced is the integer product of the two operands.
3324
3325If the result of the multiplication has unsigned overflow, the result
3326returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3327bit width of the result.
3328
3329Because LLVM integers use a two's complement representation, and the
3330result is the same width as the operands, this instruction returns the
3331correct result for both signed and unsigned integers. If a full product
3332(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3333sign-extended or zero-extended as appropriate to the width of the full
3334product.
3335
3336``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3337respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3338result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3339unsigned and/or signed overflow, respectively, occurs.
3340
3341Example:
3342""""""""
3343
3344.. code-block:: llvm
3345
3346 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3347
3348.. _i_fmul:
3349
3350'``fmul``' Instruction
3351^^^^^^^^^^^^^^^^^^^^^^
3352
3353Syntax:
3354"""""""
3355
3356::
3357
3358 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3359
3360Overview:
3361"""""""""
3362
3363The '``fmul``' instruction returns the product of its two operands.
3364
3365Arguments:
3366""""""""""
3367
3368The two arguments to the '``fmul``' instruction must be :ref:`floating
3369point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3370Both arguments must have identical types.
3371
3372Semantics:
3373""""""""""
3374
3375The value produced is the floating point product of the two operands.
3376This instruction can also take any number of :ref:`fast-math
3377flags <fastmath>`, which are optimization hints to enable otherwise
3378unsafe floating point optimizations:
3379
3380Example:
3381""""""""
3382
3383.. code-block:: llvm
3384
3385 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3386
3387'``udiv``' Instruction
3388^^^^^^^^^^^^^^^^^^^^^^
3389
3390Syntax:
3391"""""""
3392
3393::
3394
3395 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3396 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3397
3398Overview:
3399"""""""""
3400
3401The '``udiv``' instruction returns the quotient of its two operands.
3402
3403Arguments:
3404""""""""""
3405
3406The two arguments to the '``udiv``' instruction must be
3407:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3408arguments must have identical types.
3409
3410Semantics:
3411""""""""""
3412
3413The value produced is the unsigned integer quotient of the two operands.
3414
3415Note that unsigned integer division and signed integer division are
3416distinct operations; for signed integer division, use '``sdiv``'.
3417
3418Division by zero leads to undefined behavior.
3419
3420If the ``exact`` keyword is present, the result value of the ``udiv`` is
3421a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3422such, "((a udiv exact b) mul b) == a").
3423
3424Example:
3425""""""""
3426
3427.. code-block:: llvm
3428
3429 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3430
3431'``sdiv``' Instruction
3432^^^^^^^^^^^^^^^^^^^^^^
3433
3434Syntax:
3435"""""""
3436
3437::
3438
3439 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3440 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3441
3442Overview:
3443"""""""""
3444
3445The '``sdiv``' instruction returns the quotient of its two operands.
3446
3447Arguments:
3448""""""""""
3449
3450The two arguments to the '``sdiv``' instruction must be
3451:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3452arguments must have identical types.
3453
3454Semantics:
3455""""""""""
3456
3457The value produced is the signed integer quotient of the two operands
3458rounded towards zero.
3459
3460Note that signed integer division and unsigned integer division are
3461distinct operations; for unsigned integer division, use '``udiv``'.
3462
3463Division by zero leads to undefined behavior. Overflow also leads to
3464undefined behavior; this is a rare case, but can occur, for example, by
3465doing a 32-bit division of -2147483648 by -1.
3466
3467If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3468a :ref:`poison value <poisonvalues>` if the result would be rounded.
3469
3470Example:
3471""""""""
3472
3473.. code-block:: llvm
3474
3475 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3476
3477.. _i_fdiv:
3478
3479'``fdiv``' Instruction
3480^^^^^^^^^^^^^^^^^^^^^^
3481
3482Syntax:
3483"""""""
3484
3485::
3486
3487 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3488
3489Overview:
3490"""""""""
3491
3492The '``fdiv``' instruction returns the quotient of its two operands.
3493
3494Arguments:
3495""""""""""
3496
3497The two arguments to the '``fdiv``' instruction must be :ref:`floating
3498point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3499Both arguments must have identical types.
3500
3501Semantics:
3502""""""""""
3503
3504The value produced is the floating point quotient of the two operands.
3505This instruction can also take any number of :ref:`fast-math
3506flags <fastmath>`, which are optimization hints to enable otherwise
3507unsafe floating point optimizations:
3508
3509Example:
3510""""""""
3511
3512.. code-block:: llvm
3513
3514 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3515
3516'``urem``' Instruction
3517^^^^^^^^^^^^^^^^^^^^^^
3518
3519Syntax:
3520"""""""
3521
3522::
3523
3524 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3525
3526Overview:
3527"""""""""
3528
3529The '``urem``' instruction returns the remainder from the unsigned
3530division of its two arguments.
3531
3532Arguments:
3533""""""""""
3534
3535The two arguments to the '``urem``' instruction must be
3536:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3537arguments must have identical types.
3538
3539Semantics:
3540""""""""""
3541
3542This instruction returns the unsigned integer *remainder* of a division.
3543This instruction always performs an unsigned division to get the
3544remainder.
3545
3546Note that unsigned integer remainder and signed integer remainder are
3547distinct operations; for signed integer remainder, use '``srem``'.
3548
3549Taking the remainder of a division by zero leads to undefined behavior.
3550
3551Example:
3552""""""""
3553
3554.. code-block:: llvm
3555
3556 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3557
3558'``srem``' Instruction
3559^^^^^^^^^^^^^^^^^^^^^^
3560
3561Syntax:
3562"""""""
3563
3564::
3565
3566 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3567
3568Overview:
3569"""""""""
3570
3571The '``srem``' instruction returns the remainder from the signed
3572division of its two operands. This instruction can also take
3573:ref:`vector <t_vector>` versions of the values in which case the elements
3574must be integers.
3575
3576Arguments:
3577""""""""""
3578
3579The two arguments to the '``srem``' instruction must be
3580:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3581arguments must have identical types.
3582
3583Semantics:
3584""""""""""
3585
3586This instruction returns the *remainder* of a division (where the result
3587is either zero or has the same sign as the dividend, ``op1``), not the
3588*modulo* operator (where the result is either zero or has the same sign
3589as the divisor, ``op2``) of a value. For more information about the
3590difference, see `The Math
3591Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3592table of how this is implemented in various languages, please see
3593`Wikipedia: modulo
3594operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3595
3596Note that signed integer remainder and unsigned integer remainder are
3597distinct operations; for unsigned integer remainder, use '``urem``'.
3598
3599Taking the remainder of a division by zero leads to undefined behavior.
3600Overflow also leads to undefined behavior; this is a rare case, but can
3601occur, for example, by taking the remainder of a 32-bit division of
3602-2147483648 by -1. (The remainder doesn't actually overflow, but this
3603rule lets srem be implemented using instructions that return both the
3604result of the division and the remainder.)
3605
3606Example:
3607""""""""
3608
3609.. code-block:: llvm
3610
3611 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3612
3613.. _i_frem:
3614
3615'``frem``' Instruction
3616^^^^^^^^^^^^^^^^^^^^^^
3617
3618Syntax:
3619"""""""
3620
3621::
3622
3623 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3624
3625Overview:
3626"""""""""
3627
3628The '``frem``' instruction returns the remainder from the division of
3629its two operands.
3630
3631Arguments:
3632""""""""""
3633
3634The two arguments to the '``frem``' instruction must be :ref:`floating
3635point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3636Both arguments must have identical types.
3637
3638Semantics:
3639""""""""""
3640
3641This instruction returns the *remainder* of a division. The remainder
3642has the same sign as the dividend. This instruction can also take any
3643number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3644to enable otherwise unsafe floating point optimizations:
3645
3646Example:
3647""""""""
3648
3649.. code-block:: llvm
3650
3651 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3652
3653.. _bitwiseops:
3654
3655Bitwise Binary Operations
3656-------------------------
3657
3658Bitwise binary operators are used to do various forms of bit-twiddling
3659in a program. They are generally very efficient instructions and can
3660commonly be strength reduced from other instructions. They require two
3661operands of the same type, execute an operation on them, and produce a
3662single value. The resulting value is the same type as its operands.
3663
3664'``shl``' Instruction
3665^^^^^^^^^^^^^^^^^^^^^
3666
3667Syntax:
3668"""""""
3669
3670::
3671
3672 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3673 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3674 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3675 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3676
3677Overview:
3678"""""""""
3679
3680The '``shl``' instruction returns the first operand shifted to the left
3681a specified number of bits.
3682
3683Arguments:
3684""""""""""
3685
3686Both arguments to the '``shl``' instruction must be the same
3687:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3688'``op2``' is treated as an unsigned value.
3689
3690Semantics:
3691""""""""""
3692
3693The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3694where ``n`` is the width of the result. If ``op2`` is (statically or
3695dynamically) negative or equal to or larger than the number of bits in
3696``op1``, the result is undefined. If the arguments are vectors, each
3697vector element of ``op1`` is shifted by the corresponding shift amount
3698in ``op2``.
3699
3700If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3701value <poisonvalues>` if it shifts out any non-zero bits. If the
3702``nsw`` keyword is present, then the shift produces a :ref:`poison
3703value <poisonvalues>` if it shifts out any bits that disagree with the
3704resultant sign bit. As such, NUW/NSW have the same semantics as they
3705would if the shift were expressed as a mul instruction with the same
3706nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3707
3708Example:
3709""""""""
3710
3711.. code-block:: llvm
3712
3713 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3714 <result> = shl i32 4, 2 ; yields {i32}: 16
3715 <result> = shl i32 1, 10 ; yields {i32}: 1024
3716 <result> = shl i32 1, 32 ; undefined
3717 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3718
3719'``lshr``' Instruction
3720^^^^^^^^^^^^^^^^^^^^^^
3721
3722Syntax:
3723"""""""
3724
3725::
3726
3727 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3728 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3729
3730Overview:
3731"""""""""
3732
3733The '``lshr``' instruction (logical shift right) returns the first
3734operand shifted to the right a specified number of bits with zero fill.
3735
3736Arguments:
3737""""""""""
3738
3739Both arguments to the '``lshr``' instruction must be the same
3740:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3741'``op2``' is treated as an unsigned value.
3742
3743Semantics:
3744""""""""""
3745
3746This instruction always performs a logical shift right operation. The
3747most significant bits of the result will be filled with zero bits after
3748the shift. If ``op2`` is (statically or dynamically) equal to or larger
3749than the number of bits in ``op1``, the result is undefined. If the
3750arguments are vectors, each vector element of ``op1`` is shifted by the
3751corresponding shift amount in ``op2``.
3752
3753If the ``exact`` keyword is present, the result value of the ``lshr`` is
3754a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3755non-zero.
3756
3757Example:
3758""""""""
3759
3760.. code-block:: llvm
3761
3762 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3763 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3764 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3765 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3766 <result> = lshr i32 1, 32 ; undefined
3767 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3768
3769'``ashr``' Instruction
3770^^^^^^^^^^^^^^^^^^^^^^
3771
3772Syntax:
3773"""""""
3774
3775::
3776
3777 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3778 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3779
3780Overview:
3781"""""""""
3782
3783The '``ashr``' instruction (arithmetic shift right) returns the first
3784operand shifted to the right a specified number of bits with sign
3785extension.
3786
3787Arguments:
3788""""""""""
3789
3790Both arguments to the '``ashr``' instruction must be the same
3791:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3792'``op2``' is treated as an unsigned value.
3793
3794Semantics:
3795""""""""""
3796
3797This instruction always performs an arithmetic shift right operation,
3798The most significant bits of the result will be filled with the sign bit
3799of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3800than the number of bits in ``op1``, the result is undefined. If the
3801arguments are vectors, each vector element of ``op1`` is shifted by the
3802corresponding shift amount in ``op2``.
3803
3804If the ``exact`` keyword is present, the result value of the ``ashr`` is
3805a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3806non-zero.
3807
3808Example:
3809""""""""
3810
3811.. code-block:: llvm
3812
3813 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3814 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3815 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3816 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3817 <result> = ashr i32 1, 32 ; undefined
3818 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3819
3820'``and``' Instruction
3821^^^^^^^^^^^^^^^^^^^^^
3822
3823Syntax:
3824"""""""
3825
3826::
3827
3828 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3829
3830Overview:
3831"""""""""
3832
3833The '``and``' instruction returns the bitwise logical and of its two
3834operands.
3835
3836Arguments:
3837""""""""""
3838
3839The two arguments to the '``and``' instruction must be
3840:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3841arguments must have identical types.
3842
3843Semantics:
3844""""""""""
3845
3846The truth table used for the '``and``' instruction is:
3847
3848+-----+-----+-----+
3849| In0 | In1 | Out |
3850+-----+-----+-----+
3851| 0 | 0 | 0 |
3852+-----+-----+-----+
3853| 0 | 1 | 0 |
3854+-----+-----+-----+
3855| 1 | 0 | 0 |
3856+-----+-----+-----+
3857| 1 | 1 | 1 |
3858+-----+-----+-----+
3859
3860Example:
3861""""""""
3862
3863.. code-block:: llvm
3864
3865 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3866 <result> = and i32 15, 40 ; yields {i32}:result = 8
3867 <result> = and i32 4, 8 ; yields {i32}:result = 0
3868
3869'``or``' Instruction
3870^^^^^^^^^^^^^^^^^^^^
3871
3872Syntax:
3873"""""""
3874
3875::
3876
3877 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3878
3879Overview:
3880"""""""""
3881
3882The '``or``' instruction returns the bitwise logical inclusive or of its
3883two operands.
3884
3885Arguments:
3886""""""""""
3887
3888The two arguments to the '``or``' instruction must be
3889:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3890arguments must have identical types.
3891
3892Semantics:
3893""""""""""
3894
3895The truth table used for the '``or``' instruction is:
3896
3897+-----+-----+-----+
3898| In0 | In1 | Out |
3899+-----+-----+-----+
3900| 0 | 0 | 0 |
3901+-----+-----+-----+
3902| 0 | 1 | 1 |
3903+-----+-----+-----+
3904| 1 | 0 | 1 |
3905+-----+-----+-----+
3906| 1 | 1 | 1 |
3907+-----+-----+-----+
3908
3909Example:
3910""""""""
3911
3912::
3913
3914 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3915 <result> = or i32 15, 40 ; yields {i32}:result = 47
3916 <result> = or i32 4, 8 ; yields {i32}:result = 12
3917
3918'``xor``' Instruction
3919^^^^^^^^^^^^^^^^^^^^^
3920
3921Syntax:
3922"""""""
3923
3924::
3925
3926 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
3927
3928Overview:
3929"""""""""
3930
3931The '``xor``' instruction returns the bitwise logical exclusive or of
3932its two operands. The ``xor`` is used to implement the "one's
3933complement" operation, which is the "~" operator in C.
3934
3935Arguments:
3936""""""""""
3937
3938The two arguments to the '``xor``' instruction must be
3939:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3940arguments must have identical types.
3941
3942Semantics:
3943""""""""""
3944
3945The truth table used for the '``xor``' instruction is:
3946
3947+-----+-----+-----+
3948| In0 | In1 | Out |
3949+-----+-----+-----+
3950| 0 | 0 | 0 |
3951+-----+-----+-----+
3952| 0 | 1 | 1 |
3953+-----+-----+-----+
3954| 1 | 0 | 1 |
3955+-----+-----+-----+
3956| 1 | 1 | 0 |
3957+-----+-----+-----+
3958
3959Example:
3960""""""""
3961
3962.. code-block:: llvm
3963
3964 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
3965 <result> = xor i32 15, 40 ; yields {i32}:result = 39
3966 <result> = xor i32 4, 8 ; yields {i32}:result = 12
3967 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
3968
3969Vector Operations
3970-----------------
3971
3972LLVM supports several instructions to represent vector operations in a
3973target-independent manner. These instructions cover the element-access
3974and vector-specific operations needed to process vectors effectively.
3975While LLVM does directly support these vector operations, many
3976sophisticated algorithms will want to use target-specific intrinsics to
3977take full advantage of a specific target.
3978
3979.. _i_extractelement:
3980
3981'``extractelement``' Instruction
3982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3983
3984Syntax:
3985"""""""
3986
3987::
3988
3989 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
3990
3991Overview:
3992"""""""""
3993
3994The '``extractelement``' instruction extracts a single scalar element
3995from a vector at a specified index.
3996
3997Arguments:
3998""""""""""
3999
4000The first operand of an '``extractelement``' instruction is a value of
4001:ref:`vector <t_vector>` type. The second operand is an index indicating
4002the position from which to extract the element. The index may be a
4003variable.
4004
4005Semantics:
4006""""""""""
4007
4008The result is a scalar of the same type as the element type of ``val``.
4009Its value is the value at position ``idx`` of ``val``. If ``idx``
4010exceeds the length of ``val``, the results are undefined.
4011
4012Example:
4013""""""""
4014
4015.. code-block:: llvm
4016
4017 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4018
4019.. _i_insertelement:
4020
4021'``insertelement``' Instruction
4022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4023
4024Syntax:
4025"""""""
4026
4027::
4028
4029 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4030
4031Overview:
4032"""""""""
4033
4034The '``insertelement``' instruction inserts a scalar element into a
4035vector at a specified index.
4036
4037Arguments:
4038""""""""""
4039
4040The first operand of an '``insertelement``' instruction is a value of
4041:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4042type must equal the element type of the first operand. The third operand
4043is an index indicating the position at which to insert the value. The
4044index may be a variable.
4045
4046Semantics:
4047""""""""""
4048
4049The result is a vector of the same type as ``val``. Its element values
4050are those of ``val`` except at position ``idx``, where it gets the value
4051``elt``. If ``idx`` exceeds the length of ``val``, the results are
4052undefined.
4053
4054Example:
4055""""""""
4056
4057.. code-block:: llvm
4058
4059 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4060
4061.. _i_shufflevector:
4062
4063'``shufflevector``' Instruction
4064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4065
4066Syntax:
4067"""""""
4068
4069::
4070
4071 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4072
4073Overview:
4074"""""""""
4075
4076The '``shufflevector``' instruction constructs a permutation of elements
4077from two input vectors, returning a vector with the same element type as
4078the input and length that is the same as the shuffle mask.
4079
4080Arguments:
4081""""""""""
4082
4083The first two operands of a '``shufflevector``' instruction are vectors
4084with the same type. The third argument is a shuffle mask whose element
4085type is always 'i32'. The result of the instruction is a vector whose
4086length is the same as the shuffle mask and whose element type is the
4087same as the element type of the first two operands.
4088
4089The shuffle mask operand is required to be a constant vector with either
4090constant integer or undef values.
4091
4092Semantics:
4093""""""""""
4094
4095The elements of the two input vectors are numbered from left to right
4096across both of the vectors. The shuffle mask operand specifies, for each
4097element of the result vector, which element of the two input vectors the
4098result element gets. The element selector may be undef (meaning "don't
4099care") and the second operand may be undef if performing a shuffle from
4100only one vector.
4101
4102Example:
4103""""""""
4104
4105.. code-block:: llvm
4106
4107 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4108 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4109 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4110 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4111 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4112 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4113 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4114 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4115
4116Aggregate Operations
4117--------------------
4118
4119LLVM supports several instructions for working with
4120:ref:`aggregate <t_aggregate>` values.
4121
4122.. _i_extractvalue:
4123
4124'``extractvalue``' Instruction
4125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4126
4127Syntax:
4128"""""""
4129
4130::
4131
4132 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4133
4134Overview:
4135"""""""""
4136
4137The '``extractvalue``' instruction extracts the value of a member field
4138from an :ref:`aggregate <t_aggregate>` value.
4139
4140Arguments:
4141""""""""""
4142
4143The first operand of an '``extractvalue``' instruction is a value of
4144:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4145constant indices to specify which value to extract in a similar manner
4146as indices in a '``getelementptr``' instruction.
4147
4148The major differences to ``getelementptr`` indexing are:
4149
4150- Since the value being indexed is not a pointer, the first index is
4151 omitted and assumed to be zero.
4152- At least one index must be specified.
4153- Not only struct indices but also array indices must be in bounds.
4154
4155Semantics:
4156""""""""""
4157
4158The result is the value at the position in the aggregate specified by
4159the index operands.
4160
4161Example:
4162""""""""
4163
4164.. code-block:: llvm
4165
4166 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4167
4168.. _i_insertvalue:
4169
4170'``insertvalue``' Instruction
4171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4172
4173Syntax:
4174"""""""
4175
4176::
4177
4178 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4179
4180Overview:
4181"""""""""
4182
4183The '``insertvalue``' instruction inserts a value into a member field in
4184an :ref:`aggregate <t_aggregate>` value.
4185
4186Arguments:
4187""""""""""
4188
4189The first operand of an '``insertvalue``' instruction is a value of
4190:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4191a first-class value to insert. The following operands are constant
4192indices indicating the position at which to insert the value in a
4193similar manner as indices in a '``extractvalue``' instruction. The value
4194to insert must have the same type as the value identified by the
4195indices.
4196
4197Semantics:
4198""""""""""
4199
4200The result is an aggregate of the same type as ``val``. Its value is
4201that of ``val`` except that the value at the position specified by the
4202indices is that of ``elt``.
4203
4204Example:
4205""""""""
4206
4207.. code-block:: llvm
4208
4209 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4210 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4211 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4212
4213.. _memoryops:
4214
4215Memory Access and Addressing Operations
4216---------------------------------------
4217
4218A key design point of an SSA-based representation is how it represents
4219memory. In LLVM, no memory locations are in SSA form, which makes things
4220very simple. This section describes how to read, write, and allocate
4221memory in LLVM.
4222
4223.. _i_alloca:
4224
4225'``alloca``' Instruction
4226^^^^^^^^^^^^^^^^^^^^^^^^
4227
4228Syntax:
4229"""""""
4230
4231::
4232
4233 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4234
4235Overview:
4236"""""""""
4237
4238The '``alloca``' instruction allocates memory on the stack frame of the
4239currently executing function, to be automatically released when this
4240function returns to its caller. The object is always allocated in the
4241generic address space (address space zero).
4242
4243Arguments:
4244""""""""""
4245
4246The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4247bytes of memory on the runtime stack, returning a pointer of the
4248appropriate type to the program. If "NumElements" is specified, it is
4249the number of elements allocated, otherwise "NumElements" is defaulted
4250to be one. If a constant alignment is specified, the value result of the
4251allocation is guaranteed to be aligned to at least that boundary. If not
4252specified, or if zero, the target can choose to align the allocation on
4253any convenient boundary compatible with the type.
4254
4255'``type``' may be any sized type.
4256
4257Semantics:
4258""""""""""
4259
4260Memory is allocated; a pointer is returned. The operation is undefined
4261if there is insufficient stack space for the allocation. '``alloca``'d
4262memory is automatically released when the function returns. The
4263'``alloca``' instruction is commonly used to represent automatic
4264variables that must have an address available. When the function returns
4265(either with the ``ret`` or ``resume`` instructions), the memory is
4266reclaimed. Allocating zero bytes is legal, but the result is undefined.
4267The order in which memory is allocated (ie., which way the stack grows)
4268is not specified.
4269
4270Example:
4271""""""""
4272
4273.. code-block:: llvm
4274
4275 %ptr = alloca i32 ; yields {i32*}:ptr
4276 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4277 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4278 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4279
4280.. _i_load:
4281
4282'``load``' Instruction
4283^^^^^^^^^^^^^^^^^^^^^^
4284
4285Syntax:
4286"""""""
4287
4288::
4289
4290 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4291 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4292 !<index> = !{ i32 1 }
4293
4294Overview:
4295"""""""""
4296
4297The '``load``' instruction is used to read from memory.
4298
4299Arguments:
4300""""""""""
4301
4302The argument to the '``load``' instruction specifies the memory address
4303from which to load. The pointer must point to a :ref:`first
4304class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4305then the optimizer is not allowed to modify the number or order of
4306execution of this ``load`` with other :ref:`volatile
4307operations <volatile>`.
4308
4309If the ``load`` is marked as ``atomic``, it takes an extra
4310:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4311``release`` and ``acq_rel`` orderings are not valid on ``load``
4312instructions. Atomic loads produce :ref:`defined <memmodel>` results
4313when they may see multiple atomic stores. The type of the pointee must
4314be an integer type whose bit width is a power of two greater than or
4315equal to eight and less than or equal to a target-specific size limit.
4316``align`` must be explicitly specified on atomic loads, and the load has
4317undefined behavior if the alignment is not set to a value which is at
4318least the size in bytes of the pointee. ``!nontemporal`` does not have
4319any defined semantics for atomic loads.
4320
4321The optional constant ``align`` argument specifies the alignment of the
4322operation (that is, the alignment of the memory address). A value of 0
4323or an omitted ``align`` argument means that the operation has the abi
4324alignment for the target. It is the responsibility of the code emitter
4325to ensure that the alignment information is correct. Overestimating the
4326alignment results in undefined behavior. Underestimating the alignment
4327may produce less efficient code. An alignment of 1 is always safe.
4328
4329The optional ``!nontemporal`` metadata must reference a single
4330metatadata name <index> corresponding to a metadata node with one
4331``i32`` entry of value 1. The existence of the ``!nontemporal``
4332metatadata on the instruction tells the optimizer and code generator
4333that this load is not expected to be reused in the cache. The code
4334generator may select special instructions to save cache bandwidth, such
4335as the ``MOVNT`` instruction on x86.
4336
4337The optional ``!invariant.load`` metadata must reference a single
4338metatadata name <index> corresponding to a metadata node with no
4339entries. The existence of the ``!invariant.load`` metatadata on the
4340instruction tells the optimizer and code generator that this load
4341address points to memory which does not change value during program
4342execution. The optimizer may then move this load around, for example, by
4343hoisting it out of loops using loop invariant code motion.
4344
4345Semantics:
4346""""""""""
4347
4348The location of memory pointed to is loaded. If the value being loaded
4349is of scalar type then the number of bytes read does not exceed the
4350minimum number of bytes needed to hold all bits of the type. For
4351example, loading an ``i24`` reads at most three bytes. When loading a
4352value of a type like ``i20`` with a size that is not an integral number
4353of bytes, the result is undefined if the value was not originally
4354written using a store of the same type.
4355
4356Examples:
4357"""""""""
4358
4359.. code-block:: llvm
4360
4361 %ptr = alloca i32 ; yields {i32*}:ptr
4362 store i32 3, i32* %ptr ; yields {void}
4363 %val = load i32* %ptr ; yields {i32}:val = i32 3
4364
4365.. _i_store:
4366
4367'``store``' Instruction
4368^^^^^^^^^^^^^^^^^^^^^^^
4369
4370Syntax:
4371"""""""
4372
4373::
4374
4375 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4376 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4377
4378Overview:
4379"""""""""
4380
4381The '``store``' instruction is used to write to memory.
4382
4383Arguments:
4384""""""""""
4385
4386There are two arguments to the '``store``' instruction: a value to store
4387and an address at which to store it. The type of the '``<pointer>``'
4388operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4389the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4390then the optimizer is not allowed to modify the number or order of
4391execution of this ``store`` with other :ref:`volatile
4392operations <volatile>`.
4393
4394If the ``store`` is marked as ``atomic``, it takes an extra
4395:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4396``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4397instructions. Atomic loads produce :ref:`defined <memmodel>` results
4398when they may see multiple atomic stores. The type of the pointee must
4399be an integer type whose bit width is a power of two greater than or
4400equal to eight and less than or equal to a target-specific size limit.
4401``align`` must be explicitly specified on atomic stores, and the store
4402has undefined behavior if the alignment is not set to a value which is
4403at least the size in bytes of the pointee. ``!nontemporal`` does not
4404have any defined semantics for atomic stores.
4405
4406The optional constant "align" argument specifies the alignment of the
4407operation (that is, the alignment of the memory address). A value of 0
4408or an omitted "align" argument means that the operation has the abi
4409alignment for the target. It is the responsibility of the code emitter
4410to ensure that the alignment information is correct. Overestimating the
4411alignment results in an undefined behavior. Underestimating the
4412alignment may produce less efficient code. An alignment of 1 is always
4413safe.
4414
4415The optional !nontemporal metadata must reference a single metatadata
4416name <index> corresponding to a metadata node with one i32 entry of
4417value 1. The existence of the !nontemporal metatadata on the instruction
4418tells the optimizer and code generator that this load is not expected to
4419be reused in the cache. The code generator may select special
4420instructions to save cache bandwidth, such as the MOVNT instruction on
4421x86.
4422
4423Semantics:
4424""""""""""
4425
4426The contents of memory are updated to contain '``<value>``' at the
4427location specified by the '``<pointer>``' operand. If '``<value>``' is
4428of scalar type then the number of bytes written does not exceed the
4429minimum number of bytes needed to hold all bits of the type. For
4430example, storing an ``i24`` writes at most three bytes. When writing a
4431value of a type like ``i20`` with a size that is not an integral number
4432of bytes, it is unspecified what happens to the extra bits that do not
4433belong to the type, but they will typically be overwritten.
4434
4435Example:
4436""""""""
4437
4438.. code-block:: llvm
4439
4440 %ptr = alloca i32 ; yields {i32*}:ptr
4441 store i32 3, i32* %ptr ; yields {void}
4442 %val = load i32* %ptr ; yields {i32}:val = i32 3
4443
4444.. _i_fence:
4445
4446'``fence``' Instruction
4447^^^^^^^^^^^^^^^^^^^^^^^
4448
4449Syntax:
4450"""""""
4451
4452::
4453
4454 fence [singlethread] <ordering> ; yields {void}
4455
4456Overview:
4457"""""""""
4458
4459The '``fence``' instruction is used to introduce happens-before edges
4460between operations.
4461
4462Arguments:
4463""""""""""
4464
4465'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4466defines what *synchronizes-with* edges they add. They can only be given
4467``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4468
4469Semantics:
4470""""""""""
4471
4472A fence A which has (at least) ``release`` ordering semantics
4473*synchronizes with* a fence B with (at least) ``acquire`` ordering
4474semantics if and only if there exist atomic operations X and Y, both
4475operating on some atomic object M, such that A is sequenced before X, X
4476modifies M (either directly or through some side effect of a sequence
4477headed by X), Y is sequenced before B, and Y observes M. This provides a
4478*happens-before* dependency between A and B. Rather than an explicit
4479``fence``, one (but not both) of the atomic operations X or Y might
4480provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4481still *synchronize-with* the explicit ``fence`` and establish the
4482*happens-before* edge.
4483
4484A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4485``acquire`` and ``release`` semantics specified above, participates in
4486the global program order of other ``seq_cst`` operations and/or fences.
4487
4488The optional ":ref:`singlethread <singlethread>`" argument specifies
4489that the fence only synchronizes with other fences in the same thread.
4490(This is useful for interacting with signal handlers.)
4491
4492Example:
4493""""""""
4494
4495.. code-block:: llvm
4496
4497 fence acquire ; yields {void}
4498 fence singlethread seq_cst ; yields {void}
4499
4500.. _i_cmpxchg:
4501
4502'``cmpxchg``' Instruction
4503^^^^^^^^^^^^^^^^^^^^^^^^^
4504
4505Syntax:
4506"""""""
4507
4508::
4509
4510 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4511
4512Overview:
4513"""""""""
4514
4515The '``cmpxchg``' instruction is used to atomically modify memory. It
4516loads a value in memory and compares it to a given value. If they are
4517equal, it stores a new value into the memory.
4518
4519Arguments:
4520""""""""""
4521
4522There are three arguments to the '``cmpxchg``' instruction: an address
4523to operate on, a value to compare to the value currently be at that
4524address, and a new value to place at that address if the compared values
4525are equal. The type of '<cmp>' must be an integer type whose bit width
4526is a power of two greater than or equal to eight and less than or equal
4527to a target-specific size limit. '<cmp>' and '<new>' must have the same
4528type, and the type of '<pointer>' must be a pointer to that type. If the
4529``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4530to modify the number or order of execution of this ``cmpxchg`` with
4531other :ref:`volatile operations <volatile>`.
4532
4533The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4534synchronizes with other atomic operations.
4535
4536The optional "``singlethread``" argument declares that the ``cmpxchg``
4537is only atomic with respect to code (usually signal handlers) running in
4538the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4539respect to all other code in the system.
4540
4541The pointer passed into cmpxchg must have alignment greater than or
4542equal to the size in memory of the operand.
4543
4544Semantics:
4545""""""""""
4546
4547The contents of memory at the location specified by the '``<pointer>``'
4548operand is read and compared to '``<cmp>``'; if the read value is the
4549equal, '``<new>``' is written. The original value at the location is
4550returned.
4551
4552A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4553of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4554atomic load with an ordering parameter determined by dropping any
4555``release`` part of the ``cmpxchg``'s ordering.
4556
4557Example:
4558""""""""
4559
4560.. code-block:: llvm
4561
4562 entry:
4563 %orig = atomic load i32* %ptr unordered ; yields {i32}
4564 br label %loop
4565
4566 loop:
4567 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4568 %squared = mul i32 %cmp, %cmp
4569 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4570 %success = icmp eq i32 %cmp, %old
4571 br i1 %success, label %done, label %loop
4572
4573 done:
4574 ...
4575
4576.. _i_atomicrmw:
4577
4578'``atomicrmw``' Instruction
4579^^^^^^^^^^^^^^^^^^^^^^^^^^^
4580
4581Syntax:
4582"""""""
4583
4584::
4585
4586 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4587
4588Overview:
4589"""""""""
4590
4591The '``atomicrmw``' instruction is used to atomically modify memory.
4592
4593Arguments:
4594""""""""""
4595
4596There are three arguments to the '``atomicrmw``' instruction: an
4597operation to apply, an address whose value to modify, an argument to the
4598operation. The operation must be one of the following keywords:
4599
4600- xchg
4601- add
4602- sub
4603- and
4604- nand
4605- or
4606- xor
4607- max
4608- min
4609- umax
4610- umin
4611
4612The type of '<value>' must be an integer type whose bit width is a power
4613of two greater than or equal to eight and less than or equal to a
4614target-specific size limit. The type of the '``<pointer>``' operand must
4615be a pointer to that type. If the ``atomicrmw`` is marked as
4616``volatile``, then the optimizer is not allowed to modify the number or
4617order of execution of this ``atomicrmw`` with other :ref:`volatile
4618operations <volatile>`.
4619
4620Semantics:
4621""""""""""
4622
4623The contents of memory at the location specified by the '``<pointer>``'
4624operand are atomically read, modified, and written back. The original
4625value at the location is returned. The modification is specified by the
4626operation argument:
4627
4628- xchg: ``*ptr = val``
4629- add: ``*ptr = *ptr + val``
4630- sub: ``*ptr = *ptr - val``
4631- and: ``*ptr = *ptr & val``
4632- nand: ``*ptr = ~(*ptr & val)``
4633- or: ``*ptr = *ptr | val``
4634- xor: ``*ptr = *ptr ^ val``
4635- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4636- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4637- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4638 comparison)
4639- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4640 comparison)
4641
4642Example:
4643""""""""
4644
4645.. code-block:: llvm
4646
4647 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4648
4649.. _i_getelementptr:
4650
4651'``getelementptr``' Instruction
4652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4653
4654Syntax:
4655"""""""
4656
4657::
4658
4659 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4660 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4661 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4662
4663Overview:
4664"""""""""
4665
4666The '``getelementptr``' instruction is used to get the address of a
4667subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4668address calculation only and does not access memory.
4669
4670Arguments:
4671""""""""""
4672
4673The first argument is always a pointer or a vector of pointers, and
4674forms the basis of the calculation. The remaining arguments are indices
4675that indicate which of the elements of the aggregate object are indexed.
4676The interpretation of each index is dependent on the type being indexed
4677into. The first index always indexes the pointer value given as the
4678first argument, the second index indexes a value of the type pointed to
4679(not necessarily the value directly pointed to, since the first index
4680can be non-zero), etc. The first type indexed into must be a pointer
4681value, subsequent types can be arrays, vectors, and structs. Note that
4682subsequent types being indexed into can never be pointers, since that
4683would require loading the pointer before continuing calculation.
4684
4685The type of each index argument depends on the type it is indexing into.
4686When indexing into a (optionally packed) structure, only ``i32`` integer
4687**constants** are allowed (when using a vector of indices they must all
4688be the **same** ``i32`` integer constant). When indexing into an array,
4689pointer or vector, integers of any width are allowed, and they are not
4690required to be constant. These integers are treated as signed values
4691where relevant.
4692
4693For example, let's consider a C code fragment and how it gets compiled
4694to LLVM:
4695
4696.. code-block:: c
4697
4698 struct RT {
4699 char A;
4700 int B[10][20];
4701 char C;
4702 };
4703 struct ST {
4704 int X;
4705 double Y;
4706 struct RT Z;
4707 };
4708
4709 int *foo(struct ST *s) {
4710 return &s[1].Z.B[5][13];
4711 }
4712
4713The LLVM code generated by Clang is:
4714
4715.. code-block:: llvm
4716
4717 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4718 %struct.ST = type { i32, double, %struct.RT }
4719
4720 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4721 entry:
4722 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4723 ret i32* %arrayidx
4724 }
4725
4726Semantics:
4727""""""""""
4728
4729In the example above, the first index is indexing into the
4730'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4731= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4732indexes into the third element of the structure, yielding a
4733'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4734structure. The third index indexes into the second element of the
4735structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4736dimensions of the array are subscripted into, yielding an '``i32``'
4737type. The '``getelementptr``' instruction returns a pointer to this
4738element, thus computing a value of '``i32*``' type.
4739
4740Note that it is perfectly legal to index partially through a structure,
4741returning a pointer to an inner element. Because of this, the LLVM code
4742for the given testcase is equivalent to:
4743
4744.. code-block:: llvm
4745
4746 define i32* @foo(%struct.ST* %s) {
4747 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4748 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4749 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4750 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4751 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4752 ret i32* %t5
4753 }
4754
4755If the ``inbounds`` keyword is present, the result value of the
4756``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4757pointer is not an *in bounds* address of an allocated object, or if any
4758of the addresses that would be formed by successive addition of the
4759offsets implied by the indices to the base address with infinitely
4760precise signed arithmetic are not an *in bounds* address of that
4761allocated object. The *in bounds* addresses for an allocated object are
4762all the addresses that point into the object, plus the address one byte
4763past the end. In cases where the base is a vector of pointers the
4764``inbounds`` keyword applies to each of the computations element-wise.
4765
4766If the ``inbounds`` keyword is not present, the offsets are added to the
4767base address with silently-wrapping two's complement arithmetic. If the
4768offsets have a different width from the pointer, they are sign-extended
4769or truncated to the width of the pointer. The result value of the
4770``getelementptr`` may be outside the object pointed to by the base
4771pointer. The result value may not necessarily be used to access memory
4772though, even if it happens to point into allocated storage. See the
4773:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4774information.
4775
4776The getelementptr instruction is often confusing. For some more insight
4777into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4778
4779Example:
4780""""""""
4781
4782.. code-block:: llvm
4783
4784 ; yields [12 x i8]*:aptr
4785 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4786 ; yields i8*:vptr
4787 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4788 ; yields i8*:eptr
4789 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4790 ; yields i32*:iptr
4791 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4792
4793In cases where the pointer argument is a vector of pointers, each index
4794must be a vector with the same number of elements. For example:
4795
4796.. code-block:: llvm
4797
4798 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4799
4800Conversion Operations
4801---------------------
4802
4803The instructions in this category are the conversion instructions
4804(casting) which all take a single operand and a type. They perform
4805various bit conversions on the operand.
4806
4807'``trunc .. to``' Instruction
4808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4809
4810Syntax:
4811"""""""
4812
4813::
4814
4815 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4816
4817Overview:
4818"""""""""
4819
4820The '``trunc``' instruction truncates its operand to the type ``ty2``.
4821
4822Arguments:
4823""""""""""
4824
4825The '``trunc``' instruction takes a value to trunc, and a type to trunc
4826it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4827of the same number of integers. The bit size of the ``value`` must be
4828larger than the bit size of the destination type, ``ty2``. Equal sized
4829types are not allowed.
4830
4831Semantics:
4832""""""""""
4833
4834The '``trunc``' instruction truncates the high order bits in ``value``
4835and converts the remaining bits to ``ty2``. Since the source size must
4836be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4837It will always truncate bits.
4838
4839Example:
4840""""""""
4841
4842.. code-block:: llvm
4843
4844 %X = trunc i32 257 to i8 ; yields i8:1
4845 %Y = trunc i32 123 to i1 ; yields i1:true
4846 %Z = trunc i32 122 to i1 ; yields i1:false
4847 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4848
4849'``zext .. to``' Instruction
4850^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4851
4852Syntax:
4853"""""""
4854
4855::
4856
4857 <result> = zext <ty> <value> to <ty2> ; yields ty2
4858
4859Overview:
4860"""""""""
4861
4862The '``zext``' instruction zero extends its operand to type ``ty2``.
4863
4864Arguments:
4865""""""""""
4866
4867The '``zext``' instruction takes a value to cast, and a type to cast it
4868to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4869the same number of integers. The bit size of the ``value`` must be
4870smaller than the bit size of the destination type, ``ty2``.
4871
4872Semantics:
4873""""""""""
4874
4875The ``zext`` fills the high order bits of the ``value`` with zero bits
4876until it reaches the size of the destination type, ``ty2``.
4877
4878When zero extending from i1, the result will always be either 0 or 1.
4879
4880Example:
4881""""""""
4882
4883.. code-block:: llvm
4884
4885 %X = zext i32 257 to i64 ; yields i64:257
4886 %Y = zext i1 true to i32 ; yields i32:1
4887 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4888
4889'``sext .. to``' Instruction
4890^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4891
4892Syntax:
4893"""""""
4894
4895::
4896
4897 <result> = sext <ty> <value> to <ty2> ; yields ty2
4898
4899Overview:
4900"""""""""
4901
4902The '``sext``' sign extends ``value`` to the type ``ty2``.
4903
4904Arguments:
4905""""""""""
4906
4907The '``sext``' instruction takes a value to cast, and a type to cast it
4908to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4909the same number of integers. The bit size of the ``value`` must be
4910smaller than the bit size of the destination type, ``ty2``.
4911
4912Semantics:
4913""""""""""
4914
4915The '``sext``' instruction performs a sign extension by copying the sign
4916bit (highest order bit) of the ``value`` until it reaches the bit size
4917of the type ``ty2``.
4918
4919When sign extending from i1, the extension always results in -1 or 0.
4920
4921Example:
4922""""""""
4923
4924.. code-block:: llvm
4925
4926 %X = sext i8 -1 to i16 ; yields i16 :65535
4927 %Y = sext i1 true to i32 ; yields i32:-1
4928 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4929
4930'``fptrunc .. to``' Instruction
4931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4932
4933Syntax:
4934"""""""
4935
4936::
4937
4938 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
4939
4940Overview:
4941"""""""""
4942
4943The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
4944
4945Arguments:
4946""""""""""
4947
4948The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
4949value to cast and a :ref:`floating point <t_floating>` type to cast it to.
4950The size of ``value`` must be larger than the size of ``ty2``. This
4951implies that ``fptrunc`` cannot be used to make a *no-op cast*.
4952
4953Semantics:
4954""""""""""
4955
4956The '``fptrunc``' instruction truncates a ``value`` from a larger
4957:ref:`floating point <t_floating>` type to a smaller :ref:`floating
4958point <t_floating>` type. If the value cannot fit within the
4959destination type, ``ty2``, then the results are undefined.
4960
4961Example:
4962""""""""
4963
4964.. code-block:: llvm
4965
4966 %X = fptrunc double 123.0 to float ; yields float:123.0
4967 %Y = fptrunc double 1.0E+300 to float ; yields undefined
4968
4969'``fpext .. to``' Instruction
4970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4971
4972Syntax:
4973"""""""
4974
4975::
4976
4977 <result> = fpext <ty> <value> to <ty2> ; yields ty2
4978
4979Overview:
4980"""""""""
4981
4982The '``fpext``' extends a floating point ``value`` to a larger floating
4983point value.
4984
4985Arguments:
4986""""""""""
4987
4988The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
4989``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
4990to. The source type must be smaller than the destination type.
4991
4992Semantics:
4993""""""""""
4994
4995The '``fpext``' instruction extends the ``value`` from a smaller
4996:ref:`floating point <t_floating>` type to a larger :ref:`floating
4997point <t_floating>` type. The ``fpext`` cannot be used to make a
4998*no-op cast* because it always changes bits. Use ``bitcast`` to make a
4999*no-op cast* for a floating point cast.
5000
5001Example:
5002""""""""
5003
5004.. code-block:: llvm
5005
5006 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5007 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5008
5009'``fptoui .. to``' Instruction
5010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5011
5012Syntax:
5013"""""""
5014
5015::
5016
5017 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5018
5019Overview:
5020"""""""""
5021
5022The '``fptoui``' converts a floating point ``value`` to its unsigned
5023integer equivalent of type ``ty2``.
5024
5025Arguments:
5026""""""""""
5027
5028The '``fptoui``' instruction takes a value to cast, which must be a
5029scalar or vector :ref:`floating point <t_floating>` value, and a type to
5030cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5031``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5032type with the same number of elements as ``ty``
5033
5034Semantics:
5035""""""""""
5036
5037The '``fptoui``' instruction converts its :ref:`floating
5038point <t_floating>` operand into the nearest (rounding towards zero)
5039unsigned integer value. If the value cannot fit in ``ty2``, the results
5040are undefined.
5041
5042Example:
5043""""""""
5044
5045.. code-block:: llvm
5046
5047 %X = fptoui double 123.0 to i32 ; yields i32:123
5048 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5049 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5050
5051'``fptosi .. to``' Instruction
5052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5053
5054Syntax:
5055"""""""
5056
5057::
5058
5059 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5060
5061Overview:
5062"""""""""
5063
5064The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5065``value`` to type ``ty2``.
5066
5067Arguments:
5068""""""""""
5069
5070The '``fptosi``' instruction takes a value to cast, which must be a
5071scalar or vector :ref:`floating point <t_floating>` value, and a type to
5072cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5073``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5074type with the same number of elements as ``ty``
5075
5076Semantics:
5077""""""""""
5078
5079The '``fptosi``' instruction converts its :ref:`floating
5080point <t_floating>` operand into the nearest (rounding towards zero)
5081signed integer value. If the value cannot fit in ``ty2``, the results
5082are undefined.
5083
5084Example:
5085""""""""
5086
5087.. code-block:: llvm
5088
5089 %X = fptosi double -123.0 to i32 ; yields i32:-123
5090 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5091 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5092
5093'``uitofp .. to``' Instruction
5094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5095
5096Syntax:
5097"""""""
5098
5099::
5100
5101 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5102
5103Overview:
5104"""""""""
5105
5106The '``uitofp``' instruction regards ``value`` as an unsigned integer
5107and converts that value to the ``ty2`` type.
5108
5109Arguments:
5110""""""""""
5111
5112The '``uitofp``' instruction takes a value to cast, which must be a
5113scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5114``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5115``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5116type with the same number of elements as ``ty``
5117
5118Semantics:
5119""""""""""
5120
5121The '``uitofp``' instruction interprets its operand as an unsigned
5122integer quantity and converts it to the corresponding floating point
5123value. If the value cannot fit in the floating point value, the results
5124are undefined.
5125
5126Example:
5127""""""""
5128
5129.. code-block:: llvm
5130
5131 %X = uitofp i32 257 to float ; yields float:257.0
5132 %Y = uitofp i8 -1 to double ; yields double:255.0
5133
5134'``sitofp .. to``' Instruction
5135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5136
5137Syntax:
5138"""""""
5139
5140::
5141
5142 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5143
5144Overview:
5145"""""""""
5146
5147The '``sitofp``' instruction regards ``value`` as a signed integer and
5148converts that value to the ``ty2`` type.
5149
5150Arguments:
5151""""""""""
5152
5153The '``sitofp``' instruction takes a value to cast, which must be a
5154scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5155``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5156``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5157type with the same number of elements as ``ty``
5158
5159Semantics:
5160""""""""""
5161
5162The '``sitofp``' instruction interprets its operand as a signed integer
5163quantity and converts it to the corresponding floating point value. If
5164the value cannot fit in the floating point value, the results are
5165undefined.
5166
5167Example:
5168""""""""
5169
5170.. code-block:: llvm
5171
5172 %X = sitofp i32 257 to float ; yields float:257.0
5173 %Y = sitofp i8 -1 to double ; yields double:-1.0
5174
5175.. _i_ptrtoint:
5176
5177'``ptrtoint .. to``' Instruction
5178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5179
5180Syntax:
5181"""""""
5182
5183::
5184
5185 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5186
5187Overview:
5188"""""""""
5189
5190The '``ptrtoint``' instruction converts the pointer or a vector of
5191pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5192
5193Arguments:
5194""""""""""
5195
5196The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5197a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5198type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5199a vector of integers type.
5200
5201Semantics:
5202""""""""""
5203
5204The '``ptrtoint``' instruction converts ``value`` to integer type
5205``ty2`` by interpreting the pointer value as an integer and either
5206truncating or zero extending that value to the size of the integer type.
5207If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5208``value`` is larger than ``ty2`` then a truncation is done. If they are
5209the same size, then nothing is done (*no-op cast*) other than a type
5210change.
5211
5212Example:
5213""""""""
5214
5215.. code-block:: llvm
5216
5217 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5218 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5219 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5220
5221.. _i_inttoptr:
5222
5223'``inttoptr .. to``' Instruction
5224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5225
5226Syntax:
5227"""""""
5228
5229::
5230
5231 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5232
5233Overview:
5234"""""""""
5235
5236The '``inttoptr``' instruction converts an integer ``value`` to a
5237pointer type, ``ty2``.
5238
5239Arguments:
5240""""""""""
5241
5242The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5243cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5244type.
5245
5246Semantics:
5247""""""""""
5248
5249The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5250applying either a zero extension or a truncation depending on the size
5251of the integer ``value``. If ``value`` is larger than the size of a
5252pointer then a truncation is done. If ``value`` is smaller than the size
5253of a pointer then a zero extension is done. If they are the same size,
5254nothing is done (*no-op cast*).
5255
5256Example:
5257""""""""
5258
5259.. code-block:: llvm
5260
5261 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5262 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5263 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5264 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5265
5266.. _i_bitcast:
5267
5268'``bitcast .. to``' Instruction
5269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5270
5271Syntax:
5272"""""""
5273
5274::
5275
5276 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5277
5278Overview:
5279"""""""""
5280
5281The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5282changing any bits.
5283
5284Arguments:
5285""""""""""
5286
5287The '``bitcast``' instruction takes a value to cast, which must be a
5288non-aggregate first class value, and a type to cast it to, which must
5289also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5290sizes of ``value`` and the destination type, ``ty2``, must be identical.
5291If the source type is a pointer, the destination type must also be a
5292pointer. This instruction supports bitwise conversion of vectors to
5293integers and to vectors of other types (as long as they have the same
5294size).
5295
5296Semantics:
5297""""""""""
5298
5299The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5300always a *no-op cast* because no bits change with this conversion. The
5301conversion is done as if the ``value`` had been stored to memory and
5302read back as type ``ty2``. Pointer (or vector of pointers) types may
5303only be converted to other pointer (or vector of pointers) types with
5304this instruction. To convert pointers to other types, use the
5305:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5306first.
5307
5308Example:
5309""""""""
5310
5311.. code-block:: llvm
5312
5313 %X = bitcast i8 255 to i8 ; yields i8 :-1
5314 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5315 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5316 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5317
5318.. _otherops:
5319
5320Other Operations
5321----------------
5322
5323The instructions in this category are the "miscellaneous" instructions,
5324which defy better classification.
5325
5326.. _i_icmp:
5327
5328'``icmp``' Instruction
5329^^^^^^^^^^^^^^^^^^^^^^
5330
5331Syntax:
5332"""""""
5333
5334::
5335
5336 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5337
5338Overview:
5339"""""""""
5340
5341The '``icmp``' instruction returns a boolean value or a vector of
5342boolean values based on comparison of its two integer, integer vector,
5343pointer, or pointer vector operands.
5344
5345Arguments:
5346""""""""""
5347
5348The '``icmp``' instruction takes three operands. The first operand is
5349the condition code indicating the kind of comparison to perform. It is
5350not a value, just a keyword. The possible condition code are:
5351
5352#. ``eq``: equal
5353#. ``ne``: not equal
5354#. ``ugt``: unsigned greater than
5355#. ``uge``: unsigned greater or equal
5356#. ``ult``: unsigned less than
5357#. ``ule``: unsigned less or equal
5358#. ``sgt``: signed greater than
5359#. ``sge``: signed greater or equal
5360#. ``slt``: signed less than
5361#. ``sle``: signed less or equal
5362
5363The remaining two arguments must be :ref:`integer <t_integer>` or
5364:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5365must also be identical types.
5366
5367Semantics:
5368""""""""""
5369
5370The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5371code given as ``cond``. The comparison performed always yields either an
5372:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5373
5374#. ``eq``: yields ``true`` if the operands are equal, ``false``
5375 otherwise. No sign interpretation is necessary or performed.
5376#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5377 otherwise. No sign interpretation is necessary or performed.
5378#. ``ugt``: interprets the operands as unsigned values and yields
5379 ``true`` if ``op1`` is greater than ``op2``.
5380#. ``uge``: interprets the operands as unsigned values and yields
5381 ``true`` if ``op1`` is greater than or equal to ``op2``.
5382#. ``ult``: interprets the operands as unsigned values and yields
5383 ``true`` if ``op1`` is less than ``op2``.
5384#. ``ule``: interprets the operands as unsigned values and yields
5385 ``true`` if ``op1`` is less than or equal to ``op2``.
5386#. ``sgt``: interprets the operands as signed values and yields ``true``
5387 if ``op1`` is greater than ``op2``.
5388#. ``sge``: interprets the operands as signed values and yields ``true``
5389 if ``op1`` is greater than or equal to ``op2``.
5390#. ``slt``: interprets the operands as signed values and yields ``true``
5391 if ``op1`` is less than ``op2``.
5392#. ``sle``: interprets the operands as signed values and yields ``true``
5393 if ``op1`` is less than or equal to ``op2``.
5394
5395If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5396are compared as if they were integers.
5397
5398If the operands are integer vectors, then they are compared element by
5399element. The result is an ``i1`` vector with the same number of elements
5400as the values being compared. Otherwise, the result is an ``i1``.
5401
5402Example:
5403""""""""
5404
5405.. code-block:: llvm
5406
5407 <result> = icmp eq i32 4, 5 ; yields: result=false
5408 <result> = icmp ne float* %X, %X ; yields: result=false
5409 <result> = icmp ult i16 4, 5 ; yields: result=true
5410 <result> = icmp sgt i16 4, 5 ; yields: result=false
5411 <result> = icmp ule i16 -4, 5 ; yields: result=false
5412 <result> = icmp sge i16 4, 5 ; yields: result=false
5413
5414Note that the code generator does not yet support vector types with the
5415``icmp`` instruction.
5416
5417.. _i_fcmp:
5418
5419'``fcmp``' Instruction
5420^^^^^^^^^^^^^^^^^^^^^^
5421
5422Syntax:
5423"""""""
5424
5425::
5426
5427 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5428
5429Overview:
5430"""""""""
5431
5432The '``fcmp``' instruction returns a boolean value or vector of boolean
5433values based on comparison of its operands.
5434
5435If the operands are floating point scalars, then the result type is a
5436boolean (:ref:`i1 <t_integer>`).
5437
5438If the operands are floating point vectors, then the result type is a
5439vector of boolean with the same number of elements as the operands being
5440compared.
5441
5442Arguments:
5443""""""""""
5444
5445The '``fcmp``' instruction takes three operands. The first operand is
5446the condition code indicating the kind of comparison to perform. It is
5447not a value, just a keyword. The possible condition code are:
5448
5449#. ``false``: no comparison, always returns false
5450#. ``oeq``: ordered and equal
5451#. ``ogt``: ordered and greater than
5452#. ``oge``: ordered and greater than or equal
5453#. ``olt``: ordered and less than
5454#. ``ole``: ordered and less than or equal
5455#. ``one``: ordered and not equal
5456#. ``ord``: ordered (no nans)
5457#. ``ueq``: unordered or equal
5458#. ``ugt``: unordered or greater than
5459#. ``uge``: unordered or greater than or equal
5460#. ``ult``: unordered or less than
5461#. ``ule``: unordered or less than or equal
5462#. ``une``: unordered or not equal
5463#. ``uno``: unordered (either nans)
5464#. ``true``: no comparison, always returns true
5465
5466*Ordered* means that neither operand is a QNAN while *unordered* means
5467that either operand may be a QNAN.
5468
5469Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5470point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5471type. They must have identical types.
5472
5473Semantics:
5474""""""""""
5475
5476The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5477condition code given as ``cond``. If the operands are vectors, then the
5478vectors are compared element by element. Each comparison performed
5479always yields an :ref:`i1 <t_integer>` result, as follows:
5480
5481#. ``false``: always yields ``false``, regardless of operands.
5482#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5483 is equal to ``op2``.
5484#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5485 is greater than ``op2``.
5486#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5487 is greater than or equal to ``op2``.
5488#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5489 is less than ``op2``.
5490#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5491 is less than or equal to ``op2``.
5492#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5493 is not equal to ``op2``.
5494#. ``ord``: yields ``true`` if both operands are not a QNAN.
5495#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5496 equal to ``op2``.
5497#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5498 greater than ``op2``.
5499#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5500 greater than or equal to ``op2``.
5501#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5502 less than ``op2``.
5503#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5504 less than or equal to ``op2``.
5505#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5506 not equal to ``op2``.
5507#. ``uno``: yields ``true`` if either operand is a QNAN.
5508#. ``true``: always yields ``true``, regardless of operands.
5509
5510Example:
5511""""""""
5512
5513.. code-block:: llvm
5514
5515 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5516 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5517 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5518 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5519
5520Note that the code generator does not yet support vector types with the
5521``fcmp`` instruction.
5522
5523.. _i_phi:
5524
5525'``phi``' Instruction
5526^^^^^^^^^^^^^^^^^^^^^
5527
5528Syntax:
5529"""""""
5530
5531::
5532
5533 <result> = phi <ty> [ <val0>, <label0>], ...
5534
5535Overview:
5536"""""""""
5537
5538The '``phi``' instruction is used to implement the φ node in the SSA
5539graph representing the function.
5540
5541Arguments:
5542""""""""""
5543
5544The type of the incoming values is specified with the first type field.
5545After this, the '``phi``' instruction takes a list of pairs as
5546arguments, with one pair for each predecessor basic block of the current
5547block. Only values of :ref:`first class <t_firstclass>` type may be used as
5548the value arguments to the PHI node. Only labels may be used as the
5549label arguments.
5550
5551There must be no non-phi instructions between the start of a basic block
5552and the PHI instructions: i.e. PHI instructions must be first in a basic
5553block.
5554
5555For the purposes of the SSA form, the use of each incoming value is
5556deemed to occur on the edge from the corresponding predecessor block to
5557the current block (but after any definition of an '``invoke``'
5558instruction's return value on the same edge).
5559
5560Semantics:
5561""""""""""
5562
5563At runtime, the '``phi``' instruction logically takes on the value
5564specified by the pair corresponding to the predecessor basic block that
5565executed just prior to the current block.
5566
5567Example:
5568""""""""
5569
5570.. code-block:: llvm
5571
5572 Loop: ; Infinite loop that counts from 0 on up...
5573 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5574 %nextindvar = add i32 %indvar, 1
5575 br label %Loop
5576
5577.. _i_select:
5578
5579'``select``' Instruction
5580^^^^^^^^^^^^^^^^^^^^^^^^
5581
5582Syntax:
5583"""""""
5584
5585::
5586
5587 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5588
5589 selty is either i1 or {<N x i1>}
5590
5591Overview:
5592"""""""""
5593
5594The '``select``' instruction is used to choose one value based on a
5595condition, without branching.
5596
5597Arguments:
5598""""""""""
5599
5600The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5601values indicating the condition, and two values of the same :ref:`first
5602class <t_firstclass>` type. If the val1/val2 are vectors and the
5603condition is a scalar, then entire vectors are selected, not individual
5604elements.
5605
5606Semantics:
5607""""""""""
5608
5609If the condition is an i1 and it evaluates to 1, the instruction returns
5610the first value argument; otherwise, it returns the second value
5611argument.
5612
5613If the condition is a vector of i1, then the value arguments must be
5614vectors of the same size, and the selection is done element by element.
5615
5616Example:
5617""""""""
5618
5619.. code-block:: llvm
5620
5621 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5622
5623.. _i_call:
5624
5625'``call``' Instruction
5626^^^^^^^^^^^^^^^^^^^^^^
5627
5628Syntax:
5629"""""""
5630
5631::
5632
5633 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5634
5635Overview:
5636"""""""""
5637
5638The '``call``' instruction represents a simple function call.
5639
5640Arguments:
5641""""""""""
5642
5643This instruction requires several arguments:
5644
5645#. The optional "tail" marker indicates that the callee function does
5646 not access any allocas or varargs in the caller. Note that calls may
5647 be marked "tail" even if they do not occur before a
5648 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5649 function call is eligible for tail call optimization, but `might not
5650 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5651 The code generator may optimize calls marked "tail" with either 1)
5652 automatic `sibling call
5653 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5654 callee have matching signatures, or 2) forced tail call optimization
5655 when the following extra requirements are met:
5656
5657 - Caller and callee both have the calling convention ``fastcc``.
5658 - The call is in tail position (ret immediately follows call and ret
5659 uses value of call or is void).
5660 - Option ``-tailcallopt`` is enabled, or
5661 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5662 - `Platform specific constraints are
5663 met. <CodeGenerator.html#tailcallopt>`_
5664
5665#. The optional "cconv" marker indicates which :ref:`calling
5666 convention <callingconv>` the call should use. If none is
5667 specified, the call defaults to using C calling conventions. The
5668 calling convention of the call must match the calling convention of
5669 the target function, or else the behavior is undefined.
5670#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5671 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5672 are valid here.
5673#. '``ty``': the type of the call instruction itself which is also the
5674 type of the return value. Functions that return no value are marked
5675 ``void``.
5676#. '``fnty``': shall be the signature of the pointer to function value
5677 being invoked. The argument types must match the types implied by
5678 this signature. This type can be omitted if the function is not
5679 varargs and if the function type does not return a pointer to a
5680 function.
5681#. '``fnptrval``': An LLVM value containing a pointer to a function to
5682 be invoked. In most cases, this is a direct function invocation, but
5683 indirect ``call``'s are just as possible, calling an arbitrary pointer
5684 to function value.
5685#. '``function args``': argument list whose types match the function
5686 signature argument types and parameter attributes. All arguments must
5687 be of :ref:`first class <t_firstclass>` type. If the function signature
5688 indicates the function accepts a variable number of arguments, the
5689 extra arguments can be specified.
5690#. The optional :ref:`function attributes <fnattrs>` list. Only
5691 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5692 attributes are valid here.
5693
5694Semantics:
5695""""""""""
5696
5697The '``call``' instruction is used to cause control flow to transfer to
5698a specified function, with its incoming arguments bound to the specified
5699values. Upon a '``ret``' instruction in the called function, control
5700flow continues with the instruction after the function call, and the
5701return value of the function is bound to the result argument.
5702
5703Example:
5704""""""""
5705
5706.. code-block:: llvm
5707
5708 %retval = call i32 @test(i32 %argc)
5709 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5710 %X = tail call i32 @foo() ; yields i32
5711 %Y = tail call fastcc i32 @foo() ; yields i32
5712 call void %foo(i8 97 signext)
5713
5714 %struct.A = type { i32, i8 }
5715 %r = call %struct.A @foo() ; yields { 32, i8 }
5716 %gr = extractvalue %struct.A %r, 0 ; yields i32
5717 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5718 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5719 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5720
5721llvm treats calls to some functions with names and arguments that match
5722the standard C99 library as being the C99 library functions, and may
5723perform optimizations or generate code for them under that assumption.
5724This is something we'd like to change in the future to provide better
5725support for freestanding environments and non-C-based languages.
5726
5727.. _i_va_arg:
5728
5729'``va_arg``' Instruction
5730^^^^^^^^^^^^^^^^^^^^^^^^
5731
5732Syntax:
5733"""""""
5734
5735::
5736
5737 <resultval> = va_arg <va_list*> <arglist>, <argty>
5738
5739Overview:
5740"""""""""
5741
5742The '``va_arg``' instruction is used to access arguments passed through
5743the "variable argument" area of a function call. It is used to implement
5744the ``va_arg`` macro in C.
5745
5746Arguments:
5747""""""""""
5748
5749This instruction takes a ``va_list*`` value and the type of the
5750argument. It returns a value of the specified argument type and
5751increments the ``va_list`` to point to the next argument. The actual
5752type of ``va_list`` is target specific.
5753
5754Semantics:
5755""""""""""
5756
5757The '``va_arg``' instruction loads an argument of the specified type
5758from the specified ``va_list`` and causes the ``va_list`` to point to
5759the next argument. For more information, see the variable argument
5760handling :ref:`Intrinsic Functions <int_varargs>`.
5761
5762It is legal for this instruction to be called in a function which does
5763not take a variable number of arguments, for example, the ``vfprintf``
5764function.
5765
5766``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5767function <intrinsics>` because it takes a type as an argument.
5768
5769Example:
5770""""""""
5771
5772See the :ref:`variable argument processing <int_varargs>` section.
5773
5774Note that the code generator does not yet fully support va\_arg on many
5775targets. Also, it does not currently support va\_arg with aggregate
5776types on any target.
5777
5778.. _i_landingpad:
5779
5780'``landingpad``' Instruction
5781^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5782
5783Syntax:
5784"""""""
5785
5786::
5787
5788 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5789 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5790
5791 <clause> := catch <type> <value>
5792 <clause> := filter <array constant type> <array constant>
5793
5794Overview:
5795"""""""""
5796
5797The '``landingpad``' instruction is used by `LLVM's exception handling
5798system <ExceptionHandling.html#overview>`_ to specify that a basic block
5799is a landing pad — one where the exception lands, and corresponds to the
5800code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5801defines values supplied by the personality function (``pers_fn``) upon
5802re-entry to the function. The ``resultval`` has the type ``resultty``.
5803
5804Arguments:
5805""""""""""
5806
5807This instruction takes a ``pers_fn`` value. This is the personality
5808function associated with the unwinding mechanism. The optional
5809``cleanup`` flag indicates that the landing pad block is a cleanup.
5810
5811A ``clause`` begins with the clause type — ``catch`` or ``filter`` — and
5812contains the global variable representing the "type" that may be caught
5813or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5814clause takes an array constant as its argument. Use
5815"``[0 x i8**] undef``" for a filter which cannot throw. The
5816'``landingpad``' instruction must contain *at least* one ``clause`` or
5817the ``cleanup`` flag.
5818
5819Semantics:
5820""""""""""
5821
5822The '``landingpad``' instruction defines the values which are set by the
5823personality function (``pers_fn``) upon re-entry to the function, and
5824therefore the "result type" of the ``landingpad`` instruction. As with
5825calling conventions, how the personality function results are
5826represented in LLVM IR is target specific.
5827
5828The clauses are applied in order from top to bottom. If two
5829``landingpad`` instructions are merged together through inlining, the
5830clauses from the calling function are appended to the list of clauses.
5831When the call stack is being unwound due to an exception being thrown,
5832the exception is compared against each ``clause`` in turn. If it doesn't
5833match any of the clauses, and the ``cleanup`` flag is not set, then
5834unwinding continues further up the call stack.
5835
5836The ``landingpad`` instruction has several restrictions:
5837
5838- A landing pad block is a basic block which is the unwind destination
5839 of an '``invoke``' instruction.
5840- A landing pad block must have a '``landingpad``' instruction as its
5841 first non-PHI instruction.
5842- There can be only one '``landingpad``' instruction within the landing
5843 pad block.
5844- A basic block that is not a landing pad block may not include a
5845 '``landingpad``' instruction.
5846- All '``landingpad``' instructions in a function must have the same
5847 personality function.
5848
5849Example:
5850""""""""
5851
5852.. code-block:: llvm
5853
5854 ;; A landing pad which can catch an integer.
5855 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5856 catch i8** @_ZTIi
5857 ;; A landing pad that is a cleanup.
5858 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5859 cleanup
5860 ;; A landing pad which can catch an integer and can only throw a double.
5861 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5862 catch i8** @_ZTIi
5863 filter [1 x i8**] [@_ZTId]
5864
5865.. _intrinsics:
5866
5867Intrinsic Functions
5868===================
5869
5870LLVM supports the notion of an "intrinsic function". These functions
5871have well known names and semantics and are required to follow certain
5872restrictions. Overall, these intrinsics represent an extension mechanism
5873for the LLVM language that does not require changing all of the
5874transformations in LLVM when adding to the language (or the bitcode
5875reader/writer, the parser, etc...).
5876
5877Intrinsic function names must all start with an "``llvm.``" prefix. This
5878prefix is reserved in LLVM for intrinsic names; thus, function names may
5879not begin with this prefix. Intrinsic functions must always be external
5880functions: you cannot define the body of intrinsic functions. Intrinsic
5881functions may only be used in call or invoke instructions: it is illegal
5882to take the address of an intrinsic function. Additionally, because
5883intrinsic functions are part of the LLVM language, it is required if any
5884are added that they be documented here.
5885
5886Some intrinsic functions can be overloaded, i.e., the intrinsic
5887represents a family of functions that perform the same operation but on
5888different data types. Because LLVM can represent over 8 million
5889different integer types, overloading is used commonly to allow an
5890intrinsic function to operate on any integer type. One or more of the
5891argument types or the result type can be overloaded to accept any
5892integer type. Argument types may also be defined as exactly matching a
5893previous argument's type or the result type. This allows an intrinsic
5894function which accepts multiple arguments, but needs all of them to be
5895of the same type, to only be overloaded with respect to a single
5896argument or the result.
5897
5898Overloaded intrinsics will have the names of its overloaded argument
5899types encoded into its function name, each preceded by a period. Only
5900those types which are overloaded result in a name suffix. Arguments
5901whose type is matched against another type do not. For example, the
5902``llvm.ctpop`` function can take an integer of any width and returns an
5903integer of exactly the same integer width. This leads to a family of
5904functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5905``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5906overloaded, and only one type suffix is required. Because the argument's
5907type is matched against the return type, it does not require its own
5908name suffix.
5909
5910To learn how to add an intrinsic function, please see the `Extending
5911LLVM Guide <ExtendingLLVM.html>`_.
5912
5913.. _int_varargs:
5914
5915Variable Argument Handling Intrinsics
5916-------------------------------------
5917
5918Variable argument support is defined in LLVM with the
5919:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5920functions. These functions are related to the similarly named macros
5921defined in the ``<stdarg.h>`` header file.
5922
5923All of these functions operate on arguments that use a target-specific
5924value type "``va_list``". The LLVM assembly language reference manual
5925does not define what this type is, so all transformations should be
5926prepared to handle these functions regardless of the type used.
5927
5928This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
5929variable argument handling intrinsic functions are used.
5930
5931.. code-block:: llvm
5932
5933 define i32 @test(i32 %X, ...) {
5934 ; Initialize variable argument processing
5935 %ap = alloca i8*
5936 %ap2 = bitcast i8** %ap to i8*
5937 call void @llvm.va_start(i8* %ap2)
5938
5939 ; Read a single integer argument
5940 %tmp = va_arg i8** %ap, i32
5941
5942 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5943 %aq = alloca i8*
5944 %aq2 = bitcast i8** %aq to i8*
5945 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5946 call void @llvm.va_end(i8* %aq2)
5947
5948 ; Stop processing of arguments.
5949 call void @llvm.va_end(i8* %ap2)
5950 ret i32 %tmp
5951 }
5952
5953 declare void @llvm.va_start(i8*)
5954 declare void @llvm.va_copy(i8*, i8*)
5955 declare void @llvm.va_end(i8*)
5956
5957.. _int_va_start:
5958
5959'``llvm.va_start``' Intrinsic
5960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5961
5962Syntax:
5963"""""""
5964
5965::
5966
5967 declare void %llvm.va_start(i8* <arglist>)
5968
5969Overview:
5970"""""""""
5971
5972The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
5973subsequent use by ``va_arg``.
5974
5975Arguments:
5976""""""""""
5977
5978The argument is a pointer to a ``va_list`` element to initialize.
5979
5980Semantics:
5981""""""""""
5982
5983The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
5984available in C. In a target-dependent way, it initializes the
5985``va_list`` element to which the argument points, so that the next call
5986to ``va_arg`` will produce the first variable argument passed to the
5987function. Unlike the C ``va_start`` macro, this intrinsic does not need
5988to know the last argument of the function as the compiler can figure
5989that out.
5990
5991'``llvm.va_end``' Intrinsic
5992^^^^^^^^^^^^^^^^^^^^^^^^^^^
5993
5994Syntax:
5995"""""""
5996
5997::
5998
5999 declare void @llvm.va_end(i8* <arglist>)
6000
6001Overview:
6002"""""""""
6003
6004The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6005initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6006
6007Arguments:
6008""""""""""
6009
6010The argument is a pointer to a ``va_list`` to destroy.
6011
6012Semantics:
6013""""""""""
6014
6015The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6016available in C. In a target-dependent way, it destroys the ``va_list``
6017element to which the argument points. Calls to
6018:ref:`llvm.va_start <int_va_start>` and
6019:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6020``llvm.va_end``.
6021
6022.. _int_va_copy:
6023
6024'``llvm.va_copy``' Intrinsic
6025^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6026
6027Syntax:
6028"""""""
6029
6030::
6031
6032 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6033
6034Overview:
6035"""""""""
6036
6037The '``llvm.va_copy``' intrinsic copies the current argument position
6038from the source argument list to the destination argument list.
6039
6040Arguments:
6041""""""""""
6042
6043The first argument is a pointer to a ``va_list`` element to initialize.
6044The second argument is a pointer to a ``va_list`` element to copy from.
6045
6046Semantics:
6047""""""""""
6048
6049The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6050available in C. In a target-dependent way, it copies the source
6051``va_list`` element into the destination ``va_list`` element. This
6052intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6053arbitrarily complex and require, for example, memory allocation.
6054
6055Accurate Garbage Collection Intrinsics
6056--------------------------------------
6057
6058LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6059(GC) requires the implementation and generation of these intrinsics.
6060These intrinsics allow identification of :ref:`GC roots on the
6061stack <int_gcroot>`, as well as garbage collector implementations that
6062require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6063Front-ends for type-safe garbage collected languages should generate
6064these intrinsics to make use of the LLVM garbage collectors. For more
6065details, see `Accurate Garbage Collection with
6066LLVM <GarbageCollection.html>`_.
6067
6068The garbage collection intrinsics only operate on objects in the generic
6069address space (address space zero).
6070
6071.. _int_gcroot:
6072
6073'``llvm.gcroot``' Intrinsic
6074^^^^^^^^^^^^^^^^^^^^^^^^^^^
6075
6076Syntax:
6077"""""""
6078
6079::
6080
6081 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6082
6083Overview:
6084"""""""""
6085
6086The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6087the code generator, and allows some metadata to be associated with it.
6088
6089Arguments:
6090""""""""""
6091
6092The first argument specifies the address of a stack object that contains
6093the root pointer. The second pointer (which must be either a constant or
6094a global value address) contains the meta-data to be associated with the
6095root.
6096
6097Semantics:
6098""""""""""
6099
6100At runtime, a call to this intrinsic stores a null pointer into the
6101"ptrloc" location. At compile-time, the code generator generates
6102information to allow the runtime to find the pointer at GC safe points.
6103The '``llvm.gcroot``' intrinsic may only be used in a function which
6104:ref:`specifies a GC algorithm <gc>`.
6105
6106.. _int_gcread:
6107
6108'``llvm.gcread``' Intrinsic
6109^^^^^^^^^^^^^^^^^^^^^^^^^^^
6110
6111Syntax:
6112"""""""
6113
6114::
6115
6116 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6117
6118Overview:
6119"""""""""
6120
6121The '``llvm.gcread``' intrinsic identifies reads of references from heap
6122locations, allowing garbage collector implementations that require read
6123barriers.
6124
6125Arguments:
6126""""""""""
6127
6128The second argument is the address to read from, which should be an
6129address allocated from the garbage collector. The first object is a
6130pointer to the start of the referenced object, if needed by the language
6131runtime (otherwise null).
6132
6133Semantics:
6134""""""""""
6135
6136The '``llvm.gcread``' intrinsic has the same semantics as a load
6137instruction, but may be replaced with substantially more complex code by
6138the garbage collector runtime, as needed. The '``llvm.gcread``'
6139intrinsic may only be used in a function which :ref:`specifies a GC
6140algorithm <gc>`.
6141
6142.. _int_gcwrite:
6143
6144'``llvm.gcwrite``' Intrinsic
6145^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6146
6147Syntax:
6148"""""""
6149
6150::
6151
6152 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6153
6154Overview:
6155"""""""""
6156
6157The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6158locations, allowing garbage collector implementations that require write
6159barriers (such as generational or reference counting collectors).
6160
6161Arguments:
6162""""""""""
6163
6164The first argument is the reference to store, the second is the start of
6165the object to store it to, and the third is the address of the field of
6166Obj to store to. If the runtime does not require a pointer to the
6167object, Obj may be null.
6168
6169Semantics:
6170""""""""""
6171
6172The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6173instruction, but may be replaced with substantially more complex code by
6174the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6175intrinsic may only be used in a function which :ref:`specifies a GC
6176algorithm <gc>`.
6177
6178Code Generator Intrinsics
6179-------------------------
6180
6181These intrinsics are provided by LLVM to expose special features that
6182may only be implemented with code generator support.
6183
6184'``llvm.returnaddress``' Intrinsic
6185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6186
6187Syntax:
6188"""""""
6189
6190::
6191
6192 declare i8 *@llvm.returnaddress(i32 <level>)
6193
6194Overview:
6195"""""""""
6196
6197The '``llvm.returnaddress``' intrinsic attempts to compute a
6198target-specific value indicating the return address of the current
6199function or one of its callers.
6200
6201Arguments:
6202""""""""""
6203
6204The argument to this intrinsic indicates which function to return the
6205address for. Zero indicates the calling function, one indicates its
6206caller, etc. The argument is **required** to be a constant integer
6207value.
6208
6209Semantics:
6210""""""""""
6211
6212The '``llvm.returnaddress``' intrinsic either returns a pointer
6213indicating the return address of the specified call frame, or zero if it
6214cannot be identified. The value returned by this intrinsic is likely to
6215be incorrect or 0 for arguments other than zero, so it should only be
6216used for debugging purposes.
6217
6218Note that calling this intrinsic does not prevent function inlining or
6219other aggressive transformations, so the value returned may not be that
6220of the obvious source-language caller.
6221
6222'``llvm.frameaddress``' Intrinsic
6223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6224
6225Syntax:
6226"""""""
6227
6228::
6229
6230 declare i8* @llvm.frameaddress(i32 <level>)
6231
6232Overview:
6233"""""""""
6234
6235The '``llvm.frameaddress``' intrinsic attempts to return the
6236target-specific frame pointer value for the specified stack frame.
6237
6238Arguments:
6239""""""""""
6240
6241The argument to this intrinsic indicates which function to return the
6242frame pointer for. Zero indicates the calling function, one indicates
6243its caller, etc. The argument is **required** to be a constant integer
6244value.
6245
6246Semantics:
6247""""""""""
6248
6249The '``llvm.frameaddress``' intrinsic either returns a pointer
6250indicating the frame address of the specified call frame, or zero if it
6251cannot be identified. The value returned by this intrinsic is likely to
6252be incorrect or 0 for arguments other than zero, so it should only be
6253used for debugging purposes.
6254
6255Note that calling this intrinsic does not prevent function inlining or
6256other aggressive transformations, so the value returned may not be that
6257of the obvious source-language caller.
6258
6259.. _int_stacksave:
6260
6261'``llvm.stacksave``' Intrinsic
6262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6263
6264Syntax:
6265"""""""
6266
6267::
6268
6269 declare i8* @llvm.stacksave()
6270
6271Overview:
6272"""""""""
6273
6274The '``llvm.stacksave``' intrinsic is used to remember the current state
6275of the function stack, for use with
6276:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6277implementing language features like scoped automatic variable sized
6278arrays in C99.
6279
6280Semantics:
6281""""""""""
6282
6283This intrinsic returns a opaque pointer value that can be passed to
6284:ref:`llvm.stackrestore <int_stackrestore>`. When an
6285``llvm.stackrestore`` intrinsic is executed with a value saved from
6286``llvm.stacksave``, it effectively restores the state of the stack to
6287the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6288practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6289were allocated after the ``llvm.stacksave`` was executed.
6290
6291.. _int_stackrestore:
6292
6293'``llvm.stackrestore``' Intrinsic
6294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
6301 declare void @llvm.stackrestore(i8* %ptr)
6302
6303Overview:
6304"""""""""
6305
6306The '``llvm.stackrestore``' intrinsic is used to restore the state of
6307the function stack to the state it was in when the corresponding
6308:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6309useful for implementing language features like scoped automatic variable
6310sized arrays in C99.
6311
6312Semantics:
6313""""""""""
6314
6315See the description for :ref:`llvm.stacksave <int_stacksave>`.
6316
6317'``llvm.prefetch``' Intrinsic
6318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6319
6320Syntax:
6321"""""""
6322
6323::
6324
6325 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6326
6327Overview:
6328"""""""""
6329
6330The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6331insert a prefetch instruction if supported; otherwise, it is a noop.
6332Prefetches have no effect on the behavior of the program but can change
6333its performance characteristics.
6334
6335Arguments:
6336""""""""""
6337
6338``address`` is the address to be prefetched, ``rw`` is the specifier
6339determining if the fetch should be for a read (0) or write (1), and
6340``locality`` is a temporal locality specifier ranging from (0) - no
6341locality, to (3) - extremely local keep in cache. The ``cache type``
6342specifies whether the prefetch is performed on the data (1) or
6343instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6344arguments must be constant integers.
6345
6346Semantics:
6347""""""""""
6348
6349This intrinsic does not modify the behavior of the program. In
6350particular, prefetches cannot trap and do not produce a value. On
6351targets that support this intrinsic, the prefetch can provide hints to
6352the processor cache for better performance.
6353
6354'``llvm.pcmarker``' Intrinsic
6355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6356
6357Syntax:
6358"""""""
6359
6360::
6361
6362 declare void @llvm.pcmarker(i32 <id>)
6363
6364Overview:
6365"""""""""
6366
6367The '``llvm.pcmarker``' intrinsic is a method to export a Program
6368Counter (PC) in a region of code to simulators and other tools. The
6369method is target specific, but it is expected that the marker will use
6370exported symbols to transmit the PC of the marker. The marker makes no
6371guarantees that it will remain with any specific instruction after
6372optimizations. It is possible that the presence of a marker will inhibit
6373optimizations. The intended use is to be inserted after optimizations to
6374allow correlations of simulation runs.
6375
6376Arguments:
6377""""""""""
6378
6379``id`` is a numerical id identifying the marker.
6380
6381Semantics:
6382""""""""""
6383
6384This intrinsic does not modify the behavior of the program. Backends
6385that do not support this intrinsic may ignore it.
6386
6387'``llvm.readcyclecounter``' Intrinsic
6388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6389
6390Syntax:
6391"""""""
6392
6393::
6394
6395 declare i64 @llvm.readcyclecounter()
6396
6397Overview:
6398"""""""""
6399
6400The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6401counter register (or similar low latency, high accuracy clocks) on those
6402targets that support it. On X86, it should map to RDTSC. On Alpha, it
6403should map to RPCC. As the backing counters overflow quickly (on the
6404order of 9 seconds on alpha), this should only be used for small
6405timings.
6406
6407Semantics:
6408""""""""""
6409
6410When directly supported, reading the cycle counter should not modify any
6411memory. Implementations are allowed to either return a application
6412specific value or a system wide value. On backends without support, this
6413is lowered to a constant 0.
6414
6415Standard C Library Intrinsics
6416-----------------------------
6417
6418LLVM provides intrinsics for a few important standard C library
6419functions. These intrinsics allow source-language front-ends to pass
6420information about the alignment of the pointer arguments to the code
6421generator, providing opportunity for more efficient code generation.
6422
6423.. _int_memcpy:
6424
6425'``llvm.memcpy``' Intrinsic
6426^^^^^^^^^^^^^^^^^^^^^^^^^^^
6427
6428Syntax:
6429"""""""
6430
6431This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6432integer bit width and for different address spaces. Not all targets
6433support all bit widths however.
6434
6435::
6436
6437 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6438 i32 <len>, i32 <align>, i1 <isvolatile>)
6439 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6440 i64 <len>, i32 <align>, i1 <isvolatile>)
6441
6442Overview:
6443"""""""""
6444
6445The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6446source location to the destination location.
6447
6448Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6449intrinsics do not return a value, takes extra alignment/isvolatile
6450arguments and the pointers can be in specified address spaces.
6451
6452Arguments:
6453""""""""""
6454
6455The first argument is a pointer to the destination, the second is a
6456pointer to the source. The third argument is an integer argument
6457specifying the number of bytes to copy, the fourth argument is the
6458alignment of the source and destination locations, and the fifth is a
6459boolean indicating a volatile access.
6460
6461If the call to this intrinsic has an alignment value that is not 0 or 1,
6462then the caller guarantees that both the source and destination pointers
6463are aligned to that boundary.
6464
6465If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6466a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6467very cleanly specified and it is unwise to depend on it.
6468
6469Semantics:
6470""""""""""
6471
6472The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6473source location to the destination location, which are not allowed to
6474overlap. It copies "len" bytes of memory over. If the argument is known
6475to be aligned to some boundary, this can be specified as the fourth
6476argument, otherwise it should be set to 0 or 1.
6477
6478'``llvm.memmove``' Intrinsic
6479^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6480
6481Syntax:
6482"""""""
6483
6484This is an overloaded intrinsic. You can use llvm.memmove on any integer
6485bit width and for different address space. Not all targets support all
6486bit widths however.
6487
6488::
6489
6490 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6491 i32 <len>, i32 <align>, i1 <isvolatile>)
6492 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6493 i64 <len>, i32 <align>, i1 <isvolatile>)
6494
6495Overview:
6496"""""""""
6497
6498The '``llvm.memmove.*``' intrinsics move a block of memory from the
6499source location to the destination location. It is similar to the
6500'``llvm.memcpy``' intrinsic but allows the two memory locations to
6501overlap.
6502
6503Note that, unlike the standard libc function, the ``llvm.memmove.*``
6504intrinsics do not return a value, takes extra alignment/isvolatile
6505arguments and the pointers can be in specified address spaces.
6506
6507Arguments:
6508""""""""""
6509
6510The first argument is a pointer to the destination, the second is a
6511pointer to the source. The third argument is an integer argument
6512specifying the number of bytes to copy, the fourth argument is the
6513alignment of the source and destination locations, and the fifth is a
6514boolean indicating a volatile access.
6515
6516If the call to this intrinsic has an alignment value that is not 0 or 1,
6517then the caller guarantees that the source and destination pointers are
6518aligned to that boundary.
6519
6520If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6521is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6522not very cleanly specified and it is unwise to depend on it.
6523
6524Semantics:
6525""""""""""
6526
6527The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6528source location to the destination location, which may overlap. It
6529copies "len" bytes of memory over. If the argument is known to be
6530aligned to some boundary, this can be specified as the fourth argument,
6531otherwise it should be set to 0 or 1.
6532
6533'``llvm.memset.*``' Intrinsics
6534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6535
6536Syntax:
6537"""""""
6538
6539This is an overloaded intrinsic. You can use llvm.memset on any integer
6540bit width and for different address spaces. However, not all targets
6541support all bit widths.
6542
6543::
6544
6545 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6546 i32 <len>, i32 <align>, i1 <isvolatile>)
6547 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6548 i64 <len>, i32 <align>, i1 <isvolatile>)
6549
6550Overview:
6551"""""""""
6552
6553The '``llvm.memset.*``' intrinsics fill a block of memory with a
6554particular byte value.
6555
6556Note that, unlike the standard libc function, the ``llvm.memset``
6557intrinsic does not return a value and takes extra alignment/volatile
6558arguments. Also, the destination can be in an arbitrary address space.
6559
6560Arguments:
6561""""""""""
6562
6563The first argument is a pointer to the destination to fill, the second
6564is the byte value with which to fill it, the third argument is an
6565integer argument specifying the number of bytes to fill, and the fourth
6566argument is the known alignment of the destination location.
6567
6568If the call to this intrinsic has an alignment value that is not 0 or 1,
6569then the caller guarantees that the destination pointer is aligned to
6570that boundary.
6571
6572If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6573a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6574very cleanly specified and it is unwise to depend on it.
6575
6576Semantics:
6577""""""""""
6578
6579The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6580at the destination location. If the argument is known to be aligned to
6581some boundary, this can be specified as the fourth argument, otherwise
6582it should be set to 0 or 1.
6583
6584'``llvm.sqrt.*``' Intrinsic
6585^^^^^^^^^^^^^^^^^^^^^^^^^^^
6586
6587Syntax:
6588"""""""
6589
6590This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6591floating point or vector of floating point type. Not all targets support
6592all types however.
6593
6594::
6595
6596 declare float @llvm.sqrt.f32(float %Val)
6597 declare double @llvm.sqrt.f64(double %Val)
6598 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6599 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6600 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6601
6602Overview:
6603"""""""""
6604
6605The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6606returning the same value as the libm '``sqrt``' functions would. Unlike
6607``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6608negative numbers other than -0.0 (which allows for better optimization,
6609because there is no need to worry about errno being set).
6610``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6611
6612Arguments:
6613""""""""""
6614
6615The argument and return value are floating point numbers of the same
6616type.
6617
6618Semantics:
6619""""""""""
6620
6621This function returns the sqrt of the specified operand if it is a
6622nonnegative floating point number.
6623
6624'``llvm.powi.*``' Intrinsic
6625^^^^^^^^^^^^^^^^^^^^^^^^^^^
6626
6627Syntax:
6628"""""""
6629
6630This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6631floating point or vector of floating point type. Not all targets support
6632all types however.
6633
6634::
6635
6636 declare float @llvm.powi.f32(float %Val, i32 %power)
6637 declare double @llvm.powi.f64(double %Val, i32 %power)
6638 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6639 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6640 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6641
6642Overview:
6643"""""""""
6644
6645The '``llvm.powi.*``' intrinsics return the first operand raised to the
6646specified (positive or negative) power. The order of evaluation of
6647multiplications is not defined. When a vector of floating point type is
6648used, the second argument remains a scalar integer value.
6649
6650Arguments:
6651""""""""""
6652
6653The second argument is an integer power, and the first is a value to
6654raise to that power.
6655
6656Semantics:
6657""""""""""
6658
6659This function returns the first value raised to the second power with an
6660unspecified sequence of rounding operations.
6661
6662'``llvm.sin.*``' Intrinsic
6663^^^^^^^^^^^^^^^^^^^^^^^^^^
6664
6665Syntax:
6666"""""""
6667
6668This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6669floating point or vector of floating point type. Not all targets support
6670all types however.
6671
6672::
6673
6674 declare float @llvm.sin.f32(float %Val)
6675 declare double @llvm.sin.f64(double %Val)
6676 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6677 declare fp128 @llvm.sin.f128(fp128 %Val)
6678 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6679
6680Overview:
6681"""""""""
6682
6683The '``llvm.sin.*``' intrinsics return the sine of the operand.
6684
6685Arguments:
6686""""""""""
6687
6688The argument and return value are floating point numbers of the same
6689type.
6690
6691Semantics:
6692""""""""""
6693
6694This function returns the sine of the specified operand, returning the
6695same values as the libm ``sin`` functions would, and handles error
6696conditions in the same way.
6697
6698'``llvm.cos.*``' Intrinsic
6699^^^^^^^^^^^^^^^^^^^^^^^^^^
6700
6701Syntax:
6702"""""""
6703
6704This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6705floating point or vector of floating point type. Not all targets support
6706all types however.
6707
6708::
6709
6710 declare float @llvm.cos.f32(float %Val)
6711 declare double @llvm.cos.f64(double %Val)
6712 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6713 declare fp128 @llvm.cos.f128(fp128 %Val)
6714 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6715
6716Overview:
6717"""""""""
6718
6719The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6720
6721Arguments:
6722""""""""""
6723
6724The argument and return value are floating point numbers of the same
6725type.
6726
6727Semantics:
6728""""""""""
6729
6730This function returns the cosine of the specified operand, returning the
6731same values as the libm ``cos`` functions would, and handles error
6732conditions in the same way.
6733
6734'``llvm.pow.*``' Intrinsic
6735^^^^^^^^^^^^^^^^^^^^^^^^^^
6736
6737Syntax:
6738"""""""
6739
6740This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6741floating point or vector of floating point type. Not all targets support
6742all types however.
6743
6744::
6745
6746 declare float @llvm.pow.f32(float %Val, float %Power)
6747 declare double @llvm.pow.f64(double %Val, double %Power)
6748 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6749 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6750 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6751
6752Overview:
6753"""""""""
6754
6755The '``llvm.pow.*``' intrinsics return the first operand raised to the
6756specified (positive or negative) power.
6757
6758Arguments:
6759""""""""""
6760
6761The second argument is a floating point power, and the first is a value
6762to raise to that power.
6763
6764Semantics:
6765""""""""""
6766
6767This function returns the first value raised to the second power,
6768returning the same values as the libm ``pow`` functions would, and
6769handles error conditions in the same way.
6770
6771'``llvm.exp.*``' Intrinsic
6772^^^^^^^^^^^^^^^^^^^^^^^^^^
6773
6774Syntax:
6775"""""""
6776
6777This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6778floating point or vector of floating point type. Not all targets support
6779all types however.
6780
6781::
6782
6783 declare float @llvm.exp.f32(float %Val)
6784 declare double @llvm.exp.f64(double %Val)
6785 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6786 declare fp128 @llvm.exp.f128(fp128 %Val)
6787 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6788
6789Overview:
6790"""""""""
6791
6792The '``llvm.exp.*``' intrinsics perform the exp function.
6793
6794Arguments:
6795""""""""""
6796
6797The argument and return value are floating point numbers of the same
6798type.
6799
6800Semantics:
6801""""""""""
6802
6803This function returns the same values as the libm ``exp`` functions
6804would, and handles error conditions in the same way.
6805
6806'``llvm.exp2.*``' Intrinsic
6807^^^^^^^^^^^^^^^^^^^^^^^^^^^
6808
6809Syntax:
6810"""""""
6811
6812This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6813floating point or vector of floating point type. Not all targets support
6814all types however.
6815
6816::
6817
6818 declare float @llvm.exp2.f32(float %Val)
6819 declare double @llvm.exp2.f64(double %Val)
6820 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6821 declare fp128 @llvm.exp2.f128(fp128 %Val)
6822 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6823
6824Overview:
6825"""""""""
6826
6827The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6828
6829Arguments:
6830""""""""""
6831
6832The argument and return value are floating point numbers of the same
6833type.
6834
6835Semantics:
6836""""""""""
6837
6838This function returns the same values as the libm ``exp2`` functions
6839would, and handles error conditions in the same way.
6840
6841'``llvm.log.*``' Intrinsic
6842^^^^^^^^^^^^^^^^^^^^^^^^^^
6843
6844Syntax:
6845"""""""
6846
6847This is an overloaded intrinsic. You can use ``llvm.log`` on any
6848floating point or vector of floating point type. Not all targets support
6849all types however.
6850
6851::
6852
6853 declare float @llvm.log.f32(float %Val)
6854 declare double @llvm.log.f64(double %Val)
6855 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6856 declare fp128 @llvm.log.f128(fp128 %Val)
6857 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6858
6859Overview:
6860"""""""""
6861
6862The '``llvm.log.*``' intrinsics perform the log function.
6863
6864Arguments:
6865""""""""""
6866
6867The argument and return value are floating point numbers of the same
6868type.
6869
6870Semantics:
6871""""""""""
6872
6873This function returns the same values as the libm ``log`` functions
6874would, and handles error conditions in the same way.
6875
6876'``llvm.log10.*``' Intrinsic
6877^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6878
6879Syntax:
6880"""""""
6881
6882This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6883floating point or vector of floating point type. Not all targets support
6884all types however.
6885
6886::
6887
6888 declare float @llvm.log10.f32(float %Val)
6889 declare double @llvm.log10.f64(double %Val)
6890 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6891 declare fp128 @llvm.log10.f128(fp128 %Val)
6892 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6893
6894Overview:
6895"""""""""
6896
6897The '``llvm.log10.*``' intrinsics perform the log10 function.
6898
6899Arguments:
6900""""""""""
6901
6902The argument and return value are floating point numbers of the same
6903type.
6904
6905Semantics:
6906""""""""""
6907
6908This function returns the same values as the libm ``log10`` functions
6909would, and handles error conditions in the same way.
6910
6911'``llvm.log2.*``' Intrinsic
6912^^^^^^^^^^^^^^^^^^^^^^^^^^^
6913
6914Syntax:
6915"""""""
6916
6917This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6918floating point or vector of floating point type. Not all targets support
6919all types however.
6920
6921::
6922
6923 declare float @llvm.log2.f32(float %Val)
6924 declare double @llvm.log2.f64(double %Val)
6925 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
6926 declare fp128 @llvm.log2.f128(fp128 %Val)
6927 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
6928
6929Overview:
6930"""""""""
6931
6932The '``llvm.log2.*``' intrinsics perform the log2 function.
6933
6934Arguments:
6935""""""""""
6936
6937The argument and return value are floating point numbers of the same
6938type.
6939
6940Semantics:
6941""""""""""
6942
6943This function returns the same values as the libm ``log2`` functions
6944would, and handles error conditions in the same way.
6945
6946'``llvm.fma.*``' Intrinsic
6947^^^^^^^^^^^^^^^^^^^^^^^^^^
6948
6949Syntax:
6950"""""""
6951
6952This is an overloaded intrinsic. You can use ``llvm.fma`` on any
6953floating point or vector of floating point type. Not all targets support
6954all types however.
6955
6956::
6957
6958 declare float @llvm.fma.f32(float %a, float %b, float %c)
6959 declare double @llvm.fma.f64(double %a, double %b, double %c)
6960 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
6961 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
6962 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
6963
6964Overview:
6965"""""""""
6966
6967The '``llvm.fma.*``' intrinsics perform the fused multiply-add
6968operation.
6969
6970Arguments:
6971""""""""""
6972
6973The argument and return value are floating point numbers of the same
6974type.
6975
6976Semantics:
6977""""""""""
6978
6979This function returns the same values as the libm ``fma`` functions
6980would.
6981
6982'``llvm.fabs.*``' Intrinsic
6983^^^^^^^^^^^^^^^^^^^^^^^^^^^
6984
6985Syntax:
6986"""""""
6987
6988This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
6989floating point or vector of floating point type. Not all targets support
6990all types however.
6991
6992::
6993
6994 declare float @llvm.fabs.f32(float %Val)
6995 declare double @llvm.fabs.f64(double %Val)
6996 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
6997 declare fp128 @llvm.fabs.f128(fp128 %Val)
6998 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
6999
7000Overview:
7001"""""""""
7002
7003The '``llvm.fabs.*``' intrinsics return the absolute value of the
7004operand.
7005
7006Arguments:
7007""""""""""
7008
7009The argument and return value are floating point numbers of the same
7010type.
7011
7012Semantics:
7013""""""""""
7014
7015This function returns the same values as the libm ``fabs`` functions
7016would, and handles error conditions in the same way.
7017
7018'``llvm.floor.*``' Intrinsic
7019^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7020
7021Syntax:
7022"""""""
7023
7024This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7025floating point or vector of floating point type. Not all targets support
7026all types however.
7027
7028::
7029
7030 declare float @llvm.floor.f32(float %Val)
7031 declare double @llvm.floor.f64(double %Val)
7032 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7033 declare fp128 @llvm.floor.f128(fp128 %Val)
7034 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7035
7036Overview:
7037"""""""""
7038
7039The '``llvm.floor.*``' intrinsics return the floor of the operand.
7040
7041Arguments:
7042""""""""""
7043
7044The argument and return value are floating point numbers of the same
7045type.
7046
7047Semantics:
7048""""""""""
7049
7050This function returns the same values as the libm ``floor`` functions
7051would, and handles error conditions in the same way.
7052
7053'``llvm.ceil.*``' Intrinsic
7054^^^^^^^^^^^^^^^^^^^^^^^^^^^
7055
7056Syntax:
7057"""""""
7058
7059This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7060floating point or vector of floating point type. Not all targets support
7061all types however.
7062
7063::
7064
7065 declare float @llvm.ceil.f32(float %Val)
7066 declare double @llvm.ceil.f64(double %Val)
7067 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7068 declare fp128 @llvm.ceil.f128(fp128 %Val)
7069 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7070
7071Overview:
7072"""""""""
7073
7074The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7075
7076Arguments:
7077""""""""""
7078
7079The argument and return value are floating point numbers of the same
7080type.
7081
7082Semantics:
7083""""""""""
7084
7085This function returns the same values as the libm ``ceil`` functions
7086would, and handles error conditions in the same way.
7087
7088'``llvm.trunc.*``' Intrinsic
7089^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7090
7091Syntax:
7092"""""""
7093
7094This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7095floating point or vector of floating point type. Not all targets support
7096all types however.
7097
7098::
7099
7100 declare float @llvm.trunc.f32(float %Val)
7101 declare double @llvm.trunc.f64(double %Val)
7102 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7103 declare fp128 @llvm.trunc.f128(fp128 %Val)
7104 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7105
7106Overview:
7107"""""""""
7108
7109The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7110nearest integer not larger in magnitude than the operand.
7111
7112Arguments:
7113""""""""""
7114
7115The argument and return value are floating point numbers of the same
7116type.
7117
7118Semantics:
7119""""""""""
7120
7121This function returns the same values as the libm ``trunc`` functions
7122would, and handles error conditions in the same way.
7123
7124'``llvm.rint.*``' Intrinsic
7125^^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7131floating point or vector of floating point type. Not all targets support
7132all types however.
7133
7134::
7135
7136 declare float @llvm.rint.f32(float %Val)
7137 declare double @llvm.rint.f64(double %Val)
7138 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7139 declare fp128 @llvm.rint.f128(fp128 %Val)
7140 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7141
7142Overview:
7143"""""""""
7144
7145The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7146nearest integer. It may raise an inexact floating-point exception if the
7147operand isn't an integer.
7148
7149Arguments:
7150""""""""""
7151
7152The argument and return value are floating point numbers of the same
7153type.
7154
7155Semantics:
7156""""""""""
7157
7158This function returns the same values as the libm ``rint`` functions
7159would, and handles error conditions in the same way.
7160
7161'``llvm.nearbyint.*``' Intrinsic
7162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7163
7164Syntax:
7165"""""""
7166
7167This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7168floating point or vector of floating point type. Not all targets support
7169all types however.
7170
7171::
7172
7173 declare float @llvm.nearbyint.f32(float %Val)
7174 declare double @llvm.nearbyint.f64(double %Val)
7175 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7176 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7177 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7178
7179Overview:
7180"""""""""
7181
7182The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7183nearest integer.
7184
7185Arguments:
7186""""""""""
7187
7188The argument and return value are floating point numbers of the same
7189type.
7190
7191Semantics:
7192""""""""""
7193
7194This function returns the same values as the libm ``nearbyint``
7195functions would, and handles error conditions in the same way.
7196
7197Bit Manipulation Intrinsics
7198---------------------------
7199
7200LLVM provides intrinsics for a few important bit manipulation
7201operations. These allow efficient code generation for some algorithms.
7202
7203'``llvm.bswap.*``' Intrinsics
7204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209This is an overloaded intrinsic function. You can use bswap on any
7210integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7211
7212::
7213
7214 declare i16 @llvm.bswap.i16(i16 <id>)
7215 declare i32 @llvm.bswap.i32(i32 <id>)
7216 declare i64 @llvm.bswap.i64(i64 <id>)
7217
7218Overview:
7219"""""""""
7220
7221The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7222values with an even number of bytes (positive multiple of 16 bits).
7223These are useful for performing operations on data that is not in the
7224target's native byte order.
7225
7226Semantics:
7227""""""""""
7228
7229The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7230and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7231intrinsic returns an i32 value that has the four bytes of the input i32
7232swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7233returned i32 will have its bytes in 3, 2, 1, 0 order. The
7234``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7235concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7236respectively).
7237
7238'``llvm.ctpop.*``' Intrinsic
7239^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7240
7241Syntax:
7242"""""""
7243
7244This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7245bit width, or on any vector with integer elements. Not all targets
7246support all bit widths or vector types, however.
7247
7248::
7249
7250 declare i8 @llvm.ctpop.i8(i8 <src>)
7251 declare i16 @llvm.ctpop.i16(i16 <src>)
7252 declare i32 @llvm.ctpop.i32(i32 <src>)
7253 declare i64 @llvm.ctpop.i64(i64 <src>)
7254 declare i256 @llvm.ctpop.i256(i256 <src>)
7255 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7256
7257Overview:
7258"""""""""
7259
7260The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7261in a value.
7262
7263Arguments:
7264""""""""""
7265
7266The only argument is the value to be counted. The argument may be of any
7267integer type, or a vector with integer elements. The return type must
7268match the argument type.
7269
7270Semantics:
7271""""""""""
7272
7273The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7274each element of a vector.
7275
7276'``llvm.ctlz.*``' Intrinsic
7277^^^^^^^^^^^^^^^^^^^^^^^^^^^
7278
7279Syntax:
7280"""""""
7281
7282This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7283integer bit width, or any vector whose elements are integers. Not all
7284targets support all bit widths or vector types, however.
7285
7286::
7287
7288 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7289 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7290 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7291 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7292 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7293 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7294
7295Overview:
7296"""""""""
7297
7298The '``llvm.ctlz``' family of intrinsic functions counts the number of
7299leading zeros in a variable.
7300
7301Arguments:
7302""""""""""
7303
7304The first argument is the value to be counted. This argument may be of
7305any integer type, or a vectory with integer element type. The return
7306type must match the first argument type.
7307
7308The second argument must be a constant and is a flag to indicate whether
7309the intrinsic should ensure that a zero as the first argument produces a
7310defined result. Historically some architectures did not provide a
7311defined result for zero values as efficiently, and many algorithms are
7312now predicated on avoiding zero-value inputs.
7313
7314Semantics:
7315""""""""""
7316
7317The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7318zeros in a variable, or within each element of the vector. If
7319``src == 0`` then the result is the size in bits of the type of ``src``
7320if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7321``llvm.ctlz(i32 2) = 30``.
7322
7323'``llvm.cttz.*``' Intrinsic
7324^^^^^^^^^^^^^^^^^^^^^^^^^^^
7325
7326Syntax:
7327"""""""
7328
7329This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7330integer bit width, or any vector of integer elements. Not all targets
7331support all bit widths or vector types, however.
7332
7333::
7334
7335 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7336 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7337 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7338 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7339 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7340 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7341
7342Overview:
7343"""""""""
7344
7345The '``llvm.cttz``' family of intrinsic functions counts the number of
7346trailing zeros.
7347
7348Arguments:
7349""""""""""
7350
7351The first argument is the value to be counted. This argument may be of
7352any integer type, or a vectory with integer element type. The return
7353type must match the first argument type.
7354
7355The second argument must be a constant and is a flag to indicate whether
7356the intrinsic should ensure that a zero as the first argument produces a
7357defined result. Historically some architectures did not provide a
7358defined result for zero values as efficiently, and many algorithms are
7359now predicated on avoiding zero-value inputs.
7360
7361Semantics:
7362""""""""""
7363
7364The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7365zeros in a variable, or within each element of a vector. If ``src == 0``
7366then the result is the size in bits of the type of ``src`` if
7367``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7368``llvm.cttz(2) = 1``.
7369
7370Arithmetic with Overflow Intrinsics
7371-----------------------------------
7372
7373LLVM provides intrinsics for some arithmetic with overflow operations.
7374
7375'``llvm.sadd.with.overflow.*``' Intrinsics
7376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7377
7378Syntax:
7379"""""""
7380
7381This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7382on any integer bit width.
7383
7384::
7385
7386 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7387 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7388 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7389
7390Overview:
7391"""""""""
7392
7393The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7394a signed addition of the two arguments, and indicate whether an overflow
7395occurred during the signed summation.
7396
7397Arguments:
7398""""""""""
7399
7400The arguments (%a and %b) and the first element of the result structure
7401may be of integer types of any bit width, but they must have the same
7402bit width. The second element of the result structure must be of type
7403``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7404addition.
7405
7406Semantics:
7407""""""""""
7408
7409The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7410a signed addition of the two variables. They return a structure — the
7411first element of which is the signed summation, and the second element
7412of which is a bit specifying if the signed summation resulted in an
7413overflow.
7414
7415Examples:
7416"""""""""
7417
7418.. code-block:: llvm
7419
7420 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7421 %sum = extractvalue {i32, i1} %res, 0
7422 %obit = extractvalue {i32, i1} %res, 1
7423 br i1 %obit, label %overflow, label %normal
7424
7425'``llvm.uadd.with.overflow.*``' Intrinsics
7426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7427
7428Syntax:
7429"""""""
7430
7431This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7432on any integer bit width.
7433
7434::
7435
7436 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7437 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7438 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7439
7440Overview:
7441"""""""""
7442
7443The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7444an unsigned addition of the two arguments, and indicate whether a carry
7445occurred during the unsigned summation.
7446
7447Arguments:
7448""""""""""
7449
7450The arguments (%a and %b) and the first element of the result structure
7451may be of integer types of any bit width, but they must have the same
7452bit width. The second element of the result structure must be of type
7453``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7454addition.
7455
7456Semantics:
7457""""""""""
7458
7459The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7460an unsigned addition of the two arguments. They return a structure — the
7461first element of which is the sum, and the second element of which is a
7462bit specifying if the unsigned summation resulted in a carry.
7463
7464Examples:
7465"""""""""
7466
7467.. code-block:: llvm
7468
7469 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7470 %sum = extractvalue {i32, i1} %res, 0
7471 %obit = extractvalue {i32, i1} %res, 1
7472 br i1 %obit, label %carry, label %normal
7473
7474'``llvm.ssub.with.overflow.*``' Intrinsics
7475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7476
7477Syntax:
7478"""""""
7479
7480This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7481on any integer bit width.
7482
7483::
7484
7485 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7486 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7487 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7488
7489Overview:
7490"""""""""
7491
7492The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7493a signed subtraction of the two arguments, and indicate whether an
7494overflow occurred during the signed subtraction.
7495
7496Arguments:
7497""""""""""
7498
7499The arguments (%a and %b) and the first element of the result structure
7500may be of integer types of any bit width, but they must have the same
7501bit width. The second element of the result structure must be of type
7502``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7503subtraction.
7504
7505Semantics:
7506""""""""""
7507
7508The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7509a signed subtraction of the two arguments. They return a structure — the
7510first element of which is the subtraction, and the second element of
7511which is a bit specifying if the signed subtraction resulted in an
7512overflow.
7513
7514Examples:
7515"""""""""
7516
7517.. code-block:: llvm
7518
7519 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7520 %sum = extractvalue {i32, i1} %res, 0
7521 %obit = extractvalue {i32, i1} %res, 1
7522 br i1 %obit, label %overflow, label %normal
7523
7524'``llvm.usub.with.overflow.*``' Intrinsics
7525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7526
7527Syntax:
7528"""""""
7529
7530This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7531on any integer bit width.
7532
7533::
7534
7535 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7536 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7537 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7538
7539Overview:
7540"""""""""
7541
7542The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7543an unsigned subtraction of the two arguments, and indicate whether an
7544overflow occurred during the unsigned subtraction.
7545
7546Arguments:
7547""""""""""
7548
7549The arguments (%a and %b) and the first element of the result structure
7550may be of integer types of any bit width, but they must have the same
7551bit width. The second element of the result structure must be of type
7552``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7553subtraction.
7554
7555Semantics:
7556""""""""""
7557
7558The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7559an unsigned subtraction of the two arguments. They return a structure —
7560the first element of which is the subtraction, and the second element of
7561which is a bit specifying if the unsigned subtraction resulted in an
7562overflow.
7563
7564Examples:
7565"""""""""
7566
7567.. code-block:: llvm
7568
7569 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7570 %sum = extractvalue {i32, i1} %res, 0
7571 %obit = extractvalue {i32, i1} %res, 1
7572 br i1 %obit, label %overflow, label %normal
7573
7574'``llvm.smul.with.overflow.*``' Intrinsics
7575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7576
7577Syntax:
7578"""""""
7579
7580This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7581on any integer bit width.
7582
7583::
7584
7585 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7586 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7587 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7588
7589Overview:
7590"""""""""
7591
7592The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7593a signed multiplication of the two arguments, and indicate whether an
7594overflow occurred during the signed multiplication.
7595
7596Arguments:
7597""""""""""
7598
7599The arguments (%a and %b) and the first element of the result structure
7600may be of integer types of any bit width, but they must have the same
7601bit width. The second element of the result structure must be of type
7602``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7603multiplication.
7604
7605Semantics:
7606""""""""""
7607
7608The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7609a signed multiplication of the two arguments. They return a structure —
7610the first element of which is the multiplication, and the second element
7611of which is a bit specifying if the signed multiplication resulted in an
7612overflow.
7613
7614Examples:
7615"""""""""
7616
7617.. code-block:: llvm
7618
7619 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7620 %sum = extractvalue {i32, i1} %res, 0
7621 %obit = extractvalue {i32, i1} %res, 1
7622 br i1 %obit, label %overflow, label %normal
7623
7624'``llvm.umul.with.overflow.*``' Intrinsics
7625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7626
7627Syntax:
7628"""""""
7629
7630This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7631on any integer bit width.
7632
7633::
7634
7635 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7636 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7637 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7638
7639Overview:
7640"""""""""
7641
7642The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7643a unsigned multiplication of the two arguments, and indicate whether an
7644overflow occurred during the unsigned multiplication.
7645
7646Arguments:
7647""""""""""
7648
7649The arguments (%a and %b) and the first element of the result structure
7650may be of integer types of any bit width, but they must have the same
7651bit width. The second element of the result structure must be of type
7652``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7653multiplication.
7654
7655Semantics:
7656""""""""""
7657
7658The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7659an unsigned multiplication of the two arguments. They return a structure
7660— the first element of which is the multiplication, and the second
7661element of which is a bit specifying if the unsigned multiplication
7662resulted in an overflow.
7663
7664Examples:
7665"""""""""
7666
7667.. code-block:: llvm
7668
7669 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7670 %sum = extractvalue {i32, i1} %res, 0
7671 %obit = extractvalue {i32, i1} %res, 1
7672 br i1 %obit, label %overflow, label %normal
7673
7674Specialised Arithmetic Intrinsics
7675---------------------------------
7676
7677'``llvm.fmuladd.*``' Intrinsic
7678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7679
7680Syntax:
7681"""""""
7682
7683::
7684
7685 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7686 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7687
7688Overview:
7689"""""""""
7690
7691The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
7692expressions that can be fused if the code generator determines that the
7693fused expression would be legal and efficient.
7694
7695Arguments:
7696""""""""""
7697
7698The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7699multiplicands, a and b, and an addend c.
7700
7701Semantics:
7702""""""""""
7703
7704The expression:
7705
7706::
7707
7708 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7709
7710is equivalent to the expression a \* b + c, except that rounding will
7711not be performed between the multiplication and addition steps if the
7712code generator fuses the operations. Fusion is not guaranteed, even if
7713the target platform supports it. If a fused multiply-add is required the
7714corresponding llvm.fma.\* intrinsic function should be used instead.
7715
7716Examples:
7717"""""""""
7718
7719.. code-block:: llvm
7720
7721 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7722
7723Half Precision Floating Point Intrinsics
7724----------------------------------------
7725
7726For most target platforms, half precision floating point is a
7727storage-only format. This means that it is a dense encoding (in memory)
7728but does not support computation in the format.
7729
7730This means that code must first load the half-precision floating point
7731value as an i16, then convert it to float with
7732:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7733then be performed on the float value (including extending to double
7734etc). To store the value back to memory, it is first converted to float
7735if needed, then converted to i16 with
7736:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7737i16 value.
7738
7739.. _int_convert_to_fp16:
7740
7741'``llvm.convert.to.fp16``' Intrinsic
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747::
7748
7749 declare i16 @llvm.convert.to.fp16(f32 %a)
7750
7751Overview:
7752"""""""""
7753
7754The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7755from single precision floating point format to half precision floating
7756point format.
7757
7758Arguments:
7759""""""""""
7760
7761The intrinsic function contains single argument - the value to be
7762converted.
7763
7764Semantics:
7765""""""""""
7766
7767The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7768from single precision floating point format to half precision floating
7769point format. The return value is an ``i16`` which contains the
7770converted number.
7771
7772Examples:
7773"""""""""
7774
7775.. code-block:: llvm
7776
7777 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7778 store i16 %res, i16* @x, align 2
7779
7780.. _int_convert_from_fp16:
7781
7782'``llvm.convert.from.fp16``' Intrinsic
7783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7784
7785Syntax:
7786"""""""
7787
7788::
7789
7790 declare f32 @llvm.convert.from.fp16(i16 %a)
7791
7792Overview:
7793"""""""""
7794
7795The '``llvm.convert.from.fp16``' intrinsic function performs a
7796conversion from half precision floating point format to single precision
7797floating point format.
7798
7799Arguments:
7800""""""""""
7801
7802The intrinsic function contains single argument - the value to be
7803converted.
7804
7805Semantics:
7806""""""""""
7807
7808The '``llvm.convert.from.fp16``' intrinsic function performs a
7809conversion from half single precision floating point format to single
7810precision floating point format. The input half-float value is
7811represented by an ``i16`` value.
7812
7813Examples:
7814"""""""""
7815
7816.. code-block:: llvm
7817
7818 %a = load i16* @x, align 2
7819 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7820
7821Debugger Intrinsics
7822-------------------
7823
7824The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7825prefix), are described in the `LLVM Source Level
7826Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7827document.
7828
7829Exception Handling Intrinsics
7830-----------------------------
7831
7832The LLVM exception handling intrinsics (which all start with
7833``llvm.eh.`` prefix), are described in the `LLVM Exception
7834Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7835
7836.. _int_trampoline:
7837
7838Trampoline Intrinsics
7839---------------------
7840
7841These intrinsics make it possible to excise one parameter, marked with
7842the :ref:`nest <nest>` attribute, from a function. The result is a
7843callable function pointer lacking the nest parameter - the caller does
7844not need to provide a value for it. Instead, the value to use is stored
7845in advance in a "trampoline", a block of memory usually allocated on the
7846stack, which also contains code to splice the nest value into the
7847argument list. This is used to implement the GCC nested function address
7848extension.
7849
7850For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7851then the resulting function pointer has signature ``i32 (i32, i32)*``.
7852It can be created as follows:
7853
7854.. code-block:: llvm
7855
7856 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7857 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7858 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7859 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7860 %fp = bitcast i8* %p to i32 (i32, i32)*
7861
7862The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7863``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7864
7865.. _int_it:
7866
7867'``llvm.init.trampoline``' Intrinsic
7868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7869
7870Syntax:
7871"""""""
7872
7873::
7874
7875 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7876
7877Overview:
7878"""""""""
7879
7880This fills the memory pointed to by ``tramp`` with executable code,
7881turning it into a trampoline.
7882
7883Arguments:
7884""""""""""
7885
7886The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7887pointers. The ``tramp`` argument must point to a sufficiently large and
7888sufficiently aligned block of memory; this memory is written to by the
7889intrinsic. Note that the size and the alignment are target-specific -
7890LLVM currently provides no portable way of determining them, so a
7891front-end that generates this intrinsic needs to have some
7892target-specific knowledge. The ``func`` argument must hold a function
7893bitcast to an ``i8*``.
7894
7895Semantics:
7896""""""""""
7897
7898The block of memory pointed to by ``tramp`` is filled with target
7899dependent code, turning it into a function. Then ``tramp`` needs to be
7900passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7901be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7902function's signature is the same as that of ``func`` with any arguments
7903marked with the ``nest`` attribute removed. At most one such ``nest``
7904argument is allowed, and it must be of pointer type. Calling the new
7905function is equivalent to calling ``func`` with the same argument list,
7906but with ``nval`` used for the missing ``nest`` argument. If, after
7907calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7908modified, then the effect of any later call to the returned function
7909pointer is undefined.
7910
7911.. _int_at:
7912
7913'``llvm.adjust.trampoline``' Intrinsic
7914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7915
7916Syntax:
7917"""""""
7918
7919::
7920
7921 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7922
7923Overview:
7924"""""""""
7925
7926This performs any required machine-specific adjustment to the address of
7927a trampoline (passed as ``tramp``).
7928
7929Arguments:
7930""""""""""
7931
7932``tramp`` must point to a block of memory which already has trampoline
7933code filled in by a previous call to
7934:ref:`llvm.init.trampoline <int_it>`.
7935
7936Semantics:
7937""""""""""
7938
7939On some architectures the address of the code to be executed needs to be
7940different to the address where the trampoline is actually stored. This
7941intrinsic returns the executable address corresponding to ``tramp``
7942after performing the required machine specific adjustments. The pointer
7943returned can then be :ref:`bitcast and executed <int_trampoline>`.
7944
7945Memory Use Markers
7946------------------
7947
7948This class of intrinsics exists to information about the lifetime of
7949memory objects and ranges where variables are immutable.
7950
7951'``llvm.lifetime.start``' Intrinsic
7952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7953
7954Syntax:
7955"""""""
7956
7957::
7958
7959 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
7960
7961Overview:
7962"""""""""
7963
7964The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
7965object's lifetime.
7966
7967Arguments:
7968""""""""""
7969
7970The first argument is a constant integer representing the size of the
7971object, or -1 if it is variable sized. The second argument is a pointer
7972to the object.
7973
7974Semantics:
7975""""""""""
7976
7977This intrinsic indicates that before this point in the code, the value
7978of the memory pointed to by ``ptr`` is dead. This means that it is known
7979to never be used and has an undefined value. A load from the pointer
7980that precedes this intrinsic can be replaced with ``'undef'``.
7981
7982'``llvm.lifetime.end``' Intrinsic
7983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7984
7985Syntax:
7986"""""""
7987
7988::
7989
7990 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
7991
7992Overview:
7993"""""""""
7994
7995The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
7996object's lifetime.
7997
7998Arguments:
7999""""""""""
8000
8001The first argument is a constant integer representing the size of the
8002object, or -1 if it is variable sized. The second argument is a pointer
8003to the object.
8004
8005Semantics:
8006""""""""""
8007
8008This intrinsic indicates that after this point in the code, the value of
8009the memory pointed to by ``ptr`` is dead. This means that it is known to
8010never be used and has an undefined value. Any stores into the memory
8011object following this intrinsic may be removed as dead.
8012
8013'``llvm.invariant.start``' Intrinsic
8014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8015
8016Syntax:
8017"""""""
8018
8019::
8020
8021 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8022
8023Overview:
8024"""""""""
8025
8026The '``llvm.invariant.start``' intrinsic specifies that the contents of
8027a memory object will not change.
8028
8029Arguments:
8030""""""""""
8031
8032The first argument is a constant integer representing the size of the
8033object, or -1 if it is variable sized. The second argument is a pointer
8034to the object.
8035
8036Semantics:
8037""""""""""
8038
8039This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8040the return value, the referenced memory location is constant and
8041unchanging.
8042
8043'``llvm.invariant.end``' Intrinsic
8044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8045
8046Syntax:
8047"""""""
8048
8049::
8050
8051 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8052
8053Overview:
8054"""""""""
8055
8056The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8057memory object are mutable.
8058
8059Arguments:
8060""""""""""
8061
8062The first argument is the matching ``llvm.invariant.start`` intrinsic.
8063The second argument is a constant integer representing the size of the
8064object, or -1 if it is variable sized and the third argument is a
8065pointer to the object.
8066
8067Semantics:
8068""""""""""
8069
8070This intrinsic indicates that the memory is mutable again.
8071
8072General Intrinsics
8073------------------
8074
8075This class of intrinsics is designed to be generic and has no specific
8076purpose.
8077
8078'``llvm.var.annotation``' Intrinsic
8079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8080
8081Syntax:
8082"""""""
8083
8084::
8085
8086 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8087
8088Overview:
8089"""""""""
8090
8091The '``llvm.var.annotation``' intrinsic.
8092
8093Arguments:
8094""""""""""
8095
8096The first argument is a pointer to a value, the second is a pointer to a
8097global string, the third is a pointer to a global string which is the
8098source file name, and the last argument is the line number.
8099
8100Semantics:
8101""""""""""
8102
8103This intrinsic allows annotation of local variables with arbitrary
8104strings. This can be useful for special purpose optimizations that want
8105to look for these annotations. These have no other defined use; they are
8106ignored by code generation and optimization.
8107
8108'``llvm.annotation.*``' Intrinsic
8109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8110
8111Syntax:
8112"""""""
8113
8114This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8115any integer bit width.
8116
8117::
8118
8119 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8120 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8121 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8122 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8123 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8124
8125Overview:
8126"""""""""
8127
8128The '``llvm.annotation``' intrinsic.
8129
8130Arguments:
8131""""""""""
8132
8133The first argument is an integer value (result of some expression), the
8134second is a pointer to a global string, the third is a pointer to a
8135global string which is the source file name, and the last argument is
8136the line number. It returns the value of the first argument.
8137
8138Semantics:
8139""""""""""
8140
8141This intrinsic allows annotations to be put on arbitrary expressions
8142with arbitrary strings. This can be useful for special purpose
8143optimizations that want to look for these annotations. These have no
8144other defined use; they are ignored by code generation and optimization.
8145
8146'``llvm.trap``' Intrinsic
8147^^^^^^^^^^^^^^^^^^^^^^^^^
8148
8149Syntax:
8150"""""""
8151
8152::
8153
8154 declare void @llvm.trap() noreturn nounwind
8155
8156Overview:
8157"""""""""
8158
8159The '``llvm.trap``' intrinsic.
8160
8161Arguments:
8162""""""""""
8163
8164None.
8165
8166Semantics:
8167""""""""""
8168
8169This intrinsic is lowered to the target dependent trap instruction. If
8170the target does not have a trap instruction, this intrinsic will be
8171lowered to a call of the ``abort()`` function.
8172
8173'``llvm.debugtrap``' Intrinsic
8174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179::
8180
8181 declare void @llvm.debugtrap() nounwind
8182
8183Overview:
8184"""""""""
8185
8186The '``llvm.debugtrap``' intrinsic.
8187
8188Arguments:
8189""""""""""
8190
8191None.
8192
8193Semantics:
8194""""""""""
8195
8196This intrinsic is lowered to code which is intended to cause an
8197execution trap with the intention of requesting the attention of a
8198debugger.
8199
8200'``llvm.stackprotector``' Intrinsic
8201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8202
8203Syntax:
8204"""""""
8205
8206::
8207
8208 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8209
8210Overview:
8211"""""""""
8212
8213The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8214onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8215is placed on the stack before local variables.
8216
8217Arguments:
8218""""""""""
8219
8220The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8221The first argument is the value loaded from the stack guard
8222``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8223enough space to hold the value of the guard.
8224
8225Semantics:
8226""""""""""
8227
8228This intrinsic causes the prologue/epilogue inserter to force the
8229position of the ``AllocaInst`` stack slot to be before local variables
8230on the stack. This is to ensure that if a local variable on the stack is
8231overwritten, it will destroy the value of the guard. When the function
8232exits, the guard on the stack is checked against the original guard. If
8233they are different, then the program aborts by calling the
8234``__stack_chk_fail()`` function.
8235
8236'``llvm.objectsize``' Intrinsic
8237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8238
8239Syntax:
8240"""""""
8241
8242::
8243
8244 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8245 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8246
8247Overview:
8248"""""""""
8249
8250The ``llvm.objectsize`` intrinsic is designed to provide information to
8251the optimizers to determine at compile time whether a) an operation
8252(like memcpy) will overflow a buffer that corresponds to an object, or
8253b) that a runtime check for overflow isn't necessary. An object in this
8254context means an allocation of a specific class, structure, array, or
8255other object.
8256
8257Arguments:
8258""""""""""
8259
8260The ``llvm.objectsize`` intrinsic takes two arguments. The first
8261argument is a pointer to or into the ``object``. The second argument is
8262a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8263or -1 (if false) when the object size is unknown. The second argument
8264only accepts constants.
8265
8266Semantics:
8267""""""""""
8268
8269The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8270the size of the object concerned. If the size cannot be determined at
8271compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8272on the ``min`` argument).
8273
8274'``llvm.expect``' Intrinsic
8275^^^^^^^^^^^^^^^^^^^^^^^^^^^
8276
8277Syntax:
8278"""""""
8279
8280::
8281
8282 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8283 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8284
8285Overview:
8286"""""""""
8287
8288The ``llvm.expect`` intrinsic provides information about expected (the
8289most probable) value of ``val``, which can be used by optimizers.
8290
8291Arguments:
8292""""""""""
8293
8294The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8295a value. The second argument is an expected value, this needs to be a
8296constant value, variables are not allowed.
8297
8298Semantics:
8299""""""""""
8300
8301This intrinsic is lowered to the ``val``.
8302
8303'``llvm.donothing``' Intrinsic
8304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8305
8306Syntax:
8307"""""""
8308
8309::
8310
8311 declare void @llvm.donothing() nounwind readnone
8312
8313Overview:
8314"""""""""
8315
8316The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8317only intrinsic that can be called with an invoke instruction.
8318
8319Arguments:
8320""""""""""
8321
8322None.
8323
8324Semantics:
8325""""""""""
8326
8327This intrinsic does nothing, and it's removed by optimizers and ignored
8328by codegen.