Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the common interface used by the various execution engine |
| 11 | // subclasses. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "jit" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/DerivedTypes.h" |
| 18 | #include "llvm/Module.h" |
| 19 | #include "llvm/ModuleProvider.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 22 | #include "llvm/ExecutionEngine/GenericValue.h" |
| 23 | #include "llvm/Support/Debug.h" |
| 24 | #include "llvm/Support/MutexGuard.h" |
| 25 | #include "llvm/System/DynamicLibrary.h" |
| 26 | #include "llvm/Target/TargetData.h" |
| 27 | #include <math.h> |
| 28 | using namespace llvm; |
| 29 | |
| 30 | STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); |
| 31 | STATISTIC(NumGlobals , "Number of global vars initialized"); |
| 32 | |
| 33 | ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; |
| 34 | ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; |
| 35 | |
| 36 | ExecutionEngine::ExecutionEngine(ModuleProvider *P) { |
| 37 | LazyCompilationDisabled = false; |
| 38 | Modules.push_back(P); |
| 39 | assert(P && "ModuleProvider is null?"); |
| 40 | } |
| 41 | |
| 42 | ExecutionEngine::ExecutionEngine(Module *M) { |
| 43 | LazyCompilationDisabled = false; |
| 44 | assert(M && "Module is null?"); |
| 45 | Modules.push_back(new ExistingModuleProvider(M)); |
| 46 | } |
| 47 | |
| 48 | ExecutionEngine::~ExecutionEngine() { |
| 49 | clearAllGlobalMappings(); |
| 50 | for (unsigned i = 0, e = Modules.size(); i != e; ++i) |
| 51 | delete Modules[i]; |
| 52 | } |
| 53 | |
| 54 | /// FindFunctionNamed - Search all of the active modules to find the one that |
| 55 | /// defines FnName. This is very slow operation and shouldn't be used for |
| 56 | /// general code. |
| 57 | Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { |
| 58 | for (unsigned i = 0, e = Modules.size(); i != e; ++i) { |
| 59 | if (Function *F = Modules[i]->getModule()->getFunction(FnName)) |
| 60 | return F; |
| 61 | } |
| 62 | return 0; |
| 63 | } |
| 64 | |
| 65 | |
| 66 | /// addGlobalMapping - Tell the execution engine that the specified global is |
| 67 | /// at the specified location. This is used internally as functions are JIT'd |
| 68 | /// and as global variables are laid out in memory. It can and should also be |
| 69 | /// used by clients of the EE that want to have an LLVM global overlay |
| 70 | /// existing data in memory. |
| 71 | void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { |
| 72 | MutexGuard locked(lock); |
| 73 | |
| 74 | void *&CurVal = state.getGlobalAddressMap(locked)[GV]; |
| 75 | assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); |
| 76 | CurVal = Addr; |
| 77 | |
| 78 | // If we are using the reverse mapping, add it too |
| 79 | if (!state.getGlobalAddressReverseMap(locked).empty()) { |
| 80 | const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; |
| 81 | assert((V == 0 || GV == 0) && "GlobalMapping already established!"); |
| 82 | V = GV; |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | /// clearAllGlobalMappings - Clear all global mappings and start over again |
| 87 | /// use in dynamic compilation scenarios when you want to move globals |
| 88 | void ExecutionEngine::clearAllGlobalMappings() { |
| 89 | MutexGuard locked(lock); |
| 90 | |
| 91 | state.getGlobalAddressMap(locked).clear(); |
| 92 | state.getGlobalAddressReverseMap(locked).clear(); |
| 93 | } |
| 94 | |
| 95 | /// updateGlobalMapping - Replace an existing mapping for GV with a new |
| 96 | /// address. This updates both maps as required. If "Addr" is null, the |
| 97 | /// entry for the global is removed from the mappings. |
| 98 | void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { |
| 99 | MutexGuard locked(lock); |
| 100 | |
| 101 | // Deleting from the mapping? |
| 102 | if (Addr == 0) { |
| 103 | state.getGlobalAddressMap(locked).erase(GV); |
| 104 | if (!state.getGlobalAddressReverseMap(locked).empty()) |
| 105 | state.getGlobalAddressReverseMap(locked).erase(Addr); |
| 106 | return; |
| 107 | } |
| 108 | |
| 109 | void *&CurVal = state.getGlobalAddressMap(locked)[GV]; |
| 110 | if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) |
| 111 | state.getGlobalAddressReverseMap(locked).erase(CurVal); |
| 112 | CurVal = Addr; |
| 113 | |
| 114 | // If we are using the reverse mapping, add it too |
| 115 | if (!state.getGlobalAddressReverseMap(locked).empty()) { |
| 116 | const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; |
| 117 | assert((V == 0 || GV == 0) && "GlobalMapping already established!"); |
| 118 | V = GV; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | /// getPointerToGlobalIfAvailable - This returns the address of the specified |
| 123 | /// global value if it is has already been codegen'd, otherwise it returns null. |
| 124 | /// |
| 125 | void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { |
| 126 | MutexGuard locked(lock); |
| 127 | |
| 128 | std::map<const GlobalValue*, void*>::iterator I = |
| 129 | state.getGlobalAddressMap(locked).find(GV); |
| 130 | return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; |
| 131 | } |
| 132 | |
| 133 | /// getGlobalValueAtAddress - Return the LLVM global value object that starts |
| 134 | /// at the specified address. |
| 135 | /// |
| 136 | const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { |
| 137 | MutexGuard locked(lock); |
| 138 | |
| 139 | // If we haven't computed the reverse mapping yet, do so first. |
| 140 | if (state.getGlobalAddressReverseMap(locked).empty()) { |
| 141 | for (std::map<const GlobalValue*, void *>::iterator |
| 142 | I = state.getGlobalAddressMap(locked).begin(), |
| 143 | E = state.getGlobalAddressMap(locked).end(); I != E; ++I) |
| 144 | state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, |
| 145 | I->first)); |
| 146 | } |
| 147 | |
| 148 | std::map<void *, const GlobalValue*>::iterator I = |
| 149 | state.getGlobalAddressReverseMap(locked).find(Addr); |
| 150 | return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; |
| 151 | } |
| 152 | |
| 153 | // CreateArgv - Turn a vector of strings into a nice argv style array of |
| 154 | // pointers to null terminated strings. |
| 155 | // |
| 156 | static void *CreateArgv(ExecutionEngine *EE, |
| 157 | const std::vector<std::string> &InputArgv) { |
| 158 | unsigned PtrSize = EE->getTargetData()->getPointerSize(); |
| 159 | char *Result = new char[(InputArgv.size()+1)*PtrSize]; |
| 160 | |
| 161 | DOUT << "ARGV = " << (void*)Result << "\n"; |
| 162 | const Type *SBytePtr = PointerType::get(Type::Int8Ty); |
| 163 | |
| 164 | for (unsigned i = 0; i != InputArgv.size(); ++i) { |
| 165 | unsigned Size = InputArgv[i].size()+1; |
| 166 | char *Dest = new char[Size]; |
| 167 | DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; |
| 168 | |
| 169 | std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); |
| 170 | Dest[Size-1] = 0; |
| 171 | |
| 172 | // Endian safe: Result[i] = (PointerTy)Dest; |
| 173 | EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), |
| 174 | SBytePtr); |
| 175 | } |
| 176 | |
| 177 | // Null terminate it |
| 178 | EE->StoreValueToMemory(PTOGV(0), |
| 179 | (GenericValue*)(Result+InputArgv.size()*PtrSize), |
| 180 | SBytePtr); |
| 181 | return Result; |
| 182 | } |
| 183 | |
| 184 | |
| 185 | /// runStaticConstructorsDestructors - This method is used to execute all of |
| 186 | /// the static constructors or destructors for a program, depending on the |
| 187 | /// value of isDtors. |
| 188 | void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { |
| 189 | const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; |
| 190 | |
| 191 | // Execute global ctors/dtors for each module in the program. |
| 192 | for (unsigned m = 0, e = Modules.size(); m != e; ++m) { |
| 193 | GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); |
| 194 | |
| 195 | // If this global has internal linkage, or if it has a use, then it must be |
| 196 | // an old-style (llvmgcc3) static ctor with __main linked in and in use. If |
| 197 | // this is the case, don't execute any of the global ctors, __main will do |
| 198 | // it. |
| 199 | if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; |
| 200 | |
| 201 | // Should be an array of '{ int, void ()* }' structs. The first value is |
| 202 | // the init priority, which we ignore. |
| 203 | ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); |
| 204 | if (!InitList) continue; |
| 205 | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) |
| 206 | if (ConstantStruct *CS = |
| 207 | dyn_cast<ConstantStruct>(InitList->getOperand(i))) { |
| 208 | if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. |
| 209 | |
| 210 | Constant *FP = CS->getOperand(1); |
| 211 | if (FP->isNullValue()) |
| 212 | break; // Found a null terminator, exit. |
| 213 | |
| 214 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) |
| 215 | if (CE->isCast()) |
| 216 | FP = CE->getOperand(0); |
| 217 | if (Function *F = dyn_cast<Function>(FP)) { |
| 218 | // Execute the ctor/dtor function! |
| 219 | runFunction(F, std::vector<GenericValue>()); |
| 220 | } |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | /// runFunctionAsMain - This is a helper function which wraps runFunction to |
| 226 | /// handle the common task of starting up main with the specified argc, argv, |
| 227 | /// and envp parameters. |
| 228 | int ExecutionEngine::runFunctionAsMain(Function *Fn, |
| 229 | const std::vector<std::string> &argv, |
| 230 | const char * const * envp) { |
| 231 | std::vector<GenericValue> GVArgs; |
| 232 | GenericValue GVArgc; |
| 233 | GVArgc.IntVal = APInt(32, argv.size()); |
| 234 | |
| 235 | // Check main() type |
| 236 | unsigned NumArgs = Fn->getFunctionType()->getNumParams(); |
| 237 | const FunctionType *FTy = Fn->getFunctionType(); |
| 238 | const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty)); |
| 239 | switch (NumArgs) { |
| 240 | case 3: |
| 241 | if (FTy->getParamType(2) != PPInt8Ty) { |
| 242 | cerr << "Invalid type for third argument of main() supplied\n"; |
| 243 | abort(); |
| 244 | } |
| 245 | // FALLS THROUGH |
| 246 | case 2: |
| 247 | if (FTy->getParamType(1) != PPInt8Ty) { |
| 248 | cerr << "Invalid type for second argument of main() supplied\n"; |
| 249 | abort(); |
| 250 | } |
| 251 | // FALLS THROUGH |
| 252 | case 1: |
| 253 | if (FTy->getParamType(0) != Type::Int32Ty) { |
| 254 | cerr << "Invalid type for first argument of main() supplied\n"; |
| 255 | abort(); |
| 256 | } |
| 257 | // FALLS THROUGH |
| 258 | case 0: |
| 259 | if (FTy->getReturnType() != Type::Int32Ty && |
| 260 | FTy->getReturnType() != Type::VoidTy) { |
| 261 | cerr << "Invalid return type of main() supplied\n"; |
| 262 | abort(); |
| 263 | } |
| 264 | break; |
| 265 | default: |
| 266 | cerr << "Invalid number of arguments of main() supplied\n"; |
| 267 | abort(); |
| 268 | } |
| 269 | |
| 270 | if (NumArgs) { |
| 271 | GVArgs.push_back(GVArgc); // Arg #0 = argc. |
| 272 | if (NumArgs > 1) { |
| 273 | GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. |
| 274 | assert(((char **)GVTOP(GVArgs[1]))[0] && |
| 275 | "argv[0] was null after CreateArgv"); |
| 276 | if (NumArgs > 2) { |
| 277 | std::vector<std::string> EnvVars; |
| 278 | for (unsigned i = 0; envp[i]; ++i) |
| 279 | EnvVars.push_back(envp[i]); |
| 280 | GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. |
| 281 | } |
| 282 | } |
| 283 | } |
| 284 | return runFunction(Fn, GVArgs).IntVal.getZExtValue(); |
| 285 | } |
| 286 | |
| 287 | /// If possible, create a JIT, unless the caller specifically requests an |
| 288 | /// Interpreter or there's an error. If even an Interpreter cannot be created, |
| 289 | /// NULL is returned. |
| 290 | /// |
| 291 | ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, |
| 292 | bool ForceInterpreter, |
| 293 | std::string *ErrorStr) { |
| 294 | ExecutionEngine *EE = 0; |
| 295 | |
| 296 | // Unless the interpreter was explicitly selected, try making a JIT. |
| 297 | if (!ForceInterpreter && JITCtor) |
| 298 | EE = JITCtor(MP, ErrorStr); |
| 299 | |
| 300 | // If we can't make a JIT, make an interpreter instead. |
| 301 | if (EE == 0 && InterpCtor) |
| 302 | EE = InterpCtor(MP, ErrorStr); |
| 303 | |
| 304 | if (EE) { |
| 305 | // Make sure we can resolve symbols in the program as well. The zero arg |
| 306 | // to the function tells DynamicLibrary to load the program, not a library. |
| 307 | try { |
| 308 | sys::DynamicLibrary::LoadLibraryPermanently(0); |
| 309 | } catch (...) { |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | return EE; |
| 314 | } |
| 315 | |
| 316 | /// getPointerToGlobal - This returns the address of the specified global |
| 317 | /// value. This may involve code generation if it's a function. |
| 318 | /// |
| 319 | void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { |
| 320 | if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) |
| 321 | return getPointerToFunction(F); |
| 322 | |
| 323 | MutexGuard locked(lock); |
| 324 | void *p = state.getGlobalAddressMap(locked)[GV]; |
| 325 | if (p) |
| 326 | return p; |
| 327 | |
| 328 | // Global variable might have been added since interpreter started. |
| 329 | if (GlobalVariable *GVar = |
| 330 | const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) |
| 331 | EmitGlobalVariable(GVar); |
| 332 | else |
| 333 | assert(0 && "Global hasn't had an address allocated yet!"); |
| 334 | return state.getGlobalAddressMap(locked)[GV]; |
| 335 | } |
| 336 | |
| 337 | /// This function converts a Constant* into a GenericValue. The interesting |
| 338 | /// part is if C is a ConstantExpr. |
Reid Spencer | 10ffdf1 | 2007-08-11 15:57:56 +0000 | [diff] [blame] | 339 | /// @brief Get a GenericValue for a Constant* |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 340 | GenericValue ExecutionEngine::getConstantValue(const Constant *C) { |
| 341 | // If its undefined, return the garbage. |
| 342 | if (isa<UndefValue>(C)) |
| 343 | return GenericValue(); |
| 344 | |
| 345 | // If the value is a ConstantExpr |
| 346 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| 347 | Constant *Op0 = CE->getOperand(0); |
| 348 | switch (CE->getOpcode()) { |
| 349 | case Instruction::GetElementPtr: { |
| 350 | // Compute the index |
| 351 | GenericValue Result = getConstantValue(Op0); |
| 352 | SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); |
| 353 | uint64_t Offset = |
| 354 | TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); |
| 355 | |
| 356 | char* tmp = (char*) Result.PointerVal; |
| 357 | Result = PTOGV(tmp + Offset); |
| 358 | return Result; |
| 359 | } |
| 360 | case Instruction::Trunc: { |
| 361 | GenericValue GV = getConstantValue(Op0); |
| 362 | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| 363 | GV.IntVal = GV.IntVal.trunc(BitWidth); |
| 364 | return GV; |
| 365 | } |
| 366 | case Instruction::ZExt: { |
| 367 | GenericValue GV = getConstantValue(Op0); |
| 368 | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| 369 | GV.IntVal = GV.IntVal.zext(BitWidth); |
| 370 | return GV; |
| 371 | } |
| 372 | case Instruction::SExt: { |
| 373 | GenericValue GV = getConstantValue(Op0); |
| 374 | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| 375 | GV.IntVal = GV.IntVal.sext(BitWidth); |
| 376 | return GV; |
| 377 | } |
| 378 | case Instruction::FPTrunc: { |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 379 | // FIXME long double |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 380 | GenericValue GV = getConstantValue(Op0); |
| 381 | GV.FloatVal = float(GV.DoubleVal); |
| 382 | return GV; |
| 383 | } |
| 384 | case Instruction::FPExt:{ |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 385 | // FIXME long double |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 386 | GenericValue GV = getConstantValue(Op0); |
| 387 | GV.DoubleVal = double(GV.FloatVal); |
| 388 | return GV; |
| 389 | } |
| 390 | case Instruction::UIToFP: { |
| 391 | GenericValue GV = getConstantValue(Op0); |
| 392 | if (CE->getType() == Type::FloatTy) |
| 393 | GV.FloatVal = float(GV.IntVal.roundToDouble()); |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 394 | else if (CE->getType() == Type::DoubleTy) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 395 | GV.DoubleVal = GV.IntVal.roundToDouble(); |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 396 | else if (CE->getType() == Type::X86_FP80Ty) { |
| 397 | const uint64_t zero[] = {0, 0}; |
| 398 | APFloat apf = APFloat(APInt(80, 2, zero)); |
| 399 | (void)apf.convertFromInteger(GV.IntVal.getRawData(), 2, false, |
| 400 | APFloat::rmTowardZero); |
| 401 | GV.IntVal = apf.convertToAPInt(); |
| 402 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 403 | return GV; |
| 404 | } |
| 405 | case Instruction::SIToFP: { |
| 406 | GenericValue GV = getConstantValue(Op0); |
| 407 | if (CE->getType() == Type::FloatTy) |
| 408 | GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 409 | else if (CE->getType() == Type::DoubleTy) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 410 | GV.DoubleVal = GV.IntVal.signedRoundToDouble(); |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 411 | else if (CE->getType() == Type::X86_FP80Ty) { |
| 412 | const uint64_t zero[] = { 0, 0}; |
| 413 | APFloat apf = APFloat(APInt(80, 2, zero)); |
| 414 | (void)apf.convertFromInteger(GV.IntVal.getRawData(), 2, true, |
| 415 | APFloat::rmTowardZero); |
| 416 | GV.IntVal = apf.convertToAPInt(); |
| 417 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 418 | return GV; |
| 419 | } |
| 420 | case Instruction::FPToUI: // double->APInt conversion handles sign |
| 421 | case Instruction::FPToSI: { |
| 422 | GenericValue GV = getConstantValue(Op0); |
| 423 | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| 424 | if (Op0->getType() == Type::FloatTy) |
| 425 | GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 426 | else if (Op0->getType() == Type::DoubleTy) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 427 | GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 428 | else if (Op0->getType() == Type::X86_FP80Ty) { |
| 429 | APFloat apf = APFloat(GV.IntVal); |
| 430 | uint64_t v; |
| 431 | (void)apf.convertToInteger(&v, BitWidth, |
| 432 | CE->getOpcode()==Instruction::FPToSI, |
| 433 | APFloat::rmTowardZero); |
| 434 | GV.IntVal = v; // endian? |
| 435 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 436 | return GV; |
| 437 | } |
| 438 | case Instruction::PtrToInt: { |
| 439 | GenericValue GV = getConstantValue(Op0); |
| 440 | uint32_t PtrWidth = TD->getPointerSizeInBits(); |
| 441 | GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); |
| 442 | return GV; |
| 443 | } |
| 444 | case Instruction::IntToPtr: { |
| 445 | GenericValue GV = getConstantValue(Op0); |
| 446 | uint32_t PtrWidth = TD->getPointerSizeInBits(); |
| 447 | if (PtrWidth != GV.IntVal.getBitWidth()) |
| 448 | GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); |
| 449 | assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); |
| 450 | GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); |
| 451 | return GV; |
| 452 | } |
| 453 | case Instruction::BitCast: { |
| 454 | GenericValue GV = getConstantValue(Op0); |
| 455 | const Type* DestTy = CE->getType(); |
| 456 | switch (Op0->getType()->getTypeID()) { |
| 457 | default: assert(0 && "Invalid bitcast operand"); |
| 458 | case Type::IntegerTyID: |
| 459 | assert(DestTy->isFloatingPoint() && "invalid bitcast"); |
| 460 | if (DestTy == Type::FloatTy) |
| 461 | GV.FloatVal = GV.IntVal.bitsToFloat(); |
| 462 | else if (DestTy == Type::DoubleTy) |
| 463 | GV.DoubleVal = GV.IntVal.bitsToDouble(); |
| 464 | break; |
| 465 | case Type::FloatTyID: |
| 466 | assert(DestTy == Type::Int32Ty && "Invalid bitcast"); |
| 467 | GV.IntVal.floatToBits(GV.FloatVal); |
| 468 | break; |
| 469 | case Type::DoubleTyID: |
| 470 | assert(DestTy == Type::Int64Ty && "Invalid bitcast"); |
| 471 | GV.IntVal.doubleToBits(GV.DoubleVal); |
| 472 | break; |
| 473 | case Type::PointerTyID: |
| 474 | assert(isa<PointerType>(DestTy) && "Invalid bitcast"); |
| 475 | break; // getConstantValue(Op0) above already converted it |
| 476 | } |
| 477 | return GV; |
| 478 | } |
| 479 | case Instruction::Add: |
| 480 | case Instruction::Sub: |
| 481 | case Instruction::Mul: |
| 482 | case Instruction::UDiv: |
| 483 | case Instruction::SDiv: |
| 484 | case Instruction::URem: |
| 485 | case Instruction::SRem: |
| 486 | case Instruction::And: |
| 487 | case Instruction::Or: |
| 488 | case Instruction::Xor: { |
| 489 | GenericValue LHS = getConstantValue(Op0); |
| 490 | GenericValue RHS = getConstantValue(CE->getOperand(1)); |
| 491 | GenericValue GV; |
| 492 | switch (CE->getOperand(0)->getType()->getTypeID()) { |
| 493 | default: assert(0 && "Bad add type!"); abort(); |
| 494 | case Type::IntegerTyID: |
| 495 | switch (CE->getOpcode()) { |
| 496 | default: assert(0 && "Invalid integer opcode"); |
| 497 | case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; |
| 498 | case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; |
| 499 | case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; |
| 500 | case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; |
| 501 | case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; |
| 502 | case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; |
| 503 | case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; |
| 504 | case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; |
| 505 | case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; |
| 506 | case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; |
| 507 | } |
| 508 | break; |
| 509 | case Type::FloatTyID: |
| 510 | switch (CE->getOpcode()) { |
| 511 | default: assert(0 && "Invalid float opcode"); abort(); |
| 512 | case Instruction::Add: |
| 513 | GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; |
| 514 | case Instruction::Sub: |
| 515 | GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; |
| 516 | case Instruction::Mul: |
| 517 | GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; |
| 518 | case Instruction::FDiv: |
| 519 | GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; |
| 520 | case Instruction::FRem: |
| 521 | GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; |
| 522 | } |
| 523 | break; |
| 524 | case Type::DoubleTyID: |
| 525 | switch (CE->getOpcode()) { |
| 526 | default: assert(0 && "Invalid double opcode"); abort(); |
| 527 | case Instruction::Add: |
| 528 | GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; |
| 529 | case Instruction::Sub: |
| 530 | GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; |
| 531 | case Instruction::Mul: |
| 532 | GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; |
| 533 | case Instruction::FDiv: |
| 534 | GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; |
| 535 | case Instruction::FRem: |
| 536 | GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; |
| 537 | } |
| 538 | break; |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 539 | case Type::X86_FP80TyID: |
| 540 | case Type::PPC_FP128TyID: |
| 541 | case Type::FP128TyID: { |
| 542 | APFloat apfLHS = APFloat(LHS.IntVal); |
| 543 | switch (CE->getOpcode()) { |
| 544 | default: assert(0 && "Invalid long double opcode"); abort(); |
| 545 | case Instruction::Add: |
| 546 | apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| 547 | GV.IntVal = apfLHS.convertToAPInt(); |
| 548 | break; |
| 549 | case Instruction::Sub: |
| 550 | apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| 551 | GV.IntVal = apfLHS.convertToAPInt(); |
| 552 | break; |
| 553 | case Instruction::Mul: |
| 554 | apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| 555 | GV.IntVal = apfLHS.convertToAPInt(); |
| 556 | break; |
| 557 | case Instruction::FDiv: |
| 558 | apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| 559 | GV.IntVal = apfLHS.convertToAPInt(); |
| 560 | break; |
| 561 | case Instruction::FRem: |
| 562 | apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| 563 | GV.IntVal = apfLHS.convertToAPInt(); |
| 564 | break; |
| 565 | } |
| 566 | } |
| 567 | break; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 568 | } |
| 569 | return GV; |
| 570 | } |
| 571 | default: |
| 572 | break; |
| 573 | } |
| 574 | cerr << "ConstantExpr not handled: " << *CE << "\n"; |
| 575 | abort(); |
| 576 | } |
| 577 | |
| 578 | GenericValue Result; |
| 579 | switch (C->getType()->getTypeID()) { |
| 580 | case Type::FloatTyID: |
Dale Johannesen | b9de9f0 | 2007-09-06 18:13:44 +0000 | [diff] [blame] | 581 | Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 582 | break; |
| 583 | case Type::DoubleTyID: |
Dale Johannesen | b9de9f0 | 2007-09-06 18:13:44 +0000 | [diff] [blame] | 584 | Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 585 | break; |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 586 | case Type::X86_FP80TyID: |
| 587 | case Type::FP128TyID: |
| 588 | case Type::PPC_FP128TyID: |
| 589 | Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt(); |
| 590 | break; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 591 | case Type::IntegerTyID: |
| 592 | Result.IntVal = cast<ConstantInt>(C)->getValue(); |
| 593 | break; |
| 594 | case Type::PointerTyID: |
| 595 | if (isa<ConstantPointerNull>(C)) |
| 596 | Result.PointerVal = 0; |
| 597 | else if (const Function *F = dyn_cast<Function>(C)) |
| 598 | Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); |
| 599 | else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) |
| 600 | Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); |
| 601 | else |
| 602 | assert(0 && "Unknown constant pointer type!"); |
| 603 | break; |
| 604 | default: |
| 605 | cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; |
| 606 | abort(); |
| 607 | } |
| 608 | return Result; |
| 609 | } |
| 610 | |
| 611 | /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr |
| 612 | /// is the address of the memory at which to store Val, cast to GenericValue *. |
| 613 | /// It is not a pointer to a GenericValue containing the address at which to |
| 614 | /// store Val. |
| 615 | /// |
| 616 | void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, |
| 617 | const Type *Ty) { |
| 618 | switch (Ty->getTypeID()) { |
| 619 | case Type::IntegerTyID: { |
| 620 | unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); |
| 621 | GenericValue TmpVal = Val; |
| 622 | if (BitWidth <= 8) |
| 623 | *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); |
| 624 | else if (BitWidth <= 16) { |
| 625 | *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); |
| 626 | } else if (BitWidth <= 32) { |
| 627 | *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); |
| 628 | } else if (BitWidth <= 64) { |
| 629 | *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); |
| 630 | } else { |
| 631 | uint64_t *Dest = (uint64_t*)Ptr; |
| 632 | const uint64_t *Src = Val.IntVal.getRawData(); |
| 633 | for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) |
| 634 | Dest[i] = Src[i]; |
| 635 | } |
| 636 | break; |
| 637 | } |
| 638 | case Type::FloatTyID: |
| 639 | *((float*)Ptr) = Val.FloatVal; |
| 640 | break; |
| 641 | case Type::DoubleTyID: |
| 642 | *((double*)Ptr) = Val.DoubleVal; |
| 643 | break; |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 644 | case Type::X86_FP80TyID: { |
| 645 | uint16_t *Dest = (uint16_t*)Ptr; |
| 646 | const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData(); |
| 647 | // This is endian dependent, but it will only work on x86 anyway. |
| 648 | Dest[0] = Src[4]; |
| 649 | Dest[1] = Src[0]; |
| 650 | Dest[2] = Src[1]; |
| 651 | Dest[3] = Src[2]; |
| 652 | Dest[4] = Src[3]; |
| 653 | break; |
| 654 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 655 | case Type::PointerTyID: |
| 656 | *((PointerTy*)Ptr) = Val.PointerVal; |
| 657 | break; |
| 658 | default: |
| 659 | cerr << "Cannot store value of type " << *Ty << "!\n"; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | /// FIXME: document |
| 664 | /// |
| 665 | void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, |
| 666 | GenericValue *Ptr, |
| 667 | const Type *Ty) { |
| 668 | switch (Ty->getTypeID()) { |
| 669 | case Type::IntegerTyID: { |
| 670 | unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); |
| 671 | if (BitWidth <= 8) |
| 672 | Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); |
| 673 | else if (BitWidth <= 16) { |
| 674 | Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); |
| 675 | } else if (BitWidth <= 32) { |
| 676 | Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); |
| 677 | } else if (BitWidth <= 64) { |
| 678 | Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); |
| 679 | } else |
| 680 | Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr); |
| 681 | break; |
| 682 | } |
| 683 | case Type::FloatTyID: |
| 684 | Result.FloatVal = *((float*)Ptr); |
| 685 | break; |
| 686 | case Type::DoubleTyID: |
| 687 | Result.DoubleVal = *((double*)Ptr); |
| 688 | break; |
| 689 | case Type::PointerTyID: |
| 690 | Result.PointerVal = *((PointerTy*)Ptr); |
| 691 | break; |
Dale Johannesen | c560da6 | 2007-09-17 18:44:13 +0000 | [diff] [blame^] | 692 | case Type::X86_FP80TyID: { |
| 693 | // This is endian dependent, but it will only work on x86 anyway. |
| 694 | uint16_t x[8], *p = (uint16_t*)Ptr; |
| 695 | x[0] = p[1]; |
| 696 | x[1] = p[2]; |
| 697 | x[2] = p[3]; |
| 698 | x[3] = p[4]; |
| 699 | x[4] = p[0]; |
| 700 | Result.IntVal = APInt(80, 2, x); |
| 701 | break; |
| 702 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 703 | default: |
| 704 | cerr << "Cannot load value of type " << *Ty << "!\n"; |
| 705 | abort(); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | // InitializeMemory - Recursive function to apply a Constant value into the |
| 710 | // specified memory location... |
| 711 | // |
| 712 | void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { |
| 713 | if (isa<UndefValue>(Init)) { |
| 714 | return; |
| 715 | } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { |
| 716 | unsigned ElementSize = |
| 717 | getTargetData()->getTypeSize(CP->getType()->getElementType()); |
| 718 | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| 719 | InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); |
| 720 | return; |
| 721 | } else if (Init->getType()->isFirstClassType()) { |
| 722 | GenericValue Val = getConstantValue(Init); |
| 723 | StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); |
| 724 | return; |
| 725 | } else if (isa<ConstantAggregateZero>(Init)) { |
| 726 | memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); |
| 727 | return; |
| 728 | } |
| 729 | |
| 730 | switch (Init->getType()->getTypeID()) { |
| 731 | case Type::ArrayTyID: { |
| 732 | const ConstantArray *CPA = cast<ConstantArray>(Init); |
| 733 | unsigned ElementSize = |
| 734 | getTargetData()->getTypeSize(CPA->getType()->getElementType()); |
| 735 | for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| 736 | InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); |
| 737 | return; |
| 738 | } |
| 739 | |
| 740 | case Type::StructTyID: { |
| 741 | const ConstantStruct *CPS = cast<ConstantStruct>(Init); |
| 742 | const StructLayout *SL = |
| 743 | getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); |
| 744 | for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| 745 | InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); |
| 746 | return; |
| 747 | } |
| 748 | |
| 749 | default: |
| 750 | cerr << "Bad Type: " << *Init->getType() << "\n"; |
| 751 | assert(0 && "Unknown constant type to initialize memory with!"); |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | /// EmitGlobals - Emit all of the global variables to memory, storing their |
| 756 | /// addresses into GlobalAddress. This must make sure to copy the contents of |
| 757 | /// their initializers into the memory. |
| 758 | /// |
| 759 | void ExecutionEngine::emitGlobals() { |
| 760 | const TargetData *TD = getTargetData(); |
| 761 | |
| 762 | // Loop over all of the global variables in the program, allocating the memory |
| 763 | // to hold them. If there is more than one module, do a prepass over globals |
| 764 | // to figure out how the different modules should link together. |
| 765 | // |
| 766 | std::map<std::pair<std::string, const Type*>, |
| 767 | const GlobalValue*> LinkedGlobalsMap; |
| 768 | |
| 769 | if (Modules.size() != 1) { |
| 770 | for (unsigned m = 0, e = Modules.size(); m != e; ++m) { |
| 771 | Module &M = *Modules[m]->getModule(); |
| 772 | for (Module::const_global_iterator I = M.global_begin(), |
| 773 | E = M.global_end(); I != E; ++I) { |
| 774 | const GlobalValue *GV = I; |
| 775 | if (GV->hasInternalLinkage() || GV->isDeclaration() || |
| 776 | GV->hasAppendingLinkage() || !GV->hasName()) |
| 777 | continue;// Ignore external globals and globals with internal linkage. |
| 778 | |
| 779 | const GlobalValue *&GVEntry = |
| 780 | LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; |
| 781 | |
| 782 | // If this is the first time we've seen this global, it is the canonical |
| 783 | // version. |
| 784 | if (!GVEntry) { |
| 785 | GVEntry = GV; |
| 786 | continue; |
| 787 | } |
| 788 | |
| 789 | // If the existing global is strong, never replace it. |
| 790 | if (GVEntry->hasExternalLinkage() || |
| 791 | GVEntry->hasDLLImportLinkage() || |
| 792 | GVEntry->hasDLLExportLinkage()) |
| 793 | continue; |
| 794 | |
| 795 | // Otherwise, we know it's linkonce/weak, replace it if this is a strong |
| 796 | // symbol. |
| 797 | if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) |
| 798 | GVEntry = GV; |
| 799 | } |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | std::vector<const GlobalValue*> NonCanonicalGlobals; |
| 804 | for (unsigned m = 0, e = Modules.size(); m != e; ++m) { |
| 805 | Module &M = *Modules[m]->getModule(); |
| 806 | for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| 807 | I != E; ++I) { |
| 808 | // In the multi-module case, see what this global maps to. |
| 809 | if (!LinkedGlobalsMap.empty()) { |
| 810 | if (const GlobalValue *GVEntry = |
| 811 | LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { |
| 812 | // If something else is the canonical global, ignore this one. |
| 813 | if (GVEntry != &*I) { |
| 814 | NonCanonicalGlobals.push_back(I); |
| 815 | continue; |
| 816 | } |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | if (!I->isDeclaration()) { |
| 821 | // Get the type of the global. |
| 822 | const Type *Ty = I->getType()->getElementType(); |
| 823 | |
| 824 | // Allocate some memory for it! |
| 825 | unsigned Size = TD->getTypeSize(Ty); |
| 826 | addGlobalMapping(I, new char[Size]); |
| 827 | } else { |
| 828 | // External variable reference. Try to use the dynamic loader to |
| 829 | // get a pointer to it. |
| 830 | if (void *SymAddr = |
| 831 | sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) |
| 832 | addGlobalMapping(I, SymAddr); |
| 833 | else { |
| 834 | cerr << "Could not resolve external global address: " |
| 835 | << I->getName() << "\n"; |
| 836 | abort(); |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | // If there are multiple modules, map the non-canonical globals to their |
| 842 | // canonical location. |
| 843 | if (!NonCanonicalGlobals.empty()) { |
| 844 | for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { |
| 845 | const GlobalValue *GV = NonCanonicalGlobals[i]; |
| 846 | const GlobalValue *CGV = |
| 847 | LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; |
| 848 | void *Ptr = getPointerToGlobalIfAvailable(CGV); |
| 849 | assert(Ptr && "Canonical global wasn't codegen'd!"); |
| 850 | addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | // Now that all of the globals are set up in memory, loop through them all |
| 855 | // and initialize their contents. |
| 856 | for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| 857 | I != E; ++I) { |
| 858 | if (!I->isDeclaration()) { |
| 859 | if (!LinkedGlobalsMap.empty()) { |
| 860 | if (const GlobalValue *GVEntry = |
| 861 | LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) |
| 862 | if (GVEntry != &*I) // Not the canonical variable. |
| 863 | continue; |
| 864 | } |
| 865 | EmitGlobalVariable(I); |
| 866 | } |
| 867 | } |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | // EmitGlobalVariable - This method emits the specified global variable to the |
| 872 | // address specified in GlobalAddresses, or allocates new memory if it's not |
| 873 | // already in the map. |
| 874 | void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { |
| 875 | void *GA = getPointerToGlobalIfAvailable(GV); |
| 876 | DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; |
| 877 | |
| 878 | const Type *ElTy = GV->getType()->getElementType(); |
| 879 | size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); |
| 880 | if (GA == 0) { |
| 881 | // If it's not already specified, allocate memory for the global. |
| 882 | GA = new char[GVSize]; |
| 883 | addGlobalMapping(GV, GA); |
| 884 | } |
| 885 | |
| 886 | InitializeMemory(GV->getInitializer(), GA); |
| 887 | NumInitBytes += (unsigned)GVSize; |
| 888 | ++NumGlobals; |
| 889 | } |