Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 1 | //===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// |
| 2 | // |
John Criswell | b576c94 | 2003-10-20 19:43:21 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 7 | // |
John Criswell | b576c94 | 2003-10-20 19:43:21 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 9 | // |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 10 | // |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 14 | #define DEBUG_TYPE "ModuloSched" |
| 15 | |
| 16 | #include "ModuloScheduling.h" |
| 17 | #include "llvm/CodeGen/MachineFunction.h" |
| 18 | #include "llvm/CodeGen/Passes.h" |
| 19 | #include "llvm/Support/CFG.h" |
| 20 | #include "llvm/Target/TargetSchedInfo.h" |
| 21 | #include "Support/Debug.h" |
| 22 | #include "Support/GraphWriter.h" |
| 23 | #include <vector> |
| 24 | #include <utility> |
| 25 | #include <iostream> |
| 26 | #include <fstream> |
| 27 | #include <sstream> |
| 28 | |
| 29 | using namespace llvm; |
| 30 | |
| 31 | /// Create ModuloSchedulingPass |
| 32 | /// |
| 33 | FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { |
| 34 | DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); |
| 35 | return new ModuloSchedulingPass(targ); |
| 36 | } |
| 37 | |
| 38 | template<typename GraphType> |
| 39 | static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, |
| 40 | const GraphType >) { |
| 41 | std::string Filename = GraphName + ".dot"; |
| 42 | O << "Writing '" << Filename << "'..."; |
| 43 | std::ofstream F(Filename.c_str()); |
| 44 | |
| 45 | if (F.good()) |
| 46 | WriteGraph(F, GT); |
| 47 | else |
| 48 | O << " error opening file for writing!"; |
| 49 | O << "\n"; |
| 50 | }; |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 51 | |
Brian Gaeke | d0fde30 | 2003-11-11 22:41:34 +0000 | [diff] [blame] | 52 | namespace llvm { |
| 53 | |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 54 | template<> |
| 55 | struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits { |
| 56 | static std::string getGraphName(MSchedGraph *F) { |
| 57 | return "Dependence Graph"; |
| 58 | } |
Guochun Shi | 8f1d4ab | 2003-06-08 23:16:07 +0000 | [diff] [blame] | 59 | |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 60 | static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { |
| 61 | if (Node->getInst()) { |
| 62 | std::stringstream ss; |
| 63 | ss << *(Node->getInst()); |
| 64 | return ss.str(); //((MachineInstr*)Node->getInst()); |
| 65 | } |
| 66 | else |
| 67 | return "No Inst"; |
| 68 | } |
| 69 | static std::string getEdgeSourceLabel(MSchedGraphNode *Node, |
| 70 | MSchedGraphNode::succ_iterator I) { |
| 71 | //Label each edge with the type of dependence |
| 72 | std::string edgelabel = ""; |
| 73 | switch (I.getEdge().getDepOrderType()) { |
| 74 | |
| 75 | case MSchedGraphEdge::TrueDep: |
| 76 | edgelabel = "True"; |
| 77 | break; |
| 78 | |
| 79 | case MSchedGraphEdge::AntiDep: |
| 80 | edgelabel = "Anti"; |
| 81 | break; |
| 82 | |
| 83 | case MSchedGraphEdge::OutputDep: |
| 84 | edgelabel = "Output"; |
| 85 | break; |
| 86 | |
| 87 | default: |
| 88 | edgelabel = "Unknown"; |
| 89 | break; |
| 90 | } |
| 91 | if(I.getEdge().getIteDiff() > 0) |
| 92 | edgelabel += I.getEdge().getIteDiff(); |
| 93 | |
| 94 | return edgelabel; |
| 95 | } |
| 96 | |
| 97 | |
| 98 | |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 99 | }; |
Guochun Shi | f1c154f | 2003-03-27 17:57:44 +0000 | [diff] [blame] | 100 | } |
Tanya Lattner | 4f839cc | 2003-08-28 17:12:14 +0000 | [diff] [blame] | 101 | |
Misha Brukman | aa41c3c | 2003-10-10 17:41:32 +0000 | [diff] [blame] | 102 | /// ModuloScheduling::runOnFunction - main transformation entry point |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 103 | bool ModuloSchedulingPass::runOnFunction(Function &F) { |
Tanya Lattner | 4f839cc | 2003-08-28 17:12:14 +0000 | [diff] [blame] | 104 | bool Changed = false; |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 105 | |
| 106 | DEBUG(std::cerr << "Creating ModuloSchedGraph for each BasicBlock in" + F.getName() + "\n"); |
| 107 | |
| 108 | //Get MachineFunction |
| 109 | MachineFunction &MF = MachineFunction::get(&F); |
| 110 | |
| 111 | //Iterate over BasicBlocks and do ModuloScheduling if they are valid |
| 112 | for (MachineFunction::const_iterator BI = MF.begin(); BI != MF.end(); ++BI) { |
| 113 | if(MachineBBisValid(BI)) { |
| 114 | MSchedGraph *MSG = new MSchedGraph(BI, target); |
| 115 | |
| 116 | //Write Graph out to file |
| 117 | DEBUG(WriteGraphToFile(std::cerr, "dependgraph", MSG)); |
| 118 | |
| 119 | //Print out BB for debugging |
| 120 | DEBUG(BI->print(std::cerr)); |
| 121 | |
| 122 | //Calculate Resource II |
| 123 | int ResMII = calculateResMII(BI); |
| 124 | |
| 125 | calculateNodeAttributes(MSG, ResMII); |
| 126 | |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | |
Tanya Lattner | 4f839cc | 2003-08-28 17:12:14 +0000 | [diff] [blame] | 131 | return Changed; |
| 132 | } |
Brian Gaeke | d0fde30 | 2003-11-11 22:41:34 +0000 | [diff] [blame] | 133 | |
Tanya Lattner | d14b837 | 2004-03-01 02:50:01 +0000 | [diff] [blame^] | 134 | |
| 135 | bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { |
| 136 | |
| 137 | //Valid basic blocks must be loops and can not have if/else statements or calls. |
| 138 | bool isLoop = false; |
| 139 | |
| 140 | //Check first if its a valid loop |
| 141 | for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), |
| 142 | E = succ_end(BI->getBasicBlock()); I != E; ++I) { |
| 143 | if (*I == BI->getBasicBlock()) // has single block loop |
| 144 | isLoop = true; |
| 145 | } |
| 146 | |
| 147 | if(!isLoop) { |
| 148 | DEBUG(std::cerr << "Basic Block is not a loop\n"); |
| 149 | return false; |
| 150 | } |
| 151 | else |
| 152 | DEBUG(std::cerr << "Basic Block is a loop\n"); |
| 153 | |
| 154 | //Get Target machine instruction info |
| 155 | /*const TargetInstrInfo& TMI = targ.getInstrInfo(); |
| 156 | |
| 157 | //Check each instruction and look for calls or if/else statements |
| 158 | unsigned count = 0; |
| 159 | for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { |
| 160 | //Get opcode to check instruction type |
| 161 | MachineOpCode OC = I->getOpcode(); |
| 162 | if(TMI.isControlFlow(OC) && (count+1 < BI->size())) |
| 163 | return false; |
| 164 | count++; |
| 165 | }*/ |
| 166 | return true; |
| 167 | |
| 168 | } |
| 169 | |
| 170 | //ResMII is calculated by determining the usage count for each resource |
| 171 | //and using the maximum. |
| 172 | //FIXME: In future there should be a way to get alternative resources |
| 173 | //for each instruction |
| 174 | int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { |
| 175 | |
| 176 | const TargetInstrInfo & mii = target.getInstrInfo(); |
| 177 | const TargetSchedInfo & msi = target.getSchedInfo(); |
| 178 | |
| 179 | int ResMII = 0; |
| 180 | |
| 181 | //Map to keep track of usage count of each resource |
| 182 | std::map<unsigned, unsigned> resourceUsageCount; |
| 183 | |
| 184 | for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { |
| 185 | |
| 186 | //Get resource usage for this instruction |
| 187 | InstrRUsage rUsage = msi.getInstrRUsage(I->getOpcode()); |
| 188 | std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; |
| 189 | |
| 190 | //Loop over resources in each cycle and increments their usage count |
| 191 | for(unsigned i=0; i < resources.size(); ++i) |
| 192 | for(unsigned j=0; j < resources[i].size(); ++j) { |
| 193 | if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) { |
| 194 | resourceUsageCount[resources[i][j]] = 1; |
| 195 | } |
| 196 | else { |
| 197 | resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | //Find maximum usage count |
| 203 | |
| 204 | //Get max number of instructions that can be issued at once. |
| 205 | int issueSlots = msi.maxNumIssueTotal; |
| 206 | |
| 207 | for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { |
| 208 | //Get the total number of the resources in our cpu |
| 209 | //int resourceNum = msi.getCPUResourceNum(RB->first); |
| 210 | |
| 211 | //Get total usage count for this resources |
| 212 | unsigned usageCount = RB->second; |
| 213 | |
| 214 | //Divide the usage count by either the max number we can issue or the number of |
| 215 | //resources (whichever is its upper bound) |
| 216 | double finalUsageCount; |
| 217 | //if( resourceNum <= issueSlots) |
| 218 | //finalUsageCount = ceil(1.0 * usageCount / resourceNum); |
| 219 | //else |
| 220 | finalUsageCount = ceil(1.0 * usageCount / issueSlots); |
| 221 | |
| 222 | |
| 223 | DEBUG(std::cerr << "Resource ID: " << RB->first << " (usage=" << usageCount << ", resourceNum=X" << ", issueSlots=" << issueSlots << ", finalUsage=" << finalUsageCount << ")\n"); |
| 224 | |
| 225 | //Only keep track of the max |
| 226 | ResMII = std::max( (int) finalUsageCount, ResMII); |
| 227 | |
| 228 | } |
| 229 | |
| 230 | DEBUG(std::cerr << "Final Resource MII: " << ResMII << "\n"); |
| 231 | return ResMII; |
| 232 | |
| 233 | } |
| 234 | |
| 235 | void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { |
| 236 | |
| 237 | //Loop over the nodes and add them to the map |
| 238 | for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { |
| 239 | //Assert if its already in the map |
| 240 | assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map"); |
| 241 | |
| 242 | //Put into the map with default attribute values |
| 243 | nodeToAttributesMap[I->second] = MSNodeAttributes(); |
| 244 | } |
| 245 | |
| 246 | //Create set to deal with reccurrences |
| 247 | std::set<MSchedGraphNode*> visitedNodes; |
| 248 | std::vector<MSchedGraphNode*> vNodes; |
| 249 | //Now Loop over map and calculate the node attributes |
| 250 | for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| 251 | // calculateASAP(I->first, (I->second), MII, visitedNodes); |
| 252 | findAllReccurrences(I->first, vNodes); |
| 253 | vNodes.clear(); |
| 254 | visitedNodes.clear(); |
| 255 | } |
| 256 | |
| 257 | //Calculate ALAP which depends on ASAP being totally calculated |
| 258 | /*for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| 259 | calculateALAP(I->first, (I->second), MII, MII, visitedNodes); |
| 260 | visitedNodes.clear(); |
| 261 | }*/ |
| 262 | |
| 263 | //Calculate MOB which depends on ASAP being totally calculated, also do depth and height |
| 264 | /*for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| 265 | (I->second).MOB = (I->second).ALAP - (I->second).ASAP; |
| 266 | DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); |
| 267 | calculateDepth(I->first, (I->second), visitedNodes); |
| 268 | visitedNodes.clear(); |
| 269 | calculateHeight(I->first, (I->second), visitedNodes); |
| 270 | visitedNodes.clear(); |
| 271 | }*/ |
| 272 | |
| 273 | |
| 274 | } |
| 275 | |
| 276 | void ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, MSNodeAttributes &attributes, |
| 277 | int MII, std::set<MSchedGraphNode*> &visitedNodes) { |
| 278 | |
| 279 | DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); |
| 280 | |
| 281 | if(attributes.ASAP != -1 || (visitedNodes.find(node) != visitedNodes.end())) { |
| 282 | visitedNodes.erase(node); |
| 283 | return; |
| 284 | } |
| 285 | if(node->hasPredecessors()) { |
| 286 | int maxPredValue = 0; |
| 287 | |
| 288 | //Iterate over all of the predecessors and fine max |
| 289 | for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| 290 | |
| 291 | //Get that nodes ASAP |
| 292 | MSNodeAttributes predAttributes = nodeToAttributesMap.find(*P)->second; |
| 293 | if(predAttributes.ASAP == -1) { |
| 294 | //Put into set before you recurse |
| 295 | visitedNodes.insert(node); |
| 296 | calculateASAP(*P, predAttributes, MII, visitedNodes); |
| 297 | predAttributes = nodeToAttributesMap.find(*P)->second; |
| 298 | } |
| 299 | int iteDiff = node->getInEdge(*P).getIteDiff(); |
| 300 | |
| 301 | int currentPredValue = predAttributes.ASAP + node->getLatency() - iteDiff * MII; |
| 302 | DEBUG(std::cerr << "Current ASAP pred: " << currentPredValue << "\n"); |
| 303 | maxPredValue = std::max(maxPredValue, currentPredValue); |
| 304 | } |
| 305 | visitedNodes.erase(node); |
| 306 | attributes.ASAP = maxPredValue; |
| 307 | } |
| 308 | else { |
| 309 | visitedNodes.erase(node); |
| 310 | attributes.ASAP = 0; |
| 311 | } |
| 312 | |
| 313 | DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); |
| 314 | } |
| 315 | |
| 316 | |
| 317 | void ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, MSNodeAttributes &attributes, |
| 318 | int MII, int maxASAP, |
| 319 | std::set<MSchedGraphNode*> &visitedNodes) { |
| 320 | |
| 321 | DEBUG(std::cerr << "Calculating AlAP for " << *node << "\n"); |
| 322 | |
| 323 | if(attributes.ALAP != -1|| (visitedNodes.find(node) != visitedNodes.end())) { |
| 324 | visitedNodes.erase(node); |
| 325 | return; |
| 326 | } |
| 327 | if(node->hasSuccessors()) { |
| 328 | int minSuccValue = 0; |
| 329 | |
| 330 | //Iterate over all of the predecessors and fine max |
| 331 | for(MSchedGraphNode::succ_iterator P = node->succ_begin(), |
| 332 | E = node->succ_end(); P != E; ++P) { |
| 333 | |
| 334 | MSNodeAttributes succAttributes = nodeToAttributesMap.find(*P)->second; |
| 335 | if(succAttributes.ASAP == -1) { |
| 336 | |
| 337 | //Put into set before recursing |
| 338 | visitedNodes.insert(node); |
| 339 | |
| 340 | calculateALAP(*P, succAttributes, MII, maxASAP, visitedNodes); |
| 341 | succAttributes = nodeToAttributesMap.find(*P)->second; |
| 342 | assert(succAttributes.ASAP == -1 && "Successors ALAP should have been caclulated"); |
| 343 | } |
| 344 | int iteDiff = P.getEdge().getIteDiff(); |
| 345 | int currentSuccValue = succAttributes.ALAP + node->getLatency() + iteDiff * MII; |
| 346 | minSuccValue = std::min(minSuccValue, currentSuccValue); |
| 347 | } |
| 348 | visitedNodes.erase(node); |
| 349 | attributes.ALAP = minSuccValue; |
| 350 | } |
| 351 | else { |
| 352 | visitedNodes.erase(node); |
| 353 | attributes.ALAP = maxASAP; |
| 354 | } |
| 355 | DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); |
| 356 | } |
| 357 | |
| 358 | int ModuloSchedulingPass::findMaxASAP() { |
| 359 | int maxASAP = 0; |
| 360 | |
| 361 | for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), |
| 362 | E = nodeToAttributesMap.end(); I != E; ++I) |
| 363 | maxASAP = std::max(maxASAP, I->second.ASAP); |
| 364 | return maxASAP; |
| 365 | } |
| 366 | |
| 367 | |
| 368 | void ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node, |
| 369 | MSNodeAttributes &attributes, |
| 370 | std::set<MSchedGraphNode*> &visitedNodes) { |
| 371 | |
| 372 | if(attributes.depth != -1 || (visitedNodes.find(node) != visitedNodes.end())) { |
| 373 | //Remove from map before returning |
| 374 | visitedNodes.erase(node); |
| 375 | return; |
| 376 | } |
| 377 | |
| 378 | if(node->hasSuccessors()) { |
| 379 | int maxHeight = 0; |
| 380 | |
| 381 | //Iterate over all of the predecessors and fine max |
| 382 | for(MSchedGraphNode::succ_iterator P = node->succ_begin(), |
| 383 | E = node->succ_end(); P != E; ++P) { |
| 384 | |
| 385 | MSNodeAttributes succAttributes = nodeToAttributesMap.find(*P)->second; |
| 386 | if(succAttributes.height == -1) { |
| 387 | |
| 388 | //Put into map before recursing |
| 389 | visitedNodes.insert(node); |
| 390 | |
| 391 | calculateHeight(*P, succAttributes, visitedNodes); |
| 392 | succAttributes = nodeToAttributesMap.find(*P)->second; |
| 393 | assert(succAttributes.height == -1 && "Successors Height should have been caclulated"); |
| 394 | } |
| 395 | int currentHeight = succAttributes.height + node->getLatency(); |
| 396 | maxHeight = std::max(maxHeight, currentHeight); |
| 397 | } |
| 398 | visitedNodes.erase(node); |
| 399 | attributes.height = maxHeight; |
| 400 | } |
| 401 | else { |
| 402 | visitedNodes.erase(node); |
| 403 | attributes.height = 0; |
| 404 | } |
| 405 | |
| 406 | DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); |
| 407 | } |
| 408 | |
| 409 | |
| 410 | void ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, |
| 411 | MSNodeAttributes &attributes, |
| 412 | std::set<MSchedGraphNode*> &visitedNodes) { |
| 413 | |
| 414 | if(attributes.depth != -1 || (visitedNodes.find(node) != visitedNodes.end())) { |
| 415 | //Remove from map before returning |
| 416 | visitedNodes.erase(node); |
| 417 | return; |
| 418 | } |
| 419 | |
| 420 | if(node->hasPredecessors()) { |
| 421 | int maxDepth = 0; |
| 422 | |
| 423 | //Iterate over all of the predecessors and fine max |
| 424 | for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| 425 | |
| 426 | //Get that nodes depth |
| 427 | MSNodeAttributes predAttributes = nodeToAttributesMap.find(*P)->second; |
| 428 | if(predAttributes.depth == -1) { |
| 429 | |
| 430 | //Put into set before recursing |
| 431 | visitedNodes.insert(node); |
| 432 | |
| 433 | calculateDepth(*P, predAttributes, visitedNodes); |
| 434 | predAttributes = nodeToAttributesMap.find(*P)->second; |
| 435 | assert(predAttributes.depth == -1 && "Predecessors ASAP should have been caclulated"); |
| 436 | } |
| 437 | int currentDepth = predAttributes.depth + node->getLatency(); |
| 438 | maxDepth = std::max(maxDepth, currentDepth); |
| 439 | } |
| 440 | |
| 441 | //Remove from map before returning |
| 442 | visitedNodes.erase(node); |
| 443 | |
| 444 | attributes.height = maxDepth; |
| 445 | } |
| 446 | else { |
| 447 | //Remove from map before returning |
| 448 | visitedNodes.erase(node); |
| 449 | attributes.depth = 0; |
| 450 | } |
| 451 | |
| 452 | DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); |
| 453 | |
| 454 | } |
| 455 | |
| 456 | |
| 457 | void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, |
| 458 | std::vector<MSchedGraphNode*> &visitedNodes) { |
| 459 | |
| 460 | if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { |
| 461 | //DUMP out recurrence |
| 462 | DEBUG(std::cerr << "Reccurrence:\n"); |
| 463 | bool first = true; |
| 464 | for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end(); |
| 465 | I !=E; ++I) { |
| 466 | if(*I == node) |
| 467 | first = false; |
| 468 | if(first) |
| 469 | continue; |
| 470 | DEBUG(std::cerr << **I << "\n"); |
| 471 | } |
| 472 | DEBUG(std::cerr << "End Reccurrence:\n"); |
| 473 | return; |
| 474 | } |
| 475 | |
| 476 | for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { |
| 477 | visitedNodes.push_back(node); |
| 478 | findAllReccurrences(*I, visitedNodes); |
| 479 | visitedNodes.pop_back(); |
| 480 | } |
| 481 | |
| 482 | } |
| 483 | |
| 484 | |
| 485 | |
| 486 | |
| 487 | |
| 488 | |
| 489 | |
| 490 | |
| 491 | |
| 492 | void ModuloSchedulingPass::orderNodes() { |
| 493 | |
| 494 | int BOTTOM_UP = 0; |
| 495 | int TOP_DOWN = 1; |
| 496 | |
| 497 | //FIXME: Group nodes into sets and order all the sets based on RecMII |
| 498 | typedef std::vector<MSchedGraphNode*> NodeVector; |
| 499 | typedef std::pair<int, NodeVector> NodeSet; |
| 500 | |
| 501 | std::vector<NodeSet> NodeSetsToOrder; |
| 502 | |
| 503 | //Order the resulting sets |
| 504 | NodeVector FinalNodeOrder; |
| 505 | |
| 506 | //Loop over all the sets and place them in the final node order |
| 507 | for(unsigned i=0; i < NodeSetsToOrder.size(); ++i) { |
| 508 | |
| 509 | //Set default order |
| 510 | int order = BOTTOM_UP; |
| 511 | |
| 512 | //Get Nodes in Current set |
| 513 | NodeVector CurrentSet = NodeSetsToOrder[i].second; |
| 514 | |
| 515 | //Loop through the predecessors for each node in the final order |
| 516 | //and only keeps nodes both in the pred_set and currentset |
| 517 | NodeVector IntersectCurrent; |
| 518 | |
| 519 | //Sort CurrentSet so we can use lowerbound |
| 520 | sort(CurrentSet.begin(), CurrentSet.end()); |
| 521 | |
| 522 | for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| 523 | for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), |
| 524 | E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { |
| 525 | if(lower_bound(CurrentSet.begin(), |
| 526 | CurrentSet.end(), *P) != CurrentSet.end()) |
| 527 | IntersectCurrent.push_back(*P); |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | //If the intersection of predecessor and current set is not empty |
| 532 | //sort nodes bottom up |
| 533 | if(IntersectCurrent.size() != 0) |
| 534 | order = BOTTOM_UP; |
| 535 | |
| 536 | //If empty, use successors |
| 537 | else { |
| 538 | |
| 539 | for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| 540 | for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), |
| 541 | E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { |
| 542 | if(lower_bound(CurrentSet.begin(), |
| 543 | CurrentSet.end(), *P) != CurrentSet.end()) |
| 544 | IntersectCurrent.push_back(*P); |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | //sort top-down |
| 549 | if(IntersectCurrent.size() != 0) |
| 550 | order = TOP_DOWN; |
| 551 | |
| 552 | else { |
| 553 | //Find node with max ASAP in current Set |
| 554 | MSchedGraphNode *node; |
| 555 | int maxASAP = 0; |
| 556 | for(unsigned j=0; j < CurrentSet.size(); ++j) { |
| 557 | //Get node attributes |
| 558 | MSNodeAttributes nodeAttr= nodeToAttributesMap.find(CurrentSet[j])->second; |
| 559 | //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); |
| 560 | |
| 561 | if(maxASAP < nodeAttr.ASAP) { |
| 562 | maxASAP = nodeAttr.ASAP; |
| 563 | node = CurrentSet[j]; |
| 564 | } |
| 565 | } |
| 566 | order = BOTTOM_UP; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | //Repeat until all nodes are put into the final order from current set |
| 571 | /*while(IntersectCurrent.size() > 0) { |
| 572 | |
| 573 | if(order == TOP_DOWN) { |
| 574 | while(IntersectCurrent.size() > 0) { |
| 575 | |
| 576 | //FIXME |
| 577 | //Get node attributes |
| 578 | MSNodeAttributes nodeAttr= nodeToAttributesMap.find(IntersectCurrent[0])->second; |
| 579 | assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); |
| 580 | |
| 581 | //Get node with highest height, if a tie, use one with lowest |
| 582 | //MOB |
| 583 | int MOB = nodeAttr.MBO; |
| 584 | int height = nodeAttr.height; |
| 585 | ModuloSchedGraphNode *V = IntersectCurrent[0]; |
| 586 | |
| 587 | for(unsigned j=0; j < IntersectCurrent.size(); ++j) { |
| 588 | int temp = IntersectCurrent[j]->getHeight(); |
| 589 | if(height < temp) { |
| 590 | V = IntersectCurrent[j]; |
| 591 | height = temp; |
| 592 | MOB = V->getMobility(); |
| 593 | } |
| 594 | else if(height == temp) { |
| 595 | if(MOB > IntersectCurrent[j]->getMobility()) { |
| 596 | V = IntersectCurrent[j]; |
| 597 | height = temp; |
| 598 | MOB = V->getMobility(); |
| 599 | } |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | //Append V to the NodeOrder |
| 604 | NodeOrder.push_back(V); |
| 605 | |
| 606 | //Remove V from IntersectOrder |
| 607 | IntersectCurrent.erase(find(IntersectCurrent.begin(), |
| 608 | IntersectCurrent.end(), V)); |
| 609 | |
| 610 | //Intersect V's successors with CurrentSet |
| 611 | for(mod_succ_iterator P = succ_begin(V), |
| 612 | E = succ_end(V); P != E; ++P) { |
| 613 | if(lower_bound(CurrentSet.begin(), |
| 614 | CurrentSet.end(), *P) != CurrentSet.end()) { |
| 615 | //If not already in Intersect, add |
| 616 | if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) |
| 617 | IntersectCurrent.push_back(*P); |
| 618 | } |
| 619 | } |
| 620 | } //End while loop over Intersect Size |
| 621 | |
| 622 | //Change direction |
| 623 | order = BOTTOM_UP; |
| 624 | |
| 625 | //Reset Intersect to reflect changes in OrderNodes |
| 626 | IntersectCurrent.clear(); |
| 627 | for(unsigned j=0; j < NodeOrder.size(); ++j) { |
| 628 | for(mod_pred_iterator P = pred_begin(NodeOrder[j]), |
| 629 | E = pred_end(NodeOrder[j]); P != E; ++P) { |
| 630 | if(lower_bound(CurrentSet.begin(), |
| 631 | CurrentSet.end(), *P) != CurrentSet.end()) |
| 632 | IntersectCurrent.push_back(*P); |
| 633 | } |
| 634 | } |
| 635 | } //End If TOP_DOWN |
| 636 | |
| 637 | //Begin if BOTTOM_UP |
| 638 | else { |
| 639 | while(IntersectCurrent.size() > 0) { |
| 640 | //Get node with highest depth, if a tie, use one with lowest |
| 641 | //MOB |
| 642 | int MOB = IntersectCurrent[0]->getMobility(); |
| 643 | int depth = IntersectCurrent[0]->getDepth(); |
| 644 | ModuloSchedGraphNode *V = IntersectCurrent[0]; |
| 645 | |
| 646 | for(unsigned j=0; j < IntersectCurrent.size(); ++j) { |
| 647 | int temp = IntersectCurrent[j]->getDepth(); |
| 648 | if(depth < temp) { |
| 649 | V = IntersectCurrent[j]; |
| 650 | depth = temp; |
| 651 | MOB = V->getMobility(); |
| 652 | } |
| 653 | else if(depth == temp) { |
| 654 | if(MOB > IntersectCurrent[j]->getMobility()) { |
| 655 | V = IntersectCurrent[j]; |
| 656 | depth = temp; |
| 657 | MOB = V->getMobility(); |
| 658 | } |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | //Append V to the NodeOrder |
| 663 | NodeOrder.push_back(V); |
| 664 | |
| 665 | //Remove V from IntersectOrder |
| 666 | IntersectCurrent.erase(find(IntersectCurrent.begin(), |
| 667 | IntersectCurrent.end(),V)); |
| 668 | |
| 669 | //Intersect V's pred with CurrentSet |
| 670 | for(mod_pred_iterator P = pred_begin(V), |
| 671 | E = pred_end(V); P != E; ++P) { |
| 672 | if(lower_bound(CurrentSet.begin(), |
| 673 | CurrentSet.end(), *P) != CurrentSet.end()) { |
| 674 | //If not already in Intersect, add |
| 675 | if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) |
| 676 | IntersectCurrent.push_back(*P); |
| 677 | } |
| 678 | } |
| 679 | } //End while loop over Intersect Size |
| 680 | |
| 681 | //Change order |
| 682 | order = TOP_DOWN; |
| 683 | |
| 684 | //Reset IntersectCurrent to reflect changes in OrderNodes |
| 685 | IntersectCurrent.clear(); |
| 686 | for(unsigned j=0; j < NodeOrder.size(); ++j) { |
| 687 | for(mod_succ_iterator P = succ_begin(NodeOrder[j]), |
| 688 | E = succ_end(NodeOrder[j]); P != E; ++P) { |
| 689 | if(lower_bound(CurrentSet.begin(), |
| 690 | CurrentSet.end(), *P) != CurrentSet.end()) |
| 691 | IntersectCurrent.push_back(*P); |
| 692 | } |
| 693 | |
| 694 | } |
| 695 | } //End if BOTTOM_DOWN |
| 696 | |
| 697 | }*/ |
| 698 | //End Wrapping while loop |
| 699 | |
| 700 | }//End for over all sets of nodes |
| 701 | |
| 702 | //Return final Order |
| 703 | //return FinalNodeOrder; |
| 704 | } |