Chris Lattner | 4ad53bd | 2006-04-17 00:35:34 +0000 | [diff] [blame] | 1 | //===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===// |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Chris Lattner and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file computes an optimal sequence of instructions for doing all shuffles |
| 11 | // of two 4-element vectors. With a release build and when configured to emit |
| 12 | // an altivec instruction table, this takes about 30s to run on a 2.7Ghz |
| 13 | // PowerPC G5. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include <iostream> |
| 18 | #include <vector> |
| 19 | |
| 20 | struct Operator; |
| 21 | |
| 22 | // Masks are 4-nibble hex numbers. Values 0-7 in any nibble means that it takes |
| 23 | // an element from that value of the input vectors. A value of 8 means the |
| 24 | // entry is undefined. |
| 25 | |
| 26 | // Mask manipulation functions. |
| 27 | static inline unsigned short MakeMask(unsigned V0, unsigned V1, |
| 28 | unsigned V2, unsigned V3) { |
| 29 | return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4)); |
| 30 | } |
| 31 | |
| 32 | /// getMaskElt - Return element N of the specified mask. |
| 33 | static unsigned getMaskElt(unsigned Mask, unsigned Elt) { |
| 34 | return (Mask >> ((3-Elt)*4)) & 0xF; |
| 35 | } |
| 36 | |
| 37 | static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) { |
| 38 | unsigned FieldShift = ((3-Elt)*4); |
| 39 | return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift); |
| 40 | } |
| 41 | |
| 42 | // Reject elements where the values are 9-15. |
| 43 | static bool isValidMask(unsigned short Mask) { |
| 44 | unsigned short UndefBits = Mask & 0x8888; |
| 45 | return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0; |
| 46 | } |
| 47 | |
| 48 | /// hasUndefElements - Return true if any of the elements in the mask are undefs |
| 49 | /// |
| 50 | static bool hasUndefElements(unsigned short Mask) { |
| 51 | return (Mask & 0x8888) != 0; |
| 52 | } |
| 53 | |
| 54 | /// isOnlyLHSMask - Return true if this mask only refers to its LHS, not |
| 55 | /// including undef values.. |
| 56 | static bool isOnlyLHSMask(unsigned short Mask) { |
| 57 | return (Mask & 0x4444) == 0; |
| 58 | } |
| 59 | |
| 60 | /// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to |
| 61 | /// refer to the LHS only (for when one argument value is passed into the same |
| 62 | /// function twice). |
| 63 | static unsigned short getLHSOnlyMask(unsigned short Mask) { |
| 64 | return Mask & 0xBBBB; // Keep only LHS and Undefs. |
| 65 | } |
| 66 | |
| 67 | /// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4 |
| 68 | /// bits) into a compressed 13-bit mask, where each elt is multiplied by 9. |
| 69 | static unsigned getCompressedMask(unsigned short Mask) { |
| 70 | return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 + |
| 71 | getMaskElt(Mask, 2)*9 + getMaskElt(Mask, 3); |
| 72 | } |
| 73 | |
| 74 | static void PrintMask(unsigned i, std::ostream &OS) { |
| 75 | OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0))) |
| 76 | << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1))) |
| 77 | << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2))) |
| 78 | << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3))) |
| 79 | << ">"; |
| 80 | } |
| 81 | |
| 82 | /// ShuffleVal - This represents a shufflevector operation. |
| 83 | struct ShuffleVal { |
| 84 | unsigned Cost; // Number of instrs used to generate this value. |
| 85 | Operator *Op; // The Operation used to generate this value. |
| 86 | unsigned short Arg0, Arg1; // Input operands for this value. |
| 87 | |
| 88 | ShuffleVal() : Cost(1000000) {} |
| 89 | }; |
| 90 | |
| 91 | |
| 92 | /// ShufTab - This is the actual shuffle table that we are trying to generate. |
| 93 | /// |
| 94 | static ShuffleVal ShufTab[65536]; |
| 95 | |
| 96 | /// TheOperators - All of the operators that this target supports. |
| 97 | static std::vector<Operator*> TheOperators; |
| 98 | |
| 99 | /// Operator - This is a vector operation that is available for use. |
| 100 | struct Operator { |
| 101 | unsigned short ShuffleMask; |
| 102 | unsigned short OpNum; |
| 103 | const char *Name; |
| 104 | |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 105 | Operator(unsigned short shufflemask, const char *name, unsigned opnum) |
| 106 | : ShuffleMask(shufflemask), OpNum(opnum), Name(name) { |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 107 | TheOperators.push_back(this); |
| 108 | } |
| 109 | ~Operator() { |
| 110 | assert(TheOperators.back() == this); |
| 111 | TheOperators.pop_back(); |
| 112 | } |
| 113 | |
| 114 | bool isOnlyLHSOperator() const { |
| 115 | return isOnlyLHSMask(ShuffleMask); |
| 116 | } |
| 117 | |
| 118 | const char *getName() const { return Name; } |
| 119 | |
| 120 | unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) { |
| 121 | // Extract the elements from LHSMask and RHSMask, as appropriate. |
| 122 | unsigned Result = 0; |
| 123 | for (unsigned i = 0; i != 4; ++i) { |
| 124 | unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF; |
| 125 | unsigned ResElt; |
| 126 | if (SrcElt < 4) |
| 127 | ResElt = getMaskElt(LHSMask, SrcElt); |
| 128 | else if (SrcElt < 8) |
| 129 | ResElt = getMaskElt(RHSMask, SrcElt-4); |
| 130 | else { |
| 131 | assert(SrcElt == 8 && "Bad src elt!"); |
| 132 | ResElt = 8; |
| 133 | } |
| 134 | Result |= ResElt << (4*i); |
| 135 | } |
| 136 | return Result; |
| 137 | } |
| 138 | }; |
| 139 | |
| 140 | static const char *getZeroCostOpName(unsigned short Op) { |
| 141 | if (ShufTab[Op].Arg0 == 0x0123) |
| 142 | return "LHS"; |
| 143 | else if (ShufTab[Op].Arg0 == 0x4567) |
| 144 | return "RHS"; |
| 145 | else { |
| 146 | assert(0 && "bad zero cost operation"); |
| 147 | abort(); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | static void PrintOperation(unsigned ValNo, unsigned short Vals[]) { |
| 152 | unsigned short ThisOp = Vals[ValNo]; |
| 153 | std::cerr << "t" << ValNo; |
| 154 | PrintMask(ThisOp, std::cerr); |
| 155 | std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "("; |
| 156 | |
| 157 | if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) { |
| 158 | std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0); |
| 159 | PrintMask(ShufTab[ThisOp].Arg0, std::cerr); |
| 160 | } else { |
| 161 | // Figure out what tmp # it is. |
| 162 | for (unsigned i = 0; ; ++i) |
| 163 | if (Vals[i] == ShufTab[ThisOp].Arg0) { |
| 164 | std::cerr << "t" << i; |
| 165 | break; |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) { |
| 170 | std::cerr << ", "; |
| 171 | if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) { |
| 172 | std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1); |
| 173 | PrintMask(ShufTab[ThisOp].Arg1, std::cerr); |
| 174 | } else { |
| 175 | // Figure out what tmp # it is. |
| 176 | for (unsigned i = 0; ; ++i) |
| 177 | if (Vals[i] == ShufTab[ThisOp].Arg1) { |
| 178 | std::cerr << "t" << i; |
| 179 | break; |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | std::cerr << ") "; |
| 184 | } |
| 185 | |
| 186 | static unsigned getNumEntered() { |
| 187 | unsigned Count = 0; |
| 188 | for (unsigned i = 0; i != 65536; ++i) |
| 189 | Count += ShufTab[i].Cost < 100; |
| 190 | return Count; |
| 191 | } |
| 192 | |
| 193 | static void EvaluateOps(unsigned short Elt, unsigned short Vals[], |
| 194 | unsigned &NumVals) { |
| 195 | if (ShufTab[Elt].Cost == 0) return; |
| 196 | |
| 197 | // If this value has already been evaluated, it is free. FIXME: match undefs. |
| 198 | for (unsigned i = 0, e = NumVals; i != e; ++i) |
| 199 | if (Vals[i] == Elt) return; |
| 200 | |
| 201 | // Otherwise, get the operands of the value, then add it. |
| 202 | unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1; |
| 203 | if (ShufTab[Arg0].Cost) |
| 204 | EvaluateOps(Arg0, Vals, NumVals); |
| 205 | if (Arg0 != Arg1 && ShufTab[Arg1].Cost) |
| 206 | EvaluateOps(Arg1, Vals, NumVals); |
| 207 | |
| 208 | Vals[NumVals++] = Elt; |
| 209 | } |
| 210 | |
| 211 | |
| 212 | int main() { |
| 213 | // Seed the table with accesses to the LHS and RHS. |
| 214 | ShufTab[0x0123].Cost = 0; |
| 215 | ShufTab[0x0123].Op = 0; |
| 216 | ShufTab[0x0123].Arg0 = 0x0123; |
| 217 | ShufTab[0x4567].Cost = 0; |
| 218 | ShufTab[0x4567].Op = 0; |
| 219 | ShufTab[0x4567].Arg0 = 0x4567; |
| 220 | |
| 221 | // Seed the first-level of shuffles, shuffles whose inputs are the input to |
| 222 | // the vectorshuffle operation. |
| 223 | bool MadeChange = true; |
| 224 | unsigned OpCount = 0; |
| 225 | while (MadeChange) { |
| 226 | MadeChange = false; |
| 227 | ++OpCount; |
| 228 | std::cerr << "Starting iteration #" << OpCount << " with " |
| 229 | << getNumEntered() << " entries established.\n"; |
| 230 | |
| 231 | // Scan the table for two reasons: First, compute the maximum cost of any |
| 232 | // operation left in the table. Second, make sure that values with undefs |
| 233 | // have the cheapest alternative that they match. |
| 234 | unsigned MaxCost = ShufTab[0].Cost; |
| 235 | for (unsigned i = 1; i != 0x8889; ++i) { |
| 236 | if (!isValidMask(i)) continue; |
| 237 | if (ShufTab[i].Cost > MaxCost) |
| 238 | MaxCost = ShufTab[i].Cost; |
| 239 | |
| 240 | // If this value has an undef, make it be computed the cheapest possible |
| 241 | // way of any of the things that it matches. |
| 242 | if (hasUndefElements(i)) { |
| 243 | // This code is a little bit tricky, so here's the idea: consider some |
| 244 | // permutation, like 7u4u. To compute the lowest cost for 7u4u, we |
| 245 | // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries. If |
| 246 | // there are 3 undefs, the number rises to 729 entries we have to scan, |
| 247 | // and for the 4 undef case, we have to scan the whole table. |
| 248 | // |
| 249 | // Instead of doing this huge amount of scanning, we process the table |
| 250 | // entries *in order*, and use the fact that 'u' is 8, larger than any |
| 251 | // valid index. Given an entry like 7u4u then, we only need to scan |
| 252 | // 7[0-7]4u - 8 entries. We can get away with this, because we already |
| 253 | // know that each of 704u, 714u, 724u, etc contain the minimum value of |
| 254 | // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively. |
| 255 | unsigned UndefIdx; |
| 256 | if (i & 0x8000) |
| 257 | UndefIdx = 0; |
| 258 | else if (i & 0x0800) |
| 259 | UndefIdx = 1; |
| 260 | else if (i & 0x0080) |
| 261 | UndefIdx = 2; |
| 262 | else if (i & 0x0008) |
| 263 | UndefIdx = 3; |
| 264 | else |
| 265 | abort(); |
| 266 | |
| 267 | unsigned MinVal = i; |
| 268 | unsigned MinCost = ShufTab[i].Cost; |
| 269 | |
| 270 | // Scan the 8 entries. |
| 271 | for (unsigned j = 0; j != 8; ++j) { |
| 272 | unsigned NewElt = setMaskElt(i, UndefIdx, j); |
| 273 | if (ShufTab[NewElt].Cost < MinCost) { |
| 274 | MinCost = ShufTab[NewElt].Cost; |
| 275 | MinVal = NewElt; |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | // If we found something cheaper than what was here before, use it. |
| 280 | if (i != MinVal) { |
| 281 | MadeChange = true; |
| 282 | ShufTab[i] = ShufTab[MinVal]; |
| 283 | } |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | for (unsigned LHS = 0; LHS != 0x8889; ++LHS) { |
| 288 | if (!isValidMask(LHS)) continue; |
| 289 | if (ShufTab[LHS].Cost > 1000) continue; |
| 290 | |
| 291 | // If nothing involving this operand could possibly be cheaper than what |
| 292 | // we already have, don't consider it. |
| 293 | if (ShufTab[LHS].Cost + 1 >= MaxCost) |
| 294 | continue; |
| 295 | |
| 296 | for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) { |
| 297 | Operator *Op = TheOperators[opnum]; |
| 298 | unsigned short Mask = Op->ShuffleMask; |
| 299 | |
| 300 | // Evaluate op(LHS,LHS) |
| 301 | unsigned ResultMask = Op->getTransformedMask(LHS, LHS); |
| 302 | |
| 303 | unsigned Cost = ShufTab[LHS].Cost + 1; |
| 304 | if (Cost < ShufTab[ResultMask].Cost) { |
| 305 | ShufTab[ResultMask].Cost = Cost; |
| 306 | ShufTab[ResultMask].Op = Op; |
| 307 | ShufTab[ResultMask].Arg0 = LHS; |
| 308 | ShufTab[ResultMask].Arg1 = LHS; |
| 309 | MadeChange = true; |
| 310 | } |
| 311 | |
| 312 | // If this is a two input instruction, include the op(x,y) cases. If |
| 313 | // this is a one input instruction, skip this. |
| 314 | if (Op->isOnlyLHSOperator()) continue; |
| 315 | |
| 316 | for (unsigned RHS = 0; RHS != 0x8889; ++RHS) { |
| 317 | if (!isValidMask(RHS)) continue; |
| 318 | if (ShufTab[RHS].Cost > 1000) continue; |
| 319 | |
| 320 | // If nothing involving this operand could possibly be cheaper than |
| 321 | // what we already have, don't consider it. |
| 322 | if (ShufTab[RHS].Cost + 1 >= MaxCost) |
| 323 | continue; |
| 324 | |
| 325 | |
| 326 | // Evaluate op(LHS,RHS) |
| 327 | unsigned ResultMask = Op->getTransformedMask(LHS, RHS); |
| 328 | |
| 329 | if (ShufTab[ResultMask].Cost <= OpCount || |
| 330 | ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost || |
| 331 | ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost) |
| 332 | continue; |
| 333 | |
| 334 | // Figure out the cost to evaluate this, knowing that CSE's only need |
| 335 | // to be evaluated once. |
| 336 | unsigned short Vals[30]; |
| 337 | unsigned NumVals = 0; |
| 338 | EvaluateOps(LHS, Vals, NumVals); |
| 339 | EvaluateOps(RHS, Vals, NumVals); |
| 340 | |
| 341 | unsigned Cost = NumVals + 1; |
| 342 | if (Cost < ShufTab[ResultMask].Cost) { |
| 343 | ShufTab[ResultMask].Cost = Cost; |
| 344 | ShufTab[ResultMask].Op = Op; |
| 345 | ShufTab[ResultMask].Arg0 = LHS; |
| 346 | ShufTab[ResultMask].Arg1 = RHS; |
| 347 | MadeChange = true; |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | std::cerr << "Finished Table has " << getNumEntered() |
| 355 | << " entries established.\n"; |
| 356 | |
| 357 | unsigned CostArray[10] = { 0 }; |
| 358 | |
| 359 | // Compute a cost histogram. |
| 360 | for (unsigned i = 0; i != 65536; ++i) { |
| 361 | if (!isValidMask(i)) continue; |
| 362 | if (ShufTab[i].Cost > 9) |
| 363 | ++CostArray[9]; |
| 364 | else |
| 365 | ++CostArray[ShufTab[i].Cost]; |
| 366 | } |
| 367 | |
| 368 | for (unsigned i = 0; i != 9; ++i) |
| 369 | if (CostArray[i]) |
| 370 | std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n"; |
| 371 | if (CostArray[9]) |
| 372 | std::cout << "// " << CostArray[9] << " entries have higher cost!\n"; |
| 373 | |
| 374 | |
| 375 | // Build up the table to emit. |
| 376 | std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n"; |
Chris Lattner | 3033d4d | 2006-04-17 00:33:35 +0000 | [diff] [blame] | 377 | std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n"; |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 378 | |
| 379 | for (unsigned i = 0; i != 0x8889; ++i) { |
| 380 | if (!isValidMask(i)) continue; |
| 381 | |
| 382 | // CostSat - The cost of this operation saturated to two bits. |
| 383 | unsigned CostSat = ShufTab[i].Cost; |
| 384 | if (CostSat > 3) CostSat = 3; |
| 385 | |
| 386 | unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0; |
| 387 | assert(OpNum < 16 && "Too few bits to encode operation!"); |
| 388 | |
| 389 | unsigned LHS = getCompressedMask(ShufTab[i].Arg0); |
| 390 | unsigned RHS = getCompressedMask(ShufTab[i].Arg1); |
| 391 | |
| 392 | // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of |
| 393 | // LHS, and 13 bits of RHS = 32 bits. |
| 394 | unsigned Val = (CostSat << 30) | (OpNum << 27) | (LHS << 13) | RHS; |
| 395 | |
| 396 | std::cout << " " << Val << "U,\t// "; |
| 397 | PrintMask(i, std::cout); |
| 398 | std::cout << ": Cost " << ShufTab[i].Cost; |
| 399 | std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy"); |
| 400 | std::cout << " "; |
| 401 | if (ShufTab[ShufTab[i].Arg0].Cost == 0) { |
| 402 | std::cout << getZeroCostOpName(ShufTab[i].Arg0); |
| 403 | } else { |
| 404 | PrintMask(ShufTab[i].Arg0, std::cout); |
| 405 | } |
| 406 | |
| 407 | if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) { |
| 408 | std::cout << ", "; |
| 409 | if (ShufTab[ShufTab[i].Arg1].Cost == 0) { |
| 410 | std::cout << getZeroCostOpName(ShufTab[i].Arg1); |
| 411 | } else { |
| 412 | PrintMask(ShufTab[i].Arg1, std::cout); |
| 413 | } |
| 414 | } |
| 415 | std::cout << "\n"; |
| 416 | } |
| 417 | std::cout << " 0\n};\n"; |
| 418 | |
| 419 | if (0) { |
| 420 | // Print out the table. |
| 421 | for (unsigned i = 0; i != 0x8889; ++i) { |
| 422 | if (!isValidMask(i)) continue; |
| 423 | if (ShufTab[i].Cost < 1000) { |
| 424 | PrintMask(i, std::cerr); |
| 425 | std::cerr << " - Cost " << ShufTab[i].Cost << " - "; |
| 426 | |
| 427 | unsigned short Vals[30]; |
| 428 | unsigned NumVals = 0; |
| 429 | EvaluateOps(i, Vals, NumVals); |
| 430 | |
| 431 | for (unsigned j = 0, e = NumVals; j != e; ++j) |
| 432 | PrintOperation(j, Vals); |
| 433 | std::cerr << "\n"; |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 440 | #define GENERATE_ALTIVEC |
| 441 | |
| 442 | #ifdef GENERATE_ALTIVEC |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 443 | |
| 444 | ///===---------------------------------------------------------------------===// |
| 445 | /// The altivec instruction definitions. This is the altivec-specific part of |
| 446 | /// this file. |
| 447 | ///===---------------------------------------------------------------------===// |
| 448 | |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 449 | // Note that the opcode numbers here must match those in the PPC backend. |
| 450 | enum { |
| 451 | OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| 452 | OP_VMRGHW, |
| 453 | OP_VMRGLW, |
| 454 | OP_VSPLTISW0, |
| 455 | OP_VSPLTISW1, |
| 456 | OP_VSPLTISW2, |
| 457 | OP_VSPLTISW3, |
| 458 | OP_VSLDOI4, |
| 459 | OP_VSLDOI8, |
| 460 | OP_VSLDOI12, |
| 461 | }; |
| 462 | |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 463 | struct vmrghw : public Operator { |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 464 | vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {} |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 465 | } the_vmrghw; |
| 466 | |
| 467 | struct vmrglw : public Operator { |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 468 | vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {} |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 469 | } the_vmrglw; |
| 470 | |
| 471 | template<unsigned Elt> |
| 472 | struct vspltisw : public Operator { |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 473 | vspltisw(const char *N, unsigned Opc) |
| 474 | : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {} |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 475 | }; |
| 476 | |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 477 | vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0); |
| 478 | vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1); |
| 479 | vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2); |
| 480 | vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3); |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 481 | |
| 482 | template<unsigned N> |
| 483 | struct vsldoi : public Operator { |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 484 | vsldoi(const char *Name, unsigned Opc) |
| 485 | : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) { |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 486 | } |
| 487 | }; |
| 488 | |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 489 | vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4); |
| 490 | vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8); |
| 491 | vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12); |
Chris Lattner | 27e98aa | 2006-04-17 00:30:41 +0000 | [diff] [blame] | 492 | |
Chris Lattner | cf1f644 | 2006-04-17 00:47:18 +0000 | [diff] [blame^] | 493 | #endif |