Sean Silva | ee47edf | 2012-12-05 00:26:32 +0000 | [diff] [blame] | 1 | ============================================================ |
| 2 | Kaleidoscope: Extending the Language: User-defined Operators |
| 3 | ============================================================ |
| 4 | |
| 5 | .. contents:: |
| 6 | :local: |
| 7 | |
Sean Silva | ee47edf | 2012-12-05 00:26:32 +0000 | [diff] [blame] | 8 | Chapter 6 Introduction |
| 9 | ====================== |
| 10 | |
| 11 | Welcome to Chapter 6 of the "`Implementing a language with |
| 12 | LLVM <index.html>`_" tutorial. At this point in our tutorial, we now |
| 13 | have a fully functional language that is fairly minimal, but also |
| 14 | useful. There is still one big problem with it, however. Our language |
| 15 | doesn't have many useful operators (like division, logical negation, or |
| 16 | even any comparisons besides less-than). |
| 17 | |
| 18 | This chapter of the tutorial takes a wild digression into adding |
| 19 | user-defined operators to the simple and beautiful Kaleidoscope |
| 20 | language. This digression now gives us a simple and ugly language in |
| 21 | some ways, but also a powerful one at the same time. One of the great |
| 22 | things about creating your own language is that you get to decide what |
| 23 | is good or bad. In this tutorial we'll assume that it is okay to use |
| 24 | this as a way to show some interesting parsing techniques. |
| 25 | |
| 26 | At the end of this tutorial, we'll run through an example Kaleidoscope |
| 27 | application that `renders the Mandelbrot set <#example>`_. This gives an |
| 28 | example of what you can build with Kaleidoscope and its feature set. |
| 29 | |
| 30 | User-defined Operators: the Idea |
| 31 | ================================ |
| 32 | |
| 33 | The "operator overloading" that we will add to Kaleidoscope is more |
| 34 | general than languages like C++. In C++, you are only allowed to |
| 35 | redefine existing operators: you can't programatically change the |
| 36 | grammar, introduce new operators, change precedence levels, etc. In this |
| 37 | chapter, we will add this capability to Kaleidoscope, which will let the |
| 38 | user round out the set of operators that are supported. |
| 39 | |
| 40 | The point of going into user-defined operators in a tutorial like this |
| 41 | is to show the power and flexibility of using a hand-written parser. |
| 42 | Thus far, the parser we have been implementing uses recursive descent |
| 43 | for most parts of the grammar and operator precedence parsing for the |
| 44 | expressions. See `Chapter 2 <OCamlLangImpl2.html>`_ for details. Without |
| 45 | using operator precedence parsing, it would be very difficult to allow |
| 46 | the programmer to introduce new operators into the grammar: the grammar |
| 47 | is dynamically extensible as the JIT runs. |
| 48 | |
| 49 | The two specific features we'll add are programmable unary operators |
| 50 | (right now, Kaleidoscope has no unary operators at all) as well as |
| 51 | binary operators. An example of this is: |
| 52 | |
| 53 | :: |
| 54 | |
| 55 | # Logical unary not. |
| 56 | def unary!(v) |
| 57 | if v then |
| 58 | 0 |
| 59 | else |
| 60 | 1; |
| 61 | |
| 62 | # Define > with the same precedence as <. |
| 63 | def binary> 10 (LHS RHS) |
| 64 | RHS < LHS; |
| 65 | |
| 66 | # Binary "logical or", (note that it does not "short circuit") |
| 67 | def binary| 5 (LHS RHS) |
| 68 | if LHS then |
| 69 | 1 |
| 70 | else if RHS then |
| 71 | 1 |
| 72 | else |
| 73 | 0; |
| 74 | |
| 75 | # Define = with slightly lower precedence than relationals. |
| 76 | def binary= 9 (LHS RHS) |
| 77 | !(LHS < RHS | LHS > RHS); |
| 78 | |
| 79 | Many languages aspire to being able to implement their standard runtime |
| 80 | library in the language itself. In Kaleidoscope, we can implement |
| 81 | significant parts of the language in the library! |
| 82 | |
| 83 | We will break down implementation of these features into two parts: |
| 84 | implementing support for user-defined binary operators and adding unary |
| 85 | operators. |
| 86 | |
| 87 | User-defined Binary Operators |
| 88 | ============================= |
| 89 | |
| 90 | Adding support for user-defined binary operators is pretty simple with |
| 91 | our current framework. We'll first add support for the unary/binary |
| 92 | keywords: |
| 93 | |
| 94 | .. code-block:: ocaml |
| 95 | |
| 96 | type token = |
| 97 | ... |
| 98 | (* operators *) |
| 99 | | Binary | Unary |
| 100 | |
| 101 | ... |
| 102 | |
| 103 | and lex_ident buffer = parser |
| 104 | ... |
| 105 | | "for" -> [< 'Token.For; stream >] |
| 106 | | "in" -> [< 'Token.In; stream >] |
| 107 | | "binary" -> [< 'Token.Binary; stream >] |
| 108 | | "unary" -> [< 'Token.Unary; stream >] |
| 109 | |
| 110 | This just adds lexer support for the unary and binary keywords, like we |
| 111 | did in `previous chapters <OCamlLangImpl5.html#iflexer>`_. One nice |
| 112 | thing about our current AST, is that we represent binary operators with |
| 113 | full generalisation by using their ASCII code as the opcode. For our |
| 114 | extended operators, we'll use this same representation, so we don't need |
| 115 | any new AST or parser support. |
| 116 | |
| 117 | On the other hand, we have to be able to represent the definitions of |
| 118 | these new operators, in the "def binary\| 5" part of the function |
| 119 | definition. In our grammar so far, the "name" for the function |
| 120 | definition is parsed as the "prototype" production and into the |
| 121 | ``Ast.Prototype`` AST node. To represent our new user-defined operators |
| 122 | as prototypes, we have to extend the ``Ast.Prototype`` AST node like |
| 123 | this: |
| 124 | |
| 125 | .. code-block:: ocaml |
| 126 | |
| 127 | (* proto - This type represents the "prototype" for a function, which captures |
| 128 | * its name, and its argument names (thus implicitly the number of arguments the |
| 129 | * function takes). *) |
| 130 | type proto = |
| 131 | | Prototype of string * string array |
| 132 | | BinOpPrototype of string * string array * int |
| 133 | |
| 134 | Basically, in addition to knowing a name for the prototype, we now keep |
| 135 | track of whether it was an operator, and if it was, what precedence |
| 136 | level the operator is at. The precedence is only used for binary |
| 137 | operators (as you'll see below, it just doesn't apply for unary |
| 138 | operators). Now that we have a way to represent the prototype for a |
| 139 | user-defined operator, we need to parse it: |
| 140 | |
| 141 | .. code-block:: ocaml |
| 142 | |
| 143 | (* prototype |
| 144 | * ::= id '(' id* ')' |
| 145 | * ::= binary LETTER number? (id, id) |
| 146 | * ::= unary LETTER number? (id) *) |
| 147 | let parse_prototype = |
| 148 | let rec parse_args accumulator = parser |
| 149 | | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e |
| 150 | | [< >] -> accumulator |
| 151 | in |
| 152 | let parse_operator = parser |
| 153 | | [< 'Token.Unary >] -> "unary", 1 |
| 154 | | [< 'Token.Binary >] -> "binary", 2 |
| 155 | in |
| 156 | let parse_binary_precedence = parser |
| 157 | | [< 'Token.Number n >] -> int_of_float n |
| 158 | | [< >] -> 30 |
| 159 | in |
| 160 | parser |
| 161 | | [< 'Token.Ident id; |
| 162 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 163 | args=parse_args []; |
| 164 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 165 | (* success. *) |
| 166 | Ast.Prototype (id, Array.of_list (List.rev args)) |
| 167 | | [< (prefix, kind)=parse_operator; |
| 168 | 'Token.Kwd op ?? "expected an operator"; |
| 169 | (* Read the precedence if present. *) |
| 170 | binary_precedence=parse_binary_precedence; |
| 171 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 172 | args=parse_args []; |
| 173 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 174 | let name = prefix ^ (String.make 1 op) in |
| 175 | let args = Array.of_list (List.rev args) in |
| 176 | |
| 177 | (* Verify right number of arguments for operator. *) |
| 178 | if Array.length args != kind |
| 179 | then raise (Stream.Error "invalid number of operands for operator") |
| 180 | else |
| 181 | if kind == 1 then |
| 182 | Ast.Prototype (name, args) |
| 183 | else |
| 184 | Ast.BinOpPrototype (name, args, binary_precedence) |
| 185 | | [< >] -> |
| 186 | raise (Stream.Error "expected function name in prototype") |
| 187 | |
| 188 | This is all fairly straightforward parsing code, and we have already |
| 189 | seen a lot of similar code in the past. One interesting part about the |
| 190 | code above is the couple lines that set up ``name`` for binary |
| 191 | operators. This builds names like "binary@" for a newly defined "@" |
| 192 | operator. This then takes advantage of the fact that symbol names in the |
| 193 | LLVM symbol table are allowed to have any character in them, including |
| 194 | embedded nul characters. |
| 195 | |
| 196 | The next interesting thing to add, is codegen support for these binary |
| 197 | operators. Given our current structure, this is a simple addition of a |
| 198 | default case for our existing binary operator node: |
| 199 | |
| 200 | .. code-block:: ocaml |
| 201 | |
| 202 | let codegen_expr = function |
| 203 | ... |
| 204 | | Ast.Binary (op, lhs, rhs) -> |
| 205 | let lhs_val = codegen_expr lhs in |
| 206 | let rhs_val = codegen_expr rhs in |
| 207 | begin |
| 208 | match op with |
| 209 | | '+' -> build_add lhs_val rhs_val "addtmp" builder |
| 210 | | '-' -> build_sub lhs_val rhs_val "subtmp" builder |
| 211 | | '*' -> build_mul lhs_val rhs_val "multmp" builder |
| 212 | | '<' -> |
| 213 | (* Convert bool 0/1 to double 0.0 or 1.0 *) |
| 214 | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in |
| 215 | build_uitofp i double_type "booltmp" builder |
| 216 | | _ -> |
| 217 | (* If it wasn't a builtin binary operator, it must be a user defined |
| 218 | * one. Emit a call to it. *) |
| 219 | let callee = "binary" ^ (String.make 1 op) in |
| 220 | let callee = |
| 221 | match lookup_function callee the_module with |
| 222 | | Some callee -> callee |
| 223 | | None -> raise (Error "binary operator not found!") |
| 224 | in |
| 225 | build_call callee [|lhs_val; rhs_val|] "binop" builder |
| 226 | end |
| 227 | |
| 228 | As you can see above, the new code is actually really simple. It just |
| 229 | does a lookup for the appropriate operator in the symbol table and |
| 230 | generates a function call to it. Since user-defined operators are just |
| 231 | built as normal functions (because the "prototype" boils down to a |
| 232 | function with the right name) everything falls into place. |
| 233 | |
| 234 | The final piece of code we are missing, is a bit of top level magic: |
| 235 | |
| 236 | .. code-block:: ocaml |
| 237 | |
| 238 | let codegen_func the_fpm = function |
| 239 | | Ast.Function (proto, body) -> |
| 240 | Hashtbl.clear named_values; |
| 241 | let the_function = codegen_proto proto in |
| 242 | |
| 243 | (* If this is an operator, install it. *) |
| 244 | begin match proto with |
| 245 | | Ast.BinOpPrototype (name, args, prec) -> |
| 246 | let op = name.[String.length name - 1] in |
| 247 | Hashtbl.add Parser.binop_precedence op prec; |
| 248 | | _ -> () |
| 249 | end; |
| 250 | |
| 251 | (* Create a new basic block to start insertion into. *) |
| 252 | let bb = append_block context "entry" the_function in |
| 253 | position_at_end bb builder; |
| 254 | ... |
| 255 | |
| 256 | Basically, before codegening a function, if it is a user-defined |
| 257 | operator, we register it in the precedence table. This allows the binary |
| 258 | operator parsing logic we already have in place to handle it. Since we |
| 259 | are working on a fully-general operator precedence parser, this is all |
| 260 | we need to do to "extend the grammar". |
| 261 | |
| 262 | Now we have useful user-defined binary operators. This builds a lot on |
| 263 | the previous framework we built for other operators. Adding unary |
| 264 | operators is a bit more challenging, because we don't have any framework |
| 265 | for it yet - lets see what it takes. |
| 266 | |
| 267 | User-defined Unary Operators |
| 268 | ============================ |
| 269 | |
| 270 | Since we don't currently support unary operators in the Kaleidoscope |
| 271 | language, we'll need to add everything to support them. Above, we added |
| 272 | simple support for the 'unary' keyword to the lexer. In addition to |
| 273 | that, we need an AST node: |
| 274 | |
| 275 | .. code-block:: ocaml |
| 276 | |
| 277 | type expr = |
| 278 | ... |
| 279 | (* variant for a unary operator. *) |
| 280 | | Unary of char * expr |
| 281 | ... |
| 282 | |
| 283 | This AST node is very simple and obvious by now. It directly mirrors the |
| 284 | binary operator AST node, except that it only has one child. With this, |
| 285 | we need to add the parsing logic. Parsing a unary operator is pretty |
| 286 | simple: we'll add a new function to do it: |
| 287 | |
| 288 | .. code-block:: ocaml |
| 289 | |
| 290 | (* unary |
| 291 | * ::= primary |
| 292 | * ::= '!' unary *) |
| 293 | and parse_unary = parser |
| 294 | (* If this is a unary operator, read it. *) |
| 295 | | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] -> |
| 296 | Ast.Unary (op, operand) |
| 297 | |
| 298 | (* If the current token is not an operator, it must be a primary expr. *) |
| 299 | | [< stream >] -> parse_primary stream |
| 300 | |
| 301 | The grammar we add is pretty straightforward here. If we see a unary |
| 302 | operator when parsing a primary operator, we eat the operator as a |
| 303 | prefix and parse the remaining piece as another unary operator. This |
| 304 | allows us to handle multiple unary operators (e.g. "!!x"). Note that |
| 305 | unary operators can't have ambiguous parses like binary operators can, |
| 306 | so there is no need for precedence information. |
| 307 | |
| 308 | The problem with this function, is that we need to call ParseUnary from |
| 309 | somewhere. To do this, we change previous callers of ParsePrimary to |
| 310 | call ``parse_unary`` instead: |
| 311 | |
| 312 | .. code-block:: ocaml |
| 313 | |
| 314 | (* binoprhs |
| 315 | * ::= ('+' primary)* *) |
| 316 | and parse_bin_rhs expr_prec lhs stream = |
| 317 | ... |
| 318 | (* Parse the unary expression after the binary operator. *) |
| 319 | let rhs = parse_unary stream in |
| 320 | ... |
| 321 | |
| 322 | ... |
| 323 | |
| 324 | (* expression |
| 325 | * ::= primary binoprhs *) |
| 326 | and parse_expr = parser |
| 327 | | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream |
| 328 | |
| 329 | With these two simple changes, we are now able to parse unary operators |
| 330 | and build the AST for them. Next up, we need to add parser support for |
| 331 | prototypes, to parse the unary operator prototype. We extend the binary |
| 332 | operator code above with: |
| 333 | |
| 334 | .. code-block:: ocaml |
| 335 | |
| 336 | (* prototype |
| 337 | * ::= id '(' id* ')' |
| 338 | * ::= binary LETTER number? (id, id) |
| 339 | * ::= unary LETTER number? (id) *) |
| 340 | let parse_prototype = |
| 341 | let rec parse_args accumulator = parser |
| 342 | | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e |
| 343 | | [< >] -> accumulator |
| 344 | in |
| 345 | let parse_operator = parser |
| 346 | | [< 'Token.Unary >] -> "unary", 1 |
| 347 | | [< 'Token.Binary >] -> "binary", 2 |
| 348 | in |
| 349 | let parse_binary_precedence = parser |
| 350 | | [< 'Token.Number n >] -> int_of_float n |
| 351 | | [< >] -> 30 |
| 352 | in |
| 353 | parser |
| 354 | | [< 'Token.Ident id; |
| 355 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 356 | args=parse_args []; |
| 357 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 358 | (* success. *) |
| 359 | Ast.Prototype (id, Array.of_list (List.rev args)) |
| 360 | | [< (prefix, kind)=parse_operator; |
| 361 | 'Token.Kwd op ?? "expected an operator"; |
| 362 | (* Read the precedence if present. *) |
| 363 | binary_precedence=parse_binary_precedence; |
| 364 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 365 | args=parse_args []; |
| 366 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 367 | let name = prefix ^ (String.make 1 op) in |
| 368 | let args = Array.of_list (List.rev args) in |
| 369 | |
| 370 | (* Verify right number of arguments for operator. *) |
| 371 | if Array.length args != kind |
| 372 | then raise (Stream.Error "invalid number of operands for operator") |
| 373 | else |
| 374 | if kind == 1 then |
| 375 | Ast.Prototype (name, args) |
| 376 | else |
| 377 | Ast.BinOpPrototype (name, args, binary_precedence) |
| 378 | | [< >] -> |
| 379 | raise (Stream.Error "expected function name in prototype") |
| 380 | |
| 381 | As with binary operators, we name unary operators with a name that |
| 382 | includes the operator character. This assists us at code generation |
| 383 | time. Speaking of, the final piece we need to add is codegen support for |
| 384 | unary operators. It looks like this: |
| 385 | |
| 386 | .. code-block:: ocaml |
| 387 | |
| 388 | let rec codegen_expr = function |
| 389 | ... |
| 390 | | Ast.Unary (op, operand) -> |
| 391 | let operand = codegen_expr operand in |
| 392 | let callee = "unary" ^ (String.make 1 op) in |
| 393 | let callee = |
| 394 | match lookup_function callee the_module with |
| 395 | | Some callee -> callee |
| 396 | | None -> raise (Error "unknown unary operator") |
| 397 | in |
| 398 | build_call callee [|operand|] "unop" builder |
| 399 | |
| 400 | This code is similar to, but simpler than, the code for binary |
| 401 | operators. It is simpler primarily because it doesn't need to handle any |
| 402 | predefined operators. |
| 403 | |
| 404 | Kicking the Tires |
| 405 | ================= |
| 406 | |
| 407 | It is somewhat hard to believe, but with a few simple extensions we've |
| 408 | covered in the last chapters, we have grown a real-ish language. With |
| 409 | this, we can do a lot of interesting things, including I/O, math, and a |
| 410 | bunch of other things. For example, we can now add a nice sequencing |
| 411 | operator (printd is defined to print out the specified value and a |
| 412 | newline): |
| 413 | |
| 414 | :: |
| 415 | |
| 416 | ready> extern printd(x); |
| 417 | Read extern: declare double @printd(double) |
| 418 | ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands. |
| 419 | .. |
| 420 | ready> printd(123) : printd(456) : printd(789); |
| 421 | 123.000000 |
| 422 | 456.000000 |
| 423 | 789.000000 |
| 424 | Evaluated to 0.000000 |
| 425 | |
| 426 | We can also define a bunch of other "primitive" operations, such as: |
| 427 | |
| 428 | :: |
| 429 | |
| 430 | # Logical unary not. |
| 431 | def unary!(v) |
| 432 | if v then |
| 433 | 0 |
| 434 | else |
| 435 | 1; |
| 436 | |
| 437 | # Unary negate. |
| 438 | def unary-(v) |
| 439 | 0-v; |
| 440 | |
| 441 | # Define > with the same precedence as <. |
| 442 | def binary> 10 (LHS RHS) |
| 443 | RHS < LHS; |
| 444 | |
| 445 | # Binary logical or, which does not short circuit. |
| 446 | def binary| 5 (LHS RHS) |
| 447 | if LHS then |
| 448 | 1 |
| 449 | else if RHS then |
| 450 | 1 |
| 451 | else |
| 452 | 0; |
| 453 | |
| 454 | # Binary logical and, which does not short circuit. |
| 455 | def binary& 6 (LHS RHS) |
| 456 | if !LHS then |
| 457 | 0 |
| 458 | else |
| 459 | !!RHS; |
| 460 | |
| 461 | # Define = with slightly lower precedence than relationals. |
| 462 | def binary = 9 (LHS RHS) |
| 463 | !(LHS < RHS | LHS > RHS); |
| 464 | |
| 465 | Given the previous if/then/else support, we can also define interesting |
| 466 | functions for I/O. For example, the following prints out a character |
| 467 | whose "density" reflects the value passed in: the lower the value, the |
| 468 | denser the character: |
| 469 | |
| 470 | :: |
| 471 | |
| 472 | ready> |
| 473 | |
| 474 | extern putchard(char) |
| 475 | def printdensity(d) |
| 476 | if d > 8 then |
| 477 | putchard(32) # ' ' |
| 478 | else if d > 4 then |
| 479 | putchard(46) # '.' |
| 480 | else if d > 2 then |
| 481 | putchard(43) # '+' |
| 482 | else |
| 483 | putchard(42); # '*' |
| 484 | ... |
| 485 | ready> printdensity(1): printdensity(2): printdensity(3) : |
| 486 | printdensity(4): printdensity(5): printdensity(9): putchard(10); |
| 487 | *++.. |
| 488 | Evaluated to 0.000000 |
| 489 | |
| 490 | Based on these simple primitive operations, we can start to define more |
| 491 | interesting things. For example, here's a little function that solves |
| 492 | for the number of iterations it takes a function in the complex plane to |
| 493 | converge: |
| 494 | |
| 495 | :: |
| 496 | |
| 497 | # determine whether the specific location diverges. |
| 498 | # Solve for z = z^2 + c in the complex plane. |
| 499 | def mandleconverger(real imag iters creal cimag) |
| 500 | if iters > 255 | (real*real + imag*imag > 4) then |
| 501 | iters |
| 502 | else |
| 503 | mandleconverger(real*real - imag*imag + creal, |
| 504 | 2*real*imag + cimag, |
| 505 | iters+1, creal, cimag); |
| 506 | |
| 507 | # return the number of iterations required for the iteration to escape |
| 508 | def mandleconverge(real imag) |
| 509 | mandleconverger(real, imag, 0, real, imag); |
| 510 | |
| 511 | This "z = z\ :sup:`2`\ + c" function is a beautiful little creature |
| 512 | that is the basis for computation of the `Mandelbrot |
| 513 | Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our |
| 514 | ``mandelconverge`` function returns the number of iterations that it |
| 515 | takes for a complex orbit to escape, saturating to 255. This is not a |
| 516 | very useful function by itself, but if you plot its value over a |
| 517 | two-dimensional plane, you can see the Mandelbrot set. Given that we are |
| 518 | limited to using putchard here, our amazing graphical output is limited, |
| 519 | but we can whip together something using the density plotter above: |
| 520 | |
| 521 | :: |
| 522 | |
| 523 | # compute and plot the mandlebrot set with the specified 2 dimensional range |
| 524 | # info. |
| 525 | def mandelhelp(xmin xmax xstep ymin ymax ystep) |
| 526 | for y = ymin, y < ymax, ystep in ( |
| 527 | (for x = xmin, x < xmax, xstep in |
| 528 | printdensity(mandleconverge(x,y))) |
| 529 | : putchard(10) |
| 530 | ) |
| 531 | |
| 532 | # mandel - This is a convenient helper function for plotting the mandelbrot set |
| 533 | # from the specified position with the specified Magnification. |
| 534 | def mandel(realstart imagstart realmag imagmag) |
| 535 | mandelhelp(realstart, realstart+realmag*78, realmag, |
| 536 | imagstart, imagstart+imagmag*40, imagmag); |
| 537 | |
| 538 | Given this, we can try plotting out the mandlebrot set! Lets try it out: |
| 539 | |
| 540 | :: |
| 541 | |
| 542 | ready> mandel(-2.3, -1.3, 0.05, 0.07); |
| 543 | *******************************+++++++++++************************************* |
| 544 | *************************+++++++++++++++++++++++******************************* |
| 545 | **********************+++++++++++++++++++++++++++++**************************** |
| 546 | *******************+++++++++++++++++++++.. ...++++++++************************* |
| 547 | *****************++++++++++++++++++++++.... ...+++++++++*********************** |
| 548 | ***************+++++++++++++++++++++++..... ...+++++++++********************* |
| 549 | **************+++++++++++++++++++++++.... ....+++++++++******************** |
| 550 | *************++++++++++++++++++++++...... .....++++++++******************* |
| 551 | ************+++++++++++++++++++++....... .......+++++++****************** |
| 552 | ***********+++++++++++++++++++.... ... .+++++++***************** |
| 553 | **********+++++++++++++++++....... .+++++++**************** |
| 554 | *********++++++++++++++........... ...+++++++*************** |
| 555 | ********++++++++++++............ ...++++++++************** |
| 556 | ********++++++++++... .......... .++++++++************** |
| 557 | *******+++++++++..... .+++++++++************* |
| 558 | *******++++++++...... ..+++++++++************* |
| 559 | *******++++++....... ..+++++++++************* |
| 560 | *******+++++...... ..+++++++++************* |
| 561 | *******.... .... ...+++++++++************* |
| 562 | *******.... . ...+++++++++************* |
| 563 | *******+++++...... ...+++++++++************* |
| 564 | *******++++++....... ..+++++++++************* |
| 565 | *******++++++++...... .+++++++++************* |
| 566 | *******+++++++++..... ..+++++++++************* |
| 567 | ********++++++++++... .......... .++++++++************** |
| 568 | ********++++++++++++............ ...++++++++************** |
| 569 | *********++++++++++++++.......... ...+++++++*************** |
| 570 | **********++++++++++++++++........ .+++++++**************** |
| 571 | **********++++++++++++++++++++.... ... ..+++++++**************** |
| 572 | ***********++++++++++++++++++++++....... .......++++++++***************** |
| 573 | ************+++++++++++++++++++++++...... ......++++++++****************** |
| 574 | **************+++++++++++++++++++++++.... ....++++++++******************** |
| 575 | ***************+++++++++++++++++++++++..... ...+++++++++********************* |
| 576 | *****************++++++++++++++++++++++.... ...++++++++*********************** |
| 577 | *******************+++++++++++++++++++++......++++++++************************* |
| 578 | *********************++++++++++++++++++++++.++++++++*************************** |
| 579 | *************************+++++++++++++++++++++++******************************* |
| 580 | ******************************+++++++++++++************************************ |
| 581 | ******************************************************************************* |
| 582 | ******************************************************************************* |
| 583 | ******************************************************************************* |
| 584 | Evaluated to 0.000000 |
| 585 | ready> mandel(-2, -1, 0.02, 0.04); |
| 586 | **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 587 | ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 588 | *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. |
| 589 | *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++... |
| 590 | *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++..... |
| 591 | ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........ |
| 592 | **************++++++++++++++++++++++++++++++++++++++++++++++++++++++........... |
| 593 | ************+++++++++++++++++++++++++++++++++++++++++++++++++++++.............. |
| 594 | ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ . |
| 595 | **********++++++++++++++++++++++++++++++++++++++++++++++............. |
| 596 | ********+++++++++++++++++++++++++++++++++++++++++++.................. |
| 597 | *******+++++++++++++++++++++++++++++++++++++++....................... |
| 598 | ******+++++++++++++++++++++++++++++++++++........................... |
| 599 | *****++++++++++++++++++++++++++++++++............................ |
| 600 | *****++++++++++++++++++++++++++++............................... |
| 601 | ****++++++++++++++++++++++++++...... ......................... |
| 602 | ***++++++++++++++++++++++++......... ...... ........... |
| 603 | ***++++++++++++++++++++++............ |
| 604 | **+++++++++++++++++++++.............. |
| 605 | **+++++++++++++++++++................ |
| 606 | *++++++++++++++++++................. |
| 607 | *++++++++++++++++............ ... |
| 608 | *++++++++++++++.............. |
| 609 | *+++....++++................ |
| 610 | *.......... ........... |
| 611 | * |
| 612 | *.......... ........... |
| 613 | *+++....++++................ |
| 614 | *++++++++++++++.............. |
| 615 | *++++++++++++++++............ ... |
| 616 | *++++++++++++++++++................. |
| 617 | **+++++++++++++++++++................ |
| 618 | **+++++++++++++++++++++.............. |
| 619 | ***++++++++++++++++++++++............ |
| 620 | ***++++++++++++++++++++++++......... ...... ........... |
| 621 | ****++++++++++++++++++++++++++...... ......................... |
| 622 | *****++++++++++++++++++++++++++++............................... |
| 623 | *****++++++++++++++++++++++++++++++++............................ |
| 624 | ******+++++++++++++++++++++++++++++++++++........................... |
| 625 | *******+++++++++++++++++++++++++++++++++++++++....................... |
| 626 | ********+++++++++++++++++++++++++++++++++++++++++++.................. |
| 627 | Evaluated to 0.000000 |
| 628 | ready> mandel(-0.9, -1.4, 0.02, 0.03); |
| 629 | ******************************************************************************* |
| 630 | ******************************************************************************* |
| 631 | ******************************************************************************* |
| 632 | **********+++++++++++++++++++++************************************************ |
| 633 | *+++++++++++++++++++++++++++++++++++++++*************************************** |
| 634 | +++++++++++++++++++++++++++++++++++++++++++++********************************** |
| 635 | ++++++++++++++++++++++++++++++++++++++++++++++++++***************************** |
| 636 | ++++++++++++++++++++++++++++++++++++++++++++++++++++++************************* |
| 637 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++********************** |
| 638 | +++++++++++++++++++++++++++++++++.........++++++++++++++++++******************* |
| 639 | +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++**************** |
| 640 | +++++++++++++++++++++++++++++....... ........+++++++++++++++++++************** |
| 641 | ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************ |
| 642 | +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++********** |
| 643 | ++++++++++++++++++++++++++........... ....++++++++++++++++++++++******** |
| 644 | ++++++++++++++++++++++++............. .......++++++++++++++++++++++****** |
| 645 | +++++++++++++++++++++++............. ........+++++++++++++++++++++++**** |
| 646 | ++++++++++++++++++++++........... ..........++++++++++++++++++++++*** |
| 647 | ++++++++++++++++++++........... .........++++++++++++++++++++++* |
| 648 | ++++++++++++++++++............ ...........++++++++++++++++++++ |
| 649 | ++++++++++++++++............... .............++++++++++++++++++ |
| 650 | ++++++++++++++................. ...............++++++++++++++++ |
| 651 | ++++++++++++.................. .................++++++++++++++ |
| 652 | +++++++++.................. .................+++++++++++++ |
| 653 | ++++++........ . ......... ..++++++++++++ |
| 654 | ++............ ...... ....++++++++++ |
| 655 | .............. ...++++++++++ |
| 656 | .............. ....+++++++++ |
| 657 | .............. .....++++++++ |
| 658 | ............. ......++++++++ |
| 659 | ........... .......++++++++ |
| 660 | ......... ........+++++++ |
| 661 | ......... ........+++++++ |
| 662 | ......... ....+++++++ |
| 663 | ........ ...+++++++ |
| 664 | ....... ...+++++++ |
| 665 | ....+++++++ |
| 666 | .....+++++++ |
| 667 | ....+++++++ |
| 668 | ....+++++++ |
| 669 | ....+++++++ |
| 670 | Evaluated to 0.000000 |
| 671 | ready> ^D |
| 672 | |
| 673 | At this point, you may be starting to realize that Kaleidoscope is a |
| 674 | real and powerful language. It may not be self-similar :), but it can be |
| 675 | used to plot things that are! |
| 676 | |
| 677 | With this, we conclude the "adding user-defined operators" chapter of |
| 678 | the tutorial. We have successfully augmented our language, adding the |
| 679 | ability to extend the language in the library, and we have shown how |
| 680 | this can be used to build a simple but interesting end-user application |
| 681 | in Kaleidoscope. At this point, Kaleidoscope can build a variety of |
| 682 | applications that are functional and can call functions with |
| 683 | side-effects, but it can't actually define and mutate a variable itself. |
| 684 | |
| 685 | Strikingly, variable mutation is an important feature of some languages, |
| 686 | and it is not at all obvious how to `add support for mutable |
| 687 | variables <OCamlLangImpl7.html>`_ without having to add an "SSA |
| 688 | construction" phase to your front-end. In the next chapter, we will |
| 689 | describe how you can add variable mutation without building SSA in your |
| 690 | front-end. |
| 691 | |
| 692 | Full Code Listing |
| 693 | ================= |
| 694 | |
| 695 | Here is the complete code listing for our running example, enhanced with |
| 696 | the if/then/else and for expressions.. To build this example, use: |
| 697 | |
| 698 | .. code-block:: bash |
| 699 | |
| 700 | # Compile |
| 701 | ocamlbuild toy.byte |
| 702 | # Run |
| 703 | ./toy.byte |
| 704 | |
| 705 | Here is the code: |
| 706 | |
| 707 | \_tags: |
| 708 | :: |
| 709 | |
| 710 | <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) |
| 711 | <*.{byte,native}>: g++, use_llvm, use_llvm_analysis |
| 712 | <*.{byte,native}>: use_llvm_executionengine, use_llvm_target |
| 713 | <*.{byte,native}>: use_llvm_scalar_opts, use_bindings |
| 714 | |
| 715 | myocamlbuild.ml: |
| 716 | .. code-block:: ocaml |
| 717 | |
| 718 | open Ocamlbuild_plugin;; |
| 719 | |
| 720 | ocaml_lib ~extern:true "llvm";; |
| 721 | ocaml_lib ~extern:true "llvm_analysis";; |
| 722 | ocaml_lib ~extern:true "llvm_executionengine";; |
| 723 | ocaml_lib ~extern:true "llvm_target";; |
| 724 | ocaml_lib ~extern:true "llvm_scalar_opts";; |
| 725 | |
| 726 | flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);; |
| 727 | dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; |
| 728 | |
| 729 | token.ml: |
| 730 | .. code-block:: ocaml |
| 731 | |
| 732 | (*===----------------------------------------------------------------------=== |
| 733 | * Lexer Tokens |
| 734 | *===----------------------------------------------------------------------===*) |
| 735 | |
| 736 | (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of |
| 737 | * these others for known things. *) |
| 738 | type token = |
| 739 | (* commands *) |
| 740 | | Def | Extern |
| 741 | |
| 742 | (* primary *) |
| 743 | | Ident of string | Number of float |
| 744 | |
| 745 | (* unknown *) |
| 746 | | Kwd of char |
| 747 | |
| 748 | (* control *) |
| 749 | | If | Then | Else |
| 750 | | For | In |
| 751 | |
| 752 | (* operators *) |
| 753 | | Binary | Unary |
| 754 | |
| 755 | lexer.ml: |
| 756 | .. code-block:: ocaml |
| 757 | |
| 758 | (*===----------------------------------------------------------------------=== |
| 759 | * Lexer |
| 760 | *===----------------------------------------------------------------------===*) |
| 761 | |
| 762 | let rec lex = parser |
| 763 | (* Skip any whitespace. *) |
| 764 | | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream |
| 765 | |
| 766 | (* identifier: [a-zA-Z][a-zA-Z0-9] *) |
| 767 | | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> |
| 768 | let buffer = Buffer.create 1 in |
| 769 | Buffer.add_char buffer c; |
| 770 | lex_ident buffer stream |
| 771 | |
| 772 | (* number: [0-9.]+ *) |
| 773 | | [< ' ('0' .. '9' as c); stream >] -> |
| 774 | let buffer = Buffer.create 1 in |
| 775 | Buffer.add_char buffer c; |
| 776 | lex_number buffer stream |
| 777 | |
| 778 | (* Comment until end of line. *) |
| 779 | | [< ' ('#'); stream >] -> |
| 780 | lex_comment stream |
| 781 | |
| 782 | (* Otherwise, just return the character as its ascii value. *) |
| 783 | | [< 'c; stream >] -> |
| 784 | [< 'Token.Kwd c; lex stream >] |
| 785 | |
| 786 | (* end of stream. *) |
| 787 | | [< >] -> [< >] |
| 788 | |
| 789 | and lex_number buffer = parser |
| 790 | | [< ' ('0' .. '9' | '.' as c); stream >] -> |
| 791 | Buffer.add_char buffer c; |
| 792 | lex_number buffer stream |
| 793 | | [< stream=lex >] -> |
| 794 | [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] |
| 795 | |
| 796 | and lex_ident buffer = parser |
| 797 | | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> |
| 798 | Buffer.add_char buffer c; |
| 799 | lex_ident buffer stream |
| 800 | | [< stream=lex >] -> |
| 801 | match Buffer.contents buffer with |
| 802 | | "def" -> [< 'Token.Def; stream >] |
| 803 | | "extern" -> [< 'Token.Extern; stream >] |
| 804 | | "if" -> [< 'Token.If; stream >] |
| 805 | | "then" -> [< 'Token.Then; stream >] |
| 806 | | "else" -> [< 'Token.Else; stream >] |
| 807 | | "for" -> [< 'Token.For; stream >] |
| 808 | | "in" -> [< 'Token.In; stream >] |
| 809 | | "binary" -> [< 'Token.Binary; stream >] |
| 810 | | "unary" -> [< 'Token.Unary; stream >] |
| 811 | | id -> [< 'Token.Ident id; stream >] |
| 812 | |
| 813 | and lex_comment = parser |
| 814 | | [< ' ('\n'); stream=lex >] -> stream |
| 815 | | [< 'c; e=lex_comment >] -> e |
| 816 | | [< >] -> [< >] |
| 817 | |
| 818 | ast.ml: |
| 819 | .. code-block:: ocaml |
| 820 | |
| 821 | (*===----------------------------------------------------------------------=== |
| 822 | * Abstract Syntax Tree (aka Parse Tree) |
| 823 | *===----------------------------------------------------------------------===*) |
| 824 | |
| 825 | (* expr - Base type for all expression nodes. *) |
| 826 | type expr = |
| 827 | (* variant for numeric literals like "1.0". *) |
| 828 | | Number of float |
| 829 | |
| 830 | (* variant for referencing a variable, like "a". *) |
| 831 | | Variable of string |
| 832 | |
| 833 | (* variant for a unary operator. *) |
| 834 | | Unary of char * expr |
| 835 | |
| 836 | (* variant for a binary operator. *) |
| 837 | | Binary of char * expr * expr |
| 838 | |
| 839 | (* variant for function calls. *) |
| 840 | | Call of string * expr array |
| 841 | |
| 842 | (* variant for if/then/else. *) |
| 843 | | If of expr * expr * expr |
| 844 | |
| 845 | (* variant for for/in. *) |
| 846 | | For of string * expr * expr * expr option * expr |
| 847 | |
| 848 | (* proto - This type represents the "prototype" for a function, which captures |
| 849 | * its name, and its argument names (thus implicitly the number of arguments the |
| 850 | * function takes). *) |
| 851 | type proto = |
| 852 | | Prototype of string * string array |
| 853 | | BinOpPrototype of string * string array * int |
| 854 | |
| 855 | (* func - This type represents a function definition itself. *) |
| 856 | type func = Function of proto * expr |
| 857 | |
| 858 | parser.ml: |
| 859 | .. code-block:: ocaml |
| 860 | |
| 861 | (*===---------------------------------------------------------------------=== |
| 862 | * Parser |
| 863 | *===---------------------------------------------------------------------===*) |
| 864 | |
| 865 | (* binop_precedence - This holds the precedence for each binary operator that is |
| 866 | * defined *) |
| 867 | let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 |
| 868 | |
| 869 | (* precedence - Get the precedence of the pending binary operator token. *) |
| 870 | let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 |
| 871 | |
| 872 | (* primary |
| 873 | * ::= identifier |
| 874 | * ::= numberexpr |
| 875 | * ::= parenexpr |
| 876 | * ::= ifexpr |
| 877 | * ::= forexpr *) |
| 878 | let rec parse_primary = parser |
| 879 | (* numberexpr ::= number *) |
| 880 | | [< 'Token.Number n >] -> Ast.Number n |
| 881 | |
| 882 | (* parenexpr ::= '(' expression ')' *) |
| 883 | | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e |
| 884 | |
| 885 | (* identifierexpr |
| 886 | * ::= identifier |
| 887 | * ::= identifier '(' argumentexpr ')' *) |
| 888 | | [< 'Token.Ident id; stream >] -> |
| 889 | let rec parse_args accumulator = parser |
| 890 | | [< e=parse_expr; stream >] -> |
| 891 | begin parser |
| 892 | | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e |
| 893 | | [< >] -> e :: accumulator |
| 894 | end stream |
| 895 | | [< >] -> accumulator |
| 896 | in |
| 897 | let rec parse_ident id = parser |
| 898 | (* Call. *) |
| 899 | | [< 'Token.Kwd '('; |
| 900 | args=parse_args []; |
| 901 | 'Token.Kwd ')' ?? "expected ')'">] -> |
| 902 | Ast.Call (id, Array.of_list (List.rev args)) |
| 903 | |
| 904 | (* Simple variable ref. *) |
| 905 | | [< >] -> Ast.Variable id |
| 906 | in |
| 907 | parse_ident id stream |
| 908 | |
| 909 | (* ifexpr ::= 'if' expr 'then' expr 'else' expr *) |
| 910 | | [< 'Token.If; c=parse_expr; |
| 911 | 'Token.Then ?? "expected 'then'"; t=parse_expr; |
| 912 | 'Token.Else ?? "expected 'else'"; e=parse_expr >] -> |
| 913 | Ast.If (c, t, e) |
| 914 | |
| 915 | (* forexpr |
| 916 | ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *) |
| 917 | | [< 'Token.For; |
| 918 | 'Token.Ident id ?? "expected identifier after for"; |
| 919 | 'Token.Kwd '=' ?? "expected '=' after for"; |
| 920 | stream >] -> |
| 921 | begin parser |
| 922 | | [< |
| 923 | start=parse_expr; |
| 924 | 'Token.Kwd ',' ?? "expected ',' after for"; |
| 925 | end_=parse_expr; |
| 926 | stream >] -> |
| 927 | let step = |
| 928 | begin parser |
| 929 | | [< 'Token.Kwd ','; step=parse_expr >] -> Some step |
| 930 | | [< >] -> None |
| 931 | end stream |
| 932 | in |
| 933 | begin parser |
| 934 | | [< 'Token.In; body=parse_expr >] -> |
| 935 | Ast.For (id, start, end_, step, body) |
| 936 | | [< >] -> |
| 937 | raise (Stream.Error "expected 'in' after for") |
| 938 | end stream |
| 939 | | [< >] -> |
| 940 | raise (Stream.Error "expected '=' after for") |
| 941 | end stream |
| 942 | |
| 943 | | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") |
| 944 | |
| 945 | (* unary |
| 946 | * ::= primary |
| 947 | * ::= '!' unary *) |
| 948 | and parse_unary = parser |
| 949 | (* If this is a unary operator, read it. *) |
| 950 | | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] -> |
| 951 | Ast.Unary (op, operand) |
| 952 | |
| 953 | (* If the current token is not an operator, it must be a primary expr. *) |
| 954 | | [< stream >] -> parse_primary stream |
| 955 | |
| 956 | (* binoprhs |
| 957 | * ::= ('+' primary)* *) |
| 958 | and parse_bin_rhs expr_prec lhs stream = |
| 959 | match Stream.peek stream with |
| 960 | (* If this is a binop, find its precedence. *) |
| 961 | | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> |
| 962 | let token_prec = precedence c in |
| 963 | |
| 964 | (* If this is a binop that binds at least as tightly as the current binop, |
| 965 | * consume it, otherwise we are done. *) |
| 966 | if token_prec < expr_prec then lhs else begin |
| 967 | (* Eat the binop. *) |
| 968 | Stream.junk stream; |
| 969 | |
| 970 | (* Parse the unary expression after the binary operator. *) |
| 971 | let rhs = parse_unary stream in |
| 972 | |
| 973 | (* Okay, we know this is a binop. *) |
| 974 | let rhs = |
| 975 | match Stream.peek stream with |
| 976 | | Some (Token.Kwd c2) -> |
| 977 | (* If BinOp binds less tightly with rhs than the operator after |
| 978 | * rhs, let the pending operator take rhs as its lhs. *) |
| 979 | let next_prec = precedence c2 in |
| 980 | if token_prec < next_prec |
| 981 | then parse_bin_rhs (token_prec + 1) rhs stream |
| 982 | else rhs |
| 983 | | _ -> rhs |
| 984 | in |
| 985 | |
| 986 | (* Merge lhs/rhs. *) |
| 987 | let lhs = Ast.Binary (c, lhs, rhs) in |
| 988 | parse_bin_rhs expr_prec lhs stream |
| 989 | end |
| 990 | | _ -> lhs |
| 991 | |
| 992 | (* expression |
| 993 | * ::= primary binoprhs *) |
| 994 | and parse_expr = parser |
| 995 | | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream |
| 996 | |
| 997 | (* prototype |
| 998 | * ::= id '(' id* ')' |
| 999 | * ::= binary LETTER number? (id, id) |
| 1000 | * ::= unary LETTER number? (id) *) |
| 1001 | let parse_prototype = |
| 1002 | let rec parse_args accumulator = parser |
| 1003 | | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e |
| 1004 | | [< >] -> accumulator |
| 1005 | in |
| 1006 | let parse_operator = parser |
| 1007 | | [< 'Token.Unary >] -> "unary", 1 |
| 1008 | | [< 'Token.Binary >] -> "binary", 2 |
| 1009 | in |
| 1010 | let parse_binary_precedence = parser |
| 1011 | | [< 'Token.Number n >] -> int_of_float n |
| 1012 | | [< >] -> 30 |
| 1013 | in |
| 1014 | parser |
| 1015 | | [< 'Token.Ident id; |
| 1016 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 1017 | args=parse_args []; |
| 1018 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 1019 | (* success. *) |
| 1020 | Ast.Prototype (id, Array.of_list (List.rev args)) |
| 1021 | | [< (prefix, kind)=parse_operator; |
| 1022 | 'Token.Kwd op ?? "expected an operator"; |
| 1023 | (* Read the precedence if present. *) |
| 1024 | binary_precedence=parse_binary_precedence; |
| 1025 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 1026 | args=parse_args []; |
| 1027 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 1028 | let name = prefix ^ (String.make 1 op) in |
| 1029 | let args = Array.of_list (List.rev args) in |
| 1030 | |
| 1031 | (* Verify right number of arguments for operator. *) |
| 1032 | if Array.length args != kind |
| 1033 | then raise (Stream.Error "invalid number of operands for operator") |
| 1034 | else |
| 1035 | if kind == 1 then |
| 1036 | Ast.Prototype (name, args) |
| 1037 | else |
| 1038 | Ast.BinOpPrototype (name, args, binary_precedence) |
| 1039 | | [< >] -> |
| 1040 | raise (Stream.Error "expected function name in prototype") |
| 1041 | |
| 1042 | (* definition ::= 'def' prototype expression *) |
| 1043 | let parse_definition = parser |
| 1044 | | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> |
| 1045 | Ast.Function (p, e) |
| 1046 | |
| 1047 | (* toplevelexpr ::= expression *) |
| 1048 | let parse_toplevel = parser |
| 1049 | | [< e=parse_expr >] -> |
| 1050 | (* Make an anonymous proto. *) |
| 1051 | Ast.Function (Ast.Prototype ("", [||]), e) |
| 1052 | |
| 1053 | (* external ::= 'extern' prototype *) |
| 1054 | let parse_extern = parser |
| 1055 | | [< 'Token.Extern; e=parse_prototype >] -> e |
| 1056 | |
| 1057 | codegen.ml: |
| 1058 | .. code-block:: ocaml |
| 1059 | |
| 1060 | (*===----------------------------------------------------------------------=== |
| 1061 | * Code Generation |
| 1062 | *===----------------------------------------------------------------------===*) |
| 1063 | |
| 1064 | open Llvm |
| 1065 | |
| 1066 | exception Error of string |
| 1067 | |
| 1068 | let context = global_context () |
| 1069 | let the_module = create_module context "my cool jit" |
| 1070 | let builder = builder context |
| 1071 | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 |
| 1072 | let double_type = double_type context |
| 1073 | |
| 1074 | let rec codegen_expr = function |
| 1075 | | Ast.Number n -> const_float double_type n |
| 1076 | | Ast.Variable name -> |
| 1077 | (try Hashtbl.find named_values name with |
| 1078 | | Not_found -> raise (Error "unknown variable name")) |
| 1079 | | Ast.Unary (op, operand) -> |
| 1080 | let operand = codegen_expr operand in |
| 1081 | let callee = "unary" ^ (String.make 1 op) in |
| 1082 | let callee = |
| 1083 | match lookup_function callee the_module with |
| 1084 | | Some callee -> callee |
| 1085 | | None -> raise (Error "unknown unary operator") |
| 1086 | in |
| 1087 | build_call callee [|operand|] "unop" builder |
| 1088 | | Ast.Binary (op, lhs, rhs) -> |
| 1089 | let lhs_val = codegen_expr lhs in |
| 1090 | let rhs_val = codegen_expr rhs in |
| 1091 | begin |
| 1092 | match op with |
| 1093 | | '+' -> build_add lhs_val rhs_val "addtmp" builder |
| 1094 | | '-' -> build_sub lhs_val rhs_val "subtmp" builder |
| 1095 | | '*' -> build_mul lhs_val rhs_val "multmp" builder |
| 1096 | | '<' -> |
| 1097 | (* Convert bool 0/1 to double 0.0 or 1.0 *) |
| 1098 | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in |
| 1099 | build_uitofp i double_type "booltmp" builder |
| 1100 | | _ -> |
| 1101 | (* If it wasn't a builtin binary operator, it must be a user defined |
| 1102 | * one. Emit a call to it. *) |
| 1103 | let callee = "binary" ^ (String.make 1 op) in |
| 1104 | let callee = |
| 1105 | match lookup_function callee the_module with |
| 1106 | | Some callee -> callee |
| 1107 | | None -> raise (Error "binary operator not found!") |
| 1108 | in |
| 1109 | build_call callee [|lhs_val; rhs_val|] "binop" builder |
| 1110 | end |
| 1111 | | Ast.Call (callee, args) -> |
| 1112 | (* Look up the name in the module table. *) |
| 1113 | let callee = |
| 1114 | match lookup_function callee the_module with |
| 1115 | | Some callee -> callee |
| 1116 | | None -> raise (Error "unknown function referenced") |
| 1117 | in |
| 1118 | let params = params callee in |
| 1119 | |
| 1120 | (* If argument mismatch error. *) |
| 1121 | if Array.length params == Array.length args then () else |
| 1122 | raise (Error "incorrect # arguments passed"); |
| 1123 | let args = Array.map codegen_expr args in |
| 1124 | build_call callee args "calltmp" builder |
| 1125 | | Ast.If (cond, then_, else_) -> |
| 1126 | let cond = codegen_expr cond in |
| 1127 | |
| 1128 | (* Convert condition to a bool by comparing equal to 0.0 *) |
| 1129 | let zero = const_float double_type 0.0 in |
| 1130 | let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in |
| 1131 | |
| 1132 | (* Grab the first block so that we might later add the conditional branch |
| 1133 | * to it at the end of the function. *) |
| 1134 | let start_bb = insertion_block builder in |
| 1135 | let the_function = block_parent start_bb in |
| 1136 | |
| 1137 | let then_bb = append_block context "then" the_function in |
| 1138 | |
| 1139 | (* Emit 'then' value. *) |
| 1140 | position_at_end then_bb builder; |
| 1141 | let then_val = codegen_expr then_ in |
| 1142 | |
| 1143 | (* Codegen of 'then' can change the current block, update then_bb for the |
| 1144 | * phi. We create a new name because one is used for the phi node, and the |
| 1145 | * other is used for the conditional branch. *) |
| 1146 | let new_then_bb = insertion_block builder in |
| 1147 | |
| 1148 | (* Emit 'else' value. *) |
| 1149 | let else_bb = append_block context "else" the_function in |
| 1150 | position_at_end else_bb builder; |
| 1151 | let else_val = codegen_expr else_ in |
| 1152 | |
| 1153 | (* Codegen of 'else' can change the current block, update else_bb for the |
| 1154 | * phi. *) |
| 1155 | let new_else_bb = insertion_block builder in |
| 1156 | |
| 1157 | (* Emit merge block. *) |
| 1158 | let merge_bb = append_block context "ifcont" the_function in |
| 1159 | position_at_end merge_bb builder; |
| 1160 | let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in |
| 1161 | let phi = build_phi incoming "iftmp" builder in |
| 1162 | |
| 1163 | (* Return to the start block to add the conditional branch. *) |
| 1164 | position_at_end start_bb builder; |
| 1165 | ignore (build_cond_br cond_val then_bb else_bb builder); |
| 1166 | |
| 1167 | (* Set a unconditional branch at the end of the 'then' block and the |
| 1168 | * 'else' block to the 'merge' block. *) |
| 1169 | position_at_end new_then_bb builder; ignore (build_br merge_bb builder); |
| 1170 | position_at_end new_else_bb builder; ignore (build_br merge_bb builder); |
| 1171 | |
| 1172 | (* Finally, set the builder to the end of the merge block. *) |
| 1173 | position_at_end merge_bb builder; |
| 1174 | |
| 1175 | phi |
| 1176 | | Ast.For (var_name, start, end_, step, body) -> |
| 1177 | (* Emit the start code first, without 'variable' in scope. *) |
| 1178 | let start_val = codegen_expr start in |
| 1179 | |
| 1180 | (* Make the new basic block for the loop header, inserting after current |
| 1181 | * block. *) |
| 1182 | let preheader_bb = insertion_block builder in |
| 1183 | let the_function = block_parent preheader_bb in |
| 1184 | let loop_bb = append_block context "loop" the_function in |
| 1185 | |
| 1186 | (* Insert an explicit fall through from the current block to the |
| 1187 | * loop_bb. *) |
| 1188 | ignore (build_br loop_bb builder); |
| 1189 | |
| 1190 | (* Start insertion in loop_bb. *) |
| 1191 | position_at_end loop_bb builder; |
| 1192 | |
| 1193 | (* Start the PHI node with an entry for start. *) |
| 1194 | let variable = build_phi [(start_val, preheader_bb)] var_name builder in |
| 1195 | |
| 1196 | (* Within the loop, the variable is defined equal to the PHI node. If it |
| 1197 | * shadows an existing variable, we have to restore it, so save it |
| 1198 | * now. *) |
| 1199 | let old_val = |
| 1200 | try Some (Hashtbl.find named_values var_name) with Not_found -> None |
| 1201 | in |
| 1202 | Hashtbl.add named_values var_name variable; |
| 1203 | |
| 1204 | (* Emit the body of the loop. This, like any other expr, can change the |
| 1205 | * current BB. Note that we ignore the value computed by the body, but |
| 1206 | * don't allow an error *) |
| 1207 | ignore (codegen_expr body); |
| 1208 | |
| 1209 | (* Emit the step value. *) |
| 1210 | let step_val = |
| 1211 | match step with |
| 1212 | | Some step -> codegen_expr step |
| 1213 | (* If not specified, use 1.0. *) |
| 1214 | | None -> const_float double_type 1.0 |
| 1215 | in |
| 1216 | |
| 1217 | let next_var = build_add variable step_val "nextvar" builder in |
| 1218 | |
| 1219 | (* Compute the end condition. *) |
| 1220 | let end_cond = codegen_expr end_ in |
| 1221 | |
| 1222 | (* Convert condition to a bool by comparing equal to 0.0. *) |
| 1223 | let zero = const_float double_type 0.0 in |
| 1224 | let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in |
| 1225 | |
| 1226 | (* Create the "after loop" block and insert it. *) |
| 1227 | let loop_end_bb = insertion_block builder in |
| 1228 | let after_bb = append_block context "afterloop" the_function in |
| 1229 | |
| 1230 | (* Insert the conditional branch into the end of loop_end_bb. *) |
| 1231 | ignore (build_cond_br end_cond loop_bb after_bb builder); |
| 1232 | |
| 1233 | (* Any new code will be inserted in after_bb. *) |
| 1234 | position_at_end after_bb builder; |
| 1235 | |
| 1236 | (* Add a new entry to the PHI node for the backedge. *) |
| 1237 | add_incoming (next_var, loop_end_bb) variable; |
| 1238 | |
| 1239 | (* Restore the unshadowed variable. *) |
| 1240 | begin match old_val with |
| 1241 | | Some old_val -> Hashtbl.add named_values var_name old_val |
| 1242 | | None -> () |
| 1243 | end; |
| 1244 | |
| 1245 | (* for expr always returns 0.0. *) |
| 1246 | const_null double_type |
| 1247 | |
| 1248 | let codegen_proto = function |
| 1249 | | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -> |
| 1250 | (* Make the function type: double(double,double) etc. *) |
| 1251 | let doubles = Array.make (Array.length args) double_type in |
| 1252 | let ft = function_type double_type doubles in |
| 1253 | let f = |
| 1254 | match lookup_function name the_module with |
| 1255 | | None -> declare_function name ft the_module |
| 1256 | |
| 1257 | (* If 'f' conflicted, there was already something named 'name'. If it |
| 1258 | * has a body, don't allow redefinition or reextern. *) |
| 1259 | | Some f -> |
| 1260 | (* If 'f' already has a body, reject this. *) |
| 1261 | if block_begin f <> At_end f then |
| 1262 | raise (Error "redefinition of function"); |
| 1263 | |
| 1264 | (* If 'f' took a different number of arguments, reject. *) |
| 1265 | if element_type (type_of f) <> ft then |
| 1266 | raise (Error "redefinition of function with different # args"); |
| 1267 | f |
| 1268 | in |
| 1269 | |
| 1270 | (* Set names for all arguments. *) |
| 1271 | Array.iteri (fun i a -> |
| 1272 | let n = args.(i) in |
| 1273 | set_value_name n a; |
| 1274 | Hashtbl.add named_values n a; |
| 1275 | ) (params f); |
| 1276 | f |
| 1277 | |
| 1278 | let codegen_func the_fpm = function |
| 1279 | | Ast.Function (proto, body) -> |
| 1280 | Hashtbl.clear named_values; |
| 1281 | let the_function = codegen_proto proto in |
| 1282 | |
| 1283 | (* If this is an operator, install it. *) |
| 1284 | begin match proto with |
| 1285 | | Ast.BinOpPrototype (name, args, prec) -> |
| 1286 | let op = name.[String.length name - 1] in |
| 1287 | Hashtbl.add Parser.binop_precedence op prec; |
| 1288 | | _ -> () |
| 1289 | end; |
| 1290 | |
| 1291 | (* Create a new basic block to start insertion into. *) |
| 1292 | let bb = append_block context "entry" the_function in |
| 1293 | position_at_end bb builder; |
| 1294 | |
| 1295 | try |
| 1296 | let ret_val = codegen_expr body in |
| 1297 | |
| 1298 | (* Finish off the function. *) |
| 1299 | let _ = build_ret ret_val builder in |
| 1300 | |
| 1301 | (* Validate the generated code, checking for consistency. *) |
| 1302 | Llvm_analysis.assert_valid_function the_function; |
| 1303 | |
| 1304 | (* Optimize the function. *) |
| 1305 | let _ = PassManager.run_function the_function the_fpm in |
| 1306 | |
| 1307 | the_function |
| 1308 | with e -> |
| 1309 | delete_function the_function; |
| 1310 | raise e |
| 1311 | |
| 1312 | toplevel.ml: |
| 1313 | .. code-block:: ocaml |
| 1314 | |
| 1315 | (*===----------------------------------------------------------------------=== |
| 1316 | * Top-Level parsing and JIT Driver |
| 1317 | *===----------------------------------------------------------------------===*) |
| 1318 | |
| 1319 | open Llvm |
| 1320 | open Llvm_executionengine |
| 1321 | |
| 1322 | (* top ::= definition | external | expression | ';' *) |
| 1323 | let rec main_loop the_fpm the_execution_engine stream = |
| 1324 | match Stream.peek stream with |
| 1325 | | None -> () |
| 1326 | |
| 1327 | (* ignore top-level semicolons. *) |
| 1328 | | Some (Token.Kwd ';') -> |
| 1329 | Stream.junk stream; |
| 1330 | main_loop the_fpm the_execution_engine stream |
| 1331 | |
| 1332 | | Some token -> |
| 1333 | begin |
| 1334 | try match token with |
| 1335 | | Token.Def -> |
| 1336 | let e = Parser.parse_definition stream in |
| 1337 | print_endline "parsed a function definition."; |
| 1338 | dump_value (Codegen.codegen_func the_fpm e); |
| 1339 | | Token.Extern -> |
| 1340 | let e = Parser.parse_extern stream in |
| 1341 | print_endline "parsed an extern."; |
| 1342 | dump_value (Codegen.codegen_proto e); |
| 1343 | | _ -> |
| 1344 | (* Evaluate a top-level expression into an anonymous function. *) |
| 1345 | let e = Parser.parse_toplevel stream in |
| 1346 | print_endline "parsed a top-level expr"; |
| 1347 | let the_function = Codegen.codegen_func the_fpm e in |
| 1348 | dump_value the_function; |
| 1349 | |
| 1350 | (* JIT the function, returning a function pointer. *) |
| 1351 | let result = ExecutionEngine.run_function the_function [||] |
| 1352 | the_execution_engine in |
| 1353 | |
| 1354 | print_string "Evaluated to "; |
| 1355 | print_float (GenericValue.as_float Codegen.double_type result); |
| 1356 | print_newline (); |
| 1357 | with Stream.Error s | Codegen.Error s -> |
| 1358 | (* Skip token for error recovery. *) |
| 1359 | Stream.junk stream; |
| 1360 | print_endline s; |
| 1361 | end; |
| 1362 | print_string "ready> "; flush stdout; |
| 1363 | main_loop the_fpm the_execution_engine stream |
| 1364 | |
| 1365 | toy.ml: |
| 1366 | .. code-block:: ocaml |
| 1367 | |
| 1368 | (*===----------------------------------------------------------------------=== |
| 1369 | * Main driver code. |
| 1370 | *===----------------------------------------------------------------------===*) |
| 1371 | |
| 1372 | open Llvm |
| 1373 | open Llvm_executionengine |
| 1374 | open Llvm_target |
| 1375 | open Llvm_scalar_opts |
| 1376 | |
| 1377 | let main () = |
| 1378 | ignore (initialize_native_target ()); |
| 1379 | |
| 1380 | (* Install standard binary operators. |
| 1381 | * 1 is the lowest precedence. *) |
| 1382 | Hashtbl.add Parser.binop_precedence '<' 10; |
| 1383 | Hashtbl.add Parser.binop_precedence '+' 20; |
| 1384 | Hashtbl.add Parser.binop_precedence '-' 20; |
| 1385 | Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) |
| 1386 | |
| 1387 | (* Prime the first token. *) |
| 1388 | print_string "ready> "; flush stdout; |
| 1389 | let stream = Lexer.lex (Stream.of_channel stdin) in |
| 1390 | |
| 1391 | (* Create the JIT. *) |
| 1392 | let the_execution_engine = ExecutionEngine.create Codegen.the_module in |
| 1393 | let the_fpm = PassManager.create_function Codegen.the_module in |
| 1394 | |
| 1395 | (* Set up the optimizer pipeline. Start with registering info about how the |
| 1396 | * target lays out data structures. *) |
| 1397 | DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm; |
| 1398 | |
| 1399 | (* Do simple "peephole" optimizations and bit-twiddling optzn. *) |
| 1400 | add_instruction_combination the_fpm; |
| 1401 | |
| 1402 | (* reassociate expressions. *) |
| 1403 | add_reassociation the_fpm; |
| 1404 | |
| 1405 | (* Eliminate Common SubExpressions. *) |
| 1406 | add_gvn the_fpm; |
| 1407 | |
| 1408 | (* Simplify the control flow graph (deleting unreachable blocks, etc). *) |
| 1409 | add_cfg_simplification the_fpm; |
| 1410 | |
| 1411 | ignore (PassManager.initialize the_fpm); |
| 1412 | |
| 1413 | (* Run the main "interpreter loop" now. *) |
| 1414 | Toplevel.main_loop the_fpm the_execution_engine stream; |
| 1415 | |
| 1416 | (* Print out all the generated code. *) |
| 1417 | dump_module Codegen.the_module |
| 1418 | ;; |
| 1419 | |
| 1420 | main () |
| 1421 | |
| 1422 | bindings.c |
| 1423 | .. code-block:: c |
| 1424 | |
| 1425 | #include <stdio.h> |
| 1426 | |
| 1427 | /* putchard - putchar that takes a double and returns 0. */ |
| 1428 | extern double putchard(double X) { |
| 1429 | putchar((char)X); |
| 1430 | return 0; |
| 1431 | } |
| 1432 | |
| 1433 | /* printd - printf that takes a double prints it as "%f\n", returning 0. */ |
| 1434 | extern double printd(double X) { |
| 1435 | printf("%f\n", X); |
| 1436 | return 0; |
| 1437 | } |
| 1438 | |
| 1439 | `Next: Extending the language: mutable variables / SSA |
| 1440 | construction <OCamlLangImpl7.html>`_ |
| 1441 | |