blob: 95040fb4c32791a06beb9fff38f0726c8b29e006 [file] [log] [blame]
Eli Friedman138515d2011-08-09 21:07:10 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Atomic Instructions and Concurrency Guide</title>
Eli Friedman21006d42011-08-09 23:02:53 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Eli Friedman138515d2011-08-09 21:07:10 +00007 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<h1>
12 LLVM Atomic Instructions and Concurrency Guide
13</h1>
14
15<ol>
16 <li><a href="#introduction">Introduction</a></li>
17 <li><a href="#loadstore">Load and store</a></li>
Eli Friedman138515d2011-08-09 21:07:10 +000018 <li><a href="#otherinst">Other atomic instructions</a></li>
Eli Friedman1bf4ad42011-08-11 23:44:25 +000019 <li><a href="#ordering">Atomic orderings</a></li>
Eli Friedman138515d2011-08-09 21:07:10 +000020 <li><a href="#iropt">Atomics and IR optimization</a></li>
21 <li><a href="#codegen">Atomics and Codegen</a></li>
22</ol>
23
24<div class="doc_author">
25 <p>Written by Eli Friedman</p>
26</div>
27
28<!-- *********************************************************************** -->
29<h2>
30 <a name="introduction">Introduction</a>
31</h2>
32<!-- *********************************************************************** -->
33
34<div>
35
36<p>Historically, LLVM has not had very strong support for concurrency; some
37minimal intrinsics were provided, and <code>volatile</code> was used in some
38cases to achieve rough semantics in the presence of concurrency. However, this
39is changing; there are now new instructions which are well-defined in the
40presence of threads and asynchronous signals, and the model for existing
41instructions has been clarified in the IR.</p>
42
43<p>The atomic instructions are designed specifically to provide readable IR and
44 optimized code generation for the following:</p>
45<ul>
Eli Friedman1bf4ad42011-08-11 23:44:25 +000046 <li>The new C++0x <code>&lt;atomic&gt;</code> header.
47 (<a href="http://www.open-std.org/jtc1/sc22/wg21/">C++0x draft available here</a>.)
48 (<a href="http://www.open-std.org/jtc1/sc22/wg14/">C1x draft available here</a>)</li>
Eli Friedman138515d2011-08-09 21:07:10 +000049 <li>Proper semantics for Java-style memory, for both <code>volatile</code> and
Eli Friedman1bf4ad42011-08-11 23:44:25 +000050 regular shared variables.
51 (<a href="http://java.sun.com/docs/books/jls/third_edition/html/memory.html">Java Specification</a>)</li>
52 <li>gcc-compatible <code>__sync_*</code> builtins.
53 (<a href="http://gcc.gnu.org/onlinedocs/gcc/Atomic-Builtins.html">Description</a>)</li>
Eli Friedman138515d2011-08-09 21:07:10 +000054 <li>Other scenarios with atomic semantics, including <code>static</code>
55 variables with non-trivial constructors in C++.</li>
56</ul>
57
Eli Friedman1bf4ad42011-08-11 23:44:25 +000058<p>Atomic and volatile in the IR are orthogonal; "volatile" is the C/C++
59 volatile, which ensures that every volatile load and store happens and is
60 performed in the stated order. A couple examples: if a
61 SequentiallyConsistent store is immediately followed by another
62 SequentiallyConsistent store to the same address, the first store can
63 be erased. This transformation is not allowed for a pair of volatile
64 stores. On the other hand, a non-volatile non-atomic load can be moved
65 across a volatile load freely, but not an Acquire load.</p>
66
Eli Friedman138515d2011-08-09 21:07:10 +000067<p>This document is intended to provide a guide to anyone either writing a
68 frontend for LLVM or working on optimization passes for LLVM with a guide
69 for how to deal with instructions with special semantics in the presence of
70 concurrency. This is not intended to be a precise guide to the semantics;
71 the details can get extremely complicated and unreadable, and are not
72 usually necessary.</p>
73
74</div>
75
76<!-- *********************************************************************** -->
77<h2>
78 <a name="loadstore">Load and store</a>
79</h2>
80<!-- *********************************************************************** -->
81
82<div>
83
84<p>The basic <code>'load'</code> and <code>'store'</code> allow a variety of
85 optimizations, but can have unintuitive results in a concurrent environment.
86 For a frontend writer, the rule is essentially that all memory accessed
87 with basic loads and stores by multiple threads should be protected by a
88 lock or other synchronization; otherwise, you are likely to run into
89 undefined behavior. (Do not use volatile as a substitute for atomics; it
90 might work on some platforms, but does not provide the necessary guarantees
91 in general.)</p>
92
93<p>From the optimizer's point of view, the rule is that if there
Eli Friedman1bf4ad42011-08-11 23:44:25 +000094 are not any instructions with atomic ordering involved, concurrency does
95 not matter, with one exception: if a variable might be visible to another
Eli Friedman138515d2011-08-09 21:07:10 +000096 thread or signal handler, a store cannot be inserted along a path where it
Eli Friedman1bf4ad42011-08-11 23:44:25 +000097 might not execute otherwise. For example, suppose LICM wants to take all the
98 loads and stores in a loop to and from a particular address and promote them
99 to registers. LICM is not allowed to insert an unconditional store after
100 the loop with the computed value unless a store unconditionally executes
101 within the loop. Note that speculative loads are allowed; a load which
102 is part of a race returns <code>undef</code>, but does not have undefined
103 behavior.</p>
Eli Friedman138515d2011-08-09 21:07:10 +0000104
105<p>For cases where simple loads and stores are not sufficient, LLVM provides
106 atomic loads and stores with varying levels of guarantees.</p>
107
108</div>
109
110<!-- *********************************************************************** -->
111<h2>
Eli Friedman138515d2011-08-09 21:07:10 +0000112 <a name="otherinst">Other atomic instructions</a>
113</h2>
114<!-- *********************************************************************** -->
115
116<div>
117
118<p><code>cmpxchg</code> and <code>atomicrmw</code> are essentially like an
119 atomic load followed by an atomic store (where the store is conditional for
Eli Friedmane2d8cf72011-08-10 20:17:43 +0000120 <code>cmpxchg</code>), but no other memory operation can happen between
121 the load and store. Note that our cmpxchg does not have quite as many
122 options for making cmpxchg weaker as the C++0x version.</p>
Eli Friedman138515d2011-08-09 21:07:10 +0000123
124<p>A <code>fence</code> provides Acquire and/or Release ordering which is not
125 part of another operation; it is normally used along with Monotonic memory
126 operations. A Monotonic load followed by an Acquire fence is roughly
127 equivalent to an Acquire load.</p>
128
129<p>Frontends generating atomic instructions generally need to be aware of the
130 target to some degree; atomic instructions are guaranteed to be lock-free,
131 and therefore an instruction which is wider than the target natively supports
132 can be impossible to generate.</p>
133
134</div>
135
136<!-- *********************************************************************** -->
137<h2>
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000138 <a name="ordering">Atomic orderings</a>
139</h2>
140<!-- *********************************************************************** -->
141
142<div>
143
144<p>In order to achieve a balance between performance and necessary guarantees,
145 there are six levels of atomicity. They are listed in order of strength;
146 each level includes all the guarantees of the previous level except for
147 Acquire/Release.</p>
148
149<!-- ======================================================================= -->
150<h3>
151 <a name="o_unordered">Unordered</a>
152</h3>
153
154<div>
155
156<p>Unordered is the lowest level of atomicity. It essentially guarantees that
157 races produce somewhat sane results instead of having undefined behavior.
158 It also guarantees the operation to be lock-free, so it do not depend on
159 the data being part of a special atomic structure or depend on a separate
160 per-process global lock. Note that code generation will fail for
161 unsupported atomic operations; if you need such an operation, use explicit
162 locking.</p>
163
164<dl>
165 <dt>Relevant standard</dt>
166 <dd>This is intended to match the Java memory model for shared
167 variables.</dd>
168 <dt>Notes for frontends</dt>
169 <dd>This cannot be used for synchronization, but is useful for Java and
170 other "safe" languages which need to guarantee that the generated
171 code never exhibits undefined behavior. Note that this guarantee
172 is cheap on common platforms for loads of a native width, but can
173 be expensive or unavailable for wider loads, like a 64-bit store
174 on ARM. (A frontend for Java or other "safe" languages would normally
175 split a 64-bit store on ARM into two 32-bit unordered stores.)
176 <dt>Notes for optimizers</dt>
177 <dd>In terms of the optimizer, this prohibits any transformation that
178 transforms a single load into multiple loads, transforms a store
179 into multiple stores, narrows a store, or stores a value which
180 would not be stored otherwise. Some examples of unsafe optimizations
181 are narrowing an assignment into a bitfield, rematerializing
182 a load, and turning loads and stores into a memcpy call. Reordering
183 unordered operations is safe, though, and optimizers should take
184 advantage of that because unordered operations are common in
185 languages that need them.</dd>
186 <dt>Notes for code generation</dt>
187 <dd>These operations are required to be atomic in the sense that if you
188 use unordered loads and unordered stores, a load cannot see a value
189 which was never stored. A normal load or store instruction is usually
190 sufficient, but note that an unordered load or store cannot
191 be split into multiple instructions (or an instruction which
192 does multiple memory operations, like <code>LDRD</code> on ARM).</dd>
193</dl>
194
195</div>
196
197<!-- ======================================================================= -->
198<h3>
199 <a name="o_monotonic">Monotonic</a>
200</h3>
201
202<div>
203
204<p>Monotonic is the weakest level of atomicity that can be used in
205 synchronization primitives, although it does not provide any general
206 synchronization. It essentially guarantees that if you take all the
207 operations affecting a specific address, a consistent ordering exists.
208
209<dl>
210 <dt>Relevant standard</dt>
211 <dd>This corresponds to the C++0x/C1x <code>memory_order_relaxed</code>;
212 see those standards for the exact definition.
213 <dt>Notes for frontends</dt>
214 <dd>If you are writing a frontend which uses this directly, use with caution.
215 The guarantees in terms of synchronization are very weak, so make
216 sure these are only used in a pattern which you know is correct.
217 Generally, these would either be used for atomic operations which
218 do not protect other memory (like an atomic counter), or along with
219 a <code>fence</code>.</dd>
220 <dt>Notes for optimizers</dt>
221 <dd>In terms of the optimizer, this can be treated as a read+write on the
222 relevant memory location (and alias analysis will take advantage of
223 that). In addition, it is legal to reorder non-atomic and Unordered
224 loads around Monotonic loads. CSE/DSE and a few other optimizations
225 are allowed, but Monotonic operations are unlikely to be used in ways
226 which would make those optimizations useful.</dd>
227 <dt>Notes for code generation</dt>
228 <dd>Code generation is essentially the same as that for unordered for loads
229 and stores. No fences is required. <code>cmpxchg</code> and
230 <code>atomicrmw</code> are required to appear as a single operation.</dd>
231</dl>
232
233</div>
234
235<!-- ======================================================================= -->
236<h3>
237 <a name="o_acquire">Acquire</a>
238</h3>
239
240<div>
241
242<p>Acquire provides a barrier of the sort necessary to acquire a lock to access
243 other memory with normal loads and stores.
244
245<dl>
246 <dt>Relevant standard</dt>
247 <dd>This corresponds to the C++0x/C1x <code>memory_order_acquire</code>. It
248 should also be used for C++0x/C1x <code>memory_order_consume</code>.
249 <dt>Notes for frontends</dt>
250 <dd>If you are writing a frontend which uses this directly, use with caution.
251 Acquire only provides a semantic guarantee when paired with a Release
252 operation.</dd>
253 <dt>Notes for optimizers</dt>
254 <dd>In general, optimizers should treat this like a nothrow call; the
255 the possible optimizations are usually not interesting.</dd>
256 <dt>Notes for code generation</dt>
257 <dd>Architectures with weak memory ordering (essentially everything relevant
258 today except x86 and SPARC) require some sort of fence to maintain
259 the Acquire semantics. The precise fences required varies widely by
260 architecture, but for a simple implementation, most architectures provide
261 a barrier which is strong enough for everything (<code>dmb</code> on ARM,
262 <code>sync</code> on PowerPC, etc.). Putting such a fence after the
263 equivalent Monotonic operation is sufficient to maintain Acquire
264 semantics for a memory operation.</dd>
265</dl>
266
267</div>
268
269<!-- ======================================================================= -->
270<h3>
271 <a name="o_acquire">Release</a>
272</h3>
273
274<div>
275
276<p>Release is similar to Acquire, but with a barrier of the sort necessary to
277 release a lock.
278
279<dl>
280 <dt>Relevant standard</dt>
281 <dd>This corresponds to the C++0x/C1x <code>memory_order_release</code>.</dd>
282 <dt>Notes for frontends</dt>
283 <dd>If you are writing a frontend which uses this directly, use with caution.
284 Release only provides a semantic guarantee when paired with a Acquire
285 operation.</dd>
286 <dt>Notes for optimizers</dt>
287 <dd>In general, optimizers should treat this like a nothrow call; the
288 the possible optimizations are usually not interesting.</dd>
289 <dt>Notes for code generation</dt>
Eli Friedmand577a062011-08-12 01:26:06 +0000290 <dd>See the section on Acquire; a fence before the relevant operation is
291 usually sufficient for Release. Note that a store-store fence is not
292 sufficient to implement Release semantics; store-store fences are
293 generally not exposed to IR because they are extremely difficult to
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000294 use correctly.</dd>
295</dl>
296
297</div>
298
299<!-- ======================================================================= -->
300<h3>
301 <a name="o_acqrel">AcquireRelease</a>
302</h3>
303
304<div>
305
306<p>AcquireRelease (<code>acq_rel</code> in IR) provides both an Acquire and a
307 Release barrier (for fences and operations which both read and write memory).
308
309<dl>
310 <dt>Relevant standard</dt>
311 <dd>This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.
312 <dt>Notes for frontends</dt>
313 <dd>If you are writing a frontend which uses this directly, use with caution.
314 Acquire only provides a semantic guarantee when paired with a Release
315 operation, and vice versa.</dd>
316 <dt>Notes for optimizers</dt>
317 <dd>In general, optimizers should treat this like a nothrow call; the
318 the possible optimizations are usually not interesting.</dd>
319 <dt>Notes for code generation</dt>
320 <dd>This operation has Acquire and Release semantics; see the sections on
Eli Friedman5093fe62011-08-11 23:48:52 +0000321 Acquire and Release.</dd>
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000322</dl>
323
324</div>
325
326<!-- ======================================================================= -->
327<h3>
328 <a name="o_seqcst">SequentiallyConsistent</a>
329</h3>
330
331<div>
332
Andrew Tricka1b953b2011-08-12 00:36:38 +0000333<p>SequentiallyConsistent (<code>seq_cst</code> in IR) provides
334 Acquire semantics for loads and Release semantics for
335 stores. Additionally, it guarantees that a total ordering exists
336 between all SequentiallyConsistent operations.
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000337
338<dl>
339 <dt>Relevant standard</dt>
340 <dd>This corresponds to the C++0x/C1x <code>memory_order_seq_cst</code>,
341 Java volatile, and the gcc-compatible <code>__sync_*</code> builtins
342 which do not specify otherwise.
343 <dt>Notes for frontends</dt>
344 <dd>If a frontend is exposing atomic operations, these are much easier to
345 reason about for the programmer than other kinds of operations, and using
346 them is generally a practical performance tradeoff.</dd>
347 <dt>Notes for optimizers</dt>
Andrew Tricka1b953b2011-08-12 00:36:38 +0000348 <dd>In general, optimizers should treat this like a nothrow call.
349 However, optimizers may improve performance by reordering a
350 store followed by a load unless both operations are sequentially
351 consistent.</dd>
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000352 <dt>Notes for code generation</dt>
Andrew Tricka1b953b2011-08-12 00:36:38 +0000353 <dd>SequentiallyConsistent loads minimally require the same barriers
354 as Acquire operations and SequeuentiallyConsistent stores require
355 Release barriers. Additionally, the code generator must enforce
356 ordering between SequeuentiallyConsistent stores followed by
357 SequeuentiallyConsistent loads. On common architectures, this
358 requires emitting a full fence after SequeuentiallyConsistent stores.</dd>
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000359</dl>
360
361</div>
362
363</div>
364
365<!-- *********************************************************************** -->
366<h2>
Eli Friedman138515d2011-08-09 21:07:10 +0000367 <a name="iropt">Atomics and IR optimization</a>
368</h2>
369<!-- *********************************************************************** -->
370
371<div>
372
373<p>Predicates for optimizer writers to query:
374<ul>
375 <li>isSimple(): A load or store which is not volatile or atomic. This is
376 what, for example, memcpyopt would check for operations it might
377 transform.
378 <li>isUnordered(): A load or store which is not volatile and at most
379 Unordered. This would be checked, for example, by LICM before hoisting
380 an operation.
381 <li>mayReadFromMemory()/mayWriteToMemory(): Existing predicate, but note
Eli Friedmane2d8cf72011-08-10 20:17:43 +0000382 that they return true for any operation which is volatile or at least
Eli Friedman138515d2011-08-09 21:07:10 +0000383 Monotonic.
384 <li>Alias analysis: Note that AA will return ModRef for anything Acquire or
385 Release, and for the address accessed by any Monotonic operation.
386</ul>
387
388<p>There are essentially two components to supporting atomic operations. The
389 first is making sure to query isSimple() or isUnordered() instead
390 of isVolatile() before transforming an operation. The other piece is
391 making sure that a transform does not end up replacing, for example, an
392 Unordered operation with a non-atomic operation. Most of the other
393 necessary checks automatically fall out from existing predicates and
394 alias analysis queries.</p>
395
396<p>Some examples of how optimizations interact with various kinds of atomic
397 operations:
398<ul>
399 <li>memcpyopt: An atomic operation cannot be optimized into part of a
400 memcpy/memset, including unordered loads/stores. It can pull operations
401 across some atomic operations.
402 <li>LICM: Unordered loads/stores can be moved out of a loop. It just treats
403 monotonic operations like a read+write to a memory location, and anything
404 stricter than that like a nothrow call.
405 <li>DSE: Unordered stores can be DSE'ed like normal stores. Monotonic stores
406 can be DSE'ed in some cases, but it's tricky to reason about, and not
407 especially important.
408 <li>Folding a load: Any atomic load from a constant global can be
409 constant-folded, because it cannot be observed. Similar reasoning allows
410 scalarrepl with atomic loads and stores.
411</ul>
412
413</div>
414
415<!-- *********************************************************************** -->
416<h2>
417 <a name="codegen">Atomics and Codegen</a>
418</h2>
419<!-- *********************************************************************** -->
420
421<div>
422
423<p>Atomic operations are represented in the SelectionDAG with
424 <code>ATOMIC_*</code> opcodes. On architectures which use barrier
425 instructions for all atomic ordering (like ARM), appropriate fences are
426 split out as the DAG is built.</p>
427
428<p>The MachineMemOperand for all atomic operations is currently marked as
429 volatile; this is not correct in the IR sense of volatile, but CodeGen
430 handles anything marked volatile very conservatively. This should get
431 fixed at some point.</p>
432
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000433<p>Common architectures have some way of representing at least a pointer-sized
434 lock-free <code>cmpxchg</code>; such an operation can be used to implement
435 all the other atomic operations which can be represented in IR up to that
436 size. Backends are expected to implement all those operations, but not
437 operations which cannot be implemented in a lock-free manner. It is
438 expected that backends will give an error when given an operation which
439 cannot be implemented. (The LLVM code generator is not very helpful here
440 at the moment, but hopefully that will change.)</p>
441
Eli Friedman138515d2011-08-09 21:07:10 +0000442<p>The implementation of atomics on LL/SC architectures (like ARM) is currently
443 a bit of a mess; there is a lot of copy-pasted code across targets, and
444 the representation is relatively unsuited to optimization (it would be nice
445 to be able to optimize loops involving cmpxchg etc.).</p>
446
447<p>On x86, all atomic loads generate a <code>MOV</code>.
448 SequentiallyConsistent stores generate an <code>XCHG</code>, other stores
449 generate a <code>MOV</code>. SequentiallyConsistent fences generate an
450 <code>MFENCE</code>, other fences do not cause any code to be generated.
451 cmpxchg uses the <code>LOCK CMPXCHG</code> instruction.
452 <code>atomicrmw xchg</code> uses <code>XCHG</code>,
453 <code>atomicrmw add</code> and <code>atomicrmw sub</code> use
454 <code>XADD</code>, and all other <code>atomicrmw</code> operations generate
455 a loop with <code>LOCK CMPXCHG</code>. Depending on the users of the
456 result, some <code>atomicrmw</code> operations can be translated into
457 operations like <code>LOCK AND</code>, but that does not work in
458 general.</p>
459
460<p>On ARM, MIPS, and many other RISC architectures, Acquire, Release, and
461 SequentiallyConsistent semantics require barrier instructions
462 for every such operation. Loads and stores generate normal instructions.
Eli Friedman1bf4ad42011-08-11 23:44:25 +0000463 <code>cmpxchg</code> and <code>atomicrmw</code> can be represented using
464 a loop with LL/SC-style instructions which take some sort of exclusive
465 lock on a cache line (<code>LDREX</code> and <code>STREX</code> on
466 ARM, etc.). At the moment, the IR does not provide any way to represent a
467 weak <code>cmpxchg</code> which would not require a loop.</p>
Eli Friedman138515d2011-08-09 21:07:10 +0000468</div>
469
470<!-- *********************************************************************** -->
471
472<hr>
473<address>
474 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
475 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
476 <a href="http://validator.w3.org/check/referer"><img
477 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
478
479 <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
480 Last modified: $Date: 2011-08-09 02:07:00 -0700 (Tue, 09 Aug 2011) $
481</address>
482
483</body>
484</html>