Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 1 | //===- ValueTracking.cpp - Walk computations to compute properties --------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains routines that help analyze properties that chains of |
| 11 | // computations have. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Analysis/ValueTracking.h" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/Instructions.h" |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 18 | #include "llvm/GlobalVariable.h" |
Dan Gohman | 307a7c4 | 2009-09-15 16:14:44 +0000 | [diff] [blame] | 19 | #include "llvm/GlobalAlias.h" |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 20 | #include "llvm/IntrinsicInst.h" |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 21 | #include "llvm/LLVMContext.h" |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 22 | #include "llvm/Operator.h" |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 23 | #include "llvm/Target/TargetData.h" |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 24 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 25 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 32a9e7a | 2008-06-04 04:46:14 +0000 | [diff] [blame] | 26 | #include <cstring> |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 27 | using namespace llvm; |
| 28 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 29 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 30 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 31 | /// bit sets. This code only analyzes bits in Mask, in order to short-circuit |
| 32 | /// processing. |
| 33 | /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that |
| 34 | /// we cannot optimize based on the assumption that it is zero without changing |
| 35 | /// it to be an explicit zero. If we don't change it to zero, other code could |
| 36 | /// optimized based on the contradictory assumption that it is non-zero. |
| 37 | /// Because instcombine aggressively folds operations with undef args anyway, |
| 38 | /// this won't lose us code quality. |
Chris Lattner | cf5128e | 2009-09-08 00:06:16 +0000 | [diff] [blame] | 39 | /// |
| 40 | /// This function is defined on values with integer type, values with pointer |
| 41 | /// type (but only if TD is non-null), and vectors of integers. In the case |
| 42 | /// where V is a vector, the mask, known zero, and known one values are the |
| 43 | /// same width as the vector element, and the bit is set only if it is true |
| 44 | /// for all of the elements in the vector. |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 45 | void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, |
| 46 | APInt &KnownZero, APInt &KnownOne, |
Dan Gohman | 846a2f2 | 2009-08-27 17:51:25 +0000 | [diff] [blame] | 47 | const TargetData *TD, unsigned Depth) { |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 48 | const unsigned MaxDepth = 6; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 49 | assert(V && "No Value?"); |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 50 | assert(Depth <= MaxDepth && "Limit Search Depth"); |
Chris Lattner | 79abedb | 2009-01-20 18:22:57 +0000 | [diff] [blame] | 51 | unsigned BitWidth = Mask.getBitWidth(); |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 52 | assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) && |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 53 | "Not integer or pointer type!"); |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 54 | assert((!TD || |
| 55 | TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && |
| 56 | (!V->getType()->isIntOrIntVector() || |
| 57 | V->getType()->getScalarSizeInBits() == BitWidth) && |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 58 | KnownZero.getBitWidth() == BitWidth && |
| 59 | KnownOne.getBitWidth() == BitWidth && |
| 60 | "V, Mask, KnownOne and KnownZero should have same BitWidth"); |
| 61 | |
| 62 | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| 63 | // We know all of the bits for a constant! |
| 64 | KnownOne = CI->getValue() & Mask; |
| 65 | KnownZero = ~KnownOne & Mask; |
| 66 | return; |
| 67 | } |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 68 | // Null and aggregate-zero are all-zeros. |
| 69 | if (isa<ConstantPointerNull>(V) || |
| 70 | isa<ConstantAggregateZero>(V)) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 71 | KnownOne.clear(); |
| 72 | KnownZero = Mask; |
| 73 | return; |
| 74 | } |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 75 | // Handle a constant vector by taking the intersection of the known bits of |
| 76 | // each element. |
| 77 | if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { |
| 78 | KnownZero.set(); KnownOne.set(); |
| 79 | for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { |
| 80 | APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); |
| 81 | ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, |
| 82 | TD, Depth); |
| 83 | KnownZero &= KnownZero2; |
| 84 | KnownOne &= KnownOne2; |
| 85 | } |
| 86 | return; |
| 87 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 88 | // The address of an aligned GlobalValue has trailing zeros. |
| 89 | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| 90 | unsigned Align = GV->getAlignment(); |
Dan Gohman | 0040725 | 2009-08-11 15:50:03 +0000 | [diff] [blame] | 91 | if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { |
| 92 | const Type *ObjectType = GV->getType()->getElementType(); |
| 93 | // If the object is defined in the current Module, we'll be giving |
| 94 | // it the preferred alignment. Otherwise, we have to assume that it |
| 95 | // may only have the minimum ABI alignment. |
| 96 | if (!GV->isDeclaration() && !GV->mayBeOverridden()) |
| 97 | Align = TD->getPrefTypeAlignment(ObjectType); |
| 98 | else |
| 99 | Align = TD->getABITypeAlignment(ObjectType); |
| 100 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 101 | if (Align > 0) |
| 102 | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, |
| 103 | CountTrailingZeros_32(Align)); |
| 104 | else |
| 105 | KnownZero.clear(); |
| 106 | KnownOne.clear(); |
| 107 | return; |
| 108 | } |
Dan Gohman | 307a7c4 | 2009-09-15 16:14:44 +0000 | [diff] [blame] | 109 | // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has |
| 110 | // the bits of its aliasee. |
| 111 | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { |
| 112 | if (GA->mayBeOverridden()) { |
| 113 | KnownZero.clear(); KnownOne.clear(); |
| 114 | } else { |
| 115 | ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, |
| 116 | TD, Depth+1); |
| 117 | } |
| 118 | return; |
| 119 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 120 | |
| 121 | KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything. |
| 122 | |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 123 | if (Depth == MaxDepth || Mask == 0) |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 124 | return; // Limit search depth. |
| 125 | |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 126 | Operator *I = dyn_cast<Operator>(V); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 127 | if (!I) return; |
| 128 | |
| 129 | APInt KnownZero2(KnownZero), KnownOne2(KnownOne); |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 130 | switch (I->getOpcode()) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 131 | default: break; |
| 132 | case Instruction::And: { |
| 133 | // If either the LHS or the RHS are Zero, the result is zero. |
| 134 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 135 | APInt Mask2(Mask & ~KnownZero); |
| 136 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 137 | Depth+1); |
| 138 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 139 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 140 | |
| 141 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 142 | KnownOne &= KnownOne2; |
| 143 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 144 | KnownZero |= KnownZero2; |
| 145 | return; |
| 146 | } |
| 147 | case Instruction::Or: { |
| 148 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 149 | APInt Mask2(Mask & ~KnownOne); |
| 150 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 151 | Depth+1); |
| 152 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 153 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 154 | |
| 155 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 156 | KnownZero &= KnownZero2; |
| 157 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 158 | KnownOne |= KnownOne2; |
| 159 | return; |
| 160 | } |
| 161 | case Instruction::Xor: { |
| 162 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 163 | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, |
| 164 | Depth+1); |
| 165 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 166 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 167 | |
| 168 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 169 | APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 170 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 171 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 172 | KnownZero = KnownZeroOut; |
| 173 | return; |
| 174 | } |
| 175 | case Instruction::Mul: { |
| 176 | APInt Mask2 = APInt::getAllOnesValue(BitWidth); |
| 177 | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); |
| 178 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 179 | Depth+1); |
| 180 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 181 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 182 | |
| 183 | // If low bits are zero in either operand, output low known-0 bits. |
| 184 | // Also compute a conserative estimate for high known-0 bits. |
| 185 | // More trickiness is possible, but this is sufficient for the |
| 186 | // interesting case of alignment computation. |
| 187 | KnownOne.clear(); |
| 188 | unsigned TrailZ = KnownZero.countTrailingOnes() + |
| 189 | KnownZero2.countTrailingOnes(); |
| 190 | unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + |
| 191 | KnownZero2.countLeadingOnes(), |
| 192 | BitWidth) - BitWidth; |
| 193 | |
| 194 | TrailZ = std::min(TrailZ, BitWidth); |
| 195 | LeadZ = std::min(LeadZ, BitWidth); |
| 196 | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | |
| 197 | APInt::getHighBitsSet(BitWidth, LeadZ); |
| 198 | KnownZero &= Mask; |
| 199 | return; |
| 200 | } |
| 201 | case Instruction::UDiv: { |
| 202 | // For the purposes of computing leading zeros we can conservatively |
| 203 | // treat a udiv as a logical right shift by the power of 2 known to |
| 204 | // be less than the denominator. |
| 205 | APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| 206 | ComputeMaskedBits(I->getOperand(0), |
| 207 | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); |
| 208 | unsigned LeadZ = KnownZero2.countLeadingOnes(); |
| 209 | |
| 210 | KnownOne2.clear(); |
| 211 | KnownZero2.clear(); |
| 212 | ComputeMaskedBits(I->getOperand(1), |
| 213 | AllOnes, KnownZero2, KnownOne2, TD, Depth+1); |
| 214 | unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); |
| 215 | if (RHSUnknownLeadingOnes != BitWidth) |
| 216 | LeadZ = std::min(BitWidth, |
| 217 | LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); |
| 218 | |
| 219 | KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; |
| 220 | return; |
| 221 | } |
| 222 | case Instruction::Select: |
| 223 | ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); |
| 224 | ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, |
| 225 | Depth+1); |
| 226 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 227 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 228 | |
| 229 | // Only known if known in both the LHS and RHS. |
| 230 | KnownOne &= KnownOne2; |
| 231 | KnownZero &= KnownZero2; |
| 232 | return; |
| 233 | case Instruction::FPTrunc: |
| 234 | case Instruction::FPExt: |
| 235 | case Instruction::FPToUI: |
| 236 | case Instruction::FPToSI: |
| 237 | case Instruction::SIToFP: |
| 238 | case Instruction::UIToFP: |
| 239 | return; // Can't work with floating point. |
| 240 | case Instruction::PtrToInt: |
| 241 | case Instruction::IntToPtr: |
| 242 | // We can't handle these if we don't know the pointer size. |
| 243 | if (!TD) return; |
| 244 | // FALL THROUGH and handle them the same as zext/trunc. |
| 245 | case Instruction::ZExt: |
| 246 | case Instruction::Trunc: { |
Chris Lattner | b9a4ddb | 2009-09-08 00:13:52 +0000 | [diff] [blame] | 247 | const Type *SrcTy = I->getOperand(0)->getType(); |
| 248 | |
| 249 | unsigned SrcBitWidth; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 250 | // Note that we handle pointer operands here because of inttoptr/ptrtoint |
| 251 | // which fall through here. |
Chris Lattner | b9a4ddb | 2009-09-08 00:13:52 +0000 | [diff] [blame] | 252 | if (isa<PointerType>(SrcTy)) |
| 253 | SrcBitWidth = TD->getTypeSizeInBits(SrcTy); |
| 254 | else |
| 255 | SrcBitWidth = SrcTy->getScalarSizeInBits(); |
| 256 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 257 | APInt MaskIn(Mask); |
| 258 | MaskIn.zextOrTrunc(SrcBitWidth); |
| 259 | KnownZero.zextOrTrunc(SrcBitWidth); |
| 260 | KnownOne.zextOrTrunc(SrcBitWidth); |
| 261 | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, |
| 262 | Depth+1); |
| 263 | KnownZero.zextOrTrunc(BitWidth); |
| 264 | KnownOne.zextOrTrunc(BitWidth); |
| 265 | // Any top bits are known to be zero. |
| 266 | if (BitWidth > SrcBitWidth) |
| 267 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 268 | return; |
| 269 | } |
| 270 | case Instruction::BitCast: { |
| 271 | const Type *SrcTy = I->getOperand(0)->getType(); |
Chris Lattner | 0dabb0b | 2009-07-02 16:04:08 +0000 | [diff] [blame] | 272 | if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && |
| 273 | // TODO: For now, not handling conversions like: |
| 274 | // (bitcast i64 %x to <2 x i32>) |
| 275 | !isa<VectorType>(I->getType())) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 276 | ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, |
| 277 | Depth+1); |
| 278 | return; |
| 279 | } |
| 280 | break; |
| 281 | } |
| 282 | case Instruction::SExt: { |
| 283 | // Compute the bits in the result that are not present in the input. |
Chris Lattner | b9a4ddb | 2009-09-08 00:13:52 +0000 | [diff] [blame] | 284 | unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 285 | |
| 286 | APInt MaskIn(Mask); |
| 287 | MaskIn.trunc(SrcBitWidth); |
| 288 | KnownZero.trunc(SrcBitWidth); |
| 289 | KnownOne.trunc(SrcBitWidth); |
| 290 | ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, |
| 291 | Depth+1); |
| 292 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 293 | KnownZero.zext(BitWidth); |
| 294 | KnownOne.zext(BitWidth); |
| 295 | |
| 296 | // If the sign bit of the input is known set or clear, then we know the |
| 297 | // top bits of the result. |
| 298 | if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero |
| 299 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 300 | else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set |
| 301 | KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
| 302 | return; |
| 303 | } |
| 304 | case Instruction::Shl: |
| 305 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 306 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 307 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 308 | APInt Mask2(Mask.lshr(ShiftAmt)); |
| 309 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 310 | Depth+1); |
| 311 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 312 | KnownZero <<= ShiftAmt; |
| 313 | KnownOne <<= ShiftAmt; |
| 314 | KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 |
| 315 | return; |
| 316 | } |
| 317 | break; |
| 318 | case Instruction::LShr: |
| 319 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 320 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 321 | // Compute the new bits that are at the top now. |
| 322 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 323 | |
| 324 | // Unsigned shift right. |
| 325 | APInt Mask2(Mask.shl(ShiftAmt)); |
| 326 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, |
| 327 | Depth+1); |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 328 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 329 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 330 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
| 331 | // high bits known zero. |
| 332 | KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); |
| 333 | return; |
| 334 | } |
| 335 | break; |
| 336 | case Instruction::AShr: |
| 337 | // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 338 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 339 | // Compute the new bits that are at the top now. |
| 340 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); |
| 341 | |
| 342 | // Signed shift right. |
| 343 | APInt Mask2(Mask.shl(ShiftAmt)); |
| 344 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 345 | Depth+1); |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 346 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 347 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 348 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
| 349 | |
| 350 | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); |
| 351 | if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. |
| 352 | KnownZero |= HighBits; |
| 353 | else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. |
| 354 | KnownOne |= HighBits; |
| 355 | return; |
| 356 | } |
| 357 | break; |
| 358 | case Instruction::Sub: { |
| 359 | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { |
| 360 | // We know that the top bits of C-X are clear if X contains less bits |
| 361 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
| 362 | // positive if we can prove that X is >= 0 and < 16. |
| 363 | if (!CLHS->getValue().isNegative()) { |
| 364 | unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); |
| 365 | // NLZ can't be BitWidth with no sign bit |
| 366 | APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); |
| 367 | ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, |
| 368 | TD, Depth+1); |
| 369 | |
| 370 | // If all of the MaskV bits are known to be zero, then we know the |
| 371 | // output top bits are zero, because we now know that the output is |
| 372 | // from [0-C]. |
| 373 | if ((KnownZero2 & MaskV) == MaskV) { |
| 374 | unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); |
| 375 | // Top bits known zero. |
| 376 | KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; |
| 377 | } |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | // fall through |
| 382 | case Instruction::Add: { |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 383 | // If one of the operands has trailing zeros, then the bits that the |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 384 | // other operand has in those bit positions will be preserved in the |
| 385 | // result. For an add, this works with either operand. For a subtract, |
| 386 | // this only works if the known zeros are in the right operand. |
| 387 | APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); |
| 388 | APInt Mask2 = APInt::getLowBitsSet(BitWidth, |
| 389 | BitWidth - Mask.countLeadingZeros()); |
| 390 | ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 391 | Depth+1); |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 392 | assert((LHSKnownZero & LHSKnownOne) == 0 && |
| 393 | "Bits known to be one AND zero?"); |
| 394 | unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 395 | |
| 396 | ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, |
| 397 | Depth+1); |
| 398 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 399 | unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 400 | |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 401 | // Determine which operand has more trailing zeros, and use that |
| 402 | // many bits from the other operand. |
| 403 | if (LHSKnownZeroOut > RHSKnownZeroOut) { |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 404 | if (I->getOpcode() == Instruction::Add) { |
Dan Gohman | 3925043 | 2009-05-24 18:02:35 +0000 | [diff] [blame] | 405 | APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); |
| 406 | KnownZero |= KnownZero2 & Mask; |
| 407 | KnownOne |= KnownOne2 & Mask; |
| 408 | } else { |
| 409 | // If the known zeros are in the left operand for a subtract, |
| 410 | // fall back to the minimum known zeros in both operands. |
| 411 | KnownZero |= APInt::getLowBitsSet(BitWidth, |
| 412 | std::min(LHSKnownZeroOut, |
| 413 | RHSKnownZeroOut)); |
| 414 | } |
| 415 | } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { |
| 416 | APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); |
| 417 | KnownZero |= LHSKnownZero & Mask; |
| 418 | KnownOne |= LHSKnownOne & Mask; |
| 419 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 420 | return; |
| 421 | } |
| 422 | case Instruction::SRem: |
| 423 | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
Duncan Sands | cfd5418 | 2010-01-29 06:18:37 +0000 | [diff] [blame^] | 424 | APInt RA = Rem->getValue().abs(); |
| 425 | if (RA.isPowerOf2()) { |
| 426 | APInt LowBits = RA - 1; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 427 | APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); |
| 428 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, |
| 429 | Depth+1); |
| 430 | |
Duncan Sands | cfd5418 | 2010-01-29 06:18:37 +0000 | [diff] [blame^] | 431 | // The low bits of the first operand are unchanged by the srem. |
| 432 | KnownZero = KnownZero2 & LowBits; |
| 433 | KnownOne = KnownOne2 & LowBits; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 434 | |
Duncan Sands | cfd5418 | 2010-01-29 06:18:37 +0000 | [diff] [blame^] | 435 | // If the first operand is non-negative or has all low bits zero, then |
| 436 | // the upper bits are all zero. |
| 437 | if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) |
| 438 | KnownZero |= ~LowBits; |
| 439 | |
| 440 | // If the first operand is negative and not all low bits are zero, then |
| 441 | // the upper bits are all one. |
| 442 | if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) |
| 443 | KnownOne |= ~LowBits; |
| 444 | |
| 445 | KnownZero &= Mask; |
| 446 | KnownOne &= Mask; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 447 | |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 448 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 449 | } |
| 450 | } |
| 451 | break; |
| 452 | case Instruction::URem: { |
| 453 | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 454 | APInt RA = Rem->getValue(); |
| 455 | if (RA.isPowerOf2()) { |
| 456 | APInt LowBits = (RA - 1); |
| 457 | APInt Mask2 = LowBits & Mask; |
| 458 | KnownZero |= ~LowBits & Mask; |
| 459 | ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, |
| 460 | Depth+1); |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 461 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 462 | break; |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | // Since the result is less than or equal to either operand, any leading |
| 467 | // zero bits in either operand must also exist in the result. |
| 468 | APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| 469 | ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, |
| 470 | TD, Depth+1); |
| 471 | ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, |
| 472 | TD, Depth+1); |
| 473 | |
Chris Lattner | 79abedb | 2009-01-20 18:22:57 +0000 | [diff] [blame] | 474 | unsigned Leaders = std::max(KnownZero.countLeadingOnes(), |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 475 | KnownZero2.countLeadingOnes()); |
| 476 | KnownOne.clear(); |
| 477 | KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; |
| 478 | break; |
| 479 | } |
| 480 | |
Victor Hernandez | a276c60 | 2009-10-17 01:18:07 +0000 | [diff] [blame] | 481 | case Instruction::Alloca: { |
Victor Hernandez | 7b929da | 2009-10-23 21:09:37 +0000 | [diff] [blame] | 482 | AllocaInst *AI = cast<AllocaInst>(V); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 483 | unsigned Align = AI->getAlignment(); |
Victor Hernandez | a276c60 | 2009-10-17 01:18:07 +0000 | [diff] [blame] | 484 | if (Align == 0 && TD) |
| 485 | Align = TD->getABITypeAlignment(AI->getType()->getElementType()); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 486 | |
| 487 | if (Align > 0) |
| 488 | KnownZero = Mask & APInt::getLowBitsSet(BitWidth, |
| 489 | CountTrailingZeros_32(Align)); |
| 490 | break; |
| 491 | } |
| 492 | case Instruction::GetElementPtr: { |
| 493 | // Analyze all of the subscripts of this getelementptr instruction |
| 494 | // to determine if we can prove known low zero bits. |
| 495 | APInt LocalMask = APInt::getAllOnesValue(BitWidth); |
| 496 | APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); |
| 497 | ComputeMaskedBits(I->getOperand(0), LocalMask, |
| 498 | LocalKnownZero, LocalKnownOne, TD, Depth+1); |
| 499 | unsigned TrailZ = LocalKnownZero.countTrailingOnes(); |
| 500 | |
| 501 | gep_type_iterator GTI = gep_type_begin(I); |
| 502 | for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { |
| 503 | Value *Index = I->getOperand(i); |
| 504 | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 505 | // Handle struct member offset arithmetic. |
| 506 | if (!TD) return; |
| 507 | const StructLayout *SL = TD->getStructLayout(STy); |
| 508 | unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); |
| 509 | uint64_t Offset = SL->getElementOffset(Idx); |
| 510 | TrailZ = std::min(TrailZ, |
| 511 | CountTrailingZeros_64(Offset)); |
| 512 | } else { |
| 513 | // Handle array index arithmetic. |
| 514 | const Type *IndexedTy = GTI.getIndexedType(); |
| 515 | if (!IndexedTy->isSized()) return; |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 516 | unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); |
Duncan Sands | 777d230 | 2009-05-09 07:06:46 +0000 | [diff] [blame] | 517 | uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 518 | LocalMask = APInt::getAllOnesValue(GEPOpiBits); |
| 519 | LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); |
| 520 | ComputeMaskedBits(Index, LocalMask, |
| 521 | LocalKnownZero, LocalKnownOne, TD, Depth+1); |
| 522 | TrailZ = std::min(TrailZ, |
Chris Lattner | 79abedb | 2009-01-20 18:22:57 +0000 | [diff] [blame] | 523 | unsigned(CountTrailingZeros_64(TypeSize) + |
| 524 | LocalKnownZero.countTrailingOnes())); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 525 | } |
| 526 | } |
| 527 | |
| 528 | KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; |
| 529 | break; |
| 530 | } |
| 531 | case Instruction::PHI: { |
| 532 | PHINode *P = cast<PHINode>(I); |
| 533 | // Handle the case of a simple two-predecessor recurrence PHI. |
| 534 | // There's a lot more that could theoretically be done here, but |
| 535 | // this is sufficient to catch some interesting cases. |
| 536 | if (P->getNumIncomingValues() == 2) { |
| 537 | for (unsigned i = 0; i != 2; ++i) { |
| 538 | Value *L = P->getIncomingValue(i); |
| 539 | Value *R = P->getIncomingValue(!i); |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 540 | Operator *LU = dyn_cast<Operator>(L); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 541 | if (!LU) |
| 542 | continue; |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 543 | unsigned Opcode = LU->getOpcode(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 544 | // Check for operations that have the property that if |
| 545 | // both their operands have low zero bits, the result |
| 546 | // will have low zero bits. |
| 547 | if (Opcode == Instruction::Add || |
| 548 | Opcode == Instruction::Sub || |
| 549 | Opcode == Instruction::And || |
| 550 | Opcode == Instruction::Or || |
| 551 | Opcode == Instruction::Mul) { |
| 552 | Value *LL = LU->getOperand(0); |
| 553 | Value *LR = LU->getOperand(1); |
| 554 | // Find a recurrence. |
| 555 | if (LL == I) |
| 556 | L = LR; |
| 557 | else if (LR == I) |
| 558 | L = LL; |
| 559 | else |
| 560 | break; |
| 561 | // Ok, we have a PHI of the form L op= R. Check for low |
| 562 | // zero bits. |
| 563 | APInt Mask2 = APInt::getAllOnesValue(BitWidth); |
| 564 | ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); |
| 565 | Mask2 = APInt::getLowBitsSet(BitWidth, |
| 566 | KnownZero2.countTrailingOnes()); |
David Greene | c714f13 | 2008-10-27 23:24:03 +0000 | [diff] [blame] | 567 | |
| 568 | // We need to take the minimum number of known bits |
| 569 | APInt KnownZero3(KnownZero), KnownOne3(KnownOne); |
| 570 | ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); |
| 571 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 572 | KnownZero = Mask & |
| 573 | APInt::getLowBitsSet(BitWidth, |
David Greene | c714f13 | 2008-10-27 23:24:03 +0000 | [diff] [blame] | 574 | std::min(KnownZero2.countTrailingOnes(), |
| 575 | KnownZero3.countTrailingOnes())); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 576 | break; |
| 577 | } |
| 578 | } |
| 579 | } |
Dan Gohman | 9004c8a | 2009-05-21 02:28:33 +0000 | [diff] [blame] | 580 | |
| 581 | // Otherwise take the unions of the known bit sets of the operands, |
| 582 | // taking conservative care to avoid excessive recursion. |
| 583 | if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { |
| 584 | KnownZero = APInt::getAllOnesValue(BitWidth); |
| 585 | KnownOne = APInt::getAllOnesValue(BitWidth); |
| 586 | for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { |
| 587 | // Skip direct self references. |
| 588 | if (P->getIncomingValue(i) == P) continue; |
| 589 | |
| 590 | KnownZero2 = APInt(BitWidth, 0); |
| 591 | KnownOne2 = APInt(BitWidth, 0); |
| 592 | // Recurse, but cap the recursion to one level, because we don't |
| 593 | // want to waste time spinning around in loops. |
| 594 | ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, |
| 595 | KnownZero2, KnownOne2, TD, MaxDepth-1); |
| 596 | KnownZero &= KnownZero2; |
| 597 | KnownOne &= KnownOne2; |
| 598 | // If all bits have been ruled out, there's no need to check |
| 599 | // more operands. |
| 600 | if (!KnownZero && !KnownOne) |
| 601 | break; |
| 602 | } |
| 603 | } |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 604 | break; |
| 605 | } |
| 606 | case Instruction::Call: |
| 607 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 608 | switch (II->getIntrinsicID()) { |
| 609 | default: break; |
| 610 | case Intrinsic::ctpop: |
| 611 | case Intrinsic::ctlz: |
| 612 | case Intrinsic::cttz: { |
| 613 | unsigned LowBits = Log2_32(BitWidth)+1; |
| 614 | KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); |
| 615 | break; |
| 616 | } |
| 617 | } |
| 618 | } |
| 619 | break; |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 624 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 625 | /// for bits that V cannot have. |
Chris Lattner | cf5128e | 2009-09-08 00:06:16 +0000 | [diff] [blame] | 626 | /// |
| 627 | /// This function is defined on values with integer type, values with pointer |
| 628 | /// type (but only if TD is non-null), and vectors of integers. In the case |
| 629 | /// where V is a vector, the mask, known zero, and known one values are the |
| 630 | /// same width as the vector element, and the bit is set only if it is true |
| 631 | /// for all of the elements in the vector. |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 632 | bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, |
Dan Gohman | 846a2f2 | 2009-08-27 17:51:25 +0000 | [diff] [blame] | 633 | const TargetData *TD, unsigned Depth) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 634 | APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); |
| 635 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); |
| 636 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 637 | return (KnownZero & Mask) == Mask; |
| 638 | } |
| 639 | |
| 640 | |
| 641 | |
| 642 | /// ComputeNumSignBits - Return the number of times the sign bit of the |
| 643 | /// register is replicated into the other bits. We know that at least 1 bit |
| 644 | /// is always equal to the sign bit (itself), but other cases can give us |
| 645 | /// information. For example, immediately after an "ashr X, 2", we know that |
| 646 | /// the top 3 bits are all equal to each other, so we return 3. |
| 647 | /// |
| 648 | /// 'Op' must have a scalar integer type. |
| 649 | /// |
Dan Gohman | 846a2f2 | 2009-08-27 17:51:25 +0000 | [diff] [blame] | 650 | unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, |
| 651 | unsigned Depth) { |
Dan Gohman | bd5ce52 | 2009-06-22 22:02:32 +0000 | [diff] [blame] | 652 | assert((TD || V->getType()->isIntOrIntVector()) && |
| 653 | "ComputeNumSignBits requires a TargetData object to operate " |
| 654 | "on non-integer values!"); |
Dan Gohman | 6de29f8 | 2009-06-15 22:12:54 +0000 | [diff] [blame] | 655 | const Type *Ty = V->getType(); |
Dan Gohman | bd5ce52 | 2009-06-22 22:02:32 +0000 | [diff] [blame] | 656 | unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : |
| 657 | Ty->getScalarSizeInBits(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 658 | unsigned Tmp, Tmp2; |
| 659 | unsigned FirstAnswer = 1; |
| 660 | |
Chris Lattner | d82e511 | 2008-06-02 18:39:07 +0000 | [diff] [blame] | 661 | // Note that ConstantInt is handled by the general ComputeMaskedBits case |
| 662 | // below. |
| 663 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 664 | if (Depth == 6) |
| 665 | return 1; // Limit search depth. |
| 666 | |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 667 | Operator *U = dyn_cast<Operator>(V); |
| 668 | switch (Operator::getOpcode(V)) { |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 669 | default: break; |
| 670 | case Instruction::SExt: |
Mon P Wang | 69a0080 | 2009-12-02 04:59:58 +0000 | [diff] [blame] | 671 | Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 672 | return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; |
| 673 | |
| 674 | case Instruction::AShr: |
| 675 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 676 | // ashr X, C -> adds C sign bits. |
| 677 | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| 678 | Tmp += C->getZExtValue(); |
| 679 | if (Tmp > TyBits) Tmp = TyBits; |
| 680 | } |
| 681 | return Tmp; |
| 682 | case Instruction::Shl: |
| 683 | if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| 684 | // shl destroys sign bits. |
| 685 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 686 | if (C->getZExtValue() >= TyBits || // Bad shift. |
| 687 | C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. |
| 688 | return Tmp - C->getZExtValue(); |
| 689 | } |
| 690 | break; |
| 691 | case Instruction::And: |
| 692 | case Instruction::Or: |
| 693 | case Instruction::Xor: // NOT is handled here. |
| 694 | // Logical binary ops preserve the number of sign bits at the worst. |
| 695 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 696 | if (Tmp != 1) { |
| 697 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 698 | FirstAnswer = std::min(Tmp, Tmp2); |
| 699 | // We computed what we know about the sign bits as our first |
| 700 | // answer. Now proceed to the generic code that uses |
| 701 | // ComputeMaskedBits, and pick whichever answer is better. |
| 702 | } |
| 703 | break; |
| 704 | |
| 705 | case Instruction::Select: |
| 706 | Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 707 | if (Tmp == 1) return 1; // Early out. |
| 708 | Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); |
| 709 | return std::min(Tmp, Tmp2); |
| 710 | |
| 711 | case Instruction::Add: |
| 712 | // Add can have at most one carry bit. Thus we know that the output |
| 713 | // is, at worst, one more bit than the inputs. |
| 714 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 715 | if (Tmp == 1) return 1; // Early out. |
| 716 | |
| 717 | // Special case decrementing a value (ADD X, -1): |
Dan Gohman | 0001e56 | 2009-02-24 02:00:40 +0000 | [diff] [blame] | 718 | if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 719 | if (CRHS->isAllOnesValue()) { |
| 720 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 721 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 722 | ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, |
| 723 | Depth+1); |
| 724 | |
| 725 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 726 | // sign bits set. |
| 727 | if ((KnownZero | APInt(TyBits, 1)) == Mask) |
| 728 | return TyBits; |
| 729 | |
| 730 | // If we are subtracting one from a positive number, there is no carry |
| 731 | // out of the result. |
| 732 | if (KnownZero.isNegative()) |
| 733 | return Tmp; |
| 734 | } |
| 735 | |
| 736 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 737 | if (Tmp2 == 1) return 1; |
Chris Lattner | 8d10f9d | 2010-01-07 23:44:37 +0000 | [diff] [blame] | 738 | return std::min(Tmp, Tmp2)-1; |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 739 | |
| 740 | case Instruction::Sub: |
| 741 | Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); |
| 742 | if (Tmp2 == 1) return 1; |
| 743 | |
| 744 | // Handle NEG. |
| 745 | if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) |
| 746 | if (CLHS->isNullValue()) { |
| 747 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 748 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 749 | ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, |
| 750 | TD, Depth+1); |
| 751 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 752 | // sign bits set. |
| 753 | if ((KnownZero | APInt(TyBits, 1)) == Mask) |
| 754 | return TyBits; |
| 755 | |
| 756 | // If the input is known to be positive (the sign bit is known clear), |
| 757 | // the output of the NEG has the same number of sign bits as the input. |
| 758 | if (KnownZero.isNegative()) |
| 759 | return Tmp2; |
| 760 | |
| 761 | // Otherwise, we treat this like a SUB. |
| 762 | } |
| 763 | |
| 764 | // Sub can have at most one carry bit. Thus we know that the output |
| 765 | // is, at worst, one more bit than the inputs. |
| 766 | Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); |
| 767 | if (Tmp == 1) return 1; // Early out. |
Chris Lattner | 8d10f9d | 2010-01-07 23:44:37 +0000 | [diff] [blame] | 768 | return std::min(Tmp, Tmp2)-1; |
| 769 | |
| 770 | case Instruction::PHI: { |
| 771 | PHINode *PN = cast<PHINode>(U); |
| 772 | // Don't analyze large in-degree PHIs. |
| 773 | if (PN->getNumIncomingValues() > 4) break; |
| 774 | |
| 775 | // Take the minimum of all incoming values. This can't infinitely loop |
| 776 | // because of our depth threshold. |
| 777 | Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); |
| 778 | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 779 | if (Tmp == 1) return Tmp; |
| 780 | Tmp = std::min(Tmp, |
| 781 | ComputeNumSignBits(PN->getIncomingValue(1), TD, Depth+1)); |
| 782 | } |
| 783 | return Tmp; |
| 784 | } |
| 785 | |
Chris Lattner | 173234a | 2008-06-02 01:18:21 +0000 | [diff] [blame] | 786 | case Instruction::Trunc: |
| 787 | // FIXME: it's tricky to do anything useful for this, but it is an important |
| 788 | // case for targets like X86. |
| 789 | break; |
| 790 | } |
| 791 | |
| 792 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 793 | // use this information. |
| 794 | APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); |
| 795 | APInt Mask = APInt::getAllOnesValue(TyBits); |
| 796 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); |
| 797 | |
| 798 | if (KnownZero.isNegative()) { // sign bit is 0 |
| 799 | Mask = KnownZero; |
| 800 | } else if (KnownOne.isNegative()) { // sign bit is 1; |
| 801 | Mask = KnownOne; |
| 802 | } else { |
| 803 | // Nothing known. |
| 804 | return FirstAnswer; |
| 805 | } |
| 806 | |
| 807 | // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| 808 | // the number of identical bits in the top of the input value. |
| 809 | Mask = ~Mask; |
| 810 | Mask <<= Mask.getBitWidth()-TyBits; |
| 811 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 812 | // shifting. We don't want to return '64' as for an i32 "0". |
| 813 | return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); |
| 814 | } |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 815 | |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 816 | /// ComputeMultiple - This function computes the integer multiple of Base that |
| 817 | /// equals V. If successful, it returns true and returns the multiple in |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 818 | /// Multiple. If unsuccessful, it returns false. It looks |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 819 | /// through SExt instructions only if LookThroughSExt is true. |
| 820 | bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 821 | bool LookThroughSExt, unsigned Depth) { |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 822 | const unsigned MaxDepth = 6; |
| 823 | |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 824 | assert(V && "No Value?"); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 825 | assert(Depth <= MaxDepth && "Limit Search Depth"); |
| 826 | assert(V->getType()->isInteger() && "Not integer or pointer type!"); |
| 827 | |
| 828 | const Type *T = V->getType(); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 829 | |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 830 | ConstantInt *CI = dyn_cast<ConstantInt>(V); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 831 | |
| 832 | if (Base == 0) |
| 833 | return false; |
| 834 | |
| 835 | if (Base == 1) { |
| 836 | Multiple = V; |
| 837 | return true; |
| 838 | } |
| 839 | |
| 840 | ConstantExpr *CO = dyn_cast<ConstantExpr>(V); |
| 841 | Constant *BaseVal = ConstantInt::get(T, Base); |
| 842 | if (CO && CO == BaseVal) { |
| 843 | // Multiple is 1. |
| 844 | Multiple = ConstantInt::get(T, 1); |
| 845 | return true; |
| 846 | } |
| 847 | |
| 848 | if (CI && CI->getZExtValue() % Base == 0) { |
| 849 | Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); |
| 850 | return true; |
| 851 | } |
| 852 | |
| 853 | if (Depth == MaxDepth) return false; // Limit search depth. |
| 854 | |
| 855 | Operator *I = dyn_cast<Operator>(V); |
| 856 | if (!I) return false; |
| 857 | |
| 858 | switch (I->getOpcode()) { |
| 859 | default: break; |
Chris Lattner | 11fe726 | 2009-11-26 01:50:12 +0000 | [diff] [blame] | 860 | case Instruction::SExt: |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 861 | if (!LookThroughSExt) return false; |
| 862 | // otherwise fall through to ZExt |
Chris Lattner | 11fe726 | 2009-11-26 01:50:12 +0000 | [diff] [blame] | 863 | case Instruction::ZExt: |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 864 | return ComputeMultiple(I->getOperand(0), Base, Multiple, |
| 865 | LookThroughSExt, Depth+1); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 866 | case Instruction::Shl: |
| 867 | case Instruction::Mul: { |
| 868 | Value *Op0 = I->getOperand(0); |
| 869 | Value *Op1 = I->getOperand(1); |
| 870 | |
| 871 | if (I->getOpcode() == Instruction::Shl) { |
| 872 | ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); |
| 873 | if (!Op1CI) return false; |
| 874 | // Turn Op0 << Op1 into Op0 * 2^Op1 |
| 875 | APInt Op1Int = Op1CI->getValue(); |
| 876 | uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); |
| 877 | Op1 = ConstantInt::get(V->getContext(), |
| 878 | APInt(Op1Int.getBitWidth(), 0).set(BitToSet)); |
| 879 | } |
| 880 | |
| 881 | Value *Mul0 = NULL; |
| 882 | Value *Mul1 = NULL; |
Dan Gohman | 3dbb9e6 | 2009-11-18 00:58:27 +0000 | [diff] [blame] | 883 | bool M0 = ComputeMultiple(Op0, Base, Mul0, |
| 884 | LookThroughSExt, Depth+1); |
| 885 | bool M1 = ComputeMultiple(Op1, Base, Mul1, |
| 886 | LookThroughSExt, Depth+1); |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 887 | |
| 888 | if (M0) { |
| 889 | if (isa<Constant>(Op1) && isa<Constant>(Mul0)) { |
| 890 | // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) |
| 891 | Multiple = ConstantExpr::getMul(cast<Constant>(Mul0), |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 892 | cast<Constant>(Op1)); |
| 893 | return true; |
| 894 | } |
| 895 | |
| 896 | if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) |
| 897 | if (Mul0CI->getValue() == 1) { |
| 898 | // V == Base * Op1, so return Op1 |
| 899 | Multiple = Op1; |
| 900 | return true; |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | if (M1) { |
| 905 | if (isa<Constant>(Op0) && isa<Constant>(Mul1)) { |
| 906 | // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) |
| 907 | Multiple = ConstantExpr::getMul(cast<Constant>(Mul1), |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 908 | cast<Constant>(Op0)); |
| 909 | return true; |
| 910 | } |
| 911 | |
| 912 | if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) |
| 913 | if (Mul1CI->getValue() == 1) { |
| 914 | // V == Base * Op0, so return Op0 |
| 915 | Multiple = Op0; |
| 916 | return true; |
| 917 | } |
| 918 | } |
Victor Hernandez | 2b6705f | 2009-11-10 08:28:35 +0000 | [diff] [blame] | 919 | } |
| 920 | } |
| 921 | |
| 922 | // We could not determine if V is a multiple of Base. |
| 923 | return false; |
| 924 | } |
| 925 | |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 926 | /// CannotBeNegativeZero - Return true if we can prove that the specified FP |
| 927 | /// value is never equal to -0.0. |
| 928 | /// |
| 929 | /// NOTE: this function will need to be revisited when we support non-default |
| 930 | /// rounding modes! |
| 931 | /// |
| 932 | bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { |
| 933 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) |
| 934 | return !CFP->getValueAPF().isNegZero(); |
| 935 | |
| 936 | if (Depth == 6) |
| 937 | return 1; // Limit search depth. |
| 938 | |
Dan Gohman | ca17890 | 2009-07-17 20:47:02 +0000 | [diff] [blame] | 939 | const Operator *I = dyn_cast<Operator>(V); |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 940 | if (I == 0) return false; |
| 941 | |
| 942 | // (add x, 0.0) is guaranteed to return +0.0, not -0.0. |
Dan Gohman | ae3a0be | 2009-06-04 22:49:04 +0000 | [diff] [blame] | 943 | if (I->getOpcode() == Instruction::FAdd && |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 944 | isa<ConstantFP>(I->getOperand(1)) && |
| 945 | cast<ConstantFP>(I->getOperand(1))->isNullValue()) |
| 946 | return true; |
| 947 | |
| 948 | // sitofp and uitofp turn into +0.0 for zero. |
| 949 | if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) |
| 950 | return true; |
| 951 | |
| 952 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| 953 | // sqrt(-0.0) = -0.0, no other negative results are possible. |
| 954 | if (II->getIntrinsicID() == Intrinsic::sqrt) |
| 955 | return CannotBeNegativeZero(II->getOperand(1), Depth+1); |
| 956 | |
| 957 | if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| 958 | if (const Function *F = CI->getCalledFunction()) { |
| 959 | if (F->isDeclaration()) { |
Daniel Dunbar | f0443c1 | 2009-07-26 08:34:35 +0000 | [diff] [blame] | 960 | // abs(x) != -0.0 |
| 961 | if (F->getName() == "abs") return true; |
Dale Johannesen | 9d06175 | 2009-09-25 20:54:50 +0000 | [diff] [blame] | 962 | // fabs[lf](x) != -0.0 |
| 963 | if (F->getName() == "fabs") return true; |
| 964 | if (F->getName() == "fabsf") return true; |
| 965 | if (F->getName() == "fabsl") return true; |
| 966 | if (F->getName() == "sqrt" || F->getName() == "sqrtf" || |
| 967 | F->getName() == "sqrtl") |
| 968 | return CannotBeNegativeZero(CI->getOperand(1), Depth+1); |
Chris Lattner | 833f25d | 2008-06-02 01:29:46 +0000 | [diff] [blame] | 969 | } |
| 970 | } |
| 971 | |
| 972 | return false; |
| 973 | } |
| 974 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 975 | |
| 976 | /// GetLinearExpression - Analyze the specified value as a linear expression: |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 977 | /// "A*V + B", where A and B are constant integers. Return the scale and offset |
| 978 | /// values as APInts and return V as a Value*. The incoming Value is known to |
| 979 | /// have IntegerType. Note that this looks through extends, so the high bits |
| 980 | /// may not be represented in the result. |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 981 | static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 982 | const TargetData *TD, unsigned Depth) { |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 983 | assert(isa<IntegerType>(V->getType()) && "Not an integer value"); |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 984 | |
| 985 | // Limit our recursion depth. |
| 986 | if (Depth == 6) { |
| 987 | Scale = 1; |
| 988 | Offset = 0; |
| 989 | return V; |
| 990 | } |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 991 | |
| 992 | if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { |
| 993 | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { |
| 994 | switch (BOp->getOpcode()) { |
| 995 | default: break; |
| 996 | case Instruction::Or: |
| 997 | // X|C == X+C if all the bits in C are unset in X. Otherwise we can't |
| 998 | // analyze it. |
| 999 | if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD)) |
| 1000 | break; |
| 1001 | // FALL THROUGH. |
| 1002 | case Instruction::Add: |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1003 | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1004 | Offset += RHSC->getValue(); |
| 1005 | return V; |
| 1006 | case Instruction::Mul: |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1007 | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1008 | Offset *= RHSC->getValue(); |
| 1009 | Scale *= RHSC->getValue(); |
| 1010 | return V; |
| 1011 | case Instruction::Shl: |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1012 | V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1013 | Offset <<= RHSC->getValue().getLimitedValue(); |
| 1014 | Scale <<= RHSC->getValue().getLimitedValue(); |
| 1015 | return V; |
| 1016 | } |
| 1017 | } |
| 1018 | } |
| 1019 | |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 1020 | // Since clients don't care about the high bits of the value, just scales and |
| 1021 | // offsets, we can look through extensions. |
| 1022 | if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { |
| 1023 | Value *CastOp = cast<CastInst>(V)->getOperand(0); |
| 1024 | unsigned OldWidth = Scale.getBitWidth(); |
| 1025 | unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); |
| 1026 | Scale.trunc(SmallWidth); |
| 1027 | Offset.trunc(SmallWidth); |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1028 | Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1); |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 1029 | Scale.zext(OldWidth); |
| 1030 | Offset.zext(OldWidth); |
| 1031 | return Result; |
| 1032 | } |
| 1033 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1034 | Scale = 1; |
| 1035 | Offset = 0; |
| 1036 | return V; |
| 1037 | } |
| 1038 | |
| 1039 | /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it |
| 1040 | /// into a base pointer with a constant offset and a number of scaled symbolic |
| 1041 | /// offsets. |
| 1042 | /// |
Chris Lattner | 1ce0eaa | 2009-11-26 18:53:33 +0000 | [diff] [blame] | 1043 | /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in |
| 1044 | /// the VarIndices vector) are Value*'s that are known to be scaled by the |
| 1045 | /// specified amount, but which may have other unrepresented high bits. As such, |
| 1046 | /// the gep cannot necessarily be reconstructed from its decomposed form. |
| 1047 | /// |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1048 | /// When TargetData is around, this function is capable of analyzing everything |
| 1049 | /// that Value::getUnderlyingObject() can look through. When not, it just looks |
| 1050 | /// through pointer casts. |
| 1051 | /// |
| 1052 | const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, |
| 1053 | SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices, |
| 1054 | const TargetData *TD) { |
Chris Lattner | ab9530e | 2009-11-28 15:12:41 +0000 | [diff] [blame] | 1055 | // Limit recursion depth to limit compile time in crazy cases. |
| 1056 | unsigned MaxLookup = 6; |
| 1057 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1058 | BaseOffs = 0; |
Chris Lattner | ab9530e | 2009-11-28 15:12:41 +0000 | [diff] [blame] | 1059 | do { |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1060 | // See if this is a bitcast or GEP. |
| 1061 | const Operator *Op = dyn_cast<Operator>(V); |
| 1062 | if (Op == 0) { |
| 1063 | // The only non-operator case we can handle are GlobalAliases. |
| 1064 | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { |
| 1065 | if (!GA->mayBeOverridden()) { |
| 1066 | V = GA->getAliasee(); |
| 1067 | continue; |
| 1068 | } |
| 1069 | } |
| 1070 | return V; |
| 1071 | } |
| 1072 | |
| 1073 | if (Op->getOpcode() == Instruction::BitCast) { |
| 1074 | V = Op->getOperand(0); |
| 1075 | continue; |
| 1076 | } |
| 1077 | |
| 1078 | const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); |
| 1079 | if (GEPOp == 0) |
| 1080 | return V; |
| 1081 | |
| 1082 | // Don't attempt to analyze GEPs over unsized objects. |
| 1083 | if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) |
| 1084 | ->getElementType()->isSized()) |
| 1085 | return V; |
| 1086 | |
| 1087 | // If we are lacking TargetData information, we can't compute the offets of |
| 1088 | // elements computed by GEPs. However, we can handle bitcast equivalent |
| 1089 | // GEPs. |
| 1090 | if (!TD) { |
| 1091 | if (!GEPOp->hasAllZeroIndices()) |
| 1092 | return V; |
| 1093 | V = GEPOp->getOperand(0); |
| 1094 | continue; |
| 1095 | } |
| 1096 | |
| 1097 | // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. |
| 1098 | gep_type_iterator GTI = gep_type_begin(GEPOp); |
| 1099 | for (User::const_op_iterator I = GEPOp->op_begin()+1, |
| 1100 | E = GEPOp->op_end(); I != E; ++I) { |
| 1101 | Value *Index = *I; |
| 1102 | // Compute the (potentially symbolic) offset in bytes for this index. |
| 1103 | if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { |
| 1104 | // For a struct, add the member offset. |
| 1105 | unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); |
| 1106 | if (FieldNo == 0) continue; |
| 1107 | |
| 1108 | BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); |
| 1109 | continue; |
| 1110 | } |
| 1111 | |
| 1112 | // For an array/pointer, add the element offset, explicitly scaled. |
| 1113 | if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { |
| 1114 | if (CIdx->isZero()) continue; |
| 1115 | BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); |
| 1116 | continue; |
| 1117 | } |
| 1118 | |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1119 | uint64_t Scale = TD->getTypeAllocSize(*GTI); |
| 1120 | |
Chris Lattner | b18004c | 2009-11-26 18:35:46 +0000 | [diff] [blame] | 1121 | // Use GetLinearExpression to decompose the index into a C1*V+C2 form. |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1122 | unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); |
| 1123 | APInt IndexScale(Width, 0), IndexOffset(Width, 0); |
Chris Lattner | a650f77 | 2009-11-27 08:32:52 +0000 | [diff] [blame] | 1124 | Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1125 | |
Chris Lattner | b18004c | 2009-11-26 18:35:46 +0000 | [diff] [blame] | 1126 | // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. |
| 1127 | // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1128 | BaseOffs += IndexOffset.getZExtValue()*Scale; |
Chris Lattner | b18004c | 2009-11-26 18:35:46 +0000 | [diff] [blame] | 1129 | Scale *= IndexScale.getZExtValue(); |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1130 | |
| 1131 | |
| 1132 | // If we already had an occurrance of this index variable, merge this |
| 1133 | // scale into it. For example, we want to handle: |
| 1134 | // A[x][x] -> x*16 + x*4 -> x*20 |
| 1135 | // This also ensures that 'x' only appears in the index list once. |
| 1136 | for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { |
| 1137 | if (VarIndices[i].first == Index) { |
| 1138 | Scale += VarIndices[i].second; |
| 1139 | VarIndices.erase(VarIndices.begin()+i); |
| 1140 | break; |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | // Make sure that we have a scale that makes sense for this target's |
| 1145 | // pointer size. |
| 1146 | if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { |
| 1147 | Scale <<= ShiftBits; |
| 1148 | Scale >>= ShiftBits; |
| 1149 | } |
| 1150 | |
| 1151 | if (Scale) |
| 1152 | VarIndices.push_back(std::make_pair(Index, Scale)); |
| 1153 | } |
| 1154 | |
| 1155 | // Analyze the base pointer next. |
| 1156 | V = GEPOp->getOperand(0); |
Chris Lattner | ab9530e | 2009-11-28 15:12:41 +0000 | [diff] [blame] | 1157 | } while (--MaxLookup); |
| 1158 | |
| 1159 | // If the chain of expressions is too deep, just return early. |
| 1160 | return V; |
Chris Lattner | e405c64 | 2009-11-26 17:12:50 +0000 | [diff] [blame] | 1161 | } |
| 1162 | |
| 1163 | |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1164 | // This is the recursive version of BuildSubAggregate. It takes a few different |
| 1165 | // arguments. Idxs is the index within the nested struct From that we are |
| 1166 | // looking at now (which is of type IndexedType). IdxSkip is the number of |
| 1167 | // indices from Idxs that should be left out when inserting into the resulting |
| 1168 | // struct. To is the result struct built so far, new insertvalue instructions |
| 1169 | // build on that. |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1170 | static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, |
| 1171 | SmallVector<unsigned, 10> &Idxs, |
| 1172 | unsigned IdxSkip, |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1173 | Instruction *InsertBefore) { |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1174 | const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); |
| 1175 | if (STy) { |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1176 | // Save the original To argument so we can modify it |
| 1177 | Value *OrigTo = To; |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1178 | // General case, the type indexed by Idxs is a struct |
| 1179 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| 1180 | // Process each struct element recursively |
| 1181 | Idxs.push_back(i); |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1182 | Value *PrevTo = To; |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1183 | To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1184 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1185 | Idxs.pop_back(); |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1186 | if (!To) { |
| 1187 | // Couldn't find any inserted value for this index? Cleanup |
| 1188 | while (PrevTo != OrigTo) { |
| 1189 | InsertValueInst* Del = cast<InsertValueInst>(PrevTo); |
| 1190 | PrevTo = Del->getAggregateOperand(); |
| 1191 | Del->eraseFromParent(); |
| 1192 | } |
| 1193 | // Stop processing elements |
| 1194 | break; |
| 1195 | } |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1196 | } |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1197 | // If we succesfully found a value for each of our subaggregates |
| 1198 | if (To) |
| 1199 | return To; |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1200 | } |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1201 | // Base case, the type indexed by SourceIdxs is not a struct, or not all of |
| 1202 | // the struct's elements had a value that was inserted directly. In the latter |
| 1203 | // case, perhaps we can't determine each of the subelements individually, but |
| 1204 | // we might be able to find the complete struct somewhere. |
| 1205 | |
| 1206 | // Find the value that is at that particular spot |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1207 | Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1208 | |
| 1209 | if (!V) |
| 1210 | return NULL; |
| 1211 | |
| 1212 | // Insert the value in the new (sub) aggregrate |
| 1213 | return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, |
| 1214 | Idxs.end(), "tmp", InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1215 | } |
| 1216 | |
| 1217 | // This helper takes a nested struct and extracts a part of it (which is again a |
| 1218 | // struct) into a new value. For example, given the struct: |
| 1219 | // { a, { b, { c, d }, e } } |
| 1220 | // and the indices "1, 1" this returns |
| 1221 | // { c, d }. |
| 1222 | // |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1223 | // It does this by inserting an insertvalue for each element in the resulting |
| 1224 | // struct, as opposed to just inserting a single struct. This will only work if |
| 1225 | // each of the elements of the substruct are known (ie, inserted into From by an |
| 1226 | // insertvalue instruction somewhere). |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1227 | // |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1228 | // All inserted insertvalue instructions are inserted before InsertBefore |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1229 | static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1230 | const unsigned *idx_end, |
Dan Gohman | 7db949d | 2009-08-07 01:32:21 +0000 | [diff] [blame] | 1231 | Instruction *InsertBefore) { |
Matthijs Kooijman | 9772891 | 2008-06-16 13:28:31 +0000 | [diff] [blame] | 1232 | assert(InsertBefore && "Must have someplace to insert!"); |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1233 | const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), |
| 1234 | idx_begin, |
| 1235 | idx_end); |
Owen Anderson | 9e9a0d5 | 2009-07-30 23:03:37 +0000 | [diff] [blame] | 1236 | Value *To = UndefValue::get(IndexedType); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1237 | SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); |
| 1238 | unsigned IdxSkip = Idxs.size(); |
| 1239 | |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1240 | return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1241 | } |
| 1242 | |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1243 | /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if |
| 1244 | /// the scalar value indexed is already around as a register, for example if it |
| 1245 | /// were inserted directly into the aggregrate. |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1246 | /// |
| 1247 | /// If InsertBefore is not null, this function will duplicate (modified) |
| 1248 | /// insertvalues when a part of a nested struct is extracted. |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1249 | Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1250 | const unsigned *idx_end, Instruction *InsertBefore) { |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1251 | // Nothing to index? Just return V then (this is useful at the end of our |
| 1252 | // recursion) |
| 1253 | if (idx_begin == idx_end) |
| 1254 | return V; |
| 1255 | // We have indices, so V should have an indexable type |
| 1256 | assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType())) |
| 1257 | && "Not looking at a struct or array?"); |
| 1258 | assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) |
| 1259 | && "Invalid indices for type?"); |
| 1260 | const CompositeType *PTy = cast<CompositeType>(V->getType()); |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 1261 | |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1262 | if (isa<UndefValue>(V)) |
Owen Anderson | 9e9a0d5 | 2009-07-30 23:03:37 +0000 | [diff] [blame] | 1263 | return UndefValue::get(ExtractValueInst::getIndexedType(PTy, |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1264 | idx_begin, |
| 1265 | idx_end)); |
| 1266 | else if (isa<ConstantAggregateZero>(V)) |
Owen Anderson | a7235ea | 2009-07-31 20:28:14 +0000 | [diff] [blame] | 1267 | return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 1268 | idx_begin, |
| 1269 | idx_end)); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1270 | else if (Constant *C = dyn_cast<Constant>(V)) { |
| 1271 | if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) |
| 1272 | // Recursively process this constant |
Owen Anderson | 76f600b | 2009-07-06 22:37:39 +0000 | [diff] [blame] | 1273 | return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1274 | idx_end, InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1275 | } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { |
| 1276 | // Loop the indices for the insertvalue instruction in parallel with the |
| 1277 | // requested indices |
| 1278 | const unsigned *req_idx = idx_begin; |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1279 | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); |
| 1280 | i != e; ++i, ++req_idx) { |
Duncan Sands | 9954c76 | 2008-06-19 08:47:31 +0000 | [diff] [blame] | 1281 | if (req_idx == idx_end) { |
Matthijs Kooijman | 9772891 | 2008-06-16 13:28:31 +0000 | [diff] [blame] | 1282 | if (InsertBefore) |
Matthijs Kooijman | 0a9aaf4 | 2008-06-16 14:13:46 +0000 | [diff] [blame] | 1283 | // The requested index identifies a part of a nested aggregate. Handle |
| 1284 | // this specially. For example, |
| 1285 | // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 |
| 1286 | // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 |
| 1287 | // %C = extractvalue {i32, { i32, i32 } } %B, 1 |
| 1288 | // This can be changed into |
| 1289 | // %A = insertvalue {i32, i32 } undef, i32 10, 0 |
| 1290 | // %C = insertvalue {i32, i32 } %A, i32 11, 1 |
| 1291 | // which allows the unused 0,0 element from the nested struct to be |
| 1292 | // removed. |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1293 | return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); |
Matthijs Kooijman | 9772891 | 2008-06-16 13:28:31 +0000 | [diff] [blame] | 1294 | else |
| 1295 | // We can't handle this without inserting insertvalues |
| 1296 | return 0; |
Duncan Sands | 9954c76 | 2008-06-19 08:47:31 +0000 | [diff] [blame] | 1297 | } |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1298 | |
| 1299 | // This insert value inserts something else than what we are looking for. |
| 1300 | // See if the (aggregrate) value inserted into has the value we are |
| 1301 | // looking for, then. |
| 1302 | if (*req_idx != *i) |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1303 | return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1304 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1305 | } |
| 1306 | // If we end up here, the indices of the insertvalue match with those |
| 1307 | // requested (though possibly only partially). Now we recursively look at |
| 1308 | // the inserted value, passing any remaining indices. |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1309 | return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1310 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1311 | } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { |
| 1312 | // If we're extracting a value from an aggregrate that was extracted from |
| 1313 | // something else, we can extract from that something else directly instead. |
| 1314 | // However, we will need to chain I's indices with the requested indices. |
| 1315 | |
| 1316 | // Calculate the number of indices required |
| 1317 | unsigned size = I->getNumIndices() + (idx_end - idx_begin); |
| 1318 | // Allocate some space to put the new indices in |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1319 | SmallVector<unsigned, 5> Idxs; |
| 1320 | Idxs.reserve(size); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1321 | // Add indices from the extract value instruction |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1322 | for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1323 | i != e; ++i) |
| 1324 | Idxs.push_back(*i); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1325 | |
| 1326 | // Add requested indices |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1327 | for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i) |
| 1328 | Idxs.push_back(*i); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1329 | |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1330 | assert(Idxs.size() == size |
Matthijs Kooijman | 710eb23 | 2008-06-16 12:57:37 +0000 | [diff] [blame] | 1331 | && "Number of indices added not correct?"); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1332 | |
Matthijs Kooijman | 3faf9df | 2008-06-17 08:24:37 +0000 | [diff] [blame] | 1333 | return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), |
Nick Lewycky | ae3d802 | 2009-11-23 03:29:18 +0000 | [diff] [blame] | 1334 | InsertBefore); |
Matthijs Kooijman | b23d5ad | 2008-06-16 12:48:21 +0000 | [diff] [blame] | 1335 | } |
| 1336 | // Otherwise, we don't know (such as, extracting from a function return value |
| 1337 | // or load instruction) |
| 1338 | return 0; |
| 1339 | } |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1340 | |
| 1341 | /// GetConstantStringInfo - This function computes the length of a |
| 1342 | /// null-terminated C string pointed to by V. If successful, it returns true |
| 1343 | /// and returns the string in Str. If unsuccessful, it returns false. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1344 | bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset, |
| 1345 | bool StopAtNul) { |
| 1346 | // If V is NULL then return false; |
| 1347 | if (V == NULL) return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1348 | |
| 1349 | // Look through bitcast instructions. |
| 1350 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1351 | return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); |
| 1352 | |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1353 | // If the value is not a GEP instruction nor a constant expression with a |
| 1354 | // GEP instruction, then return false because ConstantArray can't occur |
| 1355 | // any other way |
| 1356 | User *GEP = 0; |
| 1357 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { |
| 1358 | GEP = GEPI; |
| 1359 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| 1360 | if (CE->getOpcode() == Instruction::BitCast) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1361 | return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); |
| 1362 | if (CE->getOpcode() != Instruction::GetElementPtr) |
| 1363 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1364 | GEP = CE; |
| 1365 | } |
| 1366 | |
| 1367 | if (GEP) { |
| 1368 | // Make sure the GEP has exactly three arguments. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1369 | if (GEP->getNumOperands() != 3) |
| 1370 | return false; |
| 1371 | |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1372 | // Make sure the index-ee is a pointer to array of i8. |
| 1373 | const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); |
| 1374 | const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); |
Benjamin Kramer | 8c65f6e | 2010-01-05 21:05:54 +0000 | [diff] [blame] | 1375 | if (AT == 0 || !AT->getElementType()->isInteger(8)) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1376 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1377 | |
| 1378 | // Check to make sure that the first operand of the GEP is an integer and |
| 1379 | // has value 0 so that we are sure we're indexing into the initializer. |
| 1380 | ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1381 | if (FirstIdx == 0 || !FirstIdx->isZero()) |
| 1382 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1383 | |
| 1384 | // If the second index isn't a ConstantInt, then this is a variable index |
| 1385 | // into the array. If this occurs, we can't say anything meaningful about |
| 1386 | // the string. |
| 1387 | uint64_t StartIdx = 0; |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1388 | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1389 | StartIdx = CI->getZExtValue(); |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1390 | else |
| 1391 | return false; |
| 1392 | return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1393 | StopAtNul); |
| 1394 | } |
| 1395 | |
| 1396 | // The GEP instruction, constant or instruction, must reference a global |
| 1397 | // variable that is a constant and is initialized. The referenced constant |
| 1398 | // initializer is the array that we'll use for optimization. |
| 1399 | GlobalVariable* GV = dyn_cast<GlobalVariable>(V); |
Dan Gohman | 8255573 | 2009-08-19 18:20:44 +0000 | [diff] [blame] | 1400 | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1401 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1402 | Constant *GlobalInit = GV->getInitializer(); |
| 1403 | |
| 1404 | // Handle the ConstantAggregateZero case |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1405 | if (isa<ConstantAggregateZero>(GlobalInit)) { |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1406 | // This is a degenerate case. The initializer is constant zero so the |
| 1407 | // length of the string must be zero. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1408 | Str.clear(); |
| 1409 | return true; |
| 1410 | } |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1411 | |
| 1412 | // Must be a Constant Array |
| 1413 | ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); |
Benjamin Kramer | 8c65f6e | 2010-01-05 21:05:54 +0000 | [diff] [blame] | 1414 | if (Array == 0 || !Array->getType()->getElementType()->isInteger(8)) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1415 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1416 | |
| 1417 | // Get the number of elements in the array |
| 1418 | uint64_t NumElts = Array->getType()->getNumElements(); |
| 1419 | |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1420 | if (Offset > NumElts) |
| 1421 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1422 | |
| 1423 | // Traverse the constant array from 'Offset' which is the place the GEP refers |
| 1424 | // to in the array. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1425 | Str.reserve(NumElts-Offset); |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1426 | for (unsigned i = Offset; i != NumElts; ++i) { |
| 1427 | Constant *Elt = Array->getOperand(i); |
| 1428 | ConstantInt *CI = dyn_cast<ConstantInt>(Elt); |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1429 | if (!CI) // This array isn't suitable, non-int initializer. |
| 1430 | return false; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1431 | if (StopAtNul && CI->isZero()) |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1432 | return true; // we found end of string, success! |
| 1433 | Str += (char)CI->getZExtValue(); |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1434 | } |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1435 | |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1436 | // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. |
Bill Wendling | 0582ae9 | 2009-03-13 04:39:26 +0000 | [diff] [blame] | 1437 | return true; |
Evan Cheng | 0ff39b3 | 2008-06-30 07:31:25 +0000 | [diff] [blame] | 1438 | } |