Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| 2 | "http://www.w3.org/TR/html4/strict.dtd"> |
| 3 | |
| 4 | <html> |
| 5 | <head> |
| 6 | <title>Kaleidoscope: Implementing code generation to LLVM IR</title> |
| 7 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| 8 | <meta name="author" content="Chris Lattner"> |
| 9 | <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| 10 | </head> |
| 11 | |
| 12 | <body> |
| 13 | |
| 14 | <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div> |
| 15 | |
| 16 | <div class="doc_author"> |
| 17 | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| 18 | </div> |
| 19 | |
| 20 | <!-- *********************************************************************** --> |
| 21 | <div class="doc_section"><a name="intro">Part 3 Introduction</a></div> |
| 22 | <!-- *********************************************************************** --> |
| 23 | |
| 24 | <div class="doc_text"> |
| 25 | |
| 26 | <p>Welcome to part 3 of the "<a href="index.html">Implementing a language with |
| 27 | LLVM</a>" tutorial. This chapter shows you how to transform the <a |
| 28 | href="LangImpl2.html">Abstract Syntax Tree built in Chapter 2</a> into LLVM IR. |
| 29 | This will teach you a little bit about how LLVM does things, as well as |
| 30 | demonstrate how easy it is to use. It's much more work to build a lexer and |
| 31 | parser than it is to generate LLVM IR code. |
| 32 | </p> |
| 33 | |
| 34 | </div> |
| 35 | |
| 36 | <!-- *********************************************************************** --> |
| 37 | <div class="doc_section"><a name="basics">Code Generation setup</a></div> |
| 38 | <!-- *********************************************************************** --> |
| 39 | |
| 40 | <div class="doc_text"> |
| 41 | |
| 42 | <p> |
| 43 | In order to generate LLVM IR, we want some simple setup to get started. First, |
| 44 | we define virtual codegen methods in each AST class:</p> |
| 45 | |
| 46 | <div class="doc_code"> |
| 47 | <pre> |
| 48 | /// ExprAST - Base class for all expression nodes. |
| 49 | class ExprAST { |
| 50 | public: |
| 51 | virtual ~ExprAST() {} |
| 52 | virtual Value *Codegen() = 0; |
| 53 | }; |
| 54 | |
| 55 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 56 | class NumberExprAST : public ExprAST { |
| 57 | double Val; |
| 58 | public: |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 59 | explicit NumberExprAST(double val) : Val(val) {} |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 60 | virtual Value *Codegen(); |
| 61 | }; |
| 62 | ... |
| 63 | </pre> |
| 64 | </div> |
| 65 | |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 66 | <p>The Codegen() method says to emit IR for that AST node and all things it |
| 67 | depends on, and they all return an LLVM Value object. |
| 68 | "Value" is the class used to represent a "<a |
| 69 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| 70 | Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect |
| 71 | of SSA values is that their value is computed as the related instruction |
| 72 | executes, and it does not get a new value until (and if) the instruction |
| 73 | re-executes. In order words, there is no way to "change" an SSA value. For |
| 74 | more information, please read up on <a |
| 75 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| 76 | Assignment</a> - the concepts are really quite natural once you grok them.</p> |
| 77 | |
| 78 | <p>The |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 79 | second thing we want is an "Error" method like we used for parser, which will |
| 80 | be used to report errors found during code generation (for example, use of an |
| 81 | undeclared parameter):</p> |
| 82 | |
| 83 | <div class="doc_code"> |
| 84 | <pre> |
| 85 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 86 | |
| 87 | static Module *TheModule; |
| 88 | static LLVMBuilder Builder; |
| 89 | static std::map<std::string, Value*> NamedValues; |
| 90 | </pre> |
| 91 | </div> |
| 92 | |
| 93 | <p>The static variables will be used during code generation. <tt>TheModule</tt> |
| 94 | is the LLVM construct that contains all of the functions and global variables in |
| 95 | a chunk of code. In many ways, it is the top-level structure that the LLVM IR |
| 96 | uses to contain code.</p> |
| 97 | |
| 98 | <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate |
| 99 | LLVM instructions. The <tt>Builder</tt> keeps track of the current place to |
| 100 | insert instructions and has methods to create new instructions.</p> |
| 101 | |
| 102 | <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the |
| 103 | current scope and what their LLVM representation is. In this form of |
| 104 | Kaleidoscope, the only things that can be referenced are function parameters. |
| 105 | As such, function parameters will be in this map when generating code for their |
| 106 | function body.</p> |
| 107 | |
| 108 | <p> |
| 109 | With these basics in place, we can start talking about how to generate code for |
| 110 | each expression. Note that this assumes that the <tt>Builder</tt> has been set |
| 111 | up to generate code <em>into</em> something. For now, we'll assume that this |
| 112 | has already been done, and we'll just use it to emit code. |
| 113 | </p> |
| 114 | |
| 115 | </div> |
| 116 | |
| 117 | <!-- *********************************************************************** --> |
| 118 | <div class="doc_section"><a name="exprs">Expression Code Generation</a></div> |
| 119 | <!-- *********************************************************************** --> |
| 120 | |
| 121 | <div class="doc_text"> |
| 122 | |
| 123 | <p>Generating LLVM code for expression nodes is very straight-forward: less |
| 124 | than 45 lines of commented code for all four of our expression nodes. First, |
| 125 | we'll do numeric literals:</p> |
| 126 | |
| 127 | <div class="doc_code"> |
| 128 | <pre> |
| 129 | Value *NumberExprAST::Codegen() { |
| 130 | return ConstantFP::get(Type::DoubleTy, APFloat(Val)); |
| 131 | } |
| 132 | </pre> |
| 133 | </div> |
| 134 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame^] | 135 | <p>In the LLVM IR, numeric constants are represented with the |
| 136 | <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt> |
| 137 | internally (<tt>APFloat</tt> has the capability of holding floating point |
| 138 | constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just |
| 139 | creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 140 | that constants are all uniqued together and shared. For this reason, the API |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame^] | 141 | uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::create(..).</p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 142 | |
| 143 | <div class="doc_code"> |
| 144 | <pre> |
| 145 | Value *VariableExprAST::Codegen() { |
| 146 | // Look this variable up in the function. |
| 147 | Value *V = NamedValues[Name]; |
| 148 | return V ? V : ErrorV("Unknown variable name"); |
| 149 | } |
| 150 | </pre> |
| 151 | </div> |
| 152 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame^] | 153 | <p>References to variables is also quite simple here. In the simple version |
| 154 | of Kaleidoscope, we assume that the variable has already been emited somewhere |
| 155 | and its value is available. In practice, the only values that can be in the |
| 156 | <tt>NamedValues</tt> map are function arguments. This |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 157 | code simply checks to see that the specified name is in the map (if not, an |
| 158 | unknown variable is being referenced) and returns the value for it.</p> |
| 159 | |
| 160 | <div class="doc_code"> |
| 161 | <pre> |
| 162 | Value *BinaryExprAST::Codegen() { |
| 163 | Value *L = LHS->Codegen(); |
| 164 | Value *R = RHS->Codegen(); |
| 165 | if (L == 0 || R == 0) return 0; |
| 166 | |
| 167 | switch (Op) { |
| 168 | case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| 169 | case '-': return Builder.CreateSub(L, R, "subtmp"); |
| 170 | case '*': return Builder.CreateMul(L, R, "multmp"); |
| 171 | case '<': |
| 172 | L = Builder.CreateFCmpULT(L, R, "multmp"); |
| 173 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 174 | return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); |
| 175 | default: return ErrorV("invalid binary operator"); |
| 176 | } |
| 177 | } |
| 178 | </pre> |
| 179 | </div> |
| 180 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame^] | 181 | <p>Binary operators start to get more interesting. The basic idea here is that |
| 182 | we recursively emit code for the left-hand side of the expression, then the |
| 183 | right-hand side, then we compute the result of the binary expression. In this |
| 184 | code, we do a simple switch on the opcode to create the right LLVM instruction. |
| 185 | </p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 186 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame^] | 187 | <p>In this example, the LLVM builder class is starting to show its value. |
| 188 | Because it knows where to insert the newly created instruction, you just have to |
| 189 | specificy what instruction to create (e.g. with <tt>CreateAdd</tt>), which |
| 190 | operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name |
| 191 | for the generated instruction. One nice thing about LLVM is that the name is |
| 192 | just a hint: if there are multiple additions in a single function, the first |
| 193 | will be named "addtmp" and the second will be "autorenamed" by adding a suffix, |
| 194 | giving it a name like "addtmp42". Local value names for instructions are purely |
| 195 | optional, but it makes it much easier to read the IR dumps.</p> |
| 196 | |
| 197 | <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained to |
| 198 | have very strict type properties: for example, the Left and Right operators of |
| 199 | an <a href="../LangRef.html#i_add">add instruction</a> have to have the same |
| 200 | type, and that the result of the add matches the operands. Because all values |
| 201 | in Kaleidoscope are doubles, this makes for very simple code for add, sub and |
| 202 | mul.</p> |
| 203 | |
| 204 | <p>On the other hand, LLVM specifies that the <a |
| 205 | href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value |
| 206 | (a one bit integer). However, Kaleidoscope wants the value to be a 0.0 or 1.0 |
| 207 | value. In order to get these semantics, we combine the fcmp instruction with |
| 208 | a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction |
| 209 | converts its input integer into a floating point value by treating the input |
| 210 | as an unsigned value. In contrast, if we used the <a |
| 211 | href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<' |
| 212 | operator would return 0.0 and -1.0, depending on the input value.</p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 213 | |
| 214 | <div class="doc_code"> |
| 215 | <pre> |
| 216 | Value *CallExprAST::Codegen() { |
| 217 | // Look up the name in the global module table. |
| 218 | Function *CalleeF = TheModule->getFunction(Callee); |
| 219 | if (CalleeF == 0) |
| 220 | return ErrorV("Unknown function referenced"); |
| 221 | |
| 222 | // If argument mismatch error. |
| 223 | if (CalleeF->arg_size() != Args.size()) |
| 224 | return ErrorV("Incorrect # arguments passed"); |
| 225 | |
| 226 | std::vector<Value*> ArgsV; |
| 227 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 228 | ArgsV.push_back(Args[i]->Codegen()); |
| 229 | if (ArgsV.back() == 0) return 0; |
| 230 | } |
| 231 | |
| 232 | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| 233 | } |
| 234 | </pre> |
| 235 | </div> |
| 236 | |
Chris Lattner | d3f0cdd | 2007-10-23 04:51:30 +0000 | [diff] [blame^] | 237 | <p>Code generation for function calls is quite straight-forward with LLVM. The |
| 238 | code above first looks the name of the function up in the LLVM Module's symbol |
| 239 | table. Recall that the LLVM Module is the container that holds all of the |
| 240 | functions we are JIT'ing. By giving each function the same name as what the |
| 241 | user specifies, we can use the LLVM symbol table to resolve function names for |
| 242 | us.</p> |
| 243 | |
| 244 | <p>Once we have the function to call, we recursively codegen each argument that |
| 245 | is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call |
| 246 | instruction</a>. Note that LLVM uses the native C calling conventions by |
| 247 | default, allowing these calls to call into standard library functions like |
| 248 | "sin" and "cos" with no additional effort.</p> |
| 249 | |
| 250 | <p>This wraps up our handling of the four basic expressions that we have so far |
| 251 | in Kaleidoscope. Feel free to go in and add some more. For example, by |
| 252 | browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find |
| 253 | several other interesting instructions that are really easy to plug into our |
| 254 | basic framework.</p> |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 255 | |
| 256 | </div> |
| 257 | |
| 258 | <!-- *********************************************************************** --> |
| 259 | <div class="doc_section"><a name="code">Conclusions and the Full Code</a></div> |
| 260 | <!-- *********************************************************************** --> |
| 261 | |
| 262 | <div class="doc_text"> |
| 263 | |
| 264 | <div class="doc_code"> |
| 265 | <pre> |
| 266 | // To build this: |
| 267 | // g++ -g toy.cpp `llvm-config --cppflags` `llvm-config --ldflags` \ |
| 268 | // `llvm-config --libs core` -I ~/llvm/include/ |
| 269 | // ./a.out |
| 270 | // See example below. |
| 271 | |
| 272 | #include "llvm/DerivedTypes.h" |
| 273 | #include "llvm/Module.h" |
| 274 | #include "llvm/Support/LLVMBuilder.h" |
| 275 | #include <cstdio> |
| 276 | #include <string> |
| 277 | #include <map> |
| 278 | #include <vector> |
| 279 | using namespace llvm; |
| 280 | |
| 281 | //===----------------------------------------------------------------------===// |
| 282 | // Lexer |
| 283 | //===----------------------------------------------------------------------===// |
| 284 | |
| 285 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 286 | // of these for known things. |
| 287 | enum Token { |
| 288 | tok_eof = -1, |
| 289 | |
| 290 | // commands |
| 291 | tok_def = -2, tok_extern = -3, |
| 292 | |
| 293 | // primary |
| 294 | tok_identifier = -4, tok_number = -5, |
| 295 | }; |
| 296 | |
| 297 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 298 | static double NumVal; // Filled in if tok_number |
| 299 | |
| 300 | /// gettok - Return the next token from standard input. |
| 301 | static int gettok() { |
| 302 | static int LastChar = ' '; |
| 303 | |
| 304 | // Skip any whitespace. |
| 305 | while (isspace(LastChar)) |
| 306 | LastChar = getchar(); |
| 307 | |
| 308 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 309 | IdentifierStr = LastChar; |
| 310 | while (isalnum((LastChar = getchar()))) |
| 311 | IdentifierStr += LastChar; |
| 312 | |
| 313 | if (IdentifierStr == "def") return tok_def; |
| 314 | if (IdentifierStr == "extern") return tok_extern; |
| 315 | return tok_identifier; |
| 316 | } |
| 317 | |
| 318 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 319 | std::string NumStr; |
| 320 | do { |
| 321 | NumStr += LastChar; |
| 322 | LastChar = getchar(); |
| 323 | } while (isdigit(LastChar) || LastChar == '.'); |
| 324 | |
| 325 | NumVal = strtod(NumStr.c_str(), 0); |
| 326 | return tok_number; |
| 327 | } |
| 328 | |
| 329 | if (LastChar == '#') { |
| 330 | // Comment until end of line. |
| 331 | do LastChar = getchar(); |
| 332 | while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); |
| 333 | |
| 334 | if (LastChar != EOF) |
| 335 | return gettok(); |
| 336 | } |
| 337 | |
| 338 | // Check for end of file. Don't eat the EOF. |
| 339 | if (LastChar == EOF) |
| 340 | return tok_eof; |
| 341 | |
| 342 | // Otherwise, just return the character as its ascii value. |
| 343 | int ThisChar = LastChar; |
| 344 | LastChar = getchar(); |
| 345 | return ThisChar; |
| 346 | } |
| 347 | |
| 348 | //===----------------------------------------------------------------------===// |
| 349 | // Abstract Syntax Tree (aka Parse Tree) |
| 350 | //===----------------------------------------------------------------------===// |
| 351 | |
| 352 | /// ExprAST - Base class for all expression nodes. |
| 353 | class ExprAST { |
| 354 | public: |
| 355 | virtual ~ExprAST() {} |
| 356 | virtual Value *Codegen() = 0; |
| 357 | }; |
| 358 | |
| 359 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 360 | class NumberExprAST : public ExprAST { |
| 361 | double Val; |
| 362 | public: |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 363 | explicit NumberExprAST(double val) : Val(val) {} |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 364 | virtual Value *Codegen(); |
| 365 | }; |
| 366 | |
| 367 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 368 | class VariableExprAST : public ExprAST { |
| 369 | std::string Name; |
| 370 | public: |
Chris Lattner | 28571ed | 2007-10-23 04:27:44 +0000 | [diff] [blame] | 371 | explicit VariableExprAST(const std::string &name) : Name(name) {} |
Chris Lattner | 2e90204 | 2007-10-22 07:01:42 +0000 | [diff] [blame] | 372 | virtual Value *Codegen(); |
| 373 | }; |
| 374 | |
| 375 | /// BinaryExprAST - Expression class for a binary operator. |
| 376 | class BinaryExprAST : public ExprAST { |
| 377 | char Op; |
| 378 | ExprAST *LHS, *RHS; |
| 379 | public: |
| 380 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 381 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 382 | virtual Value *Codegen(); |
| 383 | }; |
| 384 | |
| 385 | /// CallExprAST - Expression class for function calls. |
| 386 | class CallExprAST : public ExprAST { |
| 387 | std::string Callee; |
| 388 | std::vector<ExprAST*> Args; |
| 389 | public: |
| 390 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 391 | : Callee(callee), Args(args) {} |
| 392 | virtual Value *Codegen(); |
| 393 | }; |
| 394 | |
| 395 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 396 | /// which captures its argument names as well as if it is an operator. |
| 397 | class PrototypeAST { |
| 398 | std::string Name; |
| 399 | std::vector<std::string> Args; |
| 400 | public: |
| 401 | PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| 402 | : Name(name), Args(args) {} |
| 403 | |
| 404 | Function *Codegen(); |
| 405 | }; |
| 406 | |
| 407 | /// FunctionAST - This class represents a function definition itself. |
| 408 | class FunctionAST { |
| 409 | PrototypeAST *Proto; |
| 410 | ExprAST *Body; |
| 411 | public: |
| 412 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 413 | : Proto(proto), Body(body) {} |
| 414 | |
| 415 | Function *Codegen(); |
| 416 | }; |
| 417 | |
| 418 | //===----------------------------------------------------------------------===// |
| 419 | // Parser |
| 420 | //===----------------------------------------------------------------------===// |
| 421 | |
| 422 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 423 | /// token the parser it looking at. getNextToken reads another token from the |
| 424 | /// lexer and updates CurTok with its results. |
| 425 | static int CurTok; |
| 426 | static int getNextToken() { |
| 427 | return CurTok = gettok(); |
| 428 | } |
| 429 | |
| 430 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 431 | /// defined. |
| 432 | static std::map<char, int> BinopPrecedence; |
| 433 | |
| 434 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 435 | static int GetTokPrecedence() { |
| 436 | if (!isascii(CurTok)) |
| 437 | return -1; |
| 438 | |
| 439 | // Make sure it's a declared binop. |
| 440 | int TokPrec = BinopPrecedence[CurTok]; |
| 441 | if (TokPrec <= 0) return -1; |
| 442 | return TokPrec; |
| 443 | } |
| 444 | |
| 445 | /// Error* - These are little helper functions for error handling. |
| 446 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 447 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 448 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 449 | |
| 450 | static ExprAST *ParseExpression(); |
| 451 | |
| 452 | /// identifierexpr |
| 453 | /// ::= identifer |
| 454 | /// ::= identifer '(' expression* ')' |
| 455 | static ExprAST *ParseIdentifierExpr() { |
| 456 | std::string IdName = IdentifierStr; |
| 457 | |
| 458 | getNextToken(); // eat identifer. |
| 459 | |
| 460 | if (CurTok != '(') // Simple variable ref. |
| 461 | return new VariableExprAST(IdName); |
| 462 | |
| 463 | // Call. |
| 464 | getNextToken(); // eat ( |
| 465 | std::vector<ExprAST*> Args; |
| 466 | while (1) { |
| 467 | ExprAST *Arg = ParseExpression(); |
| 468 | if (!Arg) return 0; |
| 469 | Args.push_back(Arg); |
| 470 | |
| 471 | if (CurTok == ')') break; |
| 472 | |
| 473 | if (CurTok != ',') |
| 474 | return Error("Expected ')'"); |
| 475 | getNextToken(); |
| 476 | } |
| 477 | |
| 478 | // Eat the ')'. |
| 479 | getNextToken(); |
| 480 | |
| 481 | return new CallExprAST(IdName, Args); |
| 482 | } |
| 483 | |
| 484 | /// numberexpr ::= number |
| 485 | static ExprAST *ParseNumberExpr() { |
| 486 | ExprAST *Result = new NumberExprAST(NumVal); |
| 487 | getNextToken(); // consume the number |
| 488 | return Result; |
| 489 | } |
| 490 | |
| 491 | /// parenexpr ::= '(' expression ')' |
| 492 | static ExprAST *ParseParenExpr() { |
| 493 | getNextToken(); // eat (. |
| 494 | ExprAST *V = ParseExpression(); |
| 495 | if (!V) return 0; |
| 496 | |
| 497 | if (CurTok != ')') |
| 498 | return Error("expected ')'"); |
| 499 | getNextToken(); // eat ). |
| 500 | return V; |
| 501 | } |
| 502 | |
| 503 | /// primary |
| 504 | /// ::= identifierexpr |
| 505 | /// ::= numberexpr |
| 506 | /// ::= parenexpr |
| 507 | static ExprAST *ParsePrimary() { |
| 508 | switch (CurTok) { |
| 509 | default: return Error("unknown token when expecting an expression"); |
| 510 | case tok_identifier: return ParseIdentifierExpr(); |
| 511 | case tok_number: return ParseNumberExpr(); |
| 512 | case '(': return ParseParenExpr(); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | /// binoprhs |
| 517 | /// ::= ('+' primary)* |
| 518 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 519 | // If this is a binop, find its precedence. |
| 520 | while (1) { |
| 521 | int TokPrec = GetTokPrecedence(); |
| 522 | |
| 523 | // If this is a binop that binds at least as tightly as the current binop, |
| 524 | // consume it, otherwise we are done. |
| 525 | if (TokPrec < ExprPrec) |
| 526 | return LHS; |
| 527 | |
| 528 | // Okay, we know this is a binop. |
| 529 | int BinOp = CurTok; |
| 530 | getNextToken(); // eat binop |
| 531 | |
| 532 | // Parse the primary expression after the binary operator. |
| 533 | ExprAST *RHS = ParsePrimary(); |
| 534 | if (!RHS) return 0; |
| 535 | |
| 536 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 537 | // the pending operator take RHS as its LHS. |
| 538 | int NextPrec = GetTokPrecedence(); |
| 539 | if (TokPrec < NextPrec) { |
| 540 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 541 | if (RHS == 0) return 0; |
| 542 | } |
| 543 | |
| 544 | // Merge LHS/RHS. |
| 545 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | /// expression |
| 550 | /// ::= primary binoprhs |
| 551 | /// |
| 552 | static ExprAST *ParseExpression() { |
| 553 | ExprAST *LHS = ParsePrimary(); |
| 554 | if (!LHS) return 0; |
| 555 | |
| 556 | return ParseBinOpRHS(0, LHS); |
| 557 | } |
| 558 | |
| 559 | /// prototype |
| 560 | /// ::= id '(' id* ')' |
| 561 | static PrototypeAST *ParsePrototype() { |
| 562 | if (CurTok != tok_identifier) |
| 563 | return ErrorP("Expected function name in prototype"); |
| 564 | |
| 565 | std::string FnName = IdentifierStr; |
| 566 | getNextToken(); |
| 567 | |
| 568 | if (CurTok != '(') |
| 569 | return ErrorP("Expected '(' in prototype"); |
| 570 | |
| 571 | std::vector<std::string> ArgNames; |
| 572 | while (getNextToken() == tok_identifier) |
| 573 | ArgNames.push_back(IdentifierStr); |
| 574 | if (CurTok != ')') |
| 575 | return ErrorP("Expected ')' in prototype"); |
| 576 | |
| 577 | // success. |
| 578 | getNextToken(); // eat ')'. |
| 579 | |
| 580 | return new PrototypeAST(FnName, ArgNames); |
| 581 | } |
| 582 | |
| 583 | /// definition ::= 'def' prototype expression |
| 584 | static FunctionAST *ParseDefinition() { |
| 585 | getNextToken(); // eat def. |
| 586 | PrototypeAST *Proto = ParsePrototype(); |
| 587 | if (Proto == 0) return 0; |
| 588 | |
| 589 | if (ExprAST *E = ParseExpression()) |
| 590 | return new FunctionAST(Proto, E); |
| 591 | return 0; |
| 592 | } |
| 593 | |
| 594 | /// toplevelexpr ::= expression |
| 595 | static FunctionAST *ParseTopLevelExpr() { |
| 596 | if (ExprAST *E = ParseExpression()) { |
| 597 | // Make an anonymous proto. |
| 598 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 599 | return new FunctionAST(Proto, E); |
| 600 | } |
| 601 | return 0; |
| 602 | } |
| 603 | |
| 604 | /// external ::= 'extern' prototype |
| 605 | static PrototypeAST *ParseExtern() { |
| 606 | getNextToken(); // eat extern. |
| 607 | return ParsePrototype(); |
| 608 | } |
| 609 | |
| 610 | //===----------------------------------------------------------------------===// |
| 611 | // Code Generation |
| 612 | //===----------------------------------------------------------------------===// |
| 613 | |
| 614 | static Module *TheModule; |
| 615 | static LLVMBuilder Builder; |
| 616 | static std::map<std::string, Value*> NamedValues; |
| 617 | |
| 618 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 619 | |
| 620 | Value *NumberExprAST::Codegen() { |
| 621 | return ConstantFP::get(Type::DoubleTy, APFloat(Val)); |
| 622 | } |
| 623 | |
| 624 | Value *VariableExprAST::Codegen() { |
| 625 | // Look this variable up in the function. |
| 626 | Value *V = NamedValues[Name]; |
| 627 | return V ? V : ErrorV("Unknown variable name"); |
| 628 | } |
| 629 | |
| 630 | Value *BinaryExprAST::Codegen() { |
| 631 | Value *L = LHS->Codegen(); |
| 632 | Value *R = RHS->Codegen(); |
| 633 | if (L == 0 || R == 0) return 0; |
| 634 | |
| 635 | switch (Op) { |
| 636 | case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| 637 | case '-': return Builder.CreateSub(L, R, "subtmp"); |
| 638 | case '*': return Builder.CreateMul(L, R, "multmp"); |
| 639 | case '<': |
| 640 | L = Builder.CreateFCmpULT(L, R, "multmp"); |
| 641 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 642 | return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); |
| 643 | default: return ErrorV("invalid binary operator"); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | Value *CallExprAST::Codegen() { |
| 648 | // Look up the name in the global module table. |
| 649 | Function *CalleeF = TheModule->getFunction(Callee); |
| 650 | if (CalleeF == 0) |
| 651 | return ErrorV("Unknown function referenced"); |
| 652 | |
| 653 | // If argument mismatch error. |
| 654 | if (CalleeF->arg_size() != Args.size()) |
| 655 | return ErrorV("Incorrect # arguments passed"); |
| 656 | |
| 657 | std::vector<Value*> ArgsV; |
| 658 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 659 | ArgsV.push_back(Args[i]->Codegen()); |
| 660 | if (ArgsV.back() == 0) return 0; |
| 661 | } |
| 662 | |
| 663 | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| 664 | } |
| 665 | |
| 666 | Function *PrototypeAST::Codegen() { |
| 667 | // Make the function type: double(double,double) etc. |
| 668 | FunctionType *FT = |
| 669 | FunctionType::get(Type::DoubleTy, std::vector<const Type*>(Args.size(), |
| 670 | Type::DoubleTy), |
| 671 | false); |
| 672 | |
| 673 | Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); |
| 674 | |
| 675 | // If F conflicted, there was already something named 'Name'. If it has a |
| 676 | // body, don't allow redefinition or reextern. |
| 677 | if (F->getName() != Name) { |
| 678 | // Delete the one we just made and get the existing one. |
| 679 | F->eraseFromParent(); |
| 680 | F = TheModule->getFunction(Name); |
| 681 | |
| 682 | // If F already has a body, reject this. |
| 683 | if (!F->empty()) { |
| 684 | ErrorF("redefinition of function"); |
| 685 | return 0; |
| 686 | } |
| 687 | |
| 688 | // If F took a different number of args, reject. |
| 689 | if (F->arg_size() != Args.size()) { |
| 690 | ErrorF("redefinition of function with different # args"); |
| 691 | return 0; |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | // Set names for all arguments. |
| 696 | unsigned Idx = 0; |
| 697 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 698 | ++AI, ++Idx) { |
| 699 | AI->setName(Args[Idx]); |
| 700 | |
| 701 | // Add arguments to variable symbol table. |
| 702 | NamedValues[Args[Idx]] = AI; |
| 703 | } |
| 704 | |
| 705 | return F; |
| 706 | } |
| 707 | |
| 708 | Function *FunctionAST::Codegen() { |
| 709 | NamedValues.clear(); |
| 710 | |
| 711 | Function *TheFunction = Proto->Codegen(); |
| 712 | if (TheFunction == 0) |
| 713 | return 0; |
| 714 | |
| 715 | // Create a new basic block to start insertion into. |
| 716 | Builder.SetInsertPoint(new BasicBlock("entry", TheFunction)); |
| 717 | |
| 718 | if (Value *RetVal = Body->Codegen()) { |
| 719 | // Finish off the function. |
| 720 | Builder.CreateRet(RetVal); |
| 721 | return TheFunction; |
| 722 | } |
| 723 | |
| 724 | // Error reading body, remove function. |
| 725 | TheFunction->eraseFromParent(); |
| 726 | return 0; |
| 727 | } |
| 728 | |
| 729 | //===----------------------------------------------------------------------===// |
| 730 | // Top-Level parsing and JIT Driver |
| 731 | //===----------------------------------------------------------------------===// |
| 732 | |
| 733 | static void HandleDefinition() { |
| 734 | if (FunctionAST *F = ParseDefinition()) { |
| 735 | if (Function *LF = F->Codegen()) { |
| 736 | fprintf(stderr, "Read function definition:"); |
| 737 | LF->dump(); |
| 738 | } |
| 739 | } else { |
| 740 | // Skip token for error recovery. |
| 741 | getNextToken(); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | static void HandleExtern() { |
| 746 | if (PrototypeAST *P = ParseExtern()) { |
| 747 | if (Function *F = P->Codegen()) { |
| 748 | fprintf(stderr, "Read extern: "); |
| 749 | F->dump(); |
| 750 | } |
| 751 | } else { |
| 752 | // Skip token for error recovery. |
| 753 | getNextToken(); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | static void HandleTopLevelExpression() { |
| 758 | // Evaluate a top level expression into an anonymous function. |
| 759 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 760 | if (Function *LF = F->Codegen()) { |
| 761 | fprintf(stderr, "Read top-level expression:"); |
| 762 | LF->dump(); |
| 763 | } |
| 764 | } else { |
| 765 | // Skip token for error recovery. |
| 766 | getNextToken(); |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | /// top ::= definition | external | expression | ';' |
| 771 | static void MainLoop() { |
| 772 | while (1) { |
| 773 | fprintf(stderr, "ready> "); |
| 774 | switch (CurTok) { |
| 775 | case tok_eof: return; |
| 776 | case ';': getNextToken(); break; // ignore top level semicolons. |
| 777 | case tok_def: HandleDefinition(); break; |
| 778 | case tok_extern: HandleExtern(); break; |
| 779 | default: HandleTopLevelExpression(); break; |
| 780 | } |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | |
| 785 | |
| 786 | //===----------------------------------------------------------------------===// |
| 787 | // "Library" functions that can be "extern'd" from user code. |
| 788 | //===----------------------------------------------------------------------===// |
| 789 | |
| 790 | /// putchard - putchar that takes a double and returns 0. |
| 791 | extern "C" |
| 792 | double putchard(double X) { |
| 793 | putchar((char)X); |
| 794 | return 0; |
| 795 | } |
| 796 | |
| 797 | //===----------------------------------------------------------------------===// |
| 798 | // Main driver code. |
| 799 | //===----------------------------------------------------------------------===// |
| 800 | |
| 801 | int main() { |
| 802 | TheModule = new Module("my cool jit"); |
| 803 | |
| 804 | // Install standard binary operators. |
| 805 | // 1 is lowest precedence. |
| 806 | BinopPrecedence['<'] = 10; |
| 807 | BinopPrecedence['+'] = 20; |
| 808 | BinopPrecedence['-'] = 20; |
| 809 | BinopPrecedence['*'] = 40; // highest. |
| 810 | |
| 811 | // Prime the first token. |
| 812 | fprintf(stderr, "ready> "); |
| 813 | getNextToken(); |
| 814 | |
| 815 | MainLoop(); |
| 816 | TheModule->dump(); |
| 817 | return 0; |
| 818 | } |
| 819 | |
| 820 | /* Examples: |
| 821 | |
| 822 | def fib(x) |
| 823 | if (x < 3) then |
| 824 | 1 |
| 825 | else |
| 826 | fib(x-1)+fib(x-2); |
| 827 | |
| 828 | fib(10); |
| 829 | |
| 830 | */ |
| 831 | </pre> |
| 832 | </div> |
| 833 | </div> |
| 834 | |
| 835 | <!-- *********************************************************************** --> |
| 836 | <hr> |
| 837 | <address> |
| 838 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| 839 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| 840 | <a href="http://validator.w3.org/check/referer"><img |
| 841 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a> |
| 842 | |
| 843 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| 844 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| 845 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ |
| 846 | </address> |
| 847 | </body> |
| 848 | </html> |