blob: 440f635fd0056b92050faf1dce52710f4c01ab2a [file] [log] [blame]
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +00001//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "llvm/Target/TargetLowering.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20
21namespace llvm {
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000022 namespace X86ISD {
Evan Chengd9558e02006-01-06 00:43:03 +000023 // X86 Specific DAG Nodes
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000024 enum NodeType {
25 // Start the numbering where the builtin ops leave off.
Evan Cheng7df96d62005-12-17 01:21:05 +000026 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000027
28 /// FILD64m - This instruction implements SINT_TO_FP with a
29 /// 64-bit source in memory and a FP reg result. This corresponds to
30 /// the X86::FILD64m instruction. It has two inputs (token chain and
31 /// address) and two outputs (FP value and token chain).
32 FILD64m,
33
34 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
35 /// integer destination in memory and a FP reg source. This corresponds
36 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
37 /// has two inputs (token chain and address) and two outputs (FP value and
38 /// token chain).
39 FP_TO_INT16_IN_MEM,
40 FP_TO_INT32_IN_MEM,
41 FP_TO_INT64_IN_MEM,
42
Evan Chengb077b842005-12-21 02:39:21 +000043 /// FLD - This instruction implements an extending load to FP stack slots.
44 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
Evan Cheng38bcbaf2005-12-23 07:31:11 +000045 /// operand, ptr to load from, and a ValueType node indicating the type
46 /// to load to.
Evan Chengb077b842005-12-21 02:39:21 +000047 FLD,
48
Evan Chengd90eb7f2006-01-05 00:27:02 +000049 /// FST - This instruction implements a truncating store to FP stack
50 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
51 /// chain operand, value to store, address, and a ValueType to store it
52 /// as.
53 FST,
54
55 /// FP_SET_RESULT - This corresponds to FpGETRESULT pseudo instrcuction
56 /// which copies from ST(0) to the destination. It takes a chain and writes
57 /// a RFP result and a chain.
58 FP_GET_RESULT,
59
Evan Chengb077b842005-12-21 02:39:21 +000060 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instrcuction
61 /// which copies the source operand to ST(0). It takes a chain and writes
62 /// a chain and a flag.
63 FP_SET_RESULT,
64
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +000065 /// CALL/TAILCALL - These operations represent an abstract X86 call
66 /// instruction, which includes a bunch of information. In particular the
67 /// operands of these node are:
68 ///
69 /// #0 - The incoming token chain
70 /// #1 - The callee
71 /// #2 - The number of arg bytes the caller pushes on the stack.
72 /// #3 - The number of arg bytes the callee pops off the stack.
73 /// #4 - The value to pass in AL/AX/EAX (optional)
74 /// #5 - The value to pass in DL/DX/EDX (optional)
75 ///
76 /// The result values of these nodes are:
77 ///
78 /// #0 - The outgoing token chain
79 /// #1 - The first register result value (optional)
80 /// #2 - The second register result value (optional)
81 ///
82 /// The CALL vs TAILCALL distinction boils down to whether the callee is
83 /// known not to modify the caller's stack frame, as is standard with
84 /// LLVM.
85 CALL,
86 TAILCALL,
Andrew Lenharthb873ff32005-11-20 21:41:10 +000087
88 /// RDTSC_DAG - This operation implements the lowering for
89 /// readcyclecounter
90 RDTSC_DAG,
Evan Cheng7df96d62005-12-17 01:21:05 +000091
92 /// X86 compare and logical compare instructions.
93 CMP, TEST,
94
Evan Chengd5781fc2005-12-21 20:21:51 +000095 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
96 /// operand produced by a CMP instruction.
97 SETCC,
98
99 /// X86 conditional moves. Operand 1 and operand 2 are the two values
100 /// to select from (operand 1 is a R/W operand). Operand 3 is the condition
101 /// code, and operand 4 is the flag operand produced by a CMP or TEST
102 /// instruction.
Evan Cheng7df96d62005-12-17 01:21:05 +0000103 CMOV,
Evan Cheng898101c2005-12-19 23:12:38 +0000104
Evan Chengd5781fc2005-12-21 20:21:51 +0000105 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
106 /// is the block to branch if condition is true, operand 3 is the
107 /// condition code, and operand 4 is the flag operand produced by a CMP
108 /// or TEST instruction.
Evan Cheng898101c2005-12-19 23:12:38 +0000109 BRCOND,
Evan Chengb077b842005-12-21 02:39:21 +0000110
Evan Chengd9558e02006-01-06 00:43:03 +0000111 /// Return without a flag operand. Operand 1 is the number of bytes of
112 /// stack to pop, and operand 2 is the chain.
113 RET,
114
Evan Chengd5781fc2005-12-21 20:21:51 +0000115 /// Return with a flag operand. Operand 1 is the number of bytes of stack
116 /// to pop, operand 2 is the chain and operand 3 is a flag operand.
Evan Chengb077b842005-12-21 02:39:21 +0000117 RET_FLAG,
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000118 };
Evan Chengd9558e02006-01-06 00:43:03 +0000119
120 // X86 specific condition code. These correspond to X86_*_COND in
121 // X86InstrInfo.td. They must be kept in synch.
122 enum CondCode {
123 COND_A = 0,
124 COND_AE = 1,
125 COND_B = 2,
126 COND_BE = 3,
127 COND_E = 4,
128 COND_G = 5,
129 COND_GE = 6,
130 COND_L = 7,
131 COND_LE = 8,
132 COND_NE = 9,
133 COND_NO = 10,
134 COND_NP = 11,
135 COND_NS = 12,
136 COND_O = 13,
137 COND_P = 14,
138 COND_S = 15,
139 COND_INVALID
140 };
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000141 }
142
143 //===----------------------------------------------------------------------===//
144 // X86TargetLowering - X86 Implementation of the TargetLowering interface
145 class X86TargetLowering : public TargetLowering {
146 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
147 int ReturnAddrIndex; // FrameIndex for return slot.
148 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
149 int BytesCallerReserves; // Number of arg bytes caller makes.
150 public:
151 X86TargetLowering(TargetMachine &TM);
152
153 // Return the number of bytes that a function should pop when it returns (in
154 // addition to the space used by the return address).
155 //
156 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
157
158 // Return the number of bytes that the caller reserves for arguments passed
159 // to this function.
160 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
161
162 /// LowerOperation - Provide custom lowering hooks for some operations.
163 ///
164 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
165
166 /// LowerArguments - This hook must be implemented to indicate how we should
167 /// lower the arguments for the specified function, into the specified DAG.
168 virtual std::vector<SDOperand>
169 LowerArguments(Function &F, SelectionDAG &DAG);
170
171 /// LowerCallTo - This hook lowers an abstract call to a function into an
172 /// actual call.
173 virtual std::pair<SDOperand, SDOperand>
174 LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
175 bool isTailCall, SDOperand Callee, ArgListTy &Args,
176 SelectionDAG &DAG);
177
Evan Chengb077b842005-12-21 02:39:21 +0000178 virtual SDOperand LowerReturnTo(SDOperand Chain, SDOperand Op,
179 SelectionDAG &DAG);
180
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000181 virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
182 Value *VAListV, SelectionDAG &DAG);
183 virtual std::pair<SDOperand,SDOperand>
184 LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
185 const Type *ArgTy, SelectionDAG &DAG);
186
187 virtual std::pair<SDOperand, SDOperand>
188 LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
189 SelectionDAG &DAG);
190
Evan Cheng72261582005-12-20 06:22:03 +0000191 /// getTargetNodeName - This method returns the name of a target specific
192 /// DAG node.
193 virtual const char *getTargetNodeName(unsigned Opcode) const;
194
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000195 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
196 /// be zero. Op is expected to be a target specific node. Used by DAG
197 /// combiner.
198 virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op,
199 uint64_t Mask) const;
200
Chris Lattnerdbdbf0c2005-11-15 00:40:23 +0000201 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
202
203 private:
204 // C Calling Convention implementation.
205 std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG);
206 std::pair<SDOperand, SDOperand>
207 LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
208 bool isTailCall,
209 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
210
211 // Fast Calling Convention implementation.
212 std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG);
213 std::pair<SDOperand, SDOperand>
214 LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall,
215 SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
216 };
217}
218
219#endif // X86ISELLOWERING_H